1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 42 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 43 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 44 CGBuilderInserterTy(this)), 45 CurFn(nullptr), ReturnValue(Address::invalid()), 46 CapturedStmtInfo(nullptr), 47 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 48 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 49 IsOutlinedSEHHelper(false), 50 BlockInfo(nullptr), BlockPointer(nullptr), 51 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 52 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 53 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 54 DebugInfo(CGM.getModuleDebugInfo()), 55 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 56 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 57 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 58 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 59 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 60 CXXStructorImplicitParamDecl(nullptr), 61 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 62 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 63 TerminateHandler(nullptr), TrapBB(nullptr) { 64 if (!suppressNewContext) 65 CGM.getCXXABI().getMangleContext().startNewFunction(); 66 67 llvm::FastMathFlags FMF; 68 if (CGM.getLangOpts().FastMath) 69 FMF.setUnsafeAlgebra(); 70 if (CGM.getLangOpts().FiniteMathOnly) { 71 FMF.setNoNaNs(); 72 FMF.setNoInfs(); 73 } 74 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 75 FMF.setNoNaNs(); 76 } 77 if (CGM.getCodeGenOpts().NoSignedZeros) { 78 FMF.setNoSignedZeros(); 79 } 80 if (CGM.getCodeGenOpts().ReciprocalMath) { 81 FMF.setAllowReciprocal(); 82 } 83 Builder.setFastMathFlags(FMF); 84 } 85 86 CodeGenFunction::~CodeGenFunction() { 87 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 88 89 // If there are any unclaimed block infos, go ahead and destroy them 90 // now. This can happen if IR-gen gets clever and skips evaluating 91 // something. 92 if (FirstBlockInfo) 93 destroyBlockInfos(FirstBlockInfo); 94 95 if (getLangOpts().OpenMP) { 96 CGM.getOpenMPRuntime().functionFinished(*this); 97 } 98 } 99 100 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 101 AlignmentSource *Source) { 102 return getNaturalTypeAlignment(T->getPointeeType(), Source, 103 /*forPointee*/ true); 104 } 105 106 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 107 AlignmentSource *Source, 108 bool forPointeeType) { 109 // Honor alignment typedef attributes even on incomplete types. 110 // We also honor them straight for C++ class types, even as pointees; 111 // there's an expressivity gap here. 112 if (auto TT = T->getAs<TypedefType>()) { 113 if (auto Align = TT->getDecl()->getMaxAlignment()) { 114 if (Source) *Source = AlignmentSource::AttributedType; 115 return getContext().toCharUnitsFromBits(Align); 116 } 117 } 118 119 if (Source) *Source = AlignmentSource::Type; 120 121 CharUnits Alignment; 122 if (T->isIncompleteType()) { 123 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 124 } else { 125 // For C++ class pointees, we don't know whether we're pointing at a 126 // base or a complete object, so we generally need to use the 127 // non-virtual alignment. 128 const CXXRecordDecl *RD; 129 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 130 Alignment = CGM.getClassPointerAlignment(RD); 131 } else { 132 Alignment = getContext().getTypeAlignInChars(T); 133 } 134 135 // Cap to the global maximum type alignment unless the alignment 136 // was somehow explicit on the type. 137 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 138 if (Alignment.getQuantity() > MaxAlign && 139 !getContext().isAlignmentRequired(T)) 140 Alignment = CharUnits::fromQuantity(MaxAlign); 141 } 142 } 143 return Alignment; 144 } 145 146 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 147 AlignmentSource AlignSource; 148 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 149 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 150 CGM.getTBAAInfo(T)); 151 } 152 153 /// Given a value of type T* that may not be to a complete object, 154 /// construct an l-value with the natural pointee alignment of T. 155 LValue 156 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 157 AlignmentSource AlignSource; 158 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 159 return MakeAddrLValue(Address(V, Align), T, AlignSource); 160 } 161 162 163 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 164 return CGM.getTypes().ConvertTypeForMem(T); 165 } 166 167 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 168 return CGM.getTypes().ConvertType(T); 169 } 170 171 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 172 type = type.getCanonicalType(); 173 while (true) { 174 switch (type->getTypeClass()) { 175 #define TYPE(name, parent) 176 #define ABSTRACT_TYPE(name, parent) 177 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 178 #define DEPENDENT_TYPE(name, parent) case Type::name: 179 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 180 #include "clang/AST/TypeNodes.def" 181 llvm_unreachable("non-canonical or dependent type in IR-generation"); 182 183 case Type::Auto: 184 llvm_unreachable("undeduced auto type in IR-generation"); 185 186 // Various scalar types. 187 case Type::Builtin: 188 case Type::Pointer: 189 case Type::BlockPointer: 190 case Type::LValueReference: 191 case Type::RValueReference: 192 case Type::MemberPointer: 193 case Type::Vector: 194 case Type::ExtVector: 195 case Type::FunctionProto: 196 case Type::FunctionNoProto: 197 case Type::Enum: 198 case Type::ObjCObjectPointer: 199 case Type::Pipe: 200 return TEK_Scalar; 201 202 // Complexes. 203 case Type::Complex: 204 return TEK_Complex; 205 206 // Arrays, records, and Objective-C objects. 207 case Type::ConstantArray: 208 case Type::IncompleteArray: 209 case Type::VariableArray: 210 case Type::Record: 211 case Type::ObjCObject: 212 case Type::ObjCInterface: 213 return TEK_Aggregate; 214 215 // We operate on atomic values according to their underlying type. 216 case Type::Atomic: 217 type = cast<AtomicType>(type)->getValueType(); 218 continue; 219 } 220 llvm_unreachable("unknown type kind!"); 221 } 222 } 223 224 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 225 // For cleanliness, we try to avoid emitting the return block for 226 // simple cases. 227 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 228 229 if (CurBB) { 230 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 231 232 // We have a valid insert point, reuse it if it is empty or there are no 233 // explicit jumps to the return block. 234 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 235 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 236 delete ReturnBlock.getBlock(); 237 } else 238 EmitBlock(ReturnBlock.getBlock()); 239 return llvm::DebugLoc(); 240 } 241 242 // Otherwise, if the return block is the target of a single direct 243 // branch then we can just put the code in that block instead. This 244 // cleans up functions which started with a unified return block. 245 if (ReturnBlock.getBlock()->hasOneUse()) { 246 llvm::BranchInst *BI = 247 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 248 if (BI && BI->isUnconditional() && 249 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 250 // Record/return the DebugLoc of the simple 'return' expression to be used 251 // later by the actual 'ret' instruction. 252 llvm::DebugLoc Loc = BI->getDebugLoc(); 253 Builder.SetInsertPoint(BI->getParent()); 254 BI->eraseFromParent(); 255 delete ReturnBlock.getBlock(); 256 return Loc; 257 } 258 } 259 260 // FIXME: We are at an unreachable point, there is no reason to emit the block 261 // unless it has uses. However, we still need a place to put the debug 262 // region.end for now. 263 264 EmitBlock(ReturnBlock.getBlock()); 265 return llvm::DebugLoc(); 266 } 267 268 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 269 if (!BB) return; 270 if (!BB->use_empty()) 271 return CGF.CurFn->getBasicBlockList().push_back(BB); 272 delete BB; 273 } 274 275 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 276 assert(BreakContinueStack.empty() && 277 "mismatched push/pop in break/continue stack!"); 278 279 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 280 && NumSimpleReturnExprs == NumReturnExprs 281 && ReturnBlock.getBlock()->use_empty(); 282 // Usually the return expression is evaluated before the cleanup 283 // code. If the function contains only a simple return statement, 284 // such as a constant, the location before the cleanup code becomes 285 // the last useful breakpoint in the function, because the simple 286 // return expression will be evaluated after the cleanup code. To be 287 // safe, set the debug location for cleanup code to the location of 288 // the return statement. Otherwise the cleanup code should be at the 289 // end of the function's lexical scope. 290 // 291 // If there are multiple branches to the return block, the branch 292 // instructions will get the location of the return statements and 293 // all will be fine. 294 if (CGDebugInfo *DI = getDebugInfo()) { 295 if (OnlySimpleReturnStmts) 296 DI->EmitLocation(Builder, LastStopPoint); 297 else 298 DI->EmitLocation(Builder, EndLoc); 299 } 300 301 // Pop any cleanups that might have been associated with the 302 // parameters. Do this in whatever block we're currently in; it's 303 // important to do this before we enter the return block or return 304 // edges will be *really* confused. 305 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 306 bool HasOnlyLifetimeMarkers = 307 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 308 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 309 if (HasCleanups) { 310 // Make sure the line table doesn't jump back into the body for 311 // the ret after it's been at EndLoc. 312 if (CGDebugInfo *DI = getDebugInfo()) 313 if (OnlySimpleReturnStmts) 314 DI->EmitLocation(Builder, EndLoc); 315 316 PopCleanupBlocks(PrologueCleanupDepth); 317 } 318 319 // Emit function epilog (to return). 320 llvm::DebugLoc Loc = EmitReturnBlock(); 321 322 if (ShouldInstrumentFunction()) 323 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 324 325 // Emit debug descriptor for function end. 326 if (CGDebugInfo *DI = getDebugInfo()) 327 DI->EmitFunctionEnd(Builder); 328 329 // Reset the debug location to that of the simple 'return' expression, if any 330 // rather than that of the end of the function's scope '}'. 331 ApplyDebugLocation AL(*this, Loc); 332 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 333 EmitEndEHSpec(CurCodeDecl); 334 335 assert(EHStack.empty() && 336 "did not remove all scopes from cleanup stack!"); 337 338 // If someone did an indirect goto, emit the indirect goto block at the end of 339 // the function. 340 if (IndirectBranch) { 341 EmitBlock(IndirectBranch->getParent()); 342 Builder.ClearInsertionPoint(); 343 } 344 345 // If some of our locals escaped, insert a call to llvm.localescape in the 346 // entry block. 347 if (!EscapedLocals.empty()) { 348 // Invert the map from local to index into a simple vector. There should be 349 // no holes. 350 SmallVector<llvm::Value *, 4> EscapeArgs; 351 EscapeArgs.resize(EscapedLocals.size()); 352 for (auto &Pair : EscapedLocals) 353 EscapeArgs[Pair.second] = Pair.first; 354 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 355 &CGM.getModule(), llvm::Intrinsic::localescape); 356 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 357 } 358 359 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 360 llvm::Instruction *Ptr = AllocaInsertPt; 361 AllocaInsertPt = nullptr; 362 Ptr->eraseFromParent(); 363 364 // If someone took the address of a label but never did an indirect goto, we 365 // made a zero entry PHI node, which is illegal, zap it now. 366 if (IndirectBranch) { 367 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 368 if (PN->getNumIncomingValues() == 0) { 369 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 370 PN->eraseFromParent(); 371 } 372 } 373 374 EmitIfUsed(*this, EHResumeBlock); 375 EmitIfUsed(*this, TerminateLandingPad); 376 EmitIfUsed(*this, TerminateHandler); 377 EmitIfUsed(*this, UnreachableBlock); 378 379 if (CGM.getCodeGenOpts().EmitDeclMetadata) 380 EmitDeclMetadata(); 381 382 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 383 I = DeferredReplacements.begin(), 384 E = DeferredReplacements.end(); 385 I != E; ++I) { 386 I->first->replaceAllUsesWith(I->second); 387 I->first->eraseFromParent(); 388 } 389 } 390 391 /// ShouldInstrumentFunction - Return true if the current function should be 392 /// instrumented with __cyg_profile_func_* calls 393 bool CodeGenFunction::ShouldInstrumentFunction() { 394 if (!CGM.getCodeGenOpts().InstrumentFunctions) 395 return false; 396 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 397 return false; 398 return true; 399 } 400 401 /// ShouldXRayInstrument - Return true if the current function should be 402 /// instrumented with XRay nop sleds. 403 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 404 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 405 } 406 407 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 408 /// instrumentation function with the current function and the call site, if 409 /// function instrumentation is enabled. 410 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 411 auto NL = ApplyDebugLocation::CreateArtificial(*this); 412 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 413 llvm::PointerType *PointerTy = Int8PtrTy; 414 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 415 llvm::FunctionType *FunctionTy = 416 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 417 418 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 419 llvm::CallInst *CallSite = Builder.CreateCall( 420 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 421 llvm::ConstantInt::get(Int32Ty, 0), 422 "callsite"); 423 424 llvm::Value *args[] = { 425 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 426 CallSite 427 }; 428 429 EmitNounwindRuntimeCall(F, args); 430 } 431 432 static void removeImageAccessQualifier(std::string& TyName) { 433 std::string ReadOnlyQual("__read_only"); 434 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 435 if (ReadOnlyPos != std::string::npos) 436 // "+ 1" for the space after access qualifier. 437 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 438 else { 439 std::string WriteOnlyQual("__write_only"); 440 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 441 if (WriteOnlyPos != std::string::npos) 442 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 443 else { 444 std::string ReadWriteQual("__read_write"); 445 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 446 if (ReadWritePos != std::string::npos) 447 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 448 } 449 } 450 } 451 452 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 453 // information in the program executable. The argument information stored 454 // includes the argument name, its type, the address and access qualifiers used. 455 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 456 CodeGenModule &CGM, llvm::LLVMContext &Context, 457 CGBuilderTy &Builder, ASTContext &ASTCtx) { 458 // Create MDNodes that represent the kernel arg metadata. 459 // Each MDNode is a list in the form of "key", N number of values which is 460 // the same number of values as their are kernel arguments. 461 462 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 463 464 // MDNode for the kernel argument address space qualifiers. 465 SmallVector<llvm::Metadata *, 8> addressQuals; 466 467 // MDNode for the kernel argument access qualifiers (images only). 468 SmallVector<llvm::Metadata *, 8> accessQuals; 469 470 // MDNode for the kernel argument type names. 471 SmallVector<llvm::Metadata *, 8> argTypeNames; 472 473 // MDNode for the kernel argument base type names. 474 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 475 476 // MDNode for the kernel argument type qualifiers. 477 SmallVector<llvm::Metadata *, 8> argTypeQuals; 478 479 // MDNode for the kernel argument names. 480 SmallVector<llvm::Metadata *, 8> argNames; 481 482 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 483 const ParmVarDecl *parm = FD->getParamDecl(i); 484 QualType ty = parm->getType(); 485 std::string typeQuals; 486 487 if (ty->isPointerType()) { 488 QualType pointeeTy = ty->getPointeeType(); 489 490 // Get address qualifier. 491 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 492 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 493 494 // Get argument type name. 495 std::string typeName = 496 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 497 498 // Turn "unsigned type" to "utype" 499 std::string::size_type pos = typeName.find("unsigned"); 500 if (pointeeTy.isCanonical() && pos != std::string::npos) 501 typeName.erase(pos+1, 8); 502 503 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 504 505 std::string baseTypeName = 506 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 507 Policy) + 508 "*"; 509 510 // Turn "unsigned type" to "utype" 511 pos = baseTypeName.find("unsigned"); 512 if (pos != std::string::npos) 513 baseTypeName.erase(pos+1, 8); 514 515 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 516 517 // Get argument type qualifiers: 518 if (ty.isRestrictQualified()) 519 typeQuals = "restrict"; 520 if (pointeeTy.isConstQualified() || 521 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 522 typeQuals += typeQuals.empty() ? "const" : " const"; 523 if (pointeeTy.isVolatileQualified()) 524 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 525 } else { 526 uint32_t AddrSpc = 0; 527 bool isPipe = ty->isPipeType(); 528 if (ty->isImageType() || isPipe) 529 AddrSpc = 530 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 531 532 addressQuals.push_back( 533 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 534 535 // Get argument type name. 536 std::string typeName; 537 if (isPipe) 538 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 539 .getAsString(Policy); 540 else 541 typeName = ty.getUnqualifiedType().getAsString(Policy); 542 543 // Turn "unsigned type" to "utype" 544 std::string::size_type pos = typeName.find("unsigned"); 545 if (ty.isCanonical() && pos != std::string::npos) 546 typeName.erase(pos+1, 8); 547 548 std::string baseTypeName; 549 if (isPipe) 550 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 551 ->getElementType().getCanonicalType() 552 .getAsString(Policy); 553 else 554 baseTypeName = 555 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 556 557 // Remove access qualifiers on images 558 // (as they are inseparable from type in clang implementation, 559 // but OpenCL spec provides a special query to get access qualifier 560 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 561 if (ty->isImageType()) { 562 removeImageAccessQualifier(typeName); 563 removeImageAccessQualifier(baseTypeName); 564 } 565 566 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 567 568 // Turn "unsigned type" to "utype" 569 pos = baseTypeName.find("unsigned"); 570 if (pos != std::string::npos) 571 baseTypeName.erase(pos+1, 8); 572 573 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 574 575 // Get argument type qualifiers: 576 if (ty.isConstQualified()) 577 typeQuals = "const"; 578 if (ty.isVolatileQualified()) 579 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 580 if (isPipe) 581 typeQuals = "pipe"; 582 } 583 584 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 585 586 // Get image and pipe access qualifier: 587 if (ty->isImageType()|| ty->isPipeType()) { 588 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 589 if (A && A->isWriteOnly()) 590 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 591 else if (A && A->isReadWrite()) 592 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 593 else 594 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 595 } else 596 accessQuals.push_back(llvm::MDString::get(Context, "none")); 597 598 // Get argument name. 599 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 600 } 601 602 Fn->setMetadata("kernel_arg_addr_space", 603 llvm::MDNode::get(Context, addressQuals)); 604 Fn->setMetadata("kernel_arg_access_qual", 605 llvm::MDNode::get(Context, accessQuals)); 606 Fn->setMetadata("kernel_arg_type", 607 llvm::MDNode::get(Context, argTypeNames)); 608 Fn->setMetadata("kernel_arg_base_type", 609 llvm::MDNode::get(Context, argBaseTypeNames)); 610 Fn->setMetadata("kernel_arg_type_qual", 611 llvm::MDNode::get(Context, argTypeQuals)); 612 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 613 Fn->setMetadata("kernel_arg_name", 614 llvm::MDNode::get(Context, argNames)); 615 } 616 617 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 618 llvm::Function *Fn) 619 { 620 if (!FD->hasAttr<OpenCLKernelAttr>()) 621 return; 622 623 llvm::LLVMContext &Context = getLLVMContext(); 624 625 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 626 627 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 628 QualType hintQTy = A->getTypeHint(); 629 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 630 bool isSignedInteger = 631 hintQTy->isSignedIntegerType() || 632 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 633 llvm::Metadata *attrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 635 CGM.getTypes().ConvertType(A->getTypeHint()))), 636 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 637 llvm::IntegerType::get(Context, 32), 638 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 639 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 640 } 641 642 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 643 llvm::Metadata *attrMDArgs[] = { 644 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 645 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 646 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 647 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 648 } 649 650 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 651 llvm::Metadata *attrMDArgs[] = { 652 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 653 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 654 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 655 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 656 } 657 } 658 659 /// Determine whether the function F ends with a return stmt. 660 static bool endsWithReturn(const Decl* F) { 661 const Stmt *Body = nullptr; 662 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 663 Body = FD->getBody(); 664 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 665 Body = OMD->getBody(); 666 667 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 668 auto LastStmt = CS->body_rbegin(); 669 if (LastStmt != CS->body_rend()) 670 return isa<ReturnStmt>(*LastStmt); 671 } 672 return false; 673 } 674 675 void CodeGenFunction::StartFunction(GlobalDecl GD, 676 QualType RetTy, 677 llvm::Function *Fn, 678 const CGFunctionInfo &FnInfo, 679 const FunctionArgList &Args, 680 SourceLocation Loc, 681 SourceLocation StartLoc) { 682 assert(!CurFn && 683 "Do not use a CodeGenFunction object for more than one function"); 684 685 const Decl *D = GD.getDecl(); 686 687 DidCallStackSave = false; 688 CurCodeDecl = D; 689 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 690 if (FD->usesSEHTry()) 691 CurSEHParent = FD; 692 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 693 FnRetTy = RetTy; 694 CurFn = Fn; 695 CurFnInfo = &FnInfo; 696 assert(CurFn->isDeclaration() && "Function already has body?"); 697 698 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 699 SanOpts.clear(); 700 701 if (D) { 702 // Apply the no_sanitize* attributes to SanOpts. 703 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 704 SanOpts.Mask &= ~Attr->getMask(); 705 } 706 707 // Apply sanitizer attributes to the function. 708 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 709 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 710 if (SanOpts.has(SanitizerKind::Thread)) 711 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 712 if (SanOpts.has(SanitizerKind::Memory)) 713 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 714 if (SanOpts.has(SanitizerKind::SafeStack)) 715 Fn->addFnAttr(llvm::Attribute::SafeStack); 716 717 // Apply xray attributes to the function (as a string, for now) 718 if (D && ShouldXRayInstrumentFunction()) { 719 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 720 if (XRayAttr->alwaysXRayInstrument()) 721 Fn->addFnAttr("function-instrument", "xray-always"); 722 if (XRayAttr->neverXRayInstrument()) 723 Fn->addFnAttr("function-instrument", "xray-never"); 724 } else { 725 Fn->addFnAttr( 726 "xray-instruction-threshold", 727 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 728 } 729 } 730 731 // Pass inline keyword to optimizer if it appears explicitly on any 732 // declaration. Also, in the case of -fno-inline attach NoInline 733 // attribute to all functions that are not marked AlwaysInline, or 734 // to all functions that are not marked inline or implicitly inline 735 // in the case of -finline-hint-functions. 736 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 737 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 738 if (!CodeGenOpts.NoInline) { 739 for (auto RI : FD->redecls()) 740 if (RI->isInlineSpecified()) { 741 Fn->addFnAttr(llvm::Attribute::InlineHint); 742 break; 743 } 744 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 745 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 746 Fn->addFnAttr(llvm::Attribute::NoInline); 747 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 748 Fn->addFnAttr(llvm::Attribute::NoInline); 749 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 750 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 751 } 752 753 // Add no-jump-tables value. 754 Fn->addFnAttr("no-jump-tables", 755 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 756 757 if (getLangOpts().OpenCL) { 758 // Add metadata for a kernel function. 759 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 760 EmitOpenCLKernelMetadata(FD, Fn); 761 } 762 763 // If we are checking function types, emit a function type signature as 764 // prologue data. 765 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 766 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 767 if (llvm::Constant *PrologueSig = 768 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 769 llvm::Constant *FTRTTIConst = 770 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 771 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 772 llvm::Constant *PrologueStructConst = 773 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 774 Fn->setPrologueData(PrologueStructConst); 775 } 776 } 777 } 778 779 // If we're in C++ mode and the function name is "main", it is guaranteed 780 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 781 // used within a program"). 782 if (getLangOpts().CPlusPlus) 783 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 784 if (FD->isMain()) 785 Fn->addFnAttr(llvm::Attribute::NoRecurse); 786 787 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 788 789 // Create a marker to make it easy to insert allocas into the entryblock 790 // later. Don't create this with the builder, because we don't want it 791 // folded. 792 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 793 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 794 795 ReturnBlock = getJumpDestInCurrentScope("return"); 796 797 Builder.SetInsertPoint(EntryBB); 798 799 // Emit subprogram debug descriptor. 800 if (CGDebugInfo *DI = getDebugInfo()) { 801 // Reconstruct the type from the argument list so that implicit parameters, 802 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 803 // convention. 804 CallingConv CC = CallingConv::CC_C; 805 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 806 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 807 CC = SrcFnTy->getCallConv(); 808 SmallVector<QualType, 16> ArgTypes; 809 for (const VarDecl *VD : Args) 810 ArgTypes.push_back(VD->getType()); 811 QualType FnType = getContext().getFunctionType( 812 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 813 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 814 } 815 816 if (ShouldInstrumentFunction()) 817 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 818 819 // Since emitting the mcount call here impacts optimizations such as function 820 // inlining, we just add an attribute to insert a mcount call in backend. 821 // The attribute "counting-function" is set to mcount function name which is 822 // architecture dependent. 823 if (CGM.getCodeGenOpts().InstrumentForProfiling) 824 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 825 826 if (RetTy->isVoidType()) { 827 // Void type; nothing to return. 828 ReturnValue = Address::invalid(); 829 830 // Count the implicit return. 831 if (!endsWithReturn(D)) 832 ++NumReturnExprs; 833 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 834 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 835 // Indirect aggregate return; emit returned value directly into sret slot. 836 // This reduces code size, and affects correctness in C++. 837 auto AI = CurFn->arg_begin(); 838 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 839 ++AI; 840 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 841 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 842 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 843 // Load the sret pointer from the argument struct and return into that. 844 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 845 llvm::Function::arg_iterator EI = CurFn->arg_end(); 846 --EI; 847 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 848 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 849 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 850 } else { 851 ReturnValue = CreateIRTemp(RetTy, "retval"); 852 853 // Tell the epilog emitter to autorelease the result. We do this 854 // now so that various specialized functions can suppress it 855 // during their IR-generation. 856 if (getLangOpts().ObjCAutoRefCount && 857 !CurFnInfo->isReturnsRetained() && 858 RetTy->isObjCRetainableType()) 859 AutoreleaseResult = true; 860 } 861 862 EmitStartEHSpec(CurCodeDecl); 863 864 PrologueCleanupDepth = EHStack.stable_begin(); 865 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 866 867 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 868 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 869 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 870 if (MD->getParent()->isLambda() && 871 MD->getOverloadedOperator() == OO_Call) { 872 // We're in a lambda; figure out the captures. 873 MD->getParent()->getCaptureFields(LambdaCaptureFields, 874 LambdaThisCaptureField); 875 if (LambdaThisCaptureField) { 876 // If the lambda captures the object referred to by '*this' - either by 877 // value or by reference, make sure CXXThisValue points to the correct 878 // object. 879 880 // Get the lvalue for the field (which is a copy of the enclosing object 881 // or contains the address of the enclosing object). 882 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 883 if (!LambdaThisCaptureField->getType()->isPointerType()) { 884 // If the enclosing object was captured by value, just use its address. 885 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 886 } else { 887 // Load the lvalue pointed to by the field, since '*this' was captured 888 // by reference. 889 CXXThisValue = 890 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 891 } 892 } 893 for (auto *FD : MD->getParent()->fields()) { 894 if (FD->hasCapturedVLAType()) { 895 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 896 SourceLocation()).getScalarVal(); 897 auto VAT = FD->getCapturedVLAType(); 898 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 899 } 900 } 901 } else { 902 // Not in a lambda; just use 'this' from the method. 903 // FIXME: Should we generate a new load for each use of 'this'? The 904 // fast register allocator would be happier... 905 CXXThisValue = CXXABIThisValue; 906 } 907 } 908 909 // If any of the arguments have a variably modified type, make sure to 910 // emit the type size. 911 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 912 i != e; ++i) { 913 const VarDecl *VD = *i; 914 915 // Dig out the type as written from ParmVarDecls; it's unclear whether 916 // the standard (C99 6.9.1p10) requires this, but we're following the 917 // precedent set by gcc. 918 QualType Ty; 919 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 920 Ty = PVD->getOriginalType(); 921 else 922 Ty = VD->getType(); 923 924 if (Ty->isVariablyModifiedType()) 925 EmitVariablyModifiedType(Ty); 926 } 927 // Emit a location at the end of the prologue. 928 if (CGDebugInfo *DI = getDebugInfo()) 929 DI->EmitLocation(Builder, StartLoc); 930 } 931 932 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 933 const Stmt *Body) { 934 incrementProfileCounter(Body); 935 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 936 EmitCompoundStmtWithoutScope(*S); 937 else 938 EmitStmt(Body); 939 } 940 941 /// When instrumenting to collect profile data, the counts for some blocks 942 /// such as switch cases need to not include the fall-through counts, so 943 /// emit a branch around the instrumentation code. When not instrumenting, 944 /// this just calls EmitBlock(). 945 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 946 const Stmt *S) { 947 llvm::BasicBlock *SkipCountBB = nullptr; 948 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 949 // When instrumenting for profiling, the fallthrough to certain 950 // statements needs to skip over the instrumentation code so that we 951 // get an accurate count. 952 SkipCountBB = createBasicBlock("skipcount"); 953 EmitBranch(SkipCountBB); 954 } 955 EmitBlock(BB); 956 uint64_t CurrentCount = getCurrentProfileCount(); 957 incrementProfileCounter(S); 958 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 959 if (SkipCountBB) 960 EmitBlock(SkipCountBB); 961 } 962 963 /// Tries to mark the given function nounwind based on the 964 /// non-existence of any throwing calls within it. We believe this is 965 /// lightweight enough to do at -O0. 966 static void TryMarkNoThrow(llvm::Function *F) { 967 // LLVM treats 'nounwind' on a function as part of the type, so we 968 // can't do this on functions that can be overwritten. 969 if (F->isInterposable()) return; 970 971 for (llvm::BasicBlock &BB : *F) 972 for (llvm::Instruction &I : BB) 973 if (I.mayThrow()) 974 return; 975 976 F->setDoesNotThrow(); 977 } 978 979 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 980 FunctionArgList &Args) { 981 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 982 QualType ResTy = FD->getReturnType(); 983 984 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 985 if (MD && MD->isInstance()) { 986 if (CGM.getCXXABI().HasThisReturn(GD)) 987 ResTy = MD->getThisType(getContext()); 988 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 989 ResTy = CGM.getContext().VoidPtrTy; 990 CGM.getCXXABI().buildThisParam(*this, Args); 991 } 992 993 // The base version of an inheriting constructor whose constructed base is a 994 // virtual base is not passed any arguments (because it doesn't actually call 995 // the inherited constructor). 996 bool PassedParams = true; 997 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 998 if (auto Inherited = CD->getInheritedConstructor()) 999 PassedParams = 1000 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1001 1002 if (PassedParams) { 1003 for (auto *Param : FD->parameters()) { 1004 Args.push_back(Param); 1005 if (!Param->hasAttr<PassObjectSizeAttr>()) 1006 continue; 1007 1008 IdentifierInfo *NoID = nullptr; 1009 auto *Implicit = ImplicitParamDecl::Create( 1010 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1011 getContext().getSizeType()); 1012 SizeArguments[Param] = Implicit; 1013 Args.push_back(Implicit); 1014 } 1015 } 1016 1017 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1018 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1019 1020 return ResTy; 1021 } 1022 1023 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1024 const CGFunctionInfo &FnInfo) { 1025 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1026 CurGD = GD; 1027 1028 FunctionArgList Args; 1029 QualType ResTy = BuildFunctionArgList(GD, Args); 1030 1031 // Check if we should generate debug info for this function. 1032 if (FD->hasAttr<NoDebugAttr>()) 1033 DebugInfo = nullptr; // disable debug info indefinitely for this function 1034 1035 SourceRange BodyRange; 1036 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1037 CurEHLocation = BodyRange.getEnd(); 1038 1039 // Use the location of the start of the function to determine where 1040 // the function definition is located. By default use the location 1041 // of the declaration as the location for the subprogram. A function 1042 // may lack a declaration in the source code if it is created by code 1043 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1044 SourceLocation Loc = FD->getLocation(); 1045 1046 // If this is a function specialization then use the pattern body 1047 // as the location for the function. 1048 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1049 if (SpecDecl->hasBody(SpecDecl)) 1050 Loc = SpecDecl->getLocation(); 1051 1052 // Emit the standard function prologue. 1053 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1054 1055 // Generate the body of the function. 1056 PGO.assignRegionCounters(GD, CurFn); 1057 if (isa<CXXDestructorDecl>(FD)) 1058 EmitDestructorBody(Args); 1059 else if (isa<CXXConstructorDecl>(FD)) 1060 EmitConstructorBody(Args); 1061 else if (getLangOpts().CUDA && 1062 !getLangOpts().CUDAIsDevice && 1063 FD->hasAttr<CUDAGlobalAttr>()) 1064 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1065 else if (isa<CXXConversionDecl>(FD) && 1066 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1067 // The lambda conversion to block pointer is special; the semantics can't be 1068 // expressed in the AST, so IRGen needs to special-case it. 1069 EmitLambdaToBlockPointerBody(Args); 1070 } else if (isa<CXXMethodDecl>(FD) && 1071 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1072 // The lambda static invoker function is special, because it forwards or 1073 // clones the body of the function call operator (but is actually static). 1074 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1075 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1076 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1077 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1078 // Implicit copy-assignment gets the same special treatment as implicit 1079 // copy-constructors. 1080 emitImplicitAssignmentOperatorBody(Args); 1081 } else if (Stmt *Body = FD->getBody()) { 1082 EmitFunctionBody(Args, Body); 1083 } else 1084 llvm_unreachable("no definition for emitted function"); 1085 1086 // C++11 [stmt.return]p2: 1087 // Flowing off the end of a function [...] results in undefined behavior in 1088 // a value-returning function. 1089 // C11 6.9.1p12: 1090 // If the '}' that terminates a function is reached, and the value of the 1091 // function call is used by the caller, the behavior is undefined. 1092 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1093 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1094 if (SanOpts.has(SanitizerKind::Return)) { 1095 SanitizerScope SanScope(this); 1096 llvm::Value *IsFalse = Builder.getFalse(); 1097 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1098 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1099 None); 1100 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1101 EmitTrapCall(llvm::Intrinsic::trap); 1102 } 1103 Builder.CreateUnreachable(); 1104 Builder.ClearInsertionPoint(); 1105 } 1106 1107 // Emit the standard function epilogue. 1108 FinishFunction(BodyRange.getEnd()); 1109 1110 // If we haven't marked the function nothrow through other means, do 1111 // a quick pass now to see if we can. 1112 if (!CurFn->doesNotThrow()) 1113 TryMarkNoThrow(CurFn); 1114 } 1115 1116 /// ContainsLabel - Return true if the statement contains a label in it. If 1117 /// this statement is not executed normally, it not containing a label means 1118 /// that we can just remove the code. 1119 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1120 // Null statement, not a label! 1121 if (!S) return false; 1122 1123 // If this is a label, we have to emit the code, consider something like: 1124 // if (0) { ... foo: bar(); } goto foo; 1125 // 1126 // TODO: If anyone cared, we could track __label__'s, since we know that you 1127 // can't jump to one from outside their declared region. 1128 if (isa<LabelStmt>(S)) 1129 return true; 1130 1131 // If this is a case/default statement, and we haven't seen a switch, we have 1132 // to emit the code. 1133 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1134 return true; 1135 1136 // If this is a switch statement, we want to ignore cases below it. 1137 if (isa<SwitchStmt>(S)) 1138 IgnoreCaseStmts = true; 1139 1140 // Scan subexpressions for verboten labels. 1141 for (const Stmt *SubStmt : S->children()) 1142 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1143 return true; 1144 1145 return false; 1146 } 1147 1148 /// containsBreak - Return true if the statement contains a break out of it. 1149 /// If the statement (recursively) contains a switch or loop with a break 1150 /// inside of it, this is fine. 1151 bool CodeGenFunction::containsBreak(const Stmt *S) { 1152 // Null statement, not a label! 1153 if (!S) return false; 1154 1155 // If this is a switch or loop that defines its own break scope, then we can 1156 // include it and anything inside of it. 1157 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1158 isa<ForStmt>(S)) 1159 return false; 1160 1161 if (isa<BreakStmt>(S)) 1162 return true; 1163 1164 // Scan subexpressions for verboten breaks. 1165 for (const Stmt *SubStmt : S->children()) 1166 if (containsBreak(SubStmt)) 1167 return true; 1168 1169 return false; 1170 } 1171 1172 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1173 if (!S) return false; 1174 1175 // Some statement kinds add a scope and thus never add a decl to the current 1176 // scope. Note, this list is longer than the list of statements that might 1177 // have an unscoped decl nested within them, but this way is conservatively 1178 // correct even if more statement kinds are added. 1179 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1180 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1181 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1182 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1183 return false; 1184 1185 if (isa<DeclStmt>(S)) 1186 return true; 1187 1188 for (const Stmt *SubStmt : S->children()) 1189 if (mightAddDeclToScope(SubStmt)) 1190 return true; 1191 1192 return false; 1193 } 1194 1195 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1196 /// to a constant, or if it does but contains a label, return false. If it 1197 /// constant folds return true and set the boolean result in Result. 1198 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1199 bool &ResultBool, 1200 bool AllowLabels) { 1201 llvm::APSInt ResultInt; 1202 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1203 return false; 1204 1205 ResultBool = ResultInt.getBoolValue(); 1206 return true; 1207 } 1208 1209 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1210 /// to a constant, or if it does but contains a label, return false. If it 1211 /// constant folds return true and set the folded value. 1212 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1213 llvm::APSInt &ResultInt, 1214 bool AllowLabels) { 1215 // FIXME: Rename and handle conversion of other evaluatable things 1216 // to bool. 1217 llvm::APSInt Int; 1218 if (!Cond->EvaluateAsInt(Int, getContext())) 1219 return false; // Not foldable, not integer or not fully evaluatable. 1220 1221 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1222 return false; // Contains a label. 1223 1224 ResultInt = Int; 1225 return true; 1226 } 1227 1228 1229 1230 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1231 /// statement) to the specified blocks. Based on the condition, this might try 1232 /// to simplify the codegen of the conditional based on the branch. 1233 /// 1234 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1235 llvm::BasicBlock *TrueBlock, 1236 llvm::BasicBlock *FalseBlock, 1237 uint64_t TrueCount) { 1238 Cond = Cond->IgnoreParens(); 1239 1240 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1241 1242 // Handle X && Y in a condition. 1243 if (CondBOp->getOpcode() == BO_LAnd) { 1244 // If we have "1 && X", simplify the code. "0 && X" would have constant 1245 // folded if the case was simple enough. 1246 bool ConstantBool = false; 1247 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1248 ConstantBool) { 1249 // br(1 && X) -> br(X). 1250 incrementProfileCounter(CondBOp); 1251 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1252 TrueCount); 1253 } 1254 1255 // If we have "X && 1", simplify the code to use an uncond branch. 1256 // "X && 0" would have been constant folded to 0. 1257 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1258 ConstantBool) { 1259 // br(X && 1) -> br(X). 1260 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1261 TrueCount); 1262 } 1263 1264 // Emit the LHS as a conditional. If the LHS conditional is false, we 1265 // want to jump to the FalseBlock. 1266 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1267 // The counter tells us how often we evaluate RHS, and all of TrueCount 1268 // can be propagated to that branch. 1269 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1270 1271 ConditionalEvaluation eval(*this); 1272 { 1273 ApplyDebugLocation DL(*this, Cond); 1274 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1275 EmitBlock(LHSTrue); 1276 } 1277 1278 incrementProfileCounter(CondBOp); 1279 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1280 1281 // Any temporaries created here are conditional. 1282 eval.begin(*this); 1283 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1284 eval.end(*this); 1285 1286 return; 1287 } 1288 1289 if (CondBOp->getOpcode() == BO_LOr) { 1290 // If we have "0 || X", simplify the code. "1 || X" would have constant 1291 // folded if the case was simple enough. 1292 bool ConstantBool = false; 1293 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1294 !ConstantBool) { 1295 // br(0 || X) -> br(X). 1296 incrementProfileCounter(CondBOp); 1297 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1298 TrueCount); 1299 } 1300 1301 // If we have "X || 0", simplify the code to use an uncond branch. 1302 // "X || 1" would have been constant folded to 1. 1303 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1304 !ConstantBool) { 1305 // br(X || 0) -> br(X). 1306 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1307 TrueCount); 1308 } 1309 1310 // Emit the LHS as a conditional. If the LHS conditional is true, we 1311 // want to jump to the TrueBlock. 1312 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1313 // We have the count for entry to the RHS and for the whole expression 1314 // being true, so we can divy up True count between the short circuit and 1315 // the RHS. 1316 uint64_t LHSCount = 1317 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1318 uint64_t RHSCount = TrueCount - LHSCount; 1319 1320 ConditionalEvaluation eval(*this); 1321 { 1322 ApplyDebugLocation DL(*this, Cond); 1323 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1324 EmitBlock(LHSFalse); 1325 } 1326 1327 incrementProfileCounter(CondBOp); 1328 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1329 1330 // Any temporaries created here are conditional. 1331 eval.begin(*this); 1332 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1333 1334 eval.end(*this); 1335 1336 return; 1337 } 1338 } 1339 1340 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1341 // br(!x, t, f) -> br(x, f, t) 1342 if (CondUOp->getOpcode() == UO_LNot) { 1343 // Negate the count. 1344 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1345 // Negate the condition and swap the destination blocks. 1346 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1347 FalseCount); 1348 } 1349 } 1350 1351 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1352 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1353 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1354 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1355 1356 ConditionalEvaluation cond(*this); 1357 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1358 getProfileCount(CondOp)); 1359 1360 // When computing PGO branch weights, we only know the overall count for 1361 // the true block. This code is essentially doing tail duplication of the 1362 // naive code-gen, introducing new edges for which counts are not 1363 // available. Divide the counts proportionally between the LHS and RHS of 1364 // the conditional operator. 1365 uint64_t LHSScaledTrueCount = 0; 1366 if (TrueCount) { 1367 double LHSRatio = 1368 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1369 LHSScaledTrueCount = TrueCount * LHSRatio; 1370 } 1371 1372 cond.begin(*this); 1373 EmitBlock(LHSBlock); 1374 incrementProfileCounter(CondOp); 1375 { 1376 ApplyDebugLocation DL(*this, Cond); 1377 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1378 LHSScaledTrueCount); 1379 } 1380 cond.end(*this); 1381 1382 cond.begin(*this); 1383 EmitBlock(RHSBlock); 1384 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1385 TrueCount - LHSScaledTrueCount); 1386 cond.end(*this); 1387 1388 return; 1389 } 1390 1391 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1392 // Conditional operator handling can give us a throw expression as a 1393 // condition for a case like: 1394 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1395 // Fold this to: 1396 // br(c, throw x, br(y, t, f)) 1397 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1398 return; 1399 } 1400 1401 // If the branch has a condition wrapped by __builtin_unpredictable, 1402 // create metadata that specifies that the branch is unpredictable. 1403 // Don't bother if not optimizing because that metadata would not be used. 1404 llvm::MDNode *Unpredictable = nullptr; 1405 auto *Call = dyn_cast<CallExpr>(Cond); 1406 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1407 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1408 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1409 llvm::MDBuilder MDHelper(getLLVMContext()); 1410 Unpredictable = MDHelper.createUnpredictable(); 1411 } 1412 } 1413 1414 // Create branch weights based on the number of times we get here and the 1415 // number of times the condition should be true. 1416 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1417 llvm::MDNode *Weights = 1418 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1419 1420 // Emit the code with the fully general case. 1421 llvm::Value *CondV; 1422 { 1423 ApplyDebugLocation DL(*this, Cond); 1424 CondV = EvaluateExprAsBool(Cond); 1425 } 1426 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1427 } 1428 1429 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1430 /// specified stmt yet. 1431 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1432 CGM.ErrorUnsupported(S, Type); 1433 } 1434 1435 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1436 /// variable-length array whose elements have a non-zero bit-pattern. 1437 /// 1438 /// \param baseType the inner-most element type of the array 1439 /// \param src - a char* pointing to the bit-pattern for a single 1440 /// base element of the array 1441 /// \param sizeInChars - the total size of the VLA, in chars 1442 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1443 Address dest, Address src, 1444 llvm::Value *sizeInChars) { 1445 CGBuilderTy &Builder = CGF.Builder; 1446 1447 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1448 llvm::Value *baseSizeInChars 1449 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1450 1451 Address begin = 1452 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1453 llvm::Value *end = 1454 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1455 1456 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1457 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1458 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1459 1460 // Make a loop over the VLA. C99 guarantees that the VLA element 1461 // count must be nonzero. 1462 CGF.EmitBlock(loopBB); 1463 1464 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1465 cur->addIncoming(begin.getPointer(), originBB); 1466 1467 CharUnits curAlign = 1468 dest.getAlignment().alignmentOfArrayElement(baseSize); 1469 1470 // memcpy the individual element bit-pattern. 1471 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1472 /*volatile*/ false); 1473 1474 // Go to the next element. 1475 llvm::Value *next = 1476 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1477 1478 // Leave if that's the end of the VLA. 1479 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1480 Builder.CreateCondBr(done, contBB, loopBB); 1481 cur->addIncoming(next, loopBB); 1482 1483 CGF.EmitBlock(contBB); 1484 } 1485 1486 void 1487 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1488 // Ignore empty classes in C++. 1489 if (getLangOpts().CPlusPlus) { 1490 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1491 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1492 return; 1493 } 1494 } 1495 1496 // Cast the dest ptr to the appropriate i8 pointer type. 1497 if (DestPtr.getElementType() != Int8Ty) 1498 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1499 1500 // Get size and alignment info for this aggregate. 1501 CharUnits size = getContext().getTypeSizeInChars(Ty); 1502 1503 llvm::Value *SizeVal; 1504 const VariableArrayType *vla; 1505 1506 // Don't bother emitting a zero-byte memset. 1507 if (size.isZero()) { 1508 // But note that getTypeInfo returns 0 for a VLA. 1509 if (const VariableArrayType *vlaType = 1510 dyn_cast_or_null<VariableArrayType>( 1511 getContext().getAsArrayType(Ty))) { 1512 QualType eltType; 1513 llvm::Value *numElts; 1514 std::tie(numElts, eltType) = getVLASize(vlaType); 1515 1516 SizeVal = numElts; 1517 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1518 if (!eltSize.isOne()) 1519 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1520 vla = vlaType; 1521 } else { 1522 return; 1523 } 1524 } else { 1525 SizeVal = CGM.getSize(size); 1526 vla = nullptr; 1527 } 1528 1529 // If the type contains a pointer to data member we can't memset it to zero. 1530 // Instead, create a null constant and copy it to the destination. 1531 // TODO: there are other patterns besides zero that we can usefully memset, 1532 // like -1, which happens to be the pattern used by member-pointers. 1533 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1534 // For a VLA, emit a single element, then splat that over the VLA. 1535 if (vla) Ty = getContext().getBaseElementType(vla); 1536 1537 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1538 1539 llvm::GlobalVariable *NullVariable = 1540 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1541 /*isConstant=*/true, 1542 llvm::GlobalVariable::PrivateLinkage, 1543 NullConstant, Twine()); 1544 CharUnits NullAlign = DestPtr.getAlignment(); 1545 NullVariable->setAlignment(NullAlign.getQuantity()); 1546 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1547 NullAlign); 1548 1549 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1550 1551 // Get and call the appropriate llvm.memcpy overload. 1552 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1553 return; 1554 } 1555 1556 // Otherwise, just memset the whole thing to zero. This is legal 1557 // because in LLVM, all default initializers (other than the ones we just 1558 // handled above) are guaranteed to have a bit pattern of all zeros. 1559 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1560 } 1561 1562 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1563 // Make sure that there is a block for the indirect goto. 1564 if (!IndirectBranch) 1565 GetIndirectGotoBlock(); 1566 1567 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1568 1569 // Make sure the indirect branch includes all of the address-taken blocks. 1570 IndirectBranch->addDestination(BB); 1571 return llvm::BlockAddress::get(CurFn, BB); 1572 } 1573 1574 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1575 // If we already made the indirect branch for indirect goto, return its block. 1576 if (IndirectBranch) return IndirectBranch->getParent(); 1577 1578 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1579 1580 // Create the PHI node that indirect gotos will add entries to. 1581 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1582 "indirect.goto.dest"); 1583 1584 // Create the indirect branch instruction. 1585 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1586 return IndirectBranch->getParent(); 1587 } 1588 1589 /// Computes the length of an array in elements, as well as the base 1590 /// element type and a properly-typed first element pointer. 1591 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1592 QualType &baseType, 1593 Address &addr) { 1594 const ArrayType *arrayType = origArrayType; 1595 1596 // If it's a VLA, we have to load the stored size. Note that 1597 // this is the size of the VLA in bytes, not its size in elements. 1598 llvm::Value *numVLAElements = nullptr; 1599 if (isa<VariableArrayType>(arrayType)) { 1600 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1601 1602 // Walk into all VLAs. This doesn't require changes to addr, 1603 // which has type T* where T is the first non-VLA element type. 1604 do { 1605 QualType elementType = arrayType->getElementType(); 1606 arrayType = getContext().getAsArrayType(elementType); 1607 1608 // If we only have VLA components, 'addr' requires no adjustment. 1609 if (!arrayType) { 1610 baseType = elementType; 1611 return numVLAElements; 1612 } 1613 } while (isa<VariableArrayType>(arrayType)); 1614 1615 // We get out here only if we find a constant array type 1616 // inside the VLA. 1617 } 1618 1619 // We have some number of constant-length arrays, so addr should 1620 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1621 // down to the first element of addr. 1622 SmallVector<llvm::Value*, 8> gepIndices; 1623 1624 // GEP down to the array type. 1625 llvm::ConstantInt *zero = Builder.getInt32(0); 1626 gepIndices.push_back(zero); 1627 1628 uint64_t countFromCLAs = 1; 1629 QualType eltType; 1630 1631 llvm::ArrayType *llvmArrayType = 1632 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1633 while (llvmArrayType) { 1634 assert(isa<ConstantArrayType>(arrayType)); 1635 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1636 == llvmArrayType->getNumElements()); 1637 1638 gepIndices.push_back(zero); 1639 countFromCLAs *= llvmArrayType->getNumElements(); 1640 eltType = arrayType->getElementType(); 1641 1642 llvmArrayType = 1643 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1644 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1645 assert((!llvmArrayType || arrayType) && 1646 "LLVM and Clang types are out-of-synch"); 1647 } 1648 1649 if (arrayType) { 1650 // From this point onwards, the Clang array type has been emitted 1651 // as some other type (probably a packed struct). Compute the array 1652 // size, and just emit the 'begin' expression as a bitcast. 1653 while (arrayType) { 1654 countFromCLAs *= 1655 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1656 eltType = arrayType->getElementType(); 1657 arrayType = getContext().getAsArrayType(eltType); 1658 } 1659 1660 llvm::Type *baseType = ConvertType(eltType); 1661 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1662 } else { 1663 // Create the actual GEP. 1664 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1665 gepIndices, "array.begin"), 1666 addr.getAlignment()); 1667 } 1668 1669 baseType = eltType; 1670 1671 llvm::Value *numElements 1672 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1673 1674 // If we had any VLA dimensions, factor them in. 1675 if (numVLAElements) 1676 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1677 1678 return numElements; 1679 } 1680 1681 std::pair<llvm::Value*, QualType> 1682 CodeGenFunction::getVLASize(QualType type) { 1683 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1684 assert(vla && "type was not a variable array type!"); 1685 return getVLASize(vla); 1686 } 1687 1688 std::pair<llvm::Value*, QualType> 1689 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1690 // The number of elements so far; always size_t. 1691 llvm::Value *numElements = nullptr; 1692 1693 QualType elementType; 1694 do { 1695 elementType = type->getElementType(); 1696 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1697 assert(vlaSize && "no size for VLA!"); 1698 assert(vlaSize->getType() == SizeTy); 1699 1700 if (!numElements) { 1701 numElements = vlaSize; 1702 } else { 1703 // It's undefined behavior if this wraps around, so mark it that way. 1704 // FIXME: Teach -fsanitize=undefined to trap this. 1705 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1706 } 1707 } while ((type = getContext().getAsVariableArrayType(elementType))); 1708 1709 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1710 } 1711 1712 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1713 assert(type->isVariablyModifiedType() && 1714 "Must pass variably modified type to EmitVLASizes!"); 1715 1716 EnsureInsertPoint(); 1717 1718 // We're going to walk down into the type and look for VLA 1719 // expressions. 1720 do { 1721 assert(type->isVariablyModifiedType()); 1722 1723 const Type *ty = type.getTypePtr(); 1724 switch (ty->getTypeClass()) { 1725 1726 #define TYPE(Class, Base) 1727 #define ABSTRACT_TYPE(Class, Base) 1728 #define NON_CANONICAL_TYPE(Class, Base) 1729 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1730 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1731 #include "clang/AST/TypeNodes.def" 1732 llvm_unreachable("unexpected dependent type!"); 1733 1734 // These types are never variably-modified. 1735 case Type::Builtin: 1736 case Type::Complex: 1737 case Type::Vector: 1738 case Type::ExtVector: 1739 case Type::Record: 1740 case Type::Enum: 1741 case Type::Elaborated: 1742 case Type::TemplateSpecialization: 1743 case Type::ObjCTypeParam: 1744 case Type::ObjCObject: 1745 case Type::ObjCInterface: 1746 case Type::ObjCObjectPointer: 1747 llvm_unreachable("type class is never variably-modified!"); 1748 1749 case Type::Adjusted: 1750 type = cast<AdjustedType>(ty)->getAdjustedType(); 1751 break; 1752 1753 case Type::Decayed: 1754 type = cast<DecayedType>(ty)->getPointeeType(); 1755 break; 1756 1757 case Type::Pointer: 1758 type = cast<PointerType>(ty)->getPointeeType(); 1759 break; 1760 1761 case Type::BlockPointer: 1762 type = cast<BlockPointerType>(ty)->getPointeeType(); 1763 break; 1764 1765 case Type::LValueReference: 1766 case Type::RValueReference: 1767 type = cast<ReferenceType>(ty)->getPointeeType(); 1768 break; 1769 1770 case Type::MemberPointer: 1771 type = cast<MemberPointerType>(ty)->getPointeeType(); 1772 break; 1773 1774 case Type::ConstantArray: 1775 case Type::IncompleteArray: 1776 // Losing element qualification here is fine. 1777 type = cast<ArrayType>(ty)->getElementType(); 1778 break; 1779 1780 case Type::VariableArray: { 1781 // Losing element qualification here is fine. 1782 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1783 1784 // Unknown size indication requires no size computation. 1785 // Otherwise, evaluate and record it. 1786 if (const Expr *size = vat->getSizeExpr()) { 1787 // It's possible that we might have emitted this already, 1788 // e.g. with a typedef and a pointer to it. 1789 llvm::Value *&entry = VLASizeMap[size]; 1790 if (!entry) { 1791 llvm::Value *Size = EmitScalarExpr(size); 1792 1793 // C11 6.7.6.2p5: 1794 // If the size is an expression that is not an integer constant 1795 // expression [...] each time it is evaluated it shall have a value 1796 // greater than zero. 1797 if (SanOpts.has(SanitizerKind::VLABound) && 1798 size->getType()->isSignedIntegerType()) { 1799 SanitizerScope SanScope(this); 1800 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1801 llvm::Constant *StaticArgs[] = { 1802 EmitCheckSourceLocation(size->getLocStart()), 1803 EmitCheckTypeDescriptor(size->getType()) 1804 }; 1805 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1806 SanitizerKind::VLABound), 1807 "vla_bound_not_positive", StaticArgs, Size); 1808 } 1809 1810 // Always zexting here would be wrong if it weren't 1811 // undefined behavior to have a negative bound. 1812 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1813 } 1814 } 1815 type = vat->getElementType(); 1816 break; 1817 } 1818 1819 case Type::FunctionProto: 1820 case Type::FunctionNoProto: 1821 type = cast<FunctionType>(ty)->getReturnType(); 1822 break; 1823 1824 case Type::Paren: 1825 case Type::TypeOf: 1826 case Type::UnaryTransform: 1827 case Type::Attributed: 1828 case Type::SubstTemplateTypeParm: 1829 case Type::PackExpansion: 1830 // Keep walking after single level desugaring. 1831 type = type.getSingleStepDesugaredType(getContext()); 1832 break; 1833 1834 case Type::Typedef: 1835 case Type::Decltype: 1836 case Type::Auto: 1837 // Stop walking: nothing to do. 1838 return; 1839 1840 case Type::TypeOfExpr: 1841 // Stop walking: emit typeof expression. 1842 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1843 return; 1844 1845 case Type::Atomic: 1846 type = cast<AtomicType>(ty)->getValueType(); 1847 break; 1848 1849 case Type::Pipe: 1850 type = cast<PipeType>(ty)->getElementType(); 1851 break; 1852 } 1853 } while (type->isVariablyModifiedType()); 1854 } 1855 1856 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1857 if (getContext().getBuiltinVaListType()->isArrayType()) 1858 return EmitPointerWithAlignment(E); 1859 return EmitLValue(E).getAddress(); 1860 } 1861 1862 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1863 return EmitLValue(E).getAddress(); 1864 } 1865 1866 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1867 const APValue &Init) { 1868 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1869 if (CGDebugInfo *Dbg = getDebugInfo()) 1870 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1871 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1872 } 1873 1874 CodeGenFunction::PeepholeProtection 1875 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1876 // At the moment, the only aggressive peephole we do in IR gen 1877 // is trunc(zext) folding, but if we add more, we can easily 1878 // extend this protection. 1879 1880 if (!rvalue.isScalar()) return PeepholeProtection(); 1881 llvm::Value *value = rvalue.getScalarVal(); 1882 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1883 1884 // Just make an extra bitcast. 1885 assert(HaveInsertPoint()); 1886 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1887 Builder.GetInsertBlock()); 1888 1889 PeepholeProtection protection; 1890 protection.Inst = inst; 1891 return protection; 1892 } 1893 1894 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1895 if (!protection.Inst) return; 1896 1897 // In theory, we could try to duplicate the peepholes now, but whatever. 1898 protection.Inst->eraseFromParent(); 1899 } 1900 1901 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1902 llvm::Value *AnnotatedVal, 1903 StringRef AnnotationStr, 1904 SourceLocation Location) { 1905 llvm::Value *Args[4] = { 1906 AnnotatedVal, 1907 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1908 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1909 CGM.EmitAnnotationLineNo(Location) 1910 }; 1911 return Builder.CreateCall(AnnotationFn, Args); 1912 } 1913 1914 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1915 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1916 // FIXME We create a new bitcast for every annotation because that's what 1917 // llvm-gcc was doing. 1918 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1919 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1920 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1921 I->getAnnotation(), D->getLocation()); 1922 } 1923 1924 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1925 Address Addr) { 1926 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1927 llvm::Value *V = Addr.getPointer(); 1928 llvm::Type *VTy = V->getType(); 1929 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1930 CGM.Int8PtrTy); 1931 1932 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1933 // FIXME Always emit the cast inst so we can differentiate between 1934 // annotation on the first field of a struct and annotation on the struct 1935 // itself. 1936 if (VTy != CGM.Int8PtrTy) 1937 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1938 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1939 V = Builder.CreateBitCast(V, VTy); 1940 } 1941 1942 return Address(V, Addr.getAlignment()); 1943 } 1944 1945 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1946 1947 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1948 : CGF(CGF) { 1949 assert(!CGF->IsSanitizerScope); 1950 CGF->IsSanitizerScope = true; 1951 } 1952 1953 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1954 CGF->IsSanitizerScope = false; 1955 } 1956 1957 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1958 const llvm::Twine &Name, 1959 llvm::BasicBlock *BB, 1960 llvm::BasicBlock::iterator InsertPt) const { 1961 LoopStack.InsertHelper(I); 1962 if (IsSanitizerScope) 1963 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1964 } 1965 1966 void CGBuilderInserter::InsertHelper( 1967 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1968 llvm::BasicBlock::iterator InsertPt) const { 1969 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1970 if (CGF) 1971 CGF->InsertHelper(I, Name, BB, InsertPt); 1972 } 1973 1974 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1975 CodeGenModule &CGM, const FunctionDecl *FD, 1976 std::string &FirstMissing) { 1977 // If there aren't any required features listed then go ahead and return. 1978 if (ReqFeatures.empty()) 1979 return false; 1980 1981 // Now build up the set of caller features and verify that all the required 1982 // features are there. 1983 llvm::StringMap<bool> CallerFeatureMap; 1984 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1985 1986 // If we have at least one of the features in the feature list return 1987 // true, otherwise return false. 1988 return std::all_of( 1989 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1990 SmallVector<StringRef, 1> OrFeatures; 1991 Feature.split(OrFeatures, "|"); 1992 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1993 [&](StringRef Feature) { 1994 if (!CallerFeatureMap.lookup(Feature)) { 1995 FirstMissing = Feature.str(); 1996 return false; 1997 } 1998 return true; 1999 }); 2000 }); 2001 } 2002 2003 // Emits an error if we don't have a valid set of target features for the 2004 // called function. 2005 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2006 const FunctionDecl *TargetDecl) { 2007 // Early exit if this is an indirect call. 2008 if (!TargetDecl) 2009 return; 2010 2011 // Get the current enclosing function if it exists. If it doesn't 2012 // we can't check the target features anyhow. 2013 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2014 if (!FD) 2015 return; 2016 2017 // Grab the required features for the call. For a builtin this is listed in 2018 // the td file with the default cpu, for an always_inline function this is any 2019 // listed cpu and any listed features. 2020 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2021 std::string MissingFeature; 2022 if (BuiltinID) { 2023 SmallVector<StringRef, 1> ReqFeatures; 2024 const char *FeatureList = 2025 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2026 // Return if the builtin doesn't have any required features. 2027 if (!FeatureList || StringRef(FeatureList) == "") 2028 return; 2029 StringRef(FeatureList).split(ReqFeatures, ","); 2030 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2031 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2032 << TargetDecl->getDeclName() 2033 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2034 2035 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2036 // Get the required features for the callee. 2037 SmallVector<StringRef, 1> ReqFeatures; 2038 llvm::StringMap<bool> CalleeFeatureMap; 2039 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2040 for (const auto &F : CalleeFeatureMap) { 2041 // Only positive features are "required". 2042 if (F.getValue()) 2043 ReqFeatures.push_back(F.getKey()); 2044 } 2045 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2046 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2047 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2048 } 2049 } 2050 2051 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2052 if (!CGM.getCodeGenOpts().SanitizeStats) 2053 return; 2054 2055 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2056 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2057 CGM.getSanStats().create(IRB, SSK); 2058 } 2059