1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Sanitizers may use markers. 52 if (CGOpts.SanitizeAddressUseAfterScope || 53 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 54 LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 66 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 67 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 68 if (!suppressNewContext) 69 CGM.getCXXABI().getMangleContext().startNewFunction(); 70 71 llvm::FastMathFlags FMF; 72 if (CGM.getLangOpts().FastMath) 73 FMF.setFast(); 74 if (CGM.getLangOpts().FiniteMathOnly) { 75 FMF.setNoNaNs(); 76 FMF.setNoInfs(); 77 } 78 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 79 FMF.setNoNaNs(); 80 } 81 if (CGM.getCodeGenOpts().NoSignedZeros) { 82 FMF.setNoSignedZeros(); 83 } 84 if (CGM.getCodeGenOpts().ReciprocalMath) { 85 FMF.setAllowReciprocal(); 86 } 87 if (CGM.getCodeGenOpts().Reassociate) { 88 FMF.setAllowReassoc(); 89 } 90 Builder.setFastMathFlags(FMF); 91 SetFPModel(); 92 } 93 94 CodeGenFunction::~CodeGenFunction() { 95 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 96 97 // If there are any unclaimed block infos, go ahead and destroy them 98 // now. This can happen if IR-gen gets clever and skips evaluating 99 // something. 100 if (FirstBlockInfo) 101 destroyBlockInfos(FirstBlockInfo); 102 103 if (getLangOpts().OpenMP && CurFn) 104 CGM.getOpenMPRuntime().functionFinished(*this); 105 } 106 107 // Map the LangOption for rounding mode into 108 // the corresponding enum in the IR. 109 static llvm::ConstrainedFPIntrinsic::RoundingMode ToConstrainedRoundingMD( 110 LangOptions::FPRoundingModeKind Kind) { 111 112 switch (Kind) { 113 case LangOptions::FPR_ToNearest: 114 return llvm::ConstrainedFPIntrinsic::rmToNearest; 115 case LangOptions::FPR_Downward: 116 return llvm::ConstrainedFPIntrinsic::rmDownward; 117 case LangOptions::FPR_Upward: 118 return llvm::ConstrainedFPIntrinsic::rmUpward; 119 case LangOptions::FPR_TowardZero: 120 return llvm::ConstrainedFPIntrinsic::rmTowardZero; 121 case LangOptions::FPR_Dynamic: 122 return llvm::ConstrainedFPIntrinsic::rmDynamic; 123 } 124 llvm_unreachable("Unsupported FP RoundingMode"); 125 } 126 127 // Map the LangOption for exception behavior into 128 // the corresponding enum in the IR. 129 static llvm::ConstrainedFPIntrinsic::ExceptionBehavior ToConstrainedExceptMD( 130 LangOptions::FPExceptionModeKind Kind) { 131 132 switch (Kind) { 133 case LangOptions::FPE_Ignore: 134 return llvm::ConstrainedFPIntrinsic::ebIgnore; 135 case LangOptions::FPE_MayTrap: 136 return llvm::ConstrainedFPIntrinsic::ebMayTrap; 137 case LangOptions::FPE_Strict: 138 return llvm::ConstrainedFPIntrinsic::ebStrict; 139 } 140 llvm_unreachable("Unsupported FP Exception Behavior"); 141 } 142 143 void CodeGenFunction::SetFPModel() { 144 auto fpRoundingMode = ToConstrainedRoundingMD( 145 getLangOpts().getFPRoundingMode()); 146 auto fpExceptionBehavior = ToConstrainedExceptMD( 147 getLangOpts().getFPExceptionMode()); 148 149 if (fpExceptionBehavior == llvm::ConstrainedFPIntrinsic::ebIgnore && 150 fpRoundingMode == llvm::ConstrainedFPIntrinsic::rmToNearest) 151 // Constrained intrinsics are not used. 152 ; 153 else { 154 Builder.setIsFPConstrained(true); 155 Builder.setDefaultConstrainedRounding(fpRoundingMode); 156 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 157 } 158 } 159 160 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 161 LValueBaseInfo *BaseInfo, 162 TBAAAccessInfo *TBAAInfo) { 163 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 164 /* forPointeeType= */ true); 165 } 166 167 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 168 LValueBaseInfo *BaseInfo, 169 TBAAAccessInfo *TBAAInfo, 170 bool forPointeeType) { 171 if (TBAAInfo) 172 *TBAAInfo = CGM.getTBAAAccessInfo(T); 173 174 // Honor alignment typedef attributes even on incomplete types. 175 // We also honor them straight for C++ class types, even as pointees; 176 // there's an expressivity gap here. 177 if (auto TT = T->getAs<TypedefType>()) { 178 if (auto Align = TT->getDecl()->getMaxAlignment()) { 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 181 return getContext().toCharUnitsFromBits(Align); 182 } 183 } 184 185 if (BaseInfo) 186 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 187 188 CharUnits Alignment; 189 if (T->isIncompleteType()) { 190 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 191 } else { 192 // For C++ class pointees, we don't know whether we're pointing at a 193 // base or a complete object, so we generally need to use the 194 // non-virtual alignment. 195 const CXXRecordDecl *RD; 196 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 197 Alignment = CGM.getClassPointerAlignment(RD); 198 } else { 199 Alignment = getContext().getTypeAlignInChars(T); 200 if (T.getQualifiers().hasUnaligned()) 201 Alignment = CharUnits::One(); 202 } 203 204 // Cap to the global maximum type alignment unless the alignment 205 // was somehow explicit on the type. 206 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 207 if (Alignment.getQuantity() > MaxAlign && 208 !getContext().isAlignmentRequired(T)) 209 Alignment = CharUnits::fromQuantity(MaxAlign); 210 } 211 } 212 return Alignment; 213 } 214 215 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 216 LValueBaseInfo BaseInfo; 217 TBAAAccessInfo TBAAInfo; 218 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 219 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 220 TBAAInfo); 221 } 222 223 /// Given a value of type T* that may not be to a complete object, 224 /// construct an l-value with the natural pointee alignment of T. 225 LValue 226 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 227 LValueBaseInfo BaseInfo; 228 TBAAAccessInfo TBAAInfo; 229 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 230 /* forPointeeType= */ true); 231 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 232 } 233 234 235 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 236 return CGM.getTypes().ConvertTypeForMem(T); 237 } 238 239 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 240 return CGM.getTypes().ConvertType(T); 241 } 242 243 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 244 type = type.getCanonicalType(); 245 while (true) { 246 switch (type->getTypeClass()) { 247 #define TYPE(name, parent) 248 #define ABSTRACT_TYPE(name, parent) 249 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 250 #define DEPENDENT_TYPE(name, parent) case Type::name: 251 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 252 #include "clang/AST/TypeNodes.inc" 253 llvm_unreachable("non-canonical or dependent type in IR-generation"); 254 255 case Type::Auto: 256 case Type::DeducedTemplateSpecialization: 257 llvm_unreachable("undeduced type in IR-generation"); 258 259 // Various scalar types. 260 case Type::Builtin: 261 case Type::Pointer: 262 case Type::BlockPointer: 263 case Type::LValueReference: 264 case Type::RValueReference: 265 case Type::MemberPointer: 266 case Type::Vector: 267 case Type::ExtVector: 268 case Type::FunctionProto: 269 case Type::FunctionNoProto: 270 case Type::Enum: 271 case Type::ObjCObjectPointer: 272 case Type::Pipe: 273 return TEK_Scalar; 274 275 // Complexes. 276 case Type::Complex: 277 return TEK_Complex; 278 279 // Arrays, records, and Objective-C objects. 280 case Type::ConstantArray: 281 case Type::IncompleteArray: 282 case Type::VariableArray: 283 case Type::Record: 284 case Type::ObjCObject: 285 case Type::ObjCInterface: 286 return TEK_Aggregate; 287 288 // We operate on atomic values according to their underlying type. 289 case Type::Atomic: 290 type = cast<AtomicType>(type)->getValueType(); 291 continue; 292 } 293 llvm_unreachable("unknown type kind!"); 294 } 295 } 296 297 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 298 // For cleanliness, we try to avoid emitting the return block for 299 // simple cases. 300 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 301 302 if (CurBB) { 303 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 304 305 // We have a valid insert point, reuse it if it is empty or there are no 306 // explicit jumps to the return block. 307 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 308 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 309 delete ReturnBlock.getBlock(); 310 ReturnBlock = JumpDest(); 311 } else 312 EmitBlock(ReturnBlock.getBlock()); 313 return llvm::DebugLoc(); 314 } 315 316 // Otherwise, if the return block is the target of a single direct 317 // branch then we can just put the code in that block instead. This 318 // cleans up functions which started with a unified return block. 319 if (ReturnBlock.getBlock()->hasOneUse()) { 320 llvm::BranchInst *BI = 321 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 322 if (BI && BI->isUnconditional() && 323 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 324 // Record/return the DebugLoc of the simple 'return' expression to be used 325 // later by the actual 'ret' instruction. 326 llvm::DebugLoc Loc = BI->getDebugLoc(); 327 Builder.SetInsertPoint(BI->getParent()); 328 BI->eraseFromParent(); 329 delete ReturnBlock.getBlock(); 330 ReturnBlock = JumpDest(); 331 return Loc; 332 } 333 } 334 335 // FIXME: We are at an unreachable point, there is no reason to emit the block 336 // unless it has uses. However, we still need a place to put the debug 337 // region.end for now. 338 339 EmitBlock(ReturnBlock.getBlock()); 340 return llvm::DebugLoc(); 341 } 342 343 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 344 if (!BB) return; 345 if (!BB->use_empty()) 346 return CGF.CurFn->getBasicBlockList().push_back(BB); 347 delete BB; 348 } 349 350 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 351 assert(BreakContinueStack.empty() && 352 "mismatched push/pop in break/continue stack!"); 353 354 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 355 && NumSimpleReturnExprs == NumReturnExprs 356 && ReturnBlock.getBlock()->use_empty(); 357 // Usually the return expression is evaluated before the cleanup 358 // code. If the function contains only a simple return statement, 359 // such as a constant, the location before the cleanup code becomes 360 // the last useful breakpoint in the function, because the simple 361 // return expression will be evaluated after the cleanup code. To be 362 // safe, set the debug location for cleanup code to the location of 363 // the return statement. Otherwise the cleanup code should be at the 364 // end of the function's lexical scope. 365 // 366 // If there are multiple branches to the return block, the branch 367 // instructions will get the location of the return statements and 368 // all will be fine. 369 if (CGDebugInfo *DI = getDebugInfo()) { 370 if (OnlySimpleReturnStmts) 371 DI->EmitLocation(Builder, LastStopPoint); 372 else 373 DI->EmitLocation(Builder, EndLoc); 374 } 375 376 // Pop any cleanups that might have been associated with the 377 // parameters. Do this in whatever block we're currently in; it's 378 // important to do this before we enter the return block or return 379 // edges will be *really* confused. 380 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 381 bool HasOnlyLifetimeMarkers = 382 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 383 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 384 if (HasCleanups) { 385 // Make sure the line table doesn't jump back into the body for 386 // the ret after it's been at EndLoc. 387 if (CGDebugInfo *DI = getDebugInfo()) 388 if (OnlySimpleReturnStmts) 389 DI->EmitLocation(Builder, EndLoc); 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 665 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 666 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 667 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 668 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 669 return false; 670 671 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 672 return false; 673 674 if (MD->getNumParams() == 2) { 675 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 676 if (!PT || !PT->isVoidPointerType() || 677 !PT->getPointeeType().isConstQualified()) 678 return false; 679 } 680 681 return true; 682 } 683 684 /// Return the UBSan prologue signature for \p FD if one is available. 685 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 686 const FunctionDecl *FD) { 687 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 688 if (!MD->isStatic()) 689 return nullptr; 690 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 691 } 692 693 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 694 llvm::Function *Fn, 695 const CGFunctionInfo &FnInfo, 696 const FunctionArgList &Args, 697 SourceLocation Loc, 698 SourceLocation StartLoc) { 699 assert(!CurFn && 700 "Do not use a CodeGenFunction object for more than one function"); 701 702 const Decl *D = GD.getDecl(); 703 704 DidCallStackSave = false; 705 CurCodeDecl = D; 706 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 707 if (FD->usesSEHTry()) 708 CurSEHParent = FD; 709 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 710 FnRetTy = RetTy; 711 CurFn = Fn; 712 CurFnInfo = &FnInfo; 713 assert(CurFn->isDeclaration() && "Function already has body?"); 714 715 // If this function has been blacklisted for any of the enabled sanitizers, 716 // disable the sanitizer for the function. 717 do { 718 #define SANITIZER(NAME, ID) \ 719 if (SanOpts.empty()) \ 720 break; \ 721 if (SanOpts.has(SanitizerKind::ID)) \ 722 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 723 SanOpts.set(SanitizerKind::ID, false); 724 725 #include "clang/Basic/Sanitizers.def" 726 #undef SANITIZER 727 } while (0); 728 729 if (D) { 730 // Apply the no_sanitize* attributes to SanOpts. 731 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 732 SanitizerMask mask = Attr->getMask(); 733 SanOpts.Mask &= ~mask; 734 if (mask & SanitizerKind::Address) 735 SanOpts.set(SanitizerKind::KernelAddress, false); 736 if (mask & SanitizerKind::KernelAddress) 737 SanOpts.set(SanitizerKind::Address, false); 738 if (mask & SanitizerKind::HWAddress) 739 SanOpts.set(SanitizerKind::KernelHWAddress, false); 740 if (mask & SanitizerKind::KernelHWAddress) 741 SanOpts.set(SanitizerKind::HWAddress, false); 742 } 743 } 744 745 // Apply sanitizer attributes to the function. 746 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 747 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 748 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 749 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 750 if (SanOpts.has(SanitizerKind::MemTag)) 751 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 752 if (SanOpts.has(SanitizerKind::Thread)) 753 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 754 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 755 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 756 if (SanOpts.has(SanitizerKind::SafeStack)) 757 Fn->addFnAttr(llvm::Attribute::SafeStack); 758 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 759 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 760 761 // Apply fuzzing attribute to the function. 762 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 763 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 764 765 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 766 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 767 if (SanOpts.has(SanitizerKind::Thread)) { 768 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 769 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 770 if (OMD->getMethodFamily() == OMF_dealloc || 771 OMD->getMethodFamily() == OMF_initialize || 772 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 773 markAsIgnoreThreadCheckingAtRuntime(Fn); 774 } 775 } 776 } 777 778 // Ignore unrelated casts in STL allocate() since the allocator must cast 779 // from void* to T* before object initialization completes. Don't match on the 780 // namespace because not all allocators are in std:: 781 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 782 if (matchesStlAllocatorFn(D, getContext())) 783 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 784 } 785 786 // Ignore null checks in coroutine functions since the coroutines passes 787 // are not aware of how to move the extra UBSan instructions across the split 788 // coroutine boundaries. 789 if (D && SanOpts.has(SanitizerKind::Null)) 790 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 791 if (FD->getBody() && 792 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 793 SanOpts.Mask &= ~SanitizerKind::Null; 794 795 // Apply xray attributes to the function (as a string, for now) 796 if (D) { 797 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 798 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 799 XRayInstrKind::Function)) { 800 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 801 Fn->addFnAttr("function-instrument", "xray-always"); 802 if (XRayAttr->neverXRayInstrument()) 803 Fn->addFnAttr("function-instrument", "xray-never"); 804 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 805 if (ShouldXRayInstrumentFunction()) 806 Fn->addFnAttr("xray-log-args", 807 llvm::utostr(LogArgs->getArgumentCount())); 808 } 809 } else { 810 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 811 Fn->addFnAttr( 812 "xray-instruction-threshold", 813 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 814 } 815 } 816 817 // Add no-jump-tables value. 818 Fn->addFnAttr("no-jump-tables", 819 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 820 821 // Add no-inline-line-tables value. 822 if (CGM.getCodeGenOpts().NoInlineLineTables) 823 Fn->addFnAttr("no-inline-line-tables"); 824 825 // Add profile-sample-accurate value. 826 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 827 Fn->addFnAttr("profile-sample-accurate"); 828 829 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 830 Fn->addFnAttr("cfi-canonical-jump-table"); 831 832 if (getLangOpts().OpenCL) { 833 // Add metadata for a kernel function. 834 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 835 EmitOpenCLKernelMetadata(FD, Fn); 836 } 837 838 // If we are checking function types, emit a function type signature as 839 // prologue data. 840 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 841 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 842 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 843 // Remove any (C++17) exception specifications, to allow calling e.g. a 844 // noexcept function through a non-noexcept pointer. 845 auto ProtoTy = 846 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 847 EST_None); 848 llvm::Constant *FTRTTIConst = 849 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 850 llvm::Constant *FTRTTIConstEncoded = 851 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 852 llvm::Constant *PrologueStructElems[] = {PrologueSig, 853 FTRTTIConstEncoded}; 854 llvm::Constant *PrologueStructConst = 855 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 856 Fn->setPrologueData(PrologueStructConst); 857 } 858 } 859 } 860 861 // If we're checking nullability, we need to know whether we can check the 862 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 863 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 864 auto Nullability = FnRetTy->getNullability(getContext()); 865 if (Nullability && *Nullability == NullabilityKind::NonNull) { 866 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 867 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 868 RetValNullabilityPrecondition = 869 llvm::ConstantInt::getTrue(getLLVMContext()); 870 } 871 } 872 873 // If we're in C++ mode and the function name is "main", it is guaranteed 874 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 875 // used within a program"). 876 if (getLangOpts().CPlusPlus) 877 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 878 if (FD->isMain()) 879 Fn->addFnAttr(llvm::Attribute::NoRecurse); 880 881 // If a custom alignment is used, force realigning to this alignment on 882 // any main function which certainly will need it. 883 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 884 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 885 CGM.getCodeGenOpts().StackAlignment) 886 Fn->addFnAttr("stackrealign"); 887 888 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 889 890 // Create a marker to make it easy to insert allocas into the entryblock 891 // later. Don't create this with the builder, because we don't want it 892 // folded. 893 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 894 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 895 896 ReturnBlock = getJumpDestInCurrentScope("return"); 897 898 Builder.SetInsertPoint(EntryBB); 899 900 // If we're checking the return value, allocate space for a pointer to a 901 // precise source location of the checked return statement. 902 if (requiresReturnValueCheck()) { 903 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 904 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 905 } 906 907 // Emit subprogram debug descriptor. 908 if (CGDebugInfo *DI = getDebugInfo()) { 909 // Reconstruct the type from the argument list so that implicit parameters, 910 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 911 // convention. 912 CallingConv CC = CallingConv::CC_C; 913 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 914 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 915 CC = SrcFnTy->getCallConv(); 916 SmallVector<QualType, 16> ArgTypes; 917 for (const VarDecl *VD : Args) 918 ArgTypes.push_back(VD->getType()); 919 QualType FnType = getContext().getFunctionType( 920 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 921 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 922 Builder); 923 } 924 925 if (ShouldInstrumentFunction()) { 926 if (CGM.getCodeGenOpts().InstrumentFunctions) 927 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 928 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 929 CurFn->addFnAttr("instrument-function-entry-inlined", 930 "__cyg_profile_func_enter"); 931 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 932 CurFn->addFnAttr("instrument-function-entry-inlined", 933 "__cyg_profile_func_enter_bare"); 934 } 935 936 // Since emitting the mcount call here impacts optimizations such as function 937 // inlining, we just add an attribute to insert a mcount call in backend. 938 // The attribute "counting-function" is set to mcount function name which is 939 // architecture dependent. 940 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 941 // Calls to fentry/mcount should not be generated if function has 942 // the no_instrument_function attribute. 943 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 944 if (CGM.getCodeGenOpts().CallFEntry) 945 Fn->addFnAttr("fentry-call", "true"); 946 else { 947 Fn->addFnAttr("instrument-function-entry-inlined", 948 getTarget().getMCountName()); 949 } 950 if (CGM.getCodeGenOpts().MNopMCount) { 951 if (getContext().getTargetInfo().getTriple().getArch() != 952 llvm::Triple::systemz) 953 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 954 << "-mnop-mcount"; 955 if (!CGM.getCodeGenOpts().CallFEntry) 956 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 957 << "-mnop-mcount" << "-mfentry"; 958 Fn->addFnAttr("mnop-mcount", "true"); 959 } 960 } 961 } 962 963 if (RetTy->isVoidType()) { 964 // Void type; nothing to return. 965 ReturnValue = Address::invalid(); 966 967 // Count the implicit return. 968 if (!endsWithReturn(D)) 969 ++NumReturnExprs; 970 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 971 // Indirect return; emit returned value directly into sret slot. 972 // This reduces code size, and affects correctness in C++. 973 auto AI = CurFn->arg_begin(); 974 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 975 ++AI; 976 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 977 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 978 ReturnValuePointer = 979 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 980 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 981 ReturnValue.getPointer(), Int8PtrTy), 982 ReturnValuePointer); 983 } 984 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 985 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 986 // Load the sret pointer from the argument struct and return into that. 987 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 988 llvm::Function::arg_iterator EI = CurFn->arg_end(); 989 --EI; 990 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 991 ReturnValuePointer = Address(Addr, getPointerAlign()); 992 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 993 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 994 } else { 995 ReturnValue = CreateIRTemp(RetTy, "retval"); 996 997 // Tell the epilog emitter to autorelease the result. We do this 998 // now so that various specialized functions can suppress it 999 // during their IR-generation. 1000 if (getLangOpts().ObjCAutoRefCount && 1001 !CurFnInfo->isReturnsRetained() && 1002 RetTy->isObjCRetainableType()) 1003 AutoreleaseResult = true; 1004 } 1005 1006 EmitStartEHSpec(CurCodeDecl); 1007 1008 PrologueCleanupDepth = EHStack.stable_begin(); 1009 1010 // Emit OpenMP specific initialization of the device functions. 1011 if (getLangOpts().OpenMP && CurCodeDecl) 1012 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1013 1014 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1015 1016 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1017 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1018 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1019 if (MD->getParent()->isLambda() && 1020 MD->getOverloadedOperator() == OO_Call) { 1021 // We're in a lambda; figure out the captures. 1022 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1023 LambdaThisCaptureField); 1024 if (LambdaThisCaptureField) { 1025 // If the lambda captures the object referred to by '*this' - either by 1026 // value or by reference, make sure CXXThisValue points to the correct 1027 // object. 1028 1029 // Get the lvalue for the field (which is a copy of the enclosing object 1030 // or contains the address of the enclosing object). 1031 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1032 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1033 // If the enclosing object was captured by value, just use its address. 1034 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1035 } else { 1036 // Load the lvalue pointed to by the field, since '*this' was captured 1037 // by reference. 1038 CXXThisValue = 1039 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1040 } 1041 } 1042 for (auto *FD : MD->getParent()->fields()) { 1043 if (FD->hasCapturedVLAType()) { 1044 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1045 SourceLocation()).getScalarVal(); 1046 auto VAT = FD->getCapturedVLAType(); 1047 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1048 } 1049 } 1050 } else { 1051 // Not in a lambda; just use 'this' from the method. 1052 // FIXME: Should we generate a new load for each use of 'this'? The 1053 // fast register allocator would be happier... 1054 CXXThisValue = CXXABIThisValue; 1055 } 1056 1057 // Check the 'this' pointer once per function, if it's available. 1058 if (CXXABIThisValue) { 1059 SanitizerSet SkippedChecks; 1060 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1061 QualType ThisTy = MD->getThisType(); 1062 1063 // If this is the call operator of a lambda with no capture-default, it 1064 // may have a static invoker function, which may call this operator with 1065 // a null 'this' pointer. 1066 if (isLambdaCallOperator(MD) && 1067 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1068 SkippedChecks.set(SanitizerKind::Null, true); 1069 1070 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1071 : TCK_MemberCall, 1072 Loc, CXXABIThisValue, ThisTy, 1073 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1074 SkippedChecks); 1075 } 1076 } 1077 1078 // If any of the arguments have a variably modified type, make sure to 1079 // emit the type size. 1080 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1081 i != e; ++i) { 1082 const VarDecl *VD = *i; 1083 1084 // Dig out the type as written from ParmVarDecls; it's unclear whether 1085 // the standard (C99 6.9.1p10) requires this, but we're following the 1086 // precedent set by gcc. 1087 QualType Ty; 1088 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1089 Ty = PVD->getOriginalType(); 1090 else 1091 Ty = VD->getType(); 1092 1093 if (Ty->isVariablyModifiedType()) 1094 EmitVariablyModifiedType(Ty); 1095 } 1096 // Emit a location at the end of the prologue. 1097 if (CGDebugInfo *DI = getDebugInfo()) 1098 DI->EmitLocation(Builder, StartLoc); 1099 1100 // TODO: Do we need to handle this in two places like we do with 1101 // target-features/target-cpu? 1102 if (CurFuncDecl) 1103 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1104 LargestVectorWidth = VecWidth->getVectorWidth(); 1105 } 1106 1107 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1108 incrementProfileCounter(Body); 1109 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1110 EmitCompoundStmtWithoutScope(*S); 1111 else 1112 EmitStmt(Body); 1113 } 1114 1115 /// When instrumenting to collect profile data, the counts for some blocks 1116 /// such as switch cases need to not include the fall-through counts, so 1117 /// emit a branch around the instrumentation code. When not instrumenting, 1118 /// this just calls EmitBlock(). 1119 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1120 const Stmt *S) { 1121 llvm::BasicBlock *SkipCountBB = nullptr; 1122 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1123 // When instrumenting for profiling, the fallthrough to certain 1124 // statements needs to skip over the instrumentation code so that we 1125 // get an accurate count. 1126 SkipCountBB = createBasicBlock("skipcount"); 1127 EmitBranch(SkipCountBB); 1128 } 1129 EmitBlock(BB); 1130 uint64_t CurrentCount = getCurrentProfileCount(); 1131 incrementProfileCounter(S); 1132 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1133 if (SkipCountBB) 1134 EmitBlock(SkipCountBB); 1135 } 1136 1137 /// Tries to mark the given function nounwind based on the 1138 /// non-existence of any throwing calls within it. We believe this is 1139 /// lightweight enough to do at -O0. 1140 static void TryMarkNoThrow(llvm::Function *F) { 1141 // LLVM treats 'nounwind' on a function as part of the type, so we 1142 // can't do this on functions that can be overwritten. 1143 if (F->isInterposable()) return; 1144 1145 for (llvm::BasicBlock &BB : *F) 1146 for (llvm::Instruction &I : BB) 1147 if (I.mayThrow()) 1148 return; 1149 1150 F->setDoesNotThrow(); 1151 } 1152 1153 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1154 FunctionArgList &Args) { 1155 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1156 QualType ResTy = FD->getReturnType(); 1157 1158 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1159 if (MD && MD->isInstance()) { 1160 if (CGM.getCXXABI().HasThisReturn(GD)) 1161 ResTy = MD->getThisType(); 1162 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1163 ResTy = CGM.getContext().VoidPtrTy; 1164 CGM.getCXXABI().buildThisParam(*this, Args); 1165 } 1166 1167 // The base version of an inheriting constructor whose constructed base is a 1168 // virtual base is not passed any arguments (because it doesn't actually call 1169 // the inherited constructor). 1170 bool PassedParams = true; 1171 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1172 if (auto Inherited = CD->getInheritedConstructor()) 1173 PassedParams = 1174 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1175 1176 if (PassedParams) { 1177 for (auto *Param : FD->parameters()) { 1178 Args.push_back(Param); 1179 if (!Param->hasAttr<PassObjectSizeAttr>()) 1180 continue; 1181 1182 auto *Implicit = ImplicitParamDecl::Create( 1183 getContext(), Param->getDeclContext(), Param->getLocation(), 1184 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1185 SizeArguments[Param] = Implicit; 1186 Args.push_back(Implicit); 1187 } 1188 } 1189 1190 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1191 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1192 1193 return ResTy; 1194 } 1195 1196 static bool 1197 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1198 const ASTContext &Context) { 1199 QualType T = FD->getReturnType(); 1200 // Avoid the optimization for functions that return a record type with a 1201 // trivial destructor or another trivially copyable type. 1202 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1203 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1204 return !ClassDecl->hasTrivialDestructor(); 1205 } 1206 return !T.isTriviallyCopyableType(Context); 1207 } 1208 1209 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1210 const CGFunctionInfo &FnInfo) { 1211 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1212 CurGD = GD; 1213 1214 FunctionArgList Args; 1215 QualType ResTy = BuildFunctionArgList(GD, Args); 1216 1217 // Check if we should generate debug info for this function. 1218 if (FD->hasAttr<NoDebugAttr>()) 1219 DebugInfo = nullptr; // disable debug info indefinitely for this function 1220 1221 // The function might not have a body if we're generating thunks for a 1222 // function declaration. 1223 SourceRange BodyRange; 1224 if (Stmt *Body = FD->getBody()) 1225 BodyRange = Body->getSourceRange(); 1226 else 1227 BodyRange = FD->getLocation(); 1228 CurEHLocation = BodyRange.getEnd(); 1229 1230 // Use the location of the start of the function to determine where 1231 // the function definition is located. By default use the location 1232 // of the declaration as the location for the subprogram. A function 1233 // may lack a declaration in the source code if it is created by code 1234 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1235 SourceLocation Loc = FD->getLocation(); 1236 1237 // If this is a function specialization then use the pattern body 1238 // as the location for the function. 1239 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1240 if (SpecDecl->hasBody(SpecDecl)) 1241 Loc = SpecDecl->getLocation(); 1242 1243 Stmt *Body = FD->getBody(); 1244 1245 // Initialize helper which will detect jumps which can cause invalid lifetime 1246 // markers. 1247 if (Body && ShouldEmitLifetimeMarkers) 1248 Bypasses.Init(Body); 1249 1250 // Emit the standard function prologue. 1251 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1252 1253 // Generate the body of the function. 1254 PGO.assignRegionCounters(GD, CurFn); 1255 if (isa<CXXDestructorDecl>(FD)) 1256 EmitDestructorBody(Args); 1257 else if (isa<CXXConstructorDecl>(FD)) 1258 EmitConstructorBody(Args); 1259 else if (getLangOpts().CUDA && 1260 !getLangOpts().CUDAIsDevice && 1261 FD->hasAttr<CUDAGlobalAttr>()) 1262 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1263 else if (isa<CXXMethodDecl>(FD) && 1264 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1265 // The lambda static invoker function is special, because it forwards or 1266 // clones the body of the function call operator (but is actually static). 1267 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1268 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1269 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1270 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1271 // Implicit copy-assignment gets the same special treatment as implicit 1272 // copy-constructors. 1273 emitImplicitAssignmentOperatorBody(Args); 1274 } else if (Body) { 1275 EmitFunctionBody(Body); 1276 } else 1277 llvm_unreachable("no definition for emitted function"); 1278 1279 // C++11 [stmt.return]p2: 1280 // Flowing off the end of a function [...] results in undefined behavior in 1281 // a value-returning function. 1282 // C11 6.9.1p12: 1283 // If the '}' that terminates a function is reached, and the value of the 1284 // function call is used by the caller, the behavior is undefined. 1285 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1286 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1287 bool ShouldEmitUnreachable = 1288 CGM.getCodeGenOpts().StrictReturn || 1289 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1290 if (SanOpts.has(SanitizerKind::Return)) { 1291 SanitizerScope SanScope(this); 1292 llvm::Value *IsFalse = Builder.getFalse(); 1293 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1294 SanitizerHandler::MissingReturn, 1295 EmitCheckSourceLocation(FD->getLocation()), None); 1296 } else if (ShouldEmitUnreachable) { 1297 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1298 EmitTrapCall(llvm::Intrinsic::trap); 1299 } 1300 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1301 Builder.CreateUnreachable(); 1302 Builder.ClearInsertionPoint(); 1303 } 1304 } 1305 1306 // Emit the standard function epilogue. 1307 FinishFunction(BodyRange.getEnd()); 1308 1309 // If we haven't marked the function nothrow through other means, do 1310 // a quick pass now to see if we can. 1311 if (!CurFn->doesNotThrow()) 1312 TryMarkNoThrow(CurFn); 1313 } 1314 1315 /// ContainsLabel - Return true if the statement contains a label in it. If 1316 /// this statement is not executed normally, it not containing a label means 1317 /// that we can just remove the code. 1318 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1319 // Null statement, not a label! 1320 if (!S) return false; 1321 1322 // If this is a label, we have to emit the code, consider something like: 1323 // if (0) { ... foo: bar(); } goto foo; 1324 // 1325 // TODO: If anyone cared, we could track __label__'s, since we know that you 1326 // can't jump to one from outside their declared region. 1327 if (isa<LabelStmt>(S)) 1328 return true; 1329 1330 // If this is a case/default statement, and we haven't seen a switch, we have 1331 // to emit the code. 1332 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1333 return true; 1334 1335 // If this is a switch statement, we want to ignore cases below it. 1336 if (isa<SwitchStmt>(S)) 1337 IgnoreCaseStmts = true; 1338 1339 // Scan subexpressions for verboten labels. 1340 for (const Stmt *SubStmt : S->children()) 1341 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1342 return true; 1343 1344 return false; 1345 } 1346 1347 /// containsBreak - Return true if the statement contains a break out of it. 1348 /// If the statement (recursively) contains a switch or loop with a break 1349 /// inside of it, this is fine. 1350 bool CodeGenFunction::containsBreak(const Stmt *S) { 1351 // Null statement, not a label! 1352 if (!S) return false; 1353 1354 // If this is a switch or loop that defines its own break scope, then we can 1355 // include it and anything inside of it. 1356 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1357 isa<ForStmt>(S)) 1358 return false; 1359 1360 if (isa<BreakStmt>(S)) 1361 return true; 1362 1363 // Scan subexpressions for verboten breaks. 1364 for (const Stmt *SubStmt : S->children()) 1365 if (containsBreak(SubStmt)) 1366 return true; 1367 1368 return false; 1369 } 1370 1371 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1372 if (!S) return false; 1373 1374 // Some statement kinds add a scope and thus never add a decl to the current 1375 // scope. Note, this list is longer than the list of statements that might 1376 // have an unscoped decl nested within them, but this way is conservatively 1377 // correct even if more statement kinds are added. 1378 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1379 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1380 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1381 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1382 return false; 1383 1384 if (isa<DeclStmt>(S)) 1385 return true; 1386 1387 for (const Stmt *SubStmt : S->children()) 1388 if (mightAddDeclToScope(SubStmt)) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1395 /// to a constant, or if it does but contains a label, return false. If it 1396 /// constant folds return true and set the boolean result in Result. 1397 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1398 bool &ResultBool, 1399 bool AllowLabels) { 1400 llvm::APSInt ResultInt; 1401 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1402 return false; 1403 1404 ResultBool = ResultInt.getBoolValue(); 1405 return true; 1406 } 1407 1408 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1409 /// to a constant, or if it does but contains a label, return false. If it 1410 /// constant folds return true and set the folded value. 1411 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1412 llvm::APSInt &ResultInt, 1413 bool AllowLabels) { 1414 // FIXME: Rename and handle conversion of other evaluatable things 1415 // to bool. 1416 Expr::EvalResult Result; 1417 if (!Cond->EvaluateAsInt(Result, getContext())) 1418 return false; // Not foldable, not integer or not fully evaluatable. 1419 1420 llvm::APSInt Int = Result.Val.getInt(); 1421 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1422 return false; // Contains a label. 1423 1424 ResultInt = Int; 1425 return true; 1426 } 1427 1428 1429 1430 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1431 /// statement) to the specified blocks. Based on the condition, this might try 1432 /// to simplify the codegen of the conditional based on the branch. 1433 /// 1434 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1435 llvm::BasicBlock *TrueBlock, 1436 llvm::BasicBlock *FalseBlock, 1437 uint64_t TrueCount) { 1438 Cond = Cond->IgnoreParens(); 1439 1440 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1441 1442 // Handle X && Y in a condition. 1443 if (CondBOp->getOpcode() == BO_LAnd) { 1444 // If we have "1 && X", simplify the code. "0 && X" would have constant 1445 // folded if the case was simple enough. 1446 bool ConstantBool = false; 1447 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1448 ConstantBool) { 1449 // br(1 && X) -> br(X). 1450 incrementProfileCounter(CondBOp); 1451 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1452 TrueCount); 1453 } 1454 1455 // If we have "X && 1", simplify the code to use an uncond branch. 1456 // "X && 0" would have been constant folded to 0. 1457 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1458 ConstantBool) { 1459 // br(X && 1) -> br(X). 1460 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1461 TrueCount); 1462 } 1463 1464 // Emit the LHS as a conditional. If the LHS conditional is false, we 1465 // want to jump to the FalseBlock. 1466 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1467 // The counter tells us how often we evaluate RHS, and all of TrueCount 1468 // can be propagated to that branch. 1469 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1470 1471 ConditionalEvaluation eval(*this); 1472 { 1473 ApplyDebugLocation DL(*this, Cond); 1474 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1475 EmitBlock(LHSTrue); 1476 } 1477 1478 incrementProfileCounter(CondBOp); 1479 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1480 1481 // Any temporaries created here are conditional. 1482 eval.begin(*this); 1483 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1484 eval.end(*this); 1485 1486 return; 1487 } 1488 1489 if (CondBOp->getOpcode() == BO_LOr) { 1490 // If we have "0 || X", simplify the code. "1 || X" would have constant 1491 // folded if the case was simple enough. 1492 bool ConstantBool = false; 1493 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1494 !ConstantBool) { 1495 // br(0 || X) -> br(X). 1496 incrementProfileCounter(CondBOp); 1497 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1498 TrueCount); 1499 } 1500 1501 // If we have "X || 0", simplify the code to use an uncond branch. 1502 // "X || 1" would have been constant folded to 1. 1503 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1504 !ConstantBool) { 1505 // br(X || 0) -> br(X). 1506 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1507 TrueCount); 1508 } 1509 1510 // Emit the LHS as a conditional. If the LHS conditional is true, we 1511 // want to jump to the TrueBlock. 1512 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1513 // We have the count for entry to the RHS and for the whole expression 1514 // being true, so we can divy up True count between the short circuit and 1515 // the RHS. 1516 uint64_t LHSCount = 1517 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1518 uint64_t RHSCount = TrueCount - LHSCount; 1519 1520 ConditionalEvaluation eval(*this); 1521 { 1522 ApplyDebugLocation DL(*this, Cond); 1523 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1524 EmitBlock(LHSFalse); 1525 } 1526 1527 incrementProfileCounter(CondBOp); 1528 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1529 1530 // Any temporaries created here are conditional. 1531 eval.begin(*this); 1532 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1533 1534 eval.end(*this); 1535 1536 return; 1537 } 1538 } 1539 1540 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1541 // br(!x, t, f) -> br(x, f, t) 1542 if (CondUOp->getOpcode() == UO_LNot) { 1543 // Negate the count. 1544 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1545 // Negate the condition and swap the destination blocks. 1546 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1547 FalseCount); 1548 } 1549 } 1550 1551 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1552 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1553 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1554 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1555 1556 ConditionalEvaluation cond(*this); 1557 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1558 getProfileCount(CondOp)); 1559 1560 // When computing PGO branch weights, we only know the overall count for 1561 // the true block. This code is essentially doing tail duplication of the 1562 // naive code-gen, introducing new edges for which counts are not 1563 // available. Divide the counts proportionally between the LHS and RHS of 1564 // the conditional operator. 1565 uint64_t LHSScaledTrueCount = 0; 1566 if (TrueCount) { 1567 double LHSRatio = 1568 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1569 LHSScaledTrueCount = TrueCount * LHSRatio; 1570 } 1571 1572 cond.begin(*this); 1573 EmitBlock(LHSBlock); 1574 incrementProfileCounter(CondOp); 1575 { 1576 ApplyDebugLocation DL(*this, Cond); 1577 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1578 LHSScaledTrueCount); 1579 } 1580 cond.end(*this); 1581 1582 cond.begin(*this); 1583 EmitBlock(RHSBlock); 1584 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1585 TrueCount - LHSScaledTrueCount); 1586 cond.end(*this); 1587 1588 return; 1589 } 1590 1591 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1592 // Conditional operator handling can give us a throw expression as a 1593 // condition for a case like: 1594 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1595 // Fold this to: 1596 // br(c, throw x, br(y, t, f)) 1597 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1598 return; 1599 } 1600 1601 // If the branch has a condition wrapped by __builtin_unpredictable, 1602 // create metadata that specifies that the branch is unpredictable. 1603 // Don't bother if not optimizing because that metadata would not be used. 1604 llvm::MDNode *Unpredictable = nullptr; 1605 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1606 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1607 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1608 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1609 llvm::MDBuilder MDHelper(getLLVMContext()); 1610 Unpredictable = MDHelper.createUnpredictable(); 1611 } 1612 } 1613 1614 // Create branch weights based on the number of times we get here and the 1615 // number of times the condition should be true. 1616 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1617 llvm::MDNode *Weights = 1618 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1619 1620 // Emit the code with the fully general case. 1621 llvm::Value *CondV; 1622 { 1623 ApplyDebugLocation DL(*this, Cond); 1624 CondV = EvaluateExprAsBool(Cond); 1625 } 1626 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1627 } 1628 1629 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1630 /// specified stmt yet. 1631 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1632 CGM.ErrorUnsupported(S, Type); 1633 } 1634 1635 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1636 /// variable-length array whose elements have a non-zero bit-pattern. 1637 /// 1638 /// \param baseType the inner-most element type of the array 1639 /// \param src - a char* pointing to the bit-pattern for a single 1640 /// base element of the array 1641 /// \param sizeInChars - the total size of the VLA, in chars 1642 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1643 Address dest, Address src, 1644 llvm::Value *sizeInChars) { 1645 CGBuilderTy &Builder = CGF.Builder; 1646 1647 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1648 llvm::Value *baseSizeInChars 1649 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1650 1651 Address begin = 1652 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1653 llvm::Value *end = 1654 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1655 1656 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1657 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1658 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1659 1660 // Make a loop over the VLA. C99 guarantees that the VLA element 1661 // count must be nonzero. 1662 CGF.EmitBlock(loopBB); 1663 1664 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1665 cur->addIncoming(begin.getPointer(), originBB); 1666 1667 CharUnits curAlign = 1668 dest.getAlignment().alignmentOfArrayElement(baseSize); 1669 1670 // memcpy the individual element bit-pattern. 1671 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1672 /*volatile*/ false); 1673 1674 // Go to the next element. 1675 llvm::Value *next = 1676 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1677 1678 // Leave if that's the end of the VLA. 1679 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1680 Builder.CreateCondBr(done, contBB, loopBB); 1681 cur->addIncoming(next, loopBB); 1682 1683 CGF.EmitBlock(contBB); 1684 } 1685 1686 void 1687 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1688 // Ignore empty classes in C++. 1689 if (getLangOpts().CPlusPlus) { 1690 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1691 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1692 return; 1693 } 1694 } 1695 1696 // Cast the dest ptr to the appropriate i8 pointer type. 1697 if (DestPtr.getElementType() != Int8Ty) 1698 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1699 1700 // Get size and alignment info for this aggregate. 1701 CharUnits size = getContext().getTypeSizeInChars(Ty); 1702 1703 llvm::Value *SizeVal; 1704 const VariableArrayType *vla; 1705 1706 // Don't bother emitting a zero-byte memset. 1707 if (size.isZero()) { 1708 // But note that getTypeInfo returns 0 for a VLA. 1709 if (const VariableArrayType *vlaType = 1710 dyn_cast_or_null<VariableArrayType>( 1711 getContext().getAsArrayType(Ty))) { 1712 auto VlaSize = getVLASize(vlaType); 1713 SizeVal = VlaSize.NumElts; 1714 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1715 if (!eltSize.isOne()) 1716 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1717 vla = vlaType; 1718 } else { 1719 return; 1720 } 1721 } else { 1722 SizeVal = CGM.getSize(size); 1723 vla = nullptr; 1724 } 1725 1726 // If the type contains a pointer to data member we can't memset it to zero. 1727 // Instead, create a null constant and copy it to the destination. 1728 // TODO: there are other patterns besides zero that we can usefully memset, 1729 // like -1, which happens to be the pattern used by member-pointers. 1730 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1731 // For a VLA, emit a single element, then splat that over the VLA. 1732 if (vla) Ty = getContext().getBaseElementType(vla); 1733 1734 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1735 1736 llvm::GlobalVariable *NullVariable = 1737 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1738 /*isConstant=*/true, 1739 llvm::GlobalVariable::PrivateLinkage, 1740 NullConstant, Twine()); 1741 CharUnits NullAlign = DestPtr.getAlignment(); 1742 NullVariable->setAlignment(NullAlign.getAsAlign()); 1743 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1744 NullAlign); 1745 1746 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1747 1748 // Get and call the appropriate llvm.memcpy overload. 1749 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1750 return; 1751 } 1752 1753 // Otherwise, just memset the whole thing to zero. This is legal 1754 // because in LLVM, all default initializers (other than the ones we just 1755 // handled above) are guaranteed to have a bit pattern of all zeros. 1756 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1757 } 1758 1759 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1760 // Make sure that there is a block for the indirect goto. 1761 if (!IndirectBranch) 1762 GetIndirectGotoBlock(); 1763 1764 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1765 1766 // Make sure the indirect branch includes all of the address-taken blocks. 1767 IndirectBranch->addDestination(BB); 1768 return llvm::BlockAddress::get(CurFn, BB); 1769 } 1770 1771 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1772 // If we already made the indirect branch for indirect goto, return its block. 1773 if (IndirectBranch) return IndirectBranch->getParent(); 1774 1775 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1776 1777 // Create the PHI node that indirect gotos will add entries to. 1778 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1779 "indirect.goto.dest"); 1780 1781 // Create the indirect branch instruction. 1782 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1783 return IndirectBranch->getParent(); 1784 } 1785 1786 /// Computes the length of an array in elements, as well as the base 1787 /// element type and a properly-typed first element pointer. 1788 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1789 QualType &baseType, 1790 Address &addr) { 1791 const ArrayType *arrayType = origArrayType; 1792 1793 // If it's a VLA, we have to load the stored size. Note that 1794 // this is the size of the VLA in bytes, not its size in elements. 1795 llvm::Value *numVLAElements = nullptr; 1796 if (isa<VariableArrayType>(arrayType)) { 1797 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1798 1799 // Walk into all VLAs. This doesn't require changes to addr, 1800 // which has type T* where T is the first non-VLA element type. 1801 do { 1802 QualType elementType = arrayType->getElementType(); 1803 arrayType = getContext().getAsArrayType(elementType); 1804 1805 // If we only have VLA components, 'addr' requires no adjustment. 1806 if (!arrayType) { 1807 baseType = elementType; 1808 return numVLAElements; 1809 } 1810 } while (isa<VariableArrayType>(arrayType)); 1811 1812 // We get out here only if we find a constant array type 1813 // inside the VLA. 1814 } 1815 1816 // We have some number of constant-length arrays, so addr should 1817 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1818 // down to the first element of addr. 1819 SmallVector<llvm::Value*, 8> gepIndices; 1820 1821 // GEP down to the array type. 1822 llvm::ConstantInt *zero = Builder.getInt32(0); 1823 gepIndices.push_back(zero); 1824 1825 uint64_t countFromCLAs = 1; 1826 QualType eltType; 1827 1828 llvm::ArrayType *llvmArrayType = 1829 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1830 while (llvmArrayType) { 1831 assert(isa<ConstantArrayType>(arrayType)); 1832 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1833 == llvmArrayType->getNumElements()); 1834 1835 gepIndices.push_back(zero); 1836 countFromCLAs *= llvmArrayType->getNumElements(); 1837 eltType = arrayType->getElementType(); 1838 1839 llvmArrayType = 1840 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1841 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1842 assert((!llvmArrayType || arrayType) && 1843 "LLVM and Clang types are out-of-synch"); 1844 } 1845 1846 if (arrayType) { 1847 // From this point onwards, the Clang array type has been emitted 1848 // as some other type (probably a packed struct). Compute the array 1849 // size, and just emit the 'begin' expression as a bitcast. 1850 while (arrayType) { 1851 countFromCLAs *= 1852 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1853 eltType = arrayType->getElementType(); 1854 arrayType = getContext().getAsArrayType(eltType); 1855 } 1856 1857 llvm::Type *baseType = ConvertType(eltType); 1858 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1859 } else { 1860 // Create the actual GEP. 1861 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1862 gepIndices, "array.begin"), 1863 addr.getAlignment()); 1864 } 1865 1866 baseType = eltType; 1867 1868 llvm::Value *numElements 1869 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1870 1871 // If we had any VLA dimensions, factor them in. 1872 if (numVLAElements) 1873 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1874 1875 return numElements; 1876 } 1877 1878 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1879 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1880 assert(vla && "type was not a variable array type!"); 1881 return getVLASize(vla); 1882 } 1883 1884 CodeGenFunction::VlaSizePair 1885 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1886 // The number of elements so far; always size_t. 1887 llvm::Value *numElements = nullptr; 1888 1889 QualType elementType; 1890 do { 1891 elementType = type->getElementType(); 1892 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1893 assert(vlaSize && "no size for VLA!"); 1894 assert(vlaSize->getType() == SizeTy); 1895 1896 if (!numElements) { 1897 numElements = vlaSize; 1898 } else { 1899 // It's undefined behavior if this wraps around, so mark it that way. 1900 // FIXME: Teach -fsanitize=undefined to trap this. 1901 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1902 } 1903 } while ((type = getContext().getAsVariableArrayType(elementType))); 1904 1905 return { numElements, elementType }; 1906 } 1907 1908 CodeGenFunction::VlaSizePair 1909 CodeGenFunction::getVLAElements1D(QualType type) { 1910 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1911 assert(vla && "type was not a variable array type!"); 1912 return getVLAElements1D(vla); 1913 } 1914 1915 CodeGenFunction::VlaSizePair 1916 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1917 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1918 assert(VlaSize && "no size for VLA!"); 1919 assert(VlaSize->getType() == SizeTy); 1920 return { VlaSize, Vla->getElementType() }; 1921 } 1922 1923 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1924 assert(type->isVariablyModifiedType() && 1925 "Must pass variably modified type to EmitVLASizes!"); 1926 1927 EnsureInsertPoint(); 1928 1929 // We're going to walk down into the type and look for VLA 1930 // expressions. 1931 do { 1932 assert(type->isVariablyModifiedType()); 1933 1934 const Type *ty = type.getTypePtr(); 1935 switch (ty->getTypeClass()) { 1936 1937 #define TYPE(Class, Base) 1938 #define ABSTRACT_TYPE(Class, Base) 1939 #define NON_CANONICAL_TYPE(Class, Base) 1940 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1941 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1942 #include "clang/AST/TypeNodes.inc" 1943 llvm_unreachable("unexpected dependent type!"); 1944 1945 // These types are never variably-modified. 1946 case Type::Builtin: 1947 case Type::Complex: 1948 case Type::Vector: 1949 case Type::ExtVector: 1950 case Type::Record: 1951 case Type::Enum: 1952 case Type::Elaborated: 1953 case Type::TemplateSpecialization: 1954 case Type::ObjCTypeParam: 1955 case Type::ObjCObject: 1956 case Type::ObjCInterface: 1957 case Type::ObjCObjectPointer: 1958 llvm_unreachable("type class is never variably-modified!"); 1959 1960 case Type::Adjusted: 1961 type = cast<AdjustedType>(ty)->getAdjustedType(); 1962 break; 1963 1964 case Type::Decayed: 1965 type = cast<DecayedType>(ty)->getPointeeType(); 1966 break; 1967 1968 case Type::Pointer: 1969 type = cast<PointerType>(ty)->getPointeeType(); 1970 break; 1971 1972 case Type::BlockPointer: 1973 type = cast<BlockPointerType>(ty)->getPointeeType(); 1974 break; 1975 1976 case Type::LValueReference: 1977 case Type::RValueReference: 1978 type = cast<ReferenceType>(ty)->getPointeeType(); 1979 break; 1980 1981 case Type::MemberPointer: 1982 type = cast<MemberPointerType>(ty)->getPointeeType(); 1983 break; 1984 1985 case Type::ConstantArray: 1986 case Type::IncompleteArray: 1987 // Losing element qualification here is fine. 1988 type = cast<ArrayType>(ty)->getElementType(); 1989 break; 1990 1991 case Type::VariableArray: { 1992 // Losing element qualification here is fine. 1993 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1994 1995 // Unknown size indication requires no size computation. 1996 // Otherwise, evaluate and record it. 1997 if (const Expr *size = vat->getSizeExpr()) { 1998 // It's possible that we might have emitted this already, 1999 // e.g. with a typedef and a pointer to it. 2000 llvm::Value *&entry = VLASizeMap[size]; 2001 if (!entry) { 2002 llvm::Value *Size = EmitScalarExpr(size); 2003 2004 // C11 6.7.6.2p5: 2005 // If the size is an expression that is not an integer constant 2006 // expression [...] each time it is evaluated it shall have a value 2007 // greater than zero. 2008 if (SanOpts.has(SanitizerKind::VLABound) && 2009 size->getType()->isSignedIntegerType()) { 2010 SanitizerScope SanScope(this); 2011 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2012 llvm::Constant *StaticArgs[] = { 2013 EmitCheckSourceLocation(size->getBeginLoc()), 2014 EmitCheckTypeDescriptor(size->getType())}; 2015 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2016 SanitizerKind::VLABound), 2017 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2018 } 2019 2020 // Always zexting here would be wrong if it weren't 2021 // undefined behavior to have a negative bound. 2022 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2023 } 2024 } 2025 type = vat->getElementType(); 2026 break; 2027 } 2028 2029 case Type::FunctionProto: 2030 case Type::FunctionNoProto: 2031 type = cast<FunctionType>(ty)->getReturnType(); 2032 break; 2033 2034 case Type::Paren: 2035 case Type::TypeOf: 2036 case Type::UnaryTransform: 2037 case Type::Attributed: 2038 case Type::SubstTemplateTypeParm: 2039 case Type::PackExpansion: 2040 case Type::MacroQualified: 2041 // Keep walking after single level desugaring. 2042 type = type.getSingleStepDesugaredType(getContext()); 2043 break; 2044 2045 case Type::Typedef: 2046 case Type::Decltype: 2047 case Type::Auto: 2048 case Type::DeducedTemplateSpecialization: 2049 // Stop walking: nothing to do. 2050 return; 2051 2052 case Type::TypeOfExpr: 2053 // Stop walking: emit typeof expression. 2054 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2055 return; 2056 2057 case Type::Atomic: 2058 type = cast<AtomicType>(ty)->getValueType(); 2059 break; 2060 2061 case Type::Pipe: 2062 type = cast<PipeType>(ty)->getElementType(); 2063 break; 2064 } 2065 } while (type->isVariablyModifiedType()); 2066 } 2067 2068 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2069 if (getContext().getBuiltinVaListType()->isArrayType()) 2070 return EmitPointerWithAlignment(E); 2071 return EmitLValue(E).getAddress(); 2072 } 2073 2074 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2075 return EmitLValue(E).getAddress(); 2076 } 2077 2078 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2079 const APValue &Init) { 2080 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2081 if (CGDebugInfo *Dbg = getDebugInfo()) 2082 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2083 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2084 } 2085 2086 CodeGenFunction::PeepholeProtection 2087 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2088 // At the moment, the only aggressive peephole we do in IR gen 2089 // is trunc(zext) folding, but if we add more, we can easily 2090 // extend this protection. 2091 2092 if (!rvalue.isScalar()) return PeepholeProtection(); 2093 llvm::Value *value = rvalue.getScalarVal(); 2094 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2095 2096 // Just make an extra bitcast. 2097 assert(HaveInsertPoint()); 2098 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2099 Builder.GetInsertBlock()); 2100 2101 PeepholeProtection protection; 2102 protection.Inst = inst; 2103 return protection; 2104 } 2105 2106 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2107 if (!protection.Inst) return; 2108 2109 // In theory, we could try to duplicate the peepholes now, but whatever. 2110 protection.Inst->eraseFromParent(); 2111 } 2112 2113 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2114 QualType Ty, SourceLocation Loc, 2115 SourceLocation AssumptionLoc, 2116 llvm::Value *Alignment, 2117 llvm::Value *OffsetValue) { 2118 llvm::Value *TheCheck; 2119 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2120 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2121 if (SanOpts.has(SanitizerKind::Alignment)) { 2122 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2123 OffsetValue, TheCheck, Assumption); 2124 } 2125 } 2126 2127 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2128 const Expr *E, 2129 SourceLocation AssumptionLoc, 2130 llvm::Value *Alignment, 2131 llvm::Value *OffsetValue) { 2132 if (auto *CE = dyn_cast<CastExpr>(E)) 2133 E = CE->getSubExprAsWritten(); 2134 QualType Ty = E->getType(); 2135 SourceLocation Loc = E->getExprLoc(); 2136 2137 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2138 OffsetValue); 2139 } 2140 2141 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2142 llvm::Value *AnnotatedVal, 2143 StringRef AnnotationStr, 2144 SourceLocation Location) { 2145 llvm::Value *Args[4] = { 2146 AnnotatedVal, 2147 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2148 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2149 CGM.EmitAnnotationLineNo(Location) 2150 }; 2151 return Builder.CreateCall(AnnotationFn, Args); 2152 } 2153 2154 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2155 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2156 // FIXME We create a new bitcast for every annotation because that's what 2157 // llvm-gcc was doing. 2158 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2159 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2160 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2161 I->getAnnotation(), D->getLocation()); 2162 } 2163 2164 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2165 Address Addr) { 2166 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2167 llvm::Value *V = Addr.getPointer(); 2168 llvm::Type *VTy = V->getType(); 2169 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2170 CGM.Int8PtrTy); 2171 2172 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2173 // FIXME Always emit the cast inst so we can differentiate between 2174 // annotation on the first field of a struct and annotation on the struct 2175 // itself. 2176 if (VTy != CGM.Int8PtrTy) 2177 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2178 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2179 V = Builder.CreateBitCast(V, VTy); 2180 } 2181 2182 return Address(V, Addr.getAlignment()); 2183 } 2184 2185 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2186 2187 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2188 : CGF(CGF) { 2189 assert(!CGF->IsSanitizerScope); 2190 CGF->IsSanitizerScope = true; 2191 } 2192 2193 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2194 CGF->IsSanitizerScope = false; 2195 } 2196 2197 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2198 const llvm::Twine &Name, 2199 llvm::BasicBlock *BB, 2200 llvm::BasicBlock::iterator InsertPt) const { 2201 LoopStack.InsertHelper(I); 2202 if (IsSanitizerScope) 2203 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2204 } 2205 2206 void CGBuilderInserter::InsertHelper( 2207 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2208 llvm::BasicBlock::iterator InsertPt) const { 2209 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2210 if (CGF) 2211 CGF->InsertHelper(I, Name, BB, InsertPt); 2212 } 2213 2214 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2215 CodeGenModule &CGM, const FunctionDecl *FD, 2216 std::string &FirstMissing) { 2217 // If there aren't any required features listed then go ahead and return. 2218 if (ReqFeatures.empty()) 2219 return false; 2220 2221 // Now build up the set of caller features and verify that all the required 2222 // features are there. 2223 llvm::StringMap<bool> CallerFeatureMap; 2224 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2225 2226 // If we have at least one of the features in the feature list return 2227 // true, otherwise return false. 2228 return std::all_of( 2229 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2230 SmallVector<StringRef, 1> OrFeatures; 2231 Feature.split(OrFeatures, '|'); 2232 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2233 if (!CallerFeatureMap.lookup(Feature)) { 2234 FirstMissing = Feature.str(); 2235 return false; 2236 } 2237 return true; 2238 }); 2239 }); 2240 } 2241 2242 // Emits an error if we don't have a valid set of target features for the 2243 // called function. 2244 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2245 const FunctionDecl *TargetDecl) { 2246 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2247 } 2248 2249 // Emits an error if we don't have a valid set of target features for the 2250 // called function. 2251 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2252 const FunctionDecl *TargetDecl) { 2253 // Early exit if this is an indirect call. 2254 if (!TargetDecl) 2255 return; 2256 2257 // Get the current enclosing function if it exists. If it doesn't 2258 // we can't check the target features anyhow. 2259 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2260 if (!FD) 2261 return; 2262 2263 // Grab the required features for the call. For a builtin this is listed in 2264 // the td file with the default cpu, for an always_inline function this is any 2265 // listed cpu and any listed features. 2266 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2267 std::string MissingFeature; 2268 if (BuiltinID) { 2269 SmallVector<StringRef, 1> ReqFeatures; 2270 const char *FeatureList = 2271 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2272 // Return if the builtin doesn't have any required features. 2273 if (!FeatureList || StringRef(FeatureList) == "") 2274 return; 2275 StringRef(FeatureList).split(ReqFeatures, ','); 2276 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2277 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2278 << TargetDecl->getDeclName() 2279 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2280 2281 } else if (TargetDecl->hasAttr<TargetAttr>() || 2282 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2283 // Get the required features for the callee. 2284 2285 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2286 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2287 2288 SmallVector<StringRef, 1> ReqFeatures; 2289 llvm::StringMap<bool> CalleeFeatureMap; 2290 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2291 2292 for (const auto &F : ParsedAttr.Features) { 2293 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2294 ReqFeatures.push_back(StringRef(F).substr(1)); 2295 } 2296 2297 for (const auto &F : CalleeFeatureMap) { 2298 // Only positive features are "required". 2299 if (F.getValue()) 2300 ReqFeatures.push_back(F.getKey()); 2301 } 2302 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2303 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2304 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2305 } 2306 } 2307 2308 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2309 if (!CGM.getCodeGenOpts().SanitizeStats) 2310 return; 2311 2312 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2313 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2314 CGM.getSanStats().create(IRB, SSK); 2315 } 2316 2317 llvm::Value * 2318 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2319 llvm::Value *Condition = nullptr; 2320 2321 if (!RO.Conditions.Architecture.empty()) 2322 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2323 2324 if (!RO.Conditions.Features.empty()) { 2325 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2326 Condition = 2327 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2328 } 2329 return Condition; 2330 } 2331 2332 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2333 llvm::Function *Resolver, 2334 CGBuilderTy &Builder, 2335 llvm::Function *FuncToReturn, 2336 bool SupportsIFunc) { 2337 if (SupportsIFunc) { 2338 Builder.CreateRet(FuncToReturn); 2339 return; 2340 } 2341 2342 llvm::SmallVector<llvm::Value *, 10> Args; 2343 llvm::for_each(Resolver->args(), 2344 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2345 2346 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2347 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2348 2349 if (Resolver->getReturnType()->isVoidTy()) 2350 Builder.CreateRetVoid(); 2351 else 2352 Builder.CreateRet(Result); 2353 } 2354 2355 void CodeGenFunction::EmitMultiVersionResolver( 2356 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2357 assert((getContext().getTargetInfo().getTriple().getArch() == 2358 llvm::Triple::x86 || 2359 getContext().getTargetInfo().getTriple().getArch() == 2360 llvm::Triple::x86_64) && 2361 "Only implemented for x86 targets"); 2362 2363 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2364 2365 // Main function's basic block. 2366 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2367 Builder.SetInsertPoint(CurBlock); 2368 EmitX86CpuInit(); 2369 2370 for (const MultiVersionResolverOption &RO : Options) { 2371 Builder.SetInsertPoint(CurBlock); 2372 llvm::Value *Condition = FormResolverCondition(RO); 2373 2374 // The 'default' or 'generic' case. 2375 if (!Condition) { 2376 assert(&RO == Options.end() - 1 && 2377 "Default or Generic case must be last"); 2378 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2379 SupportsIFunc); 2380 return; 2381 } 2382 2383 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2384 CGBuilderTy RetBuilder(*this, RetBlock); 2385 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2386 SupportsIFunc); 2387 CurBlock = createBasicBlock("resolver_else", Resolver); 2388 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2389 } 2390 2391 // If no generic/default, emit an unreachable. 2392 Builder.SetInsertPoint(CurBlock); 2393 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2394 TrapCall->setDoesNotReturn(); 2395 TrapCall->setDoesNotThrow(); 2396 Builder.CreateUnreachable(); 2397 Builder.ClearInsertionPoint(); 2398 } 2399 2400 // Loc - where the diagnostic will point, where in the source code this 2401 // alignment has failed. 2402 // SecondaryLoc - if present (will be present if sufficiently different from 2403 // Loc), the diagnostic will additionally point a "Note:" to this location. 2404 // It should be the location where the __attribute__((assume_aligned)) 2405 // was written e.g. 2406 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2407 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2408 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2409 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2410 llvm::Instruction *Assumption) { 2411 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2412 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2413 llvm::Intrinsic::getDeclaration( 2414 Builder.GetInsertBlock()->getParent()->getParent(), 2415 llvm::Intrinsic::assume) && 2416 "Assumption should be a call to llvm.assume()."); 2417 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2418 "Assumption should be the last instruction of the basic block, " 2419 "since the basic block is still being generated."); 2420 2421 if (!SanOpts.has(SanitizerKind::Alignment)) 2422 return; 2423 2424 // Don't check pointers to volatile data. The behavior here is implementation- 2425 // defined. 2426 if (Ty->getPointeeType().isVolatileQualified()) 2427 return; 2428 2429 // We need to temorairly remove the assumption so we can insert the 2430 // sanitizer check before it, else the check will be dropped by optimizations. 2431 Assumption->removeFromParent(); 2432 2433 { 2434 SanitizerScope SanScope(this); 2435 2436 if (!OffsetValue) 2437 OffsetValue = Builder.getInt1(0); // no offset. 2438 2439 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2440 EmitCheckSourceLocation(SecondaryLoc), 2441 EmitCheckTypeDescriptor(Ty)}; 2442 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2443 EmitCheckValue(Alignment), 2444 EmitCheckValue(OffsetValue)}; 2445 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2446 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2447 } 2448 2449 // We are now in the (new, empty) "cont" basic block. 2450 // Reintroduce the assumption. 2451 Builder.Insert(Assumption); 2452 // FIXME: Assumption still has it's original basic block as it's Parent. 2453 } 2454 2455 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2456 if (CGDebugInfo *DI = getDebugInfo()) 2457 return DI->SourceLocToDebugLoc(Location); 2458 2459 return llvm::DebugLoc(); 2460 } 2461