1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
42     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
43       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
44               CGBuilderInserterTy(this)),
45       CurFn(nullptr), ReturnValue(Address::invalid()),
46       CapturedStmtInfo(nullptr),
47       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
48       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
49       IsOutlinedSEHHelper(false),
50       BlockInfo(nullptr), BlockPointer(nullptr),
51       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
52       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
53       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
54       DebugInfo(CGM.getModuleDebugInfo()),
55       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
56       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
57       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
58       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
59       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
60       CXXStructorImplicitParamDecl(nullptr),
61       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
62       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
63       TerminateHandler(nullptr), TrapBB(nullptr) {
64   if (!suppressNewContext)
65     CGM.getCXXABI().getMangleContext().startNewFunction();
66 
67   llvm::FastMathFlags FMF;
68   if (CGM.getLangOpts().FastMath)
69     FMF.setUnsafeAlgebra();
70   if (CGM.getLangOpts().FiniteMathOnly) {
71     FMF.setNoNaNs();
72     FMF.setNoInfs();
73   }
74   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
75     FMF.setNoNaNs();
76   }
77   if (CGM.getCodeGenOpts().NoSignedZeros) {
78     FMF.setNoSignedZeros();
79   }
80   if (CGM.getCodeGenOpts().ReciprocalMath) {
81     FMF.setAllowReciprocal();
82   }
83   Builder.setFastMathFlags(FMF);
84 }
85 
86 CodeGenFunction::~CodeGenFunction() {
87   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
88 
89   // If there are any unclaimed block infos, go ahead and destroy them
90   // now.  This can happen if IR-gen gets clever and skips evaluating
91   // something.
92   if (FirstBlockInfo)
93     destroyBlockInfos(FirstBlockInfo);
94 
95   if (getLangOpts().OpenMP) {
96     CGM.getOpenMPRuntime().functionFinished(*this);
97   }
98 }
99 
100 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
101                                                      AlignmentSource *Source) {
102   return getNaturalTypeAlignment(T->getPointeeType(), Source,
103                                  /*forPointee*/ true);
104 }
105 
106 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
107                                                    AlignmentSource *Source,
108                                                    bool forPointeeType) {
109   // Honor alignment typedef attributes even on incomplete types.
110   // We also honor them straight for C++ class types, even as pointees;
111   // there's an expressivity gap here.
112   if (auto TT = T->getAs<TypedefType>()) {
113     if (auto Align = TT->getDecl()->getMaxAlignment()) {
114       if (Source) *Source = AlignmentSource::AttributedType;
115       return getContext().toCharUnitsFromBits(Align);
116     }
117   }
118 
119   if (Source) *Source = AlignmentSource::Type;
120 
121   CharUnits Alignment;
122   if (T->isIncompleteType()) {
123     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
124   } else {
125     // For C++ class pointees, we don't know whether we're pointing at a
126     // base or a complete object, so we generally need to use the
127     // non-virtual alignment.
128     const CXXRecordDecl *RD;
129     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
130       Alignment = CGM.getClassPointerAlignment(RD);
131     } else {
132       Alignment = getContext().getTypeAlignInChars(T);
133     }
134 
135     // Cap to the global maximum type alignment unless the alignment
136     // was somehow explicit on the type.
137     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
138       if (Alignment.getQuantity() > MaxAlign &&
139           !getContext().isAlignmentRequired(T))
140         Alignment = CharUnits::fromQuantity(MaxAlign);
141     }
142   }
143   return Alignment;
144 }
145 
146 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
147   AlignmentSource AlignSource;
148   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
149   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
150                           CGM.getTBAAInfo(T));
151 }
152 
153 /// Given a value of type T* that may not be to a complete object,
154 /// construct an l-value with the natural pointee alignment of T.
155 LValue
156 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
157   AlignmentSource AlignSource;
158   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
159   return MakeAddrLValue(Address(V, Align), T, AlignSource);
160 }
161 
162 
163 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
164   return CGM.getTypes().ConvertTypeForMem(T);
165 }
166 
167 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
168   return CGM.getTypes().ConvertType(T);
169 }
170 
171 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
172   type = type.getCanonicalType();
173   while (true) {
174     switch (type->getTypeClass()) {
175 #define TYPE(name, parent)
176 #define ABSTRACT_TYPE(name, parent)
177 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
178 #define DEPENDENT_TYPE(name, parent) case Type::name:
179 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
180 #include "clang/AST/TypeNodes.def"
181       llvm_unreachable("non-canonical or dependent type in IR-generation");
182 
183     case Type::Auto:
184       llvm_unreachable("undeduced auto type in IR-generation");
185 
186     // Various scalar types.
187     case Type::Builtin:
188     case Type::Pointer:
189     case Type::BlockPointer:
190     case Type::LValueReference:
191     case Type::RValueReference:
192     case Type::MemberPointer:
193     case Type::Vector:
194     case Type::ExtVector:
195     case Type::FunctionProto:
196     case Type::FunctionNoProto:
197     case Type::Enum:
198     case Type::ObjCObjectPointer:
199     case Type::Pipe:
200       return TEK_Scalar;
201 
202     // Complexes.
203     case Type::Complex:
204       return TEK_Complex;
205 
206     // Arrays, records, and Objective-C objects.
207     case Type::ConstantArray:
208     case Type::IncompleteArray:
209     case Type::VariableArray:
210     case Type::Record:
211     case Type::ObjCObject:
212     case Type::ObjCInterface:
213       return TEK_Aggregate;
214 
215     // We operate on atomic values according to their underlying type.
216     case Type::Atomic:
217       type = cast<AtomicType>(type)->getValueType();
218       continue;
219     }
220     llvm_unreachable("unknown type kind!");
221   }
222 }
223 
224 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
225   // For cleanliness, we try to avoid emitting the return block for
226   // simple cases.
227   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
228 
229   if (CurBB) {
230     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
231 
232     // We have a valid insert point, reuse it if it is empty or there are no
233     // explicit jumps to the return block.
234     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
235       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
236       delete ReturnBlock.getBlock();
237     } else
238       EmitBlock(ReturnBlock.getBlock());
239     return llvm::DebugLoc();
240   }
241 
242   // Otherwise, if the return block is the target of a single direct
243   // branch then we can just put the code in that block instead. This
244   // cleans up functions which started with a unified return block.
245   if (ReturnBlock.getBlock()->hasOneUse()) {
246     llvm::BranchInst *BI =
247       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
248     if (BI && BI->isUnconditional() &&
249         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
250       // Record/return the DebugLoc of the simple 'return' expression to be used
251       // later by the actual 'ret' instruction.
252       llvm::DebugLoc Loc = BI->getDebugLoc();
253       Builder.SetInsertPoint(BI->getParent());
254       BI->eraseFromParent();
255       delete ReturnBlock.getBlock();
256       return Loc;
257     }
258   }
259 
260   // FIXME: We are at an unreachable point, there is no reason to emit the block
261   // unless it has uses. However, we still need a place to put the debug
262   // region.end for now.
263 
264   EmitBlock(ReturnBlock.getBlock());
265   return llvm::DebugLoc();
266 }
267 
268 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
269   if (!BB) return;
270   if (!BB->use_empty())
271     return CGF.CurFn->getBasicBlockList().push_back(BB);
272   delete BB;
273 }
274 
275 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
276   assert(BreakContinueStack.empty() &&
277          "mismatched push/pop in break/continue stack!");
278 
279   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
280     && NumSimpleReturnExprs == NumReturnExprs
281     && ReturnBlock.getBlock()->use_empty();
282   // Usually the return expression is evaluated before the cleanup
283   // code.  If the function contains only a simple return statement,
284   // such as a constant, the location before the cleanup code becomes
285   // the last useful breakpoint in the function, because the simple
286   // return expression will be evaluated after the cleanup code. To be
287   // safe, set the debug location for cleanup code to the location of
288   // the return statement.  Otherwise the cleanup code should be at the
289   // end of the function's lexical scope.
290   //
291   // If there are multiple branches to the return block, the branch
292   // instructions will get the location of the return statements and
293   // all will be fine.
294   if (CGDebugInfo *DI = getDebugInfo()) {
295     if (OnlySimpleReturnStmts)
296       DI->EmitLocation(Builder, LastStopPoint);
297     else
298       DI->EmitLocation(Builder, EndLoc);
299   }
300 
301   // Pop any cleanups that might have been associated with the
302   // parameters.  Do this in whatever block we're currently in; it's
303   // important to do this before we enter the return block or return
304   // edges will be *really* confused.
305   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
306   bool HasOnlyLifetimeMarkers =
307       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
308   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
309   if (HasCleanups) {
310     // Make sure the line table doesn't jump back into the body for
311     // the ret after it's been at EndLoc.
312     if (CGDebugInfo *DI = getDebugInfo())
313       if (OnlySimpleReturnStmts)
314         DI->EmitLocation(Builder, EndLoc);
315 
316     PopCleanupBlocks(PrologueCleanupDepth);
317   }
318 
319   // Emit function epilog (to return).
320   llvm::DebugLoc Loc = EmitReturnBlock();
321 
322   if (ShouldInstrumentFunction())
323     EmitFunctionInstrumentation("__cyg_profile_func_exit");
324 
325   // Emit debug descriptor for function end.
326   if (CGDebugInfo *DI = getDebugInfo())
327     DI->EmitFunctionEnd(Builder);
328 
329   // Reset the debug location to that of the simple 'return' expression, if any
330   // rather than that of the end of the function's scope '}'.
331   ApplyDebugLocation AL(*this, Loc);
332   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
333   EmitEndEHSpec(CurCodeDecl);
334 
335   assert(EHStack.empty() &&
336          "did not remove all scopes from cleanup stack!");
337 
338   // If someone did an indirect goto, emit the indirect goto block at the end of
339   // the function.
340   if (IndirectBranch) {
341     EmitBlock(IndirectBranch->getParent());
342     Builder.ClearInsertionPoint();
343   }
344 
345   // If some of our locals escaped, insert a call to llvm.localescape in the
346   // entry block.
347   if (!EscapedLocals.empty()) {
348     // Invert the map from local to index into a simple vector. There should be
349     // no holes.
350     SmallVector<llvm::Value *, 4> EscapeArgs;
351     EscapeArgs.resize(EscapedLocals.size());
352     for (auto &Pair : EscapedLocals)
353       EscapeArgs[Pair.second] = Pair.first;
354     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
355         &CGM.getModule(), llvm::Intrinsic::localescape);
356     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
357   }
358 
359   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
360   llvm::Instruction *Ptr = AllocaInsertPt;
361   AllocaInsertPt = nullptr;
362   Ptr->eraseFromParent();
363 
364   // If someone took the address of a label but never did an indirect goto, we
365   // made a zero entry PHI node, which is illegal, zap it now.
366   if (IndirectBranch) {
367     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
368     if (PN->getNumIncomingValues() == 0) {
369       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
370       PN->eraseFromParent();
371     }
372   }
373 
374   EmitIfUsed(*this, EHResumeBlock);
375   EmitIfUsed(*this, TerminateLandingPad);
376   EmitIfUsed(*this, TerminateHandler);
377   EmitIfUsed(*this, UnreachableBlock);
378 
379   if (CGM.getCodeGenOpts().EmitDeclMetadata)
380     EmitDeclMetadata();
381 
382   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
383            I = DeferredReplacements.begin(),
384            E = DeferredReplacements.end();
385        I != E; ++I) {
386     I->first->replaceAllUsesWith(I->second);
387     I->first->eraseFromParent();
388   }
389 }
390 
391 /// ShouldInstrumentFunction - Return true if the current function should be
392 /// instrumented with __cyg_profile_func_* calls
393 bool CodeGenFunction::ShouldInstrumentFunction() {
394   if (!CGM.getCodeGenOpts().InstrumentFunctions)
395     return false;
396   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
397     return false;
398   return true;
399 }
400 
401 /// ShouldXRayInstrument - Return true if the current function should be
402 /// instrumented with XRay nop sleds.
403 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
404   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
405 }
406 
407 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
408 /// instrumentation function with the current function and the call site, if
409 /// function instrumentation is enabled.
410 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
411   auto NL = ApplyDebugLocation::CreateArtificial(*this);
412   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
413   llvm::PointerType *PointerTy = Int8PtrTy;
414   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
415   llvm::FunctionType *FunctionTy =
416     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
417 
418   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
419   llvm::CallInst *CallSite = Builder.CreateCall(
420     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
421     llvm::ConstantInt::get(Int32Ty, 0),
422     "callsite");
423 
424   llvm::Value *args[] = {
425     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
426     CallSite
427   };
428 
429   EmitNounwindRuntimeCall(F, args);
430 }
431 
432 static void removeImageAccessQualifier(std::string& TyName) {
433   std::string ReadOnlyQual("__read_only");
434   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
435   if (ReadOnlyPos != std::string::npos)
436     // "+ 1" for the space after access qualifier.
437     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
438   else {
439     std::string WriteOnlyQual("__write_only");
440     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
441     if (WriteOnlyPos != std::string::npos)
442       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
443     else {
444       std::string ReadWriteQual("__read_write");
445       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
446       if (ReadWritePos != std::string::npos)
447         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
448     }
449   }
450 }
451 
452 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
453 // information in the program executable. The argument information stored
454 // includes the argument name, its type, the address and access qualifiers used.
455 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
456                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
457                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
458   // Create MDNodes that represent the kernel arg metadata.
459   // Each MDNode is a list in the form of "key", N number of values which is
460   // the same number of values as their are kernel arguments.
461 
462   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
463 
464   // MDNode for the kernel argument address space qualifiers.
465   SmallVector<llvm::Metadata *, 8> addressQuals;
466 
467   // MDNode for the kernel argument access qualifiers (images only).
468   SmallVector<llvm::Metadata *, 8> accessQuals;
469 
470   // MDNode for the kernel argument type names.
471   SmallVector<llvm::Metadata *, 8> argTypeNames;
472 
473   // MDNode for the kernel argument base type names.
474   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
475 
476   // MDNode for the kernel argument type qualifiers.
477   SmallVector<llvm::Metadata *, 8> argTypeQuals;
478 
479   // MDNode for the kernel argument names.
480   SmallVector<llvm::Metadata *, 8> argNames;
481 
482   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
483     const ParmVarDecl *parm = FD->getParamDecl(i);
484     QualType ty = parm->getType();
485     std::string typeQuals;
486 
487     if (ty->isPointerType()) {
488       QualType pointeeTy = ty->getPointeeType();
489 
490       // Get address qualifier.
491       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
492           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
493 
494       // Get argument type name.
495       std::string typeName =
496           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
497 
498       // Turn "unsigned type" to "utype"
499       std::string::size_type pos = typeName.find("unsigned");
500       if (pointeeTy.isCanonical() && pos != std::string::npos)
501         typeName.erase(pos+1, 8);
502 
503       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
504 
505       std::string baseTypeName =
506           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
507               Policy) +
508           "*";
509 
510       // Turn "unsigned type" to "utype"
511       pos = baseTypeName.find("unsigned");
512       if (pos != std::string::npos)
513         baseTypeName.erase(pos+1, 8);
514 
515       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
516 
517       // Get argument type qualifiers:
518       if (ty.isRestrictQualified())
519         typeQuals = "restrict";
520       if (pointeeTy.isConstQualified() ||
521           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
522         typeQuals += typeQuals.empty() ? "const" : " const";
523       if (pointeeTy.isVolatileQualified())
524         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
525     } else {
526       uint32_t AddrSpc = 0;
527       bool isPipe = ty->isPipeType();
528       if (ty->isImageType() || isPipe)
529         AddrSpc =
530           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
531 
532       addressQuals.push_back(
533           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
534 
535       // Get argument type name.
536       std::string typeName;
537       if (isPipe)
538         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
539                      .getAsString(Policy);
540       else
541         typeName = ty.getUnqualifiedType().getAsString(Policy);
542 
543       // Turn "unsigned type" to "utype"
544       std::string::size_type pos = typeName.find("unsigned");
545       if (ty.isCanonical() && pos != std::string::npos)
546         typeName.erase(pos+1, 8);
547 
548       std::string baseTypeName;
549       if (isPipe)
550         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
551                           ->getElementType().getCanonicalType()
552                           .getAsString(Policy);
553       else
554         baseTypeName =
555           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
556 
557       // Remove access qualifiers on images
558       // (as they are inseparable from type in clang implementation,
559       // but OpenCL spec provides a special query to get access qualifier
560       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
561       if (ty->isImageType()) {
562         removeImageAccessQualifier(typeName);
563         removeImageAccessQualifier(baseTypeName);
564       }
565 
566       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
567 
568       // Turn "unsigned type" to "utype"
569       pos = baseTypeName.find("unsigned");
570       if (pos != std::string::npos)
571         baseTypeName.erase(pos+1, 8);
572 
573       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
574 
575       // Get argument type qualifiers:
576       if (ty.isConstQualified())
577         typeQuals = "const";
578       if (ty.isVolatileQualified())
579         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
580       if (isPipe)
581         typeQuals = "pipe";
582     }
583 
584     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
585 
586     // Get image and pipe access qualifier:
587     if (ty->isImageType()|| ty->isPipeType()) {
588       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
589       if (A && A->isWriteOnly())
590         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
591       else if (A && A->isReadWrite())
592         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
593       else
594         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
595     } else
596       accessQuals.push_back(llvm::MDString::get(Context, "none"));
597 
598     // Get argument name.
599     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
600   }
601 
602   Fn->setMetadata("kernel_arg_addr_space",
603                   llvm::MDNode::get(Context, addressQuals));
604   Fn->setMetadata("kernel_arg_access_qual",
605                   llvm::MDNode::get(Context, accessQuals));
606   Fn->setMetadata("kernel_arg_type",
607                   llvm::MDNode::get(Context, argTypeNames));
608   Fn->setMetadata("kernel_arg_base_type",
609                   llvm::MDNode::get(Context, argBaseTypeNames));
610   Fn->setMetadata("kernel_arg_type_qual",
611                   llvm::MDNode::get(Context, argTypeQuals));
612   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
613     Fn->setMetadata("kernel_arg_name",
614                     llvm::MDNode::get(Context, argNames));
615 }
616 
617 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
618                                                llvm::Function *Fn)
619 {
620   if (!FD->hasAttr<OpenCLKernelAttr>())
621     return;
622 
623   llvm::LLVMContext &Context = getLLVMContext();
624 
625   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
626 
627   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
628     QualType hintQTy = A->getTypeHint();
629     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
630     bool isSignedInteger =
631         hintQTy->isSignedIntegerType() ||
632         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
633     llvm::Metadata *attrMDArgs[] = {
634         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
635             CGM.getTypes().ConvertType(A->getTypeHint()))),
636         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
637             llvm::IntegerType::get(Context, 32),
638             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
639     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
640   }
641 
642   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
643     llvm::Metadata *attrMDArgs[] = {
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
645         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
646         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
647     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
648   }
649 
650   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
651     llvm::Metadata *attrMDArgs[] = {
652         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
653         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
654         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
655     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
656   }
657 }
658 
659 /// Determine whether the function F ends with a return stmt.
660 static bool endsWithReturn(const Decl* F) {
661   const Stmt *Body = nullptr;
662   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
663     Body = FD->getBody();
664   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
665     Body = OMD->getBody();
666 
667   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
668     auto LastStmt = CS->body_rbegin();
669     if (LastStmt != CS->body_rend())
670       return isa<ReturnStmt>(*LastStmt);
671   }
672   return false;
673 }
674 
675 void CodeGenFunction::StartFunction(GlobalDecl GD,
676                                     QualType RetTy,
677                                     llvm::Function *Fn,
678                                     const CGFunctionInfo &FnInfo,
679                                     const FunctionArgList &Args,
680                                     SourceLocation Loc,
681                                     SourceLocation StartLoc) {
682   assert(!CurFn &&
683          "Do not use a CodeGenFunction object for more than one function");
684 
685   const Decl *D = GD.getDecl();
686 
687   DidCallStackSave = false;
688   CurCodeDecl = D;
689   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
690     if (FD->usesSEHTry())
691       CurSEHParent = FD;
692   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
693   FnRetTy = RetTy;
694   CurFn = Fn;
695   CurFnInfo = &FnInfo;
696   assert(CurFn->isDeclaration() && "Function already has body?");
697 
698   if (CGM.isInSanitizerBlacklist(Fn, Loc))
699     SanOpts.clear();
700 
701   if (D) {
702     // Apply the no_sanitize* attributes to SanOpts.
703     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
704       SanOpts.Mask &= ~Attr->getMask();
705   }
706 
707   // Apply sanitizer attributes to the function.
708   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
709     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
710   if (SanOpts.has(SanitizerKind::Thread))
711     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
712   if (SanOpts.has(SanitizerKind::Memory))
713     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
714   if (SanOpts.has(SanitizerKind::SafeStack))
715     Fn->addFnAttr(llvm::Attribute::SafeStack);
716 
717   // Apply xray attributes to the function (as a string, for now)
718   if (D && ShouldXRayInstrumentFunction()) {
719     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
720       if (XRayAttr->alwaysXRayInstrument())
721         Fn->addFnAttr("function-instrument", "xray-always");
722       if (XRayAttr->neverXRayInstrument())
723         Fn->addFnAttr("function-instrument", "xray-never");
724     } else {
725       Fn->addFnAttr(
726           "xray-instruction-threshold",
727           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
728     }
729   }
730 
731   // Pass inline keyword to optimizer if it appears explicitly on any
732   // declaration. Also, in the case of -fno-inline attach NoInline
733   // attribute to all functions that are not marked AlwaysInline, or
734   // to all functions that are not marked inline or implicitly inline
735   // in the case of -finline-hint-functions.
736   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
737     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
738     if (!CodeGenOpts.NoInline) {
739       for (auto RI : FD->redecls())
740         if (RI->isInlineSpecified()) {
741           Fn->addFnAttr(llvm::Attribute::InlineHint);
742           break;
743         }
744       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
745           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
746         Fn->addFnAttr(llvm::Attribute::NoInline);
747     } else if (!FD->hasAttr<AlwaysInlineAttr>())
748       Fn->addFnAttr(llvm::Attribute::NoInline);
749     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
750       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
751   }
752 
753   // Add no-jump-tables value.
754   Fn->addFnAttr("no-jump-tables",
755                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
756 
757   if (getLangOpts().OpenCL) {
758     // Add metadata for a kernel function.
759     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
760       EmitOpenCLKernelMetadata(FD, Fn);
761   }
762 
763   // If we are checking function types, emit a function type signature as
764   // prologue data.
765   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
766     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
767       if (llvm::Constant *PrologueSig =
768               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
769         llvm::Constant *FTRTTIConst =
770             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
771         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
772         llvm::Constant *PrologueStructConst =
773             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
774         Fn->setPrologueData(PrologueStructConst);
775       }
776     }
777   }
778 
779   // If we're in C++ mode and the function name is "main", it is guaranteed
780   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
781   // used within a program").
782   if (getLangOpts().CPlusPlus)
783     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
784       if (FD->isMain())
785         Fn->addFnAttr(llvm::Attribute::NoRecurse);
786 
787   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
788 
789   // Create a marker to make it easy to insert allocas into the entryblock
790   // later.  Don't create this with the builder, because we don't want it
791   // folded.
792   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
793   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
794 
795   ReturnBlock = getJumpDestInCurrentScope("return");
796 
797   Builder.SetInsertPoint(EntryBB);
798 
799   // Emit subprogram debug descriptor.
800   if (CGDebugInfo *DI = getDebugInfo()) {
801     // Reconstruct the type from the argument list so that implicit parameters,
802     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
803     // convention.
804     CallingConv CC = CallingConv::CC_C;
805     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
806       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
807         CC = SrcFnTy->getCallConv();
808     SmallVector<QualType, 16> ArgTypes;
809     for (const VarDecl *VD : Args)
810       ArgTypes.push_back(VD->getType());
811     QualType FnType = getContext().getFunctionType(
812         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
813     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
814   }
815 
816   if (ShouldInstrumentFunction())
817     EmitFunctionInstrumentation("__cyg_profile_func_enter");
818 
819   // Since emitting the mcount call here impacts optimizations such as function
820   // inlining, we just add an attribute to insert a mcount call in backend.
821   // The attribute "counting-function" is set to mcount function name which is
822   // architecture dependent.
823   if (CGM.getCodeGenOpts().InstrumentForProfiling)
824     Fn->addFnAttr("counting-function", getTarget().getMCountName());
825 
826   if (RetTy->isVoidType()) {
827     // Void type; nothing to return.
828     ReturnValue = Address::invalid();
829 
830     // Count the implicit return.
831     if (!endsWithReturn(D))
832       ++NumReturnExprs;
833   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
834              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
835     // Indirect aggregate return; emit returned value directly into sret slot.
836     // This reduces code size, and affects correctness in C++.
837     auto AI = CurFn->arg_begin();
838     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
839       ++AI;
840     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
841   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
842              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
843     // Load the sret pointer from the argument struct and return into that.
844     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
845     llvm::Function::arg_iterator EI = CurFn->arg_end();
846     --EI;
847     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
848     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
849     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
850   } else {
851     ReturnValue = CreateIRTemp(RetTy, "retval");
852 
853     // Tell the epilog emitter to autorelease the result.  We do this
854     // now so that various specialized functions can suppress it
855     // during their IR-generation.
856     if (getLangOpts().ObjCAutoRefCount &&
857         !CurFnInfo->isReturnsRetained() &&
858         RetTy->isObjCRetainableType())
859       AutoreleaseResult = true;
860   }
861 
862   EmitStartEHSpec(CurCodeDecl);
863 
864   PrologueCleanupDepth = EHStack.stable_begin();
865   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
866 
867   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
868     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
869     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
870     if (MD->getParent()->isLambda() &&
871         MD->getOverloadedOperator() == OO_Call) {
872       // We're in a lambda; figure out the captures.
873       MD->getParent()->getCaptureFields(LambdaCaptureFields,
874                                         LambdaThisCaptureField);
875       if (LambdaThisCaptureField) {
876         // If the lambda captures the object referred to by '*this' - either by
877         // value or by reference, make sure CXXThisValue points to the correct
878         // object.
879 
880         // Get the lvalue for the field (which is a copy of the enclosing object
881         // or contains the address of the enclosing object).
882         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
883         if (!LambdaThisCaptureField->getType()->isPointerType()) {
884           // If the enclosing object was captured by value, just use its address.
885           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
886         } else {
887           // Load the lvalue pointed to by the field, since '*this' was captured
888           // by reference.
889           CXXThisValue =
890               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
891         }
892       }
893       for (auto *FD : MD->getParent()->fields()) {
894         if (FD->hasCapturedVLAType()) {
895           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
896                                            SourceLocation()).getScalarVal();
897           auto VAT = FD->getCapturedVLAType();
898           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
899         }
900       }
901     } else {
902       // Not in a lambda; just use 'this' from the method.
903       // FIXME: Should we generate a new load for each use of 'this'?  The
904       // fast register allocator would be happier...
905       CXXThisValue = CXXABIThisValue;
906     }
907   }
908 
909   // If any of the arguments have a variably modified type, make sure to
910   // emit the type size.
911   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
912        i != e; ++i) {
913     const VarDecl *VD = *i;
914 
915     // Dig out the type as written from ParmVarDecls; it's unclear whether
916     // the standard (C99 6.9.1p10) requires this, but we're following the
917     // precedent set by gcc.
918     QualType Ty;
919     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
920       Ty = PVD->getOriginalType();
921     else
922       Ty = VD->getType();
923 
924     if (Ty->isVariablyModifiedType())
925       EmitVariablyModifiedType(Ty);
926   }
927   // Emit a location at the end of the prologue.
928   if (CGDebugInfo *DI = getDebugInfo())
929     DI->EmitLocation(Builder, StartLoc);
930 }
931 
932 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
933                                        const Stmt *Body) {
934   incrementProfileCounter(Body);
935   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
936     EmitCompoundStmtWithoutScope(*S);
937   else
938     EmitStmt(Body);
939 }
940 
941 /// When instrumenting to collect profile data, the counts for some blocks
942 /// such as switch cases need to not include the fall-through counts, so
943 /// emit a branch around the instrumentation code. When not instrumenting,
944 /// this just calls EmitBlock().
945 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
946                                                const Stmt *S) {
947   llvm::BasicBlock *SkipCountBB = nullptr;
948   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
949     // When instrumenting for profiling, the fallthrough to certain
950     // statements needs to skip over the instrumentation code so that we
951     // get an accurate count.
952     SkipCountBB = createBasicBlock("skipcount");
953     EmitBranch(SkipCountBB);
954   }
955   EmitBlock(BB);
956   uint64_t CurrentCount = getCurrentProfileCount();
957   incrementProfileCounter(S);
958   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
959   if (SkipCountBB)
960     EmitBlock(SkipCountBB);
961 }
962 
963 /// Tries to mark the given function nounwind based on the
964 /// non-existence of any throwing calls within it.  We believe this is
965 /// lightweight enough to do at -O0.
966 static void TryMarkNoThrow(llvm::Function *F) {
967   // LLVM treats 'nounwind' on a function as part of the type, so we
968   // can't do this on functions that can be overwritten.
969   if (F->isInterposable()) return;
970 
971   for (llvm::BasicBlock &BB : *F)
972     for (llvm::Instruction &I : BB)
973       if (I.mayThrow())
974         return;
975 
976   F->setDoesNotThrow();
977 }
978 
979 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
980                                                FunctionArgList &Args) {
981   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
982   QualType ResTy = FD->getReturnType();
983 
984   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
985   if (MD && MD->isInstance()) {
986     if (CGM.getCXXABI().HasThisReturn(GD))
987       ResTy = MD->getThisType(getContext());
988     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
989       ResTy = CGM.getContext().VoidPtrTy;
990     CGM.getCXXABI().buildThisParam(*this, Args);
991   }
992 
993   // The base version of an inheriting constructor whose constructed base is a
994   // virtual base is not passed any arguments (because it doesn't actually call
995   // the inherited constructor).
996   bool PassedParams = true;
997   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
998     if (auto Inherited = CD->getInheritedConstructor())
999       PassedParams =
1000           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1001 
1002   if (PassedParams) {
1003     for (auto *Param : FD->parameters()) {
1004       Args.push_back(Param);
1005       if (!Param->hasAttr<PassObjectSizeAttr>())
1006         continue;
1007 
1008       IdentifierInfo *NoID = nullptr;
1009       auto *Implicit = ImplicitParamDecl::Create(
1010           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1011           getContext().getSizeType());
1012       SizeArguments[Param] = Implicit;
1013       Args.push_back(Implicit);
1014     }
1015   }
1016 
1017   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1018     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1019 
1020   return ResTy;
1021 }
1022 
1023 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1024                                    const CGFunctionInfo &FnInfo) {
1025   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1026   CurGD = GD;
1027 
1028   FunctionArgList Args;
1029   QualType ResTy = BuildFunctionArgList(GD, Args);
1030 
1031   // Check if we should generate debug info for this function.
1032   if (FD->hasAttr<NoDebugAttr>())
1033     DebugInfo = nullptr; // disable debug info indefinitely for this function
1034 
1035   SourceRange BodyRange;
1036   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1037   CurEHLocation = BodyRange.getEnd();
1038 
1039   // Use the location of the start of the function to determine where
1040   // the function definition is located. By default use the location
1041   // of the declaration as the location for the subprogram. A function
1042   // may lack a declaration in the source code if it is created by code
1043   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1044   SourceLocation Loc = FD->getLocation();
1045 
1046   // If this is a function specialization then use the pattern body
1047   // as the location for the function.
1048   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1049     if (SpecDecl->hasBody(SpecDecl))
1050       Loc = SpecDecl->getLocation();
1051 
1052   // Emit the standard function prologue.
1053   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1054 
1055   // Generate the body of the function.
1056   PGO.assignRegionCounters(GD, CurFn);
1057   if (isa<CXXDestructorDecl>(FD))
1058     EmitDestructorBody(Args);
1059   else if (isa<CXXConstructorDecl>(FD))
1060     EmitConstructorBody(Args);
1061   else if (getLangOpts().CUDA &&
1062            !getLangOpts().CUDAIsDevice &&
1063            FD->hasAttr<CUDAGlobalAttr>())
1064     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1065   else if (isa<CXXConversionDecl>(FD) &&
1066            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1067     // The lambda conversion to block pointer is special; the semantics can't be
1068     // expressed in the AST, so IRGen needs to special-case it.
1069     EmitLambdaToBlockPointerBody(Args);
1070   } else if (isa<CXXMethodDecl>(FD) &&
1071              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1072     // The lambda static invoker function is special, because it forwards or
1073     // clones the body of the function call operator (but is actually static).
1074     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1075   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1076              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1077               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1078     // Implicit copy-assignment gets the same special treatment as implicit
1079     // copy-constructors.
1080     emitImplicitAssignmentOperatorBody(Args);
1081   } else if (Stmt *Body = FD->getBody()) {
1082     EmitFunctionBody(Args, Body);
1083   } else
1084     llvm_unreachable("no definition for emitted function");
1085 
1086   // C++11 [stmt.return]p2:
1087   //   Flowing off the end of a function [...] results in undefined behavior in
1088   //   a value-returning function.
1089   // C11 6.9.1p12:
1090   //   If the '}' that terminates a function is reached, and the value of the
1091   //   function call is used by the caller, the behavior is undefined.
1092   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1093       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1094     if (SanOpts.has(SanitizerKind::Return)) {
1095       SanitizerScope SanScope(this);
1096       llvm::Value *IsFalse = Builder.getFalse();
1097       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1098                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1099                 None);
1100     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1101       EmitTrapCall(llvm::Intrinsic::trap);
1102     }
1103     Builder.CreateUnreachable();
1104     Builder.ClearInsertionPoint();
1105   }
1106 
1107   // Emit the standard function epilogue.
1108   FinishFunction(BodyRange.getEnd());
1109 
1110   // If we haven't marked the function nothrow through other means, do
1111   // a quick pass now to see if we can.
1112   if (!CurFn->doesNotThrow())
1113     TryMarkNoThrow(CurFn);
1114 }
1115 
1116 /// ContainsLabel - Return true if the statement contains a label in it.  If
1117 /// this statement is not executed normally, it not containing a label means
1118 /// that we can just remove the code.
1119 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1120   // Null statement, not a label!
1121   if (!S) return false;
1122 
1123   // If this is a label, we have to emit the code, consider something like:
1124   // if (0) {  ...  foo:  bar(); }  goto foo;
1125   //
1126   // TODO: If anyone cared, we could track __label__'s, since we know that you
1127   // can't jump to one from outside their declared region.
1128   if (isa<LabelStmt>(S))
1129     return true;
1130 
1131   // If this is a case/default statement, and we haven't seen a switch, we have
1132   // to emit the code.
1133   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1134     return true;
1135 
1136   // If this is a switch statement, we want to ignore cases below it.
1137   if (isa<SwitchStmt>(S))
1138     IgnoreCaseStmts = true;
1139 
1140   // Scan subexpressions for verboten labels.
1141   for (const Stmt *SubStmt : S->children())
1142     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1143       return true;
1144 
1145   return false;
1146 }
1147 
1148 /// containsBreak - Return true if the statement contains a break out of it.
1149 /// If the statement (recursively) contains a switch or loop with a break
1150 /// inside of it, this is fine.
1151 bool CodeGenFunction::containsBreak(const Stmt *S) {
1152   // Null statement, not a label!
1153   if (!S) return false;
1154 
1155   // If this is a switch or loop that defines its own break scope, then we can
1156   // include it and anything inside of it.
1157   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1158       isa<ForStmt>(S))
1159     return false;
1160 
1161   if (isa<BreakStmt>(S))
1162     return true;
1163 
1164   // Scan subexpressions for verboten breaks.
1165   for (const Stmt *SubStmt : S->children())
1166     if (containsBreak(SubStmt))
1167       return true;
1168 
1169   return false;
1170 }
1171 
1172 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1173   if (!S) return false;
1174 
1175   // Some statement kinds add a scope and thus never add a decl to the current
1176   // scope. Note, this list is longer than the list of statements that might
1177   // have an unscoped decl nested within them, but this way is conservatively
1178   // correct even if more statement kinds are added.
1179   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1180       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1181       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1182       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1183     return false;
1184 
1185   if (isa<DeclStmt>(S))
1186     return true;
1187 
1188   for (const Stmt *SubStmt : S->children())
1189     if (mightAddDeclToScope(SubStmt))
1190       return true;
1191 
1192   return false;
1193 }
1194 
1195 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1196 /// to a constant, or if it does but contains a label, return false.  If it
1197 /// constant folds return true and set the boolean result in Result.
1198 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1199                                                    bool &ResultBool,
1200                                                    bool AllowLabels) {
1201   llvm::APSInt ResultInt;
1202   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1203     return false;
1204 
1205   ResultBool = ResultInt.getBoolValue();
1206   return true;
1207 }
1208 
1209 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1210 /// to a constant, or if it does but contains a label, return false.  If it
1211 /// constant folds return true and set the folded value.
1212 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1213                                                    llvm::APSInt &ResultInt,
1214                                                    bool AllowLabels) {
1215   // FIXME: Rename and handle conversion of other evaluatable things
1216   // to bool.
1217   llvm::APSInt Int;
1218   if (!Cond->EvaluateAsInt(Int, getContext()))
1219     return false;  // Not foldable, not integer or not fully evaluatable.
1220 
1221   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1222     return false;  // Contains a label.
1223 
1224   ResultInt = Int;
1225   return true;
1226 }
1227 
1228 
1229 
1230 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1231 /// statement) to the specified blocks.  Based on the condition, this might try
1232 /// to simplify the codegen of the conditional based on the branch.
1233 ///
1234 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1235                                            llvm::BasicBlock *TrueBlock,
1236                                            llvm::BasicBlock *FalseBlock,
1237                                            uint64_t TrueCount) {
1238   Cond = Cond->IgnoreParens();
1239 
1240   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1241 
1242     // Handle X && Y in a condition.
1243     if (CondBOp->getOpcode() == BO_LAnd) {
1244       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1245       // folded if the case was simple enough.
1246       bool ConstantBool = false;
1247       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1248           ConstantBool) {
1249         // br(1 && X) -> br(X).
1250         incrementProfileCounter(CondBOp);
1251         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1252                                     TrueCount);
1253       }
1254 
1255       // If we have "X && 1", simplify the code to use an uncond branch.
1256       // "X && 0" would have been constant folded to 0.
1257       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1258           ConstantBool) {
1259         // br(X && 1) -> br(X).
1260         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1261                                     TrueCount);
1262       }
1263 
1264       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1265       // want to jump to the FalseBlock.
1266       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1267       // The counter tells us how often we evaluate RHS, and all of TrueCount
1268       // can be propagated to that branch.
1269       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1270 
1271       ConditionalEvaluation eval(*this);
1272       {
1273         ApplyDebugLocation DL(*this, Cond);
1274         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1275         EmitBlock(LHSTrue);
1276       }
1277 
1278       incrementProfileCounter(CondBOp);
1279       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1280 
1281       // Any temporaries created here are conditional.
1282       eval.begin(*this);
1283       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1284       eval.end(*this);
1285 
1286       return;
1287     }
1288 
1289     if (CondBOp->getOpcode() == BO_LOr) {
1290       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1291       // folded if the case was simple enough.
1292       bool ConstantBool = false;
1293       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1294           !ConstantBool) {
1295         // br(0 || X) -> br(X).
1296         incrementProfileCounter(CondBOp);
1297         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1298                                     TrueCount);
1299       }
1300 
1301       // If we have "X || 0", simplify the code to use an uncond branch.
1302       // "X || 1" would have been constant folded to 1.
1303       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1304           !ConstantBool) {
1305         // br(X || 0) -> br(X).
1306         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1307                                     TrueCount);
1308       }
1309 
1310       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1311       // want to jump to the TrueBlock.
1312       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1313       // We have the count for entry to the RHS and for the whole expression
1314       // being true, so we can divy up True count between the short circuit and
1315       // the RHS.
1316       uint64_t LHSCount =
1317           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1318       uint64_t RHSCount = TrueCount - LHSCount;
1319 
1320       ConditionalEvaluation eval(*this);
1321       {
1322         ApplyDebugLocation DL(*this, Cond);
1323         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1324         EmitBlock(LHSFalse);
1325       }
1326 
1327       incrementProfileCounter(CondBOp);
1328       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1329 
1330       // Any temporaries created here are conditional.
1331       eval.begin(*this);
1332       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1333 
1334       eval.end(*this);
1335 
1336       return;
1337     }
1338   }
1339 
1340   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1341     // br(!x, t, f) -> br(x, f, t)
1342     if (CondUOp->getOpcode() == UO_LNot) {
1343       // Negate the count.
1344       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1345       // Negate the condition and swap the destination blocks.
1346       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1347                                   FalseCount);
1348     }
1349   }
1350 
1351   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1352     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1353     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1354     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1355 
1356     ConditionalEvaluation cond(*this);
1357     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1358                          getProfileCount(CondOp));
1359 
1360     // When computing PGO branch weights, we only know the overall count for
1361     // the true block. This code is essentially doing tail duplication of the
1362     // naive code-gen, introducing new edges for which counts are not
1363     // available. Divide the counts proportionally between the LHS and RHS of
1364     // the conditional operator.
1365     uint64_t LHSScaledTrueCount = 0;
1366     if (TrueCount) {
1367       double LHSRatio =
1368           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1369       LHSScaledTrueCount = TrueCount * LHSRatio;
1370     }
1371 
1372     cond.begin(*this);
1373     EmitBlock(LHSBlock);
1374     incrementProfileCounter(CondOp);
1375     {
1376       ApplyDebugLocation DL(*this, Cond);
1377       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1378                            LHSScaledTrueCount);
1379     }
1380     cond.end(*this);
1381 
1382     cond.begin(*this);
1383     EmitBlock(RHSBlock);
1384     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1385                          TrueCount - LHSScaledTrueCount);
1386     cond.end(*this);
1387 
1388     return;
1389   }
1390 
1391   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1392     // Conditional operator handling can give us a throw expression as a
1393     // condition for a case like:
1394     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1395     // Fold this to:
1396     //   br(c, throw x, br(y, t, f))
1397     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1398     return;
1399   }
1400 
1401   // If the branch has a condition wrapped by __builtin_unpredictable,
1402   // create metadata that specifies that the branch is unpredictable.
1403   // Don't bother if not optimizing because that metadata would not be used.
1404   llvm::MDNode *Unpredictable = nullptr;
1405   auto *Call = dyn_cast<CallExpr>(Cond);
1406   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1407     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1408     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1409       llvm::MDBuilder MDHelper(getLLVMContext());
1410       Unpredictable = MDHelper.createUnpredictable();
1411     }
1412   }
1413 
1414   // Create branch weights based on the number of times we get here and the
1415   // number of times the condition should be true.
1416   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1417   llvm::MDNode *Weights =
1418       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1419 
1420   // Emit the code with the fully general case.
1421   llvm::Value *CondV;
1422   {
1423     ApplyDebugLocation DL(*this, Cond);
1424     CondV = EvaluateExprAsBool(Cond);
1425   }
1426   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1427 }
1428 
1429 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1430 /// specified stmt yet.
1431 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1432   CGM.ErrorUnsupported(S, Type);
1433 }
1434 
1435 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1436 /// variable-length array whose elements have a non-zero bit-pattern.
1437 ///
1438 /// \param baseType the inner-most element type of the array
1439 /// \param src - a char* pointing to the bit-pattern for a single
1440 /// base element of the array
1441 /// \param sizeInChars - the total size of the VLA, in chars
1442 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1443                                Address dest, Address src,
1444                                llvm::Value *sizeInChars) {
1445   CGBuilderTy &Builder = CGF.Builder;
1446 
1447   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1448   llvm::Value *baseSizeInChars
1449     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1450 
1451   Address begin =
1452     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1453   llvm::Value *end =
1454     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1455 
1456   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1457   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1458   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1459 
1460   // Make a loop over the VLA.  C99 guarantees that the VLA element
1461   // count must be nonzero.
1462   CGF.EmitBlock(loopBB);
1463 
1464   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1465   cur->addIncoming(begin.getPointer(), originBB);
1466 
1467   CharUnits curAlign =
1468     dest.getAlignment().alignmentOfArrayElement(baseSize);
1469 
1470   // memcpy the individual element bit-pattern.
1471   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1472                        /*volatile*/ false);
1473 
1474   // Go to the next element.
1475   llvm::Value *next =
1476     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1477 
1478   // Leave if that's the end of the VLA.
1479   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1480   Builder.CreateCondBr(done, contBB, loopBB);
1481   cur->addIncoming(next, loopBB);
1482 
1483   CGF.EmitBlock(contBB);
1484 }
1485 
1486 void
1487 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1488   // Ignore empty classes in C++.
1489   if (getLangOpts().CPlusPlus) {
1490     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1491       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1492         return;
1493     }
1494   }
1495 
1496   // Cast the dest ptr to the appropriate i8 pointer type.
1497   if (DestPtr.getElementType() != Int8Ty)
1498     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1499 
1500   // Get size and alignment info for this aggregate.
1501   CharUnits size = getContext().getTypeSizeInChars(Ty);
1502 
1503   llvm::Value *SizeVal;
1504   const VariableArrayType *vla;
1505 
1506   // Don't bother emitting a zero-byte memset.
1507   if (size.isZero()) {
1508     // But note that getTypeInfo returns 0 for a VLA.
1509     if (const VariableArrayType *vlaType =
1510           dyn_cast_or_null<VariableArrayType>(
1511                                           getContext().getAsArrayType(Ty))) {
1512       QualType eltType;
1513       llvm::Value *numElts;
1514       std::tie(numElts, eltType) = getVLASize(vlaType);
1515 
1516       SizeVal = numElts;
1517       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1518       if (!eltSize.isOne())
1519         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1520       vla = vlaType;
1521     } else {
1522       return;
1523     }
1524   } else {
1525     SizeVal = CGM.getSize(size);
1526     vla = nullptr;
1527   }
1528 
1529   // If the type contains a pointer to data member we can't memset it to zero.
1530   // Instead, create a null constant and copy it to the destination.
1531   // TODO: there are other patterns besides zero that we can usefully memset,
1532   // like -1, which happens to be the pattern used by member-pointers.
1533   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1534     // For a VLA, emit a single element, then splat that over the VLA.
1535     if (vla) Ty = getContext().getBaseElementType(vla);
1536 
1537     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1538 
1539     llvm::GlobalVariable *NullVariable =
1540       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1541                                /*isConstant=*/true,
1542                                llvm::GlobalVariable::PrivateLinkage,
1543                                NullConstant, Twine());
1544     CharUnits NullAlign = DestPtr.getAlignment();
1545     NullVariable->setAlignment(NullAlign.getQuantity());
1546     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1547                    NullAlign);
1548 
1549     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1550 
1551     // Get and call the appropriate llvm.memcpy overload.
1552     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1553     return;
1554   }
1555 
1556   // Otherwise, just memset the whole thing to zero.  This is legal
1557   // because in LLVM, all default initializers (other than the ones we just
1558   // handled above) are guaranteed to have a bit pattern of all zeros.
1559   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1560 }
1561 
1562 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1563   // Make sure that there is a block for the indirect goto.
1564   if (!IndirectBranch)
1565     GetIndirectGotoBlock();
1566 
1567   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1568 
1569   // Make sure the indirect branch includes all of the address-taken blocks.
1570   IndirectBranch->addDestination(BB);
1571   return llvm::BlockAddress::get(CurFn, BB);
1572 }
1573 
1574 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1575   // If we already made the indirect branch for indirect goto, return its block.
1576   if (IndirectBranch) return IndirectBranch->getParent();
1577 
1578   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1579 
1580   // Create the PHI node that indirect gotos will add entries to.
1581   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1582                                               "indirect.goto.dest");
1583 
1584   // Create the indirect branch instruction.
1585   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1586   return IndirectBranch->getParent();
1587 }
1588 
1589 /// Computes the length of an array in elements, as well as the base
1590 /// element type and a properly-typed first element pointer.
1591 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1592                                               QualType &baseType,
1593                                               Address &addr) {
1594   const ArrayType *arrayType = origArrayType;
1595 
1596   // If it's a VLA, we have to load the stored size.  Note that
1597   // this is the size of the VLA in bytes, not its size in elements.
1598   llvm::Value *numVLAElements = nullptr;
1599   if (isa<VariableArrayType>(arrayType)) {
1600     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1601 
1602     // Walk into all VLAs.  This doesn't require changes to addr,
1603     // which has type T* where T is the first non-VLA element type.
1604     do {
1605       QualType elementType = arrayType->getElementType();
1606       arrayType = getContext().getAsArrayType(elementType);
1607 
1608       // If we only have VLA components, 'addr' requires no adjustment.
1609       if (!arrayType) {
1610         baseType = elementType;
1611         return numVLAElements;
1612       }
1613     } while (isa<VariableArrayType>(arrayType));
1614 
1615     // We get out here only if we find a constant array type
1616     // inside the VLA.
1617   }
1618 
1619   // We have some number of constant-length arrays, so addr should
1620   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1621   // down to the first element of addr.
1622   SmallVector<llvm::Value*, 8> gepIndices;
1623 
1624   // GEP down to the array type.
1625   llvm::ConstantInt *zero = Builder.getInt32(0);
1626   gepIndices.push_back(zero);
1627 
1628   uint64_t countFromCLAs = 1;
1629   QualType eltType;
1630 
1631   llvm::ArrayType *llvmArrayType =
1632     dyn_cast<llvm::ArrayType>(addr.getElementType());
1633   while (llvmArrayType) {
1634     assert(isa<ConstantArrayType>(arrayType));
1635     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1636              == llvmArrayType->getNumElements());
1637 
1638     gepIndices.push_back(zero);
1639     countFromCLAs *= llvmArrayType->getNumElements();
1640     eltType = arrayType->getElementType();
1641 
1642     llvmArrayType =
1643       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1644     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1645     assert((!llvmArrayType || arrayType) &&
1646            "LLVM and Clang types are out-of-synch");
1647   }
1648 
1649   if (arrayType) {
1650     // From this point onwards, the Clang array type has been emitted
1651     // as some other type (probably a packed struct). Compute the array
1652     // size, and just emit the 'begin' expression as a bitcast.
1653     while (arrayType) {
1654       countFromCLAs *=
1655           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1656       eltType = arrayType->getElementType();
1657       arrayType = getContext().getAsArrayType(eltType);
1658     }
1659 
1660     llvm::Type *baseType = ConvertType(eltType);
1661     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1662   } else {
1663     // Create the actual GEP.
1664     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1665                                              gepIndices, "array.begin"),
1666                    addr.getAlignment());
1667   }
1668 
1669   baseType = eltType;
1670 
1671   llvm::Value *numElements
1672     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1673 
1674   // If we had any VLA dimensions, factor them in.
1675   if (numVLAElements)
1676     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1677 
1678   return numElements;
1679 }
1680 
1681 std::pair<llvm::Value*, QualType>
1682 CodeGenFunction::getVLASize(QualType type) {
1683   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1684   assert(vla && "type was not a variable array type!");
1685   return getVLASize(vla);
1686 }
1687 
1688 std::pair<llvm::Value*, QualType>
1689 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1690   // The number of elements so far; always size_t.
1691   llvm::Value *numElements = nullptr;
1692 
1693   QualType elementType;
1694   do {
1695     elementType = type->getElementType();
1696     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1697     assert(vlaSize && "no size for VLA!");
1698     assert(vlaSize->getType() == SizeTy);
1699 
1700     if (!numElements) {
1701       numElements = vlaSize;
1702     } else {
1703       // It's undefined behavior if this wraps around, so mark it that way.
1704       // FIXME: Teach -fsanitize=undefined to trap this.
1705       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1706     }
1707   } while ((type = getContext().getAsVariableArrayType(elementType)));
1708 
1709   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1710 }
1711 
1712 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1713   assert(type->isVariablyModifiedType() &&
1714          "Must pass variably modified type to EmitVLASizes!");
1715 
1716   EnsureInsertPoint();
1717 
1718   // We're going to walk down into the type and look for VLA
1719   // expressions.
1720   do {
1721     assert(type->isVariablyModifiedType());
1722 
1723     const Type *ty = type.getTypePtr();
1724     switch (ty->getTypeClass()) {
1725 
1726 #define TYPE(Class, Base)
1727 #define ABSTRACT_TYPE(Class, Base)
1728 #define NON_CANONICAL_TYPE(Class, Base)
1729 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1730 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1731 #include "clang/AST/TypeNodes.def"
1732       llvm_unreachable("unexpected dependent type!");
1733 
1734     // These types are never variably-modified.
1735     case Type::Builtin:
1736     case Type::Complex:
1737     case Type::Vector:
1738     case Type::ExtVector:
1739     case Type::Record:
1740     case Type::Enum:
1741     case Type::Elaborated:
1742     case Type::TemplateSpecialization:
1743     case Type::ObjCTypeParam:
1744     case Type::ObjCObject:
1745     case Type::ObjCInterface:
1746     case Type::ObjCObjectPointer:
1747       llvm_unreachable("type class is never variably-modified!");
1748 
1749     case Type::Adjusted:
1750       type = cast<AdjustedType>(ty)->getAdjustedType();
1751       break;
1752 
1753     case Type::Decayed:
1754       type = cast<DecayedType>(ty)->getPointeeType();
1755       break;
1756 
1757     case Type::Pointer:
1758       type = cast<PointerType>(ty)->getPointeeType();
1759       break;
1760 
1761     case Type::BlockPointer:
1762       type = cast<BlockPointerType>(ty)->getPointeeType();
1763       break;
1764 
1765     case Type::LValueReference:
1766     case Type::RValueReference:
1767       type = cast<ReferenceType>(ty)->getPointeeType();
1768       break;
1769 
1770     case Type::MemberPointer:
1771       type = cast<MemberPointerType>(ty)->getPointeeType();
1772       break;
1773 
1774     case Type::ConstantArray:
1775     case Type::IncompleteArray:
1776       // Losing element qualification here is fine.
1777       type = cast<ArrayType>(ty)->getElementType();
1778       break;
1779 
1780     case Type::VariableArray: {
1781       // Losing element qualification here is fine.
1782       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1783 
1784       // Unknown size indication requires no size computation.
1785       // Otherwise, evaluate and record it.
1786       if (const Expr *size = vat->getSizeExpr()) {
1787         // It's possible that we might have emitted this already,
1788         // e.g. with a typedef and a pointer to it.
1789         llvm::Value *&entry = VLASizeMap[size];
1790         if (!entry) {
1791           llvm::Value *Size = EmitScalarExpr(size);
1792 
1793           // C11 6.7.6.2p5:
1794           //   If the size is an expression that is not an integer constant
1795           //   expression [...] each time it is evaluated it shall have a value
1796           //   greater than zero.
1797           if (SanOpts.has(SanitizerKind::VLABound) &&
1798               size->getType()->isSignedIntegerType()) {
1799             SanitizerScope SanScope(this);
1800             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1801             llvm::Constant *StaticArgs[] = {
1802               EmitCheckSourceLocation(size->getLocStart()),
1803               EmitCheckTypeDescriptor(size->getType())
1804             };
1805             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1806                                      SanitizerKind::VLABound),
1807                       "vla_bound_not_positive", StaticArgs, Size);
1808           }
1809 
1810           // Always zexting here would be wrong if it weren't
1811           // undefined behavior to have a negative bound.
1812           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1813         }
1814       }
1815       type = vat->getElementType();
1816       break;
1817     }
1818 
1819     case Type::FunctionProto:
1820     case Type::FunctionNoProto:
1821       type = cast<FunctionType>(ty)->getReturnType();
1822       break;
1823 
1824     case Type::Paren:
1825     case Type::TypeOf:
1826     case Type::UnaryTransform:
1827     case Type::Attributed:
1828     case Type::SubstTemplateTypeParm:
1829     case Type::PackExpansion:
1830       // Keep walking after single level desugaring.
1831       type = type.getSingleStepDesugaredType(getContext());
1832       break;
1833 
1834     case Type::Typedef:
1835     case Type::Decltype:
1836     case Type::Auto:
1837       // Stop walking: nothing to do.
1838       return;
1839 
1840     case Type::TypeOfExpr:
1841       // Stop walking: emit typeof expression.
1842       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1843       return;
1844 
1845     case Type::Atomic:
1846       type = cast<AtomicType>(ty)->getValueType();
1847       break;
1848 
1849     case Type::Pipe:
1850       type = cast<PipeType>(ty)->getElementType();
1851       break;
1852     }
1853   } while (type->isVariablyModifiedType());
1854 }
1855 
1856 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1857   if (getContext().getBuiltinVaListType()->isArrayType())
1858     return EmitPointerWithAlignment(E);
1859   return EmitLValue(E).getAddress();
1860 }
1861 
1862 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1863   return EmitLValue(E).getAddress();
1864 }
1865 
1866 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1867                                               const APValue &Init) {
1868   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1869   if (CGDebugInfo *Dbg = getDebugInfo())
1870     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1871       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1872 }
1873 
1874 CodeGenFunction::PeepholeProtection
1875 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1876   // At the moment, the only aggressive peephole we do in IR gen
1877   // is trunc(zext) folding, but if we add more, we can easily
1878   // extend this protection.
1879 
1880   if (!rvalue.isScalar()) return PeepholeProtection();
1881   llvm::Value *value = rvalue.getScalarVal();
1882   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1883 
1884   // Just make an extra bitcast.
1885   assert(HaveInsertPoint());
1886   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1887                                                   Builder.GetInsertBlock());
1888 
1889   PeepholeProtection protection;
1890   protection.Inst = inst;
1891   return protection;
1892 }
1893 
1894 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1895   if (!protection.Inst) return;
1896 
1897   // In theory, we could try to duplicate the peepholes now, but whatever.
1898   protection.Inst->eraseFromParent();
1899 }
1900 
1901 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1902                                                  llvm::Value *AnnotatedVal,
1903                                                  StringRef AnnotationStr,
1904                                                  SourceLocation Location) {
1905   llvm::Value *Args[4] = {
1906     AnnotatedVal,
1907     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1908     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1909     CGM.EmitAnnotationLineNo(Location)
1910   };
1911   return Builder.CreateCall(AnnotationFn, Args);
1912 }
1913 
1914 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1915   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1916   // FIXME We create a new bitcast for every annotation because that's what
1917   // llvm-gcc was doing.
1918   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1919     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1920                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1921                        I->getAnnotation(), D->getLocation());
1922 }
1923 
1924 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1925                                               Address Addr) {
1926   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1927   llvm::Value *V = Addr.getPointer();
1928   llvm::Type *VTy = V->getType();
1929   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1930                                     CGM.Int8PtrTy);
1931 
1932   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1933     // FIXME Always emit the cast inst so we can differentiate between
1934     // annotation on the first field of a struct and annotation on the struct
1935     // itself.
1936     if (VTy != CGM.Int8PtrTy)
1937       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1938     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1939     V = Builder.CreateBitCast(V, VTy);
1940   }
1941 
1942   return Address(V, Addr.getAlignment());
1943 }
1944 
1945 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1946 
1947 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1948     : CGF(CGF) {
1949   assert(!CGF->IsSanitizerScope);
1950   CGF->IsSanitizerScope = true;
1951 }
1952 
1953 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1954   CGF->IsSanitizerScope = false;
1955 }
1956 
1957 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1958                                    const llvm::Twine &Name,
1959                                    llvm::BasicBlock *BB,
1960                                    llvm::BasicBlock::iterator InsertPt) const {
1961   LoopStack.InsertHelper(I);
1962   if (IsSanitizerScope)
1963     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1964 }
1965 
1966 void CGBuilderInserter::InsertHelper(
1967     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1968     llvm::BasicBlock::iterator InsertPt) const {
1969   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1970   if (CGF)
1971     CGF->InsertHelper(I, Name, BB, InsertPt);
1972 }
1973 
1974 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1975                                 CodeGenModule &CGM, const FunctionDecl *FD,
1976                                 std::string &FirstMissing) {
1977   // If there aren't any required features listed then go ahead and return.
1978   if (ReqFeatures.empty())
1979     return false;
1980 
1981   // Now build up the set of caller features and verify that all the required
1982   // features are there.
1983   llvm::StringMap<bool> CallerFeatureMap;
1984   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1985 
1986   // If we have at least one of the features in the feature list return
1987   // true, otherwise return false.
1988   return std::all_of(
1989       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1990         SmallVector<StringRef, 1> OrFeatures;
1991         Feature.split(OrFeatures, "|");
1992         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1993                            [&](StringRef Feature) {
1994                              if (!CallerFeatureMap.lookup(Feature)) {
1995                                FirstMissing = Feature.str();
1996                                return false;
1997                              }
1998                              return true;
1999                            });
2000       });
2001 }
2002 
2003 // Emits an error if we don't have a valid set of target features for the
2004 // called function.
2005 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2006                                           const FunctionDecl *TargetDecl) {
2007   // Early exit if this is an indirect call.
2008   if (!TargetDecl)
2009     return;
2010 
2011   // Get the current enclosing function if it exists. If it doesn't
2012   // we can't check the target features anyhow.
2013   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2014   if (!FD)
2015     return;
2016 
2017   // Grab the required features for the call. For a builtin this is listed in
2018   // the td file with the default cpu, for an always_inline function this is any
2019   // listed cpu and any listed features.
2020   unsigned BuiltinID = TargetDecl->getBuiltinID();
2021   std::string MissingFeature;
2022   if (BuiltinID) {
2023     SmallVector<StringRef, 1> ReqFeatures;
2024     const char *FeatureList =
2025         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2026     // Return if the builtin doesn't have any required features.
2027     if (!FeatureList || StringRef(FeatureList) == "")
2028       return;
2029     StringRef(FeatureList).split(ReqFeatures, ",");
2030     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2031       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2032           << TargetDecl->getDeclName()
2033           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2034 
2035   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2036     // Get the required features for the callee.
2037     SmallVector<StringRef, 1> ReqFeatures;
2038     llvm::StringMap<bool> CalleeFeatureMap;
2039     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2040     for (const auto &F : CalleeFeatureMap) {
2041       // Only positive features are "required".
2042       if (F.getValue())
2043         ReqFeatures.push_back(F.getKey());
2044     }
2045     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2046       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2047           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2048   }
2049 }
2050 
2051 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2052   if (!CGM.getCodeGenOpts().SanitizeStats)
2053     return;
2054 
2055   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2056   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2057   CGM.getSanStats().create(IRB, SSK);
2058 }
2059