1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                    llvm::SwitchInst *Switch,
33                                    llvm::BasicBlock *CleanupEntry);
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36   : BlockFunction(cgm, *this, Builder), CGM(cgm),
37     Target(CGM.getContext().Target),
38     Builder(cgm.getModule().getContext()),
39     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41     SwitchInsn(0), CaseRangeBlock(0),
42     DidCallStackSave(false), UnreachableBlock(0),
43     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
45     TrapBB(0) {
46 
47   // Get some frequently used types.
48   LLVMPointerWidth = Target.getPointerWidth(0);
49   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53 
54   Exceptions = getContext().getLangOptions().Exceptions;
55   CatchUndefined = getContext().getLangOptions().CatchUndefined;
56   CGM.getCXXABI().getMangleContext().startNewFunction();
57 }
58 
59 ASTContext &CodeGenFunction::getContext() const {
60   return CGM.getContext();
61 }
62 
63 
64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65   return CGM.getTypes().ConvertTypeForMem(T);
66 }
67 
68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69   return CGM.getTypes().ConvertType(T);
70 }
71 
72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74     T->isObjCObjectType();
75 }
76 
77 void CodeGenFunction::EmitReturnBlock() {
78   // For cleanliness, we try to avoid emitting the return block for
79   // simple cases.
80   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81 
82   if (CurBB) {
83     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84 
85     // We have a valid insert point, reuse it if it is empty or there are no
86     // explicit jumps to the return block.
87     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89       delete ReturnBlock.getBlock();
90     } else
91       EmitBlock(ReturnBlock.getBlock());
92     return;
93   }
94 
95   // Otherwise, if the return block is the target of a single direct
96   // branch then we can just put the code in that block instead. This
97   // cleans up functions which started with a unified return block.
98   if (ReturnBlock.getBlock()->hasOneUse()) {
99     llvm::BranchInst *BI =
100       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101     if (BI && BI->isUnconditional() &&
102         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103       // Reset insertion point and delete the branch.
104       Builder.SetInsertPoint(BI->getParent());
105       BI->eraseFromParent();
106       delete ReturnBlock.getBlock();
107       return;
108     }
109   }
110 
111   // FIXME: We are at an unreachable point, there is no reason to emit the block
112   // unless it has uses. However, we still need a place to put the debug
113   // region.end for now.
114 
115   EmitBlock(ReturnBlock.getBlock());
116 }
117 
118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119   if (!BB) return;
120   if (!BB->use_empty())
121     return CGF.CurFn->getBasicBlockList().push_back(BB);
122   delete BB;
123 }
124 
125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126   assert(BreakContinueStack.empty() &&
127          "mismatched push/pop in break/continue stack!");
128 
129   // Emit function epilog (to return).
130   EmitReturnBlock();
131 
132   EmitFunctionInstrumentation("__cyg_profile_func_exit");
133 
134   // Emit debug descriptor for function end.
135   if (CGDebugInfo *DI = getDebugInfo()) {
136     DI->setLocation(EndLoc);
137     DI->EmitFunctionEnd(Builder);
138   }
139 
140   EmitFunctionEpilog(*CurFnInfo);
141   EmitEndEHSpec(CurCodeDecl);
142 
143   assert(EHStack.empty() &&
144          "did not remove all scopes from cleanup stack!");
145 
146   // If someone did an indirect goto, emit the indirect goto block at the end of
147   // the function.
148   if (IndirectBranch) {
149     EmitBlock(IndirectBranch->getParent());
150     Builder.ClearInsertionPoint();
151   }
152 
153   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154   llvm::Instruction *Ptr = AllocaInsertPt;
155   AllocaInsertPt = 0;
156   Ptr->eraseFromParent();
157 
158   // If someone took the address of a label but never did an indirect goto, we
159   // made a zero entry PHI node, which is illegal, zap it now.
160   if (IndirectBranch) {
161     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162     if (PN->getNumIncomingValues() == 0) {
163       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164       PN->eraseFromParent();
165     }
166   }
167 
168   EmitIfUsed(*this, RethrowBlock.getBlock());
169   EmitIfUsed(*this, TerminateLandingPad);
170   EmitIfUsed(*this, TerminateHandler);
171   EmitIfUsed(*this, UnreachableBlock);
172 
173   if (CGM.getCodeGenOpts().EmitDeclMetadata)
174     EmitDeclMetadata();
175 }
176 
177 /// ShouldInstrumentFunction - Return true if the current function should be
178 /// instrumented with __cyg_profile_func_* calls
179 bool CodeGenFunction::ShouldInstrumentFunction() {
180   if (!CGM.getCodeGenOpts().InstrumentFunctions)
181     return false;
182   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183     return false;
184   return true;
185 }
186 
187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188 /// instrumentation function with the current function and the call site, if
189 /// function instrumentation is enabled.
190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191   if (!ShouldInstrumentFunction())
192     return;
193 
194   const llvm::PointerType *PointerTy;
195   const llvm::FunctionType *FunctionTy;
196   std::vector<const llvm::Type*> ProfileFuncArgs;
197 
198   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200   ProfileFuncArgs.push_back(PointerTy);
201   ProfileFuncArgs.push_back(PointerTy);
202   FunctionTy = llvm::FunctionType::get(
203     llvm::Type::getVoidTy(VMContext),
204     ProfileFuncArgs, false);
205 
206   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207   llvm::CallInst *CallSite = Builder.CreateCall(
208     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209     llvm::ConstantInt::get(Int32Ty, 0),
210     "callsite");
211 
212   Builder.CreateCall2(F,
213                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                       CallSite);
215 }
216 
217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                     llvm::Function *Fn,
219                                     const FunctionArgList &Args,
220                                     SourceLocation StartLoc) {
221   const Decl *D = GD.getDecl();
222 
223   DidCallStackSave = false;
224   CurCodeDecl = CurFuncDecl = D;
225   FnRetTy = RetTy;
226   CurFn = Fn;
227   assert(CurFn->isDeclaration() && "Function already has body?");
228 
229   // Pass inline keyword to optimizer if it appears explicitly on any
230   // declaration.
231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233            RE = FD->redecls_end(); RI != RE; ++RI)
234       if (RI->isInlineSpecified()) {
235         Fn->addFnAttr(llvm::Attribute::InlineHint);
236         break;
237       }
238 
239   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240 
241   // Create a marker to make it easy to insert allocas into the entryblock
242   // later.  Don't create this with the builder, because we don't want it
243   // folded.
244   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246   if (Builder.isNamePreserving())
247     AllocaInsertPt->setName("allocapt");
248 
249   ReturnBlock = getJumpDestInCurrentScope("return");
250 
251   Builder.SetInsertPoint(EntryBB);
252 
253   // Emit subprogram debug descriptor.
254   if (CGDebugInfo *DI = getDebugInfo()) {
255     // FIXME: what is going on here and why does it ignore all these
256     // interesting type properties?
257     QualType FnType =
258       getContext().getFunctionType(RetTy, 0, 0,
259                                    FunctionProtoType::ExtProtoInfo());
260 
261     DI->setLocation(StartLoc);
262     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
263   }
264 
265   EmitFunctionInstrumentation("__cyg_profile_func_enter");
266 
267   // FIXME: Leaked.
268   // CC info is ignored, hopefully?
269   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
270                                               FunctionType::ExtInfo());
271 
272   if (RetTy->isVoidType()) {
273     // Void type; nothing to return.
274     ReturnValue = 0;
275   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
276              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
277     // Indirect aggregate return; emit returned value directly into sret slot.
278     // This reduces code size, and affects correctness in C++.
279     ReturnValue = CurFn->arg_begin();
280   } else {
281     ReturnValue = CreateIRTemp(RetTy, "retval");
282   }
283 
284   EmitStartEHSpec(CurCodeDecl);
285   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
286 
287   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
288     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
289 
290   // If any of the arguments have a variably modified type, make sure to
291   // emit the type size.
292   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
293        i != e; ++i) {
294     QualType Ty = i->second;
295 
296     if (Ty->isVariablyModifiedType())
297       EmitVLASize(Ty);
298   }
299 }
300 
301 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
302   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
303   assert(FD->getBody());
304   EmitStmt(FD->getBody());
305 }
306 
307 /// Tries to mark the given function nounwind based on the
308 /// non-existence of any throwing calls within it.  We believe this is
309 /// lightweight enough to do at -O0.
310 static void TryMarkNoThrow(llvm::Function *F) {
311   // LLVM treats 'nounwind' on a function as part of the type, so we
312   // can't do this on functions that can be overwritten.
313   if (F->mayBeOverridden()) return;
314 
315   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
316     for (llvm::BasicBlock::iterator
317            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
318       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
319         if (!Call->doesNotThrow())
320           return;
321   F->setDoesNotThrow(true);
322 }
323 
324 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   // Check if we should generate debug info for this function.
328   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
329     DebugInfo = CGM.getDebugInfo();
330 
331   FunctionArgList Args;
332   QualType ResTy = FD->getResultType();
333 
334   CurGD = GD;
335   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
336     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
337 
338   if (FD->getNumParams()) {
339     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
340     assert(FProto && "Function def must have prototype!");
341 
342     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
343       Args.push_back(std::make_pair(FD->getParamDecl(i),
344                                     FProto->getArgType(i)));
345   }
346 
347   SourceRange BodyRange;
348   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
349 
350   // Emit the standard function prologue.
351   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
352 
353   // Generate the body of the function.
354   if (isa<CXXDestructorDecl>(FD))
355     EmitDestructorBody(Args);
356   else if (isa<CXXConstructorDecl>(FD))
357     EmitConstructorBody(Args);
358   else
359     EmitFunctionBody(Args);
360 
361   // Emit the standard function epilogue.
362   FinishFunction(BodyRange.getEnd());
363 
364   // If we haven't marked the function nothrow through other means, do
365   // a quick pass now to see if we can.
366   if (!CurFn->doesNotThrow())
367     TryMarkNoThrow(CurFn);
368 }
369 
370 /// ContainsLabel - Return true if the statement contains a label in it.  If
371 /// this statement is not executed normally, it not containing a label means
372 /// that we can just remove the code.
373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
374   // Null statement, not a label!
375   if (S == 0) return false;
376 
377   // If this is a label, we have to emit the code, consider something like:
378   // if (0) {  ...  foo:  bar(); }  goto foo;
379   if (isa<LabelStmt>(S))
380     return true;
381 
382   // If this is a case/default statement, and we haven't seen a switch, we have
383   // to emit the code.
384   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
385     return true;
386 
387   // If this is a switch statement, we want to ignore cases below it.
388   if (isa<SwitchStmt>(S))
389     IgnoreCaseStmts = true;
390 
391   // Scan subexpressions for verboten labels.
392   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
393        I != E; ++I)
394     if (ContainsLabel(*I, IgnoreCaseStmts))
395       return true;
396 
397   return false;
398 }
399 
400 
401 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
402 /// a constant, or if it does but contains a label, return 0.  If it constant
403 /// folds to 'true' and does not contain a label, return 1, if it constant folds
404 /// to 'false' and does not contain a label, return -1.
405 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
406   // FIXME: Rename and handle conversion of other evaluatable things
407   // to bool.
408   Expr::EvalResult Result;
409   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
410       Result.HasSideEffects)
411     return 0;  // Not foldable, not integer or not fully evaluatable.
412 
413   if (CodeGenFunction::ContainsLabel(Cond))
414     return 0;  // Contains a label.
415 
416   return Result.Val.getInt().getBoolValue() ? 1 : -1;
417 }
418 
419 
420 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
421 /// statement) to the specified blocks.  Based on the condition, this might try
422 /// to simplify the codegen of the conditional based on the branch.
423 ///
424 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
425                                            llvm::BasicBlock *TrueBlock,
426                                            llvm::BasicBlock *FalseBlock) {
427   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
428     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
429 
430   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
431     // Handle X && Y in a condition.
432     if (CondBOp->getOpcode() == BO_LAnd) {
433       // If we have "1 && X", simplify the code.  "0 && X" would have constant
434       // folded if the case was simple enough.
435       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
436         // br(1 && X) -> br(X).
437         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
438       }
439 
440       // If we have "X && 1", simplify the code to use an uncond branch.
441       // "X && 0" would have been constant folded to 0.
442       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
443         // br(X && 1) -> br(X).
444         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
445       }
446 
447       // Emit the LHS as a conditional.  If the LHS conditional is false, we
448       // want to jump to the FalseBlock.
449       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
450 
451       ConditionalEvaluation eval(*this);
452       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
453       EmitBlock(LHSTrue);
454 
455       // Any temporaries created here are conditional.
456       eval.begin(*this);
457       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
458       eval.end(*this);
459 
460       return;
461     } else if (CondBOp->getOpcode() == BO_LOr) {
462       // If we have "0 || X", simplify the code.  "1 || X" would have constant
463       // folded if the case was simple enough.
464       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
465         // br(0 || X) -> br(X).
466         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
467       }
468 
469       // If we have "X || 0", simplify the code to use an uncond branch.
470       // "X || 1" would have been constant folded to 1.
471       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
472         // br(X || 0) -> br(X).
473         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
474       }
475 
476       // Emit the LHS as a conditional.  If the LHS conditional is true, we
477       // want to jump to the TrueBlock.
478       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
479 
480       ConditionalEvaluation eval(*this);
481       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
482       EmitBlock(LHSFalse);
483 
484       // Any temporaries created here are conditional.
485       eval.begin(*this);
486       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
487       eval.end(*this);
488 
489       return;
490     }
491   }
492 
493   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
494     // br(!x, t, f) -> br(x, f, t)
495     if (CondUOp->getOpcode() == UO_LNot)
496       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
497   }
498 
499   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
500     // Handle ?: operator.
501 
502     // Just ignore GNU ?: extension.
503     if (CondOp->getLHS()) {
504       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
505       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
506       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
507 
508       ConditionalEvaluation cond(*this);
509       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
510 
511       cond.begin(*this);
512       EmitBlock(LHSBlock);
513       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
514       cond.end(*this);
515 
516       cond.begin(*this);
517       EmitBlock(RHSBlock);
518       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
519       cond.end(*this);
520 
521       return;
522     }
523   }
524 
525   // Emit the code with the fully general case.
526   llvm::Value *CondV = EvaluateExprAsBool(Cond);
527   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
528 }
529 
530 /// ErrorUnsupported - Print out an error that codegen doesn't support the
531 /// specified stmt yet.
532 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
533                                        bool OmitOnError) {
534   CGM.ErrorUnsupported(S, Type, OmitOnError);
535 }
536 
537 void
538 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
539   // Ignore empty classes in C++.
540   if (getContext().getLangOptions().CPlusPlus) {
541     if (const RecordType *RT = Ty->getAs<RecordType>()) {
542       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
543         return;
544     }
545   }
546 
547   // Cast the dest ptr to the appropriate i8 pointer type.
548   unsigned DestAS =
549     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
550   const llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
551   if (DestPtr->getType() != BP)
552     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
553 
554   // Get size and alignment info for this aggregate.
555   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
556   uint64_t Size = TypeInfo.first / 8;
557   unsigned Align = TypeInfo.second / 8;
558 
559   llvm::Value *SizeVal;
560   bool vla;
561 
562   // Don't bother emitting a zero-byte memset.
563   if (Size == 0) {
564     // But note that getTypeInfo returns 0 for a VLA.
565     if (const VariableArrayType *vlaType =
566           dyn_cast_or_null<VariableArrayType>(
567                                           getContext().getAsArrayType(Ty))) {
568       SizeVal = GetVLASize(vlaType);
569       vla = true;
570     } else {
571       return;
572     }
573   } else {
574     SizeVal = llvm::ConstantInt::get(IntPtrTy, Size);
575     vla = false;
576   }
577 
578   // If the type contains a pointer to data member we can't memset it to zero.
579   // Instead, create a null constant and copy it to the destination.
580   if (!CGM.getTypes().isZeroInitializable(Ty)) {
581     // FIXME: variable-size types!
582     if (vla) return;
583 
584     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
585 
586     llvm::GlobalVariable *NullVariable =
587       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
588                                /*isConstant=*/true,
589                                llvm::GlobalVariable::PrivateLinkage,
590                                NullConstant, llvm::Twine());
591     llvm::Value *SrcPtr =
592       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
593 
594     // Get and call the appropriate llvm.memcpy overload.
595     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align, false);
596     return;
597   }
598 
599   // Otherwise, just memset the whole thing to zero.  This is legal
600   // because in LLVM, all default initializers (other than the ones we just
601   // handled above) are guaranteed to have a bit pattern of all zeros.
602   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, Align, false);
603 }
604 
605 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
606   // Make sure that there is a block for the indirect goto.
607   if (IndirectBranch == 0)
608     GetIndirectGotoBlock();
609 
610   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
611 
612   // Make sure the indirect branch includes all of the address-taken blocks.
613   IndirectBranch->addDestination(BB);
614   return llvm::BlockAddress::get(CurFn, BB);
615 }
616 
617 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
618   // If we already made the indirect branch for indirect goto, return its block.
619   if (IndirectBranch) return IndirectBranch->getParent();
620 
621   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
622 
623   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
624 
625   // Create the PHI node that indirect gotos will add entries to.
626   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
627 
628   // Create the indirect branch instruction.
629   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
630   return IndirectBranch->getParent();
631 }
632 
633 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
634   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
635 
636   assert(SizeEntry && "Did not emit size for type");
637   return SizeEntry;
638 }
639 
640 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
641   assert(Ty->isVariablyModifiedType() &&
642          "Must pass variably modified type to EmitVLASizes!");
643 
644   EnsureInsertPoint();
645 
646   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
647     // unknown size indication requires no size computation.
648     if (!VAT->getSizeExpr())
649       return 0;
650     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
651 
652     if (!SizeEntry) {
653       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
654 
655       // Get the element size;
656       QualType ElemTy = VAT->getElementType();
657       llvm::Value *ElemSize;
658       if (ElemTy->isVariableArrayType())
659         ElemSize = EmitVLASize(ElemTy);
660       else
661         ElemSize = llvm::ConstantInt::get(SizeTy,
662             getContext().getTypeSizeInChars(ElemTy).getQuantity());
663 
664       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
665       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
666 
667       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
668     }
669 
670     return SizeEntry;
671   }
672 
673   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
674     EmitVLASize(AT->getElementType());
675     return 0;
676   }
677 
678   if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
679     EmitVLASize(PT->getInnerType());
680     return 0;
681   }
682 
683   const PointerType *PT = Ty->getAs<PointerType>();
684   assert(PT && "unknown VM type!");
685   EmitVLASize(PT->getPointeeType());
686   return 0;
687 }
688 
689 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
690   if (getContext().getBuiltinVaListType()->isArrayType())
691     return EmitScalarExpr(E);
692   return EmitLValue(E).getAddress();
693 }
694 
695 /// Pops cleanup blocks until the given savepoint is reached.
696 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
697   assert(Old.isValid());
698 
699   while (EHStack.stable_begin() != Old) {
700     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
701 
702     // As long as Old strictly encloses the scope's enclosing normal
703     // cleanup, we're going to emit another normal cleanup which
704     // fallthrough can propagate through.
705     bool FallThroughIsBranchThrough =
706       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
707 
708     PopCleanupBlock(FallThroughIsBranchThrough);
709   }
710 }
711 
712 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
713                                            EHCleanupScope &Scope) {
714   assert(Scope.isNormalCleanup());
715   llvm::BasicBlock *Entry = Scope.getNormalBlock();
716   if (!Entry) {
717     Entry = CGF.createBasicBlock("cleanup");
718     Scope.setNormalBlock(Entry);
719   }
720   return Entry;
721 }
722 
723 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
724                                        EHCleanupScope &Scope) {
725   assert(Scope.isEHCleanup());
726   llvm::BasicBlock *Entry = Scope.getEHBlock();
727   if (!Entry) {
728     Entry = CGF.createBasicBlock("eh.cleanup");
729     Scope.setEHBlock(Entry);
730   }
731   return Entry;
732 }
733 
734 /// Transitions the terminator of the given exit-block of a cleanup to
735 /// be a cleanup switch.
736 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
737                                                    llvm::BasicBlock *Block) {
738   // If it's a branch, turn it into a switch whose default
739   // destination is its original target.
740   llvm::TerminatorInst *Term = Block->getTerminator();
741   assert(Term && "can't transition block without terminator");
742 
743   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
744     assert(Br->isUnconditional());
745     llvm::LoadInst *Load =
746       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
747     llvm::SwitchInst *Switch =
748       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
749     Br->eraseFromParent();
750     return Switch;
751   } else {
752     return cast<llvm::SwitchInst>(Term);
753   }
754 }
755 
756 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
757 /// is basically llvm::MergeBlockIntoPredecessor, except
758 /// simplified/optimized for the tighter constraints on cleanup blocks.
759 ///
760 /// Returns the new block, whatever it is.
761 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
762                                               llvm::BasicBlock *Entry) {
763   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
764   if (!Pred) return Entry;
765 
766   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
767   if (!Br || Br->isConditional()) return Entry;
768   assert(Br->getSuccessor(0) == Entry);
769 
770   // If we were previously inserting at the end of the cleanup entry
771   // block, we'll need to continue inserting at the end of the
772   // predecessor.
773   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
774   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
775 
776   // Kill the branch.
777   Br->eraseFromParent();
778 
779   // Merge the blocks.
780   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
781 
782   // Replace all uses of the entry with the predecessor, in case there
783   // are phis in the cleanup.
784   Entry->replaceAllUsesWith(Pred);
785 
786   // Kill the entry block.
787   Entry->eraseFromParent();
788 
789   if (WasInsertBlock)
790     CGF.Builder.SetInsertPoint(Pred);
791 
792   return Pred;
793 }
794 
795 static void EmitCleanup(CodeGenFunction &CGF,
796                         EHScopeStack::Cleanup *Fn,
797                         bool ForEH,
798                         llvm::Value *ActiveFlag) {
799   // EH cleanups always occur within a terminate scope.
800   if (ForEH) CGF.EHStack.pushTerminate();
801 
802   // If there's an active flag, load it and skip the cleanup if it's
803   // false.
804   llvm::BasicBlock *ContBB = 0;
805   if (ActiveFlag) {
806     ContBB = CGF.createBasicBlock("cleanup.done");
807     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
808     llvm::Value *IsActive
809       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
810     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
811     CGF.EmitBlock(CleanupBB);
812   }
813 
814   // Ask the cleanup to emit itself.
815   Fn->Emit(CGF, ForEH);
816   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
817 
818   // Emit the continuation block if there was an active flag.
819   if (ActiveFlag)
820     CGF.EmitBlock(ContBB);
821 
822   // Leave the terminate scope.
823   if (ForEH) CGF.EHStack.popTerminate();
824 }
825 
826 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
827                                           llvm::BasicBlock *From,
828                                           llvm::BasicBlock *To) {
829   // Exit is the exit block of a cleanup, so it always terminates in
830   // an unconditional branch or a switch.
831   llvm::TerminatorInst *Term = Exit->getTerminator();
832 
833   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
834     assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
835     Br->setSuccessor(0, To);
836   } else {
837     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
838     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
839       if (Switch->getSuccessor(I) == From)
840         Switch->setSuccessor(I, To);
841   }
842 }
843 
844 /// Pops a cleanup block.  If the block includes a normal cleanup, the
845 /// current insertion point is threaded through the cleanup, as are
846 /// any branch fixups on the cleanup.
847 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
848   assert(!EHStack.empty() && "cleanup stack is empty!");
849   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
850   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
851   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
852 
853   // Remember activation information.
854   bool IsActive = Scope.isActive();
855   llvm::Value *NormalActiveFlag =
856     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
857   llvm::Value *EHActiveFlag =
858     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
859 
860   // Check whether we need an EH cleanup.  This is only true if we've
861   // generated a lazy EH cleanup block.
862   bool RequiresEHCleanup = Scope.hasEHBranches();
863 
864   // Check the three conditions which might require a normal cleanup:
865 
866   // - whether there are branch fix-ups through this cleanup
867   unsigned FixupDepth = Scope.getFixupDepth();
868   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
869 
870   // - whether there are branch-throughs or branch-afters
871   bool HasExistingBranches = Scope.hasBranches();
872 
873   // - whether there's a fallthrough
874   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
875   bool HasFallthrough = (FallthroughSource != 0 && IsActive);
876 
877   // Branch-through fall-throughs leave the insertion point set to the
878   // end of the last cleanup, which points to the current scope.  The
879   // rest of IR gen doesn't need to worry about this; it only happens
880   // during the execution of PopCleanupBlocks().
881   bool HasPrebranchedFallthrough =
882     (FallthroughSource && FallthroughSource->getTerminator());
883 
884   // If this is a normal cleanup, then having a prebranched
885   // fallthrough implies that the fallthrough source unconditionally
886   // jumps here.
887   assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
888          (Scope.getNormalBlock() &&
889           FallthroughSource->getTerminator()->getSuccessor(0)
890             == Scope.getNormalBlock()));
891 
892   bool RequiresNormalCleanup = false;
893   if (Scope.isNormalCleanup() &&
894       (HasFixups || HasExistingBranches || HasFallthrough)) {
895     RequiresNormalCleanup = true;
896   }
897 
898   // Even if we don't need the normal cleanup, we might still have
899   // prebranched fallthrough to worry about.
900   if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
901       HasPrebranchedFallthrough) {
902     assert(!IsActive);
903 
904     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
905 
906     // If we're branching through this cleanup, just forward the
907     // prebranched fallthrough to the next cleanup, leaving the insert
908     // point in the old block.
909     if (FallthroughIsBranchThrough) {
910       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
911       llvm::BasicBlock *EnclosingEntry =
912         CreateNormalEntry(*this, cast<EHCleanupScope>(S));
913 
914       ForwardPrebranchedFallthrough(FallthroughSource,
915                                     NormalEntry, EnclosingEntry);
916       assert(NormalEntry->use_empty() &&
917              "uses of entry remain after forwarding?");
918       delete NormalEntry;
919 
920     // Otherwise, we're branching out;  just emit the next block.
921     } else {
922       EmitBlock(NormalEntry);
923       SimplifyCleanupEntry(*this, NormalEntry);
924     }
925   }
926 
927   // If we don't need the cleanup at all, we're done.
928   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
929     EHStack.popCleanup(); // safe because there are no fixups
930     assert(EHStack.getNumBranchFixups() == 0 ||
931            EHStack.hasNormalCleanups());
932     return;
933   }
934 
935   // Copy the cleanup emission data out.  Note that SmallVector
936   // guarantees maximal alignment for its buffer regardless of its
937   // type parameter.
938   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
939   CleanupBuffer.reserve(Scope.getCleanupSize());
940   memcpy(CleanupBuffer.data(),
941          Scope.getCleanupBuffer(), Scope.getCleanupSize());
942   CleanupBuffer.set_size(Scope.getCleanupSize());
943   EHScopeStack::Cleanup *Fn =
944     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
945 
946   // We want to emit the EH cleanup after the normal cleanup, but go
947   // ahead and do the setup for the EH cleanup while the scope is still
948   // alive.
949   llvm::BasicBlock *EHEntry = 0;
950   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
951   if (RequiresEHCleanup) {
952     EHEntry = CreateEHEntry(*this, Scope);
953 
954     // Figure out the branch-through dest if necessary.
955     llvm::BasicBlock *EHBranchThroughDest = 0;
956     if (Scope.hasEHBranchThroughs()) {
957       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
958       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
959       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
960     }
961 
962     // If we have exactly one branch-after and no branch-throughs, we
963     // can dispatch it without a switch.
964     if (!Scope.hasEHBranchThroughs() &&
965         Scope.getNumEHBranchAfters() == 1) {
966       assert(!EHBranchThroughDest);
967 
968       // TODO: remove the spurious eh.cleanup.dest stores if this edge
969       // never went through any switches.
970       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
971       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
972 
973     // Otherwise, if we have any branch-afters, we need a switch.
974     } else if (Scope.getNumEHBranchAfters()) {
975       // The default of the switch belongs to the branch-throughs if
976       // they exist.
977       llvm::BasicBlock *Default =
978         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
979 
980       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
981 
982       llvm::LoadInst *Load =
983         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
984       llvm::SwitchInst *Switch =
985         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
986 
987       EHInstsToAppend.push_back(Load);
988       EHInstsToAppend.push_back(Switch);
989 
990       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
991         Switch->addCase(Scope.getEHBranchAfterIndex(I),
992                         Scope.getEHBranchAfterBlock(I));
993 
994     // Otherwise, we have only branch-throughs; jump to the next EH
995     // cleanup.
996     } else {
997       assert(EHBranchThroughDest);
998       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
999     }
1000   }
1001 
1002   if (!RequiresNormalCleanup) {
1003     EHStack.popCleanup();
1004   } else {
1005     // If we have a fallthrough and no other need for the cleanup,
1006     // emit it directly.
1007     if (HasFallthrough && !HasPrebranchedFallthrough &&
1008         !HasFixups && !HasExistingBranches) {
1009 
1010       // Fixups can cause us to optimistically create a normal block,
1011       // only to later have no real uses for it.  Just delete it in
1012       // this case.
1013       // TODO: we can potentially simplify all the uses after this.
1014       if (Scope.getNormalBlock()) {
1015         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
1016         delete Scope.getNormalBlock();
1017       }
1018 
1019       EHStack.popCleanup();
1020 
1021       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1022 
1023     // Otherwise, the best approach is to thread everything through
1024     // the cleanup block and then try to clean up after ourselves.
1025     } else {
1026       // Force the entry block to exist.
1027       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
1028 
1029       // I.  Set up the fallthrough edge in.
1030 
1031       // If there's a fallthrough, we need to store the cleanup
1032       // destination index.  For fall-throughs this is always zero.
1033       if (HasFallthrough) {
1034         if (!HasPrebranchedFallthrough)
1035           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1036 
1037       // Otherwise, clear the IP if we don't have fallthrough because
1038       // the cleanup is inactive.  We don't need to save it because
1039       // it's still just FallthroughSource.
1040       } else if (FallthroughSource) {
1041         assert(!IsActive && "source without fallthrough for active cleanup");
1042         Builder.ClearInsertionPoint();
1043       }
1044 
1045       // II.  Emit the entry block.  This implicitly branches to it if
1046       // we have fallthrough.  All the fixups and existing branches
1047       // should already be branched to it.
1048       EmitBlock(NormalEntry);
1049 
1050       // III.  Figure out where we're going and build the cleanup
1051       // epilogue.
1052 
1053       bool HasEnclosingCleanups =
1054         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1055 
1056       // Compute the branch-through dest if we need it:
1057       //   - if there are branch-throughs threaded through the scope
1058       //   - if fall-through is a branch-through
1059       //   - if there are fixups that will be optimistically forwarded
1060       //     to the enclosing cleanup
1061       llvm::BasicBlock *BranchThroughDest = 0;
1062       if (Scope.hasBranchThroughs() ||
1063           (FallthroughSource && FallthroughIsBranchThrough) ||
1064           (HasFixups && HasEnclosingCleanups)) {
1065         assert(HasEnclosingCleanups);
1066         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1067         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1068       }
1069 
1070       llvm::BasicBlock *FallthroughDest = 0;
1071       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1072 
1073       // If there's exactly one branch-after and no other threads,
1074       // we can route it without a switch.
1075       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1076           Scope.getNumBranchAfters() == 1) {
1077         assert(!BranchThroughDest || !IsActive);
1078 
1079         // TODO: clean up the possibly dead stores to the cleanup dest slot.
1080         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1081         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1082 
1083       // Build a switch-out if we need it:
1084       //   - if there are branch-afters threaded through the scope
1085       //   - if fall-through is a branch-after
1086       //   - if there are fixups that have nowhere left to go and
1087       //     so must be immediately resolved
1088       } else if (Scope.getNumBranchAfters() ||
1089                  (HasFallthrough && !FallthroughIsBranchThrough) ||
1090                  (HasFixups && !HasEnclosingCleanups)) {
1091 
1092         llvm::BasicBlock *Default =
1093           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1094 
1095         // TODO: base this on the number of branch-afters and fixups
1096         const unsigned SwitchCapacity = 10;
1097 
1098         llvm::LoadInst *Load =
1099           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1100         llvm::SwitchInst *Switch =
1101           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1102 
1103         InstsToAppend.push_back(Load);
1104         InstsToAppend.push_back(Switch);
1105 
1106         // Branch-after fallthrough.
1107         if (FallthroughSource && !FallthroughIsBranchThrough) {
1108           FallthroughDest = createBasicBlock("cleanup.cont");
1109           if (HasFallthrough)
1110             Switch->addCase(Builder.getInt32(0), FallthroughDest);
1111         }
1112 
1113         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1114           Switch->addCase(Scope.getBranchAfterIndex(I),
1115                           Scope.getBranchAfterBlock(I));
1116         }
1117 
1118         // If there aren't any enclosing cleanups, we can resolve all
1119         // the fixups now.
1120         if (HasFixups && !HasEnclosingCleanups)
1121           ResolveAllBranchFixups(*this, Switch, NormalEntry);
1122       } else {
1123         // We should always have a branch-through destination in this case.
1124         assert(BranchThroughDest);
1125         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1126       }
1127 
1128       // IV.  Pop the cleanup and emit it.
1129       EHStack.popCleanup();
1130       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1131 
1132       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1133 
1134       // Append the prepared cleanup prologue from above.
1135       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1136       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1137         NormalExit->getInstList().push_back(InstsToAppend[I]);
1138 
1139       // Optimistically hope that any fixups will continue falling through.
1140       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1141            I < E; ++I) {
1142         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1143         if (!Fixup.Destination) continue;
1144         if (!Fixup.OptimisticBranchBlock) {
1145           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1146                               getNormalCleanupDestSlot(),
1147                               Fixup.InitialBranch);
1148           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1149         }
1150         Fixup.OptimisticBranchBlock = NormalExit;
1151       }
1152 
1153       // V.  Set up the fallthrough edge out.
1154 
1155       // Case 1: a fallthrough source exists but shouldn't branch to
1156       // the cleanup because the cleanup is inactive.
1157       if (!HasFallthrough && FallthroughSource) {
1158         assert(!IsActive);
1159 
1160         // If we have a prebranched fallthrough, that needs to be
1161         // forwarded to the right block.
1162         if (HasPrebranchedFallthrough) {
1163           llvm::BasicBlock *Next;
1164           if (FallthroughIsBranchThrough) {
1165             Next = BranchThroughDest;
1166             assert(!FallthroughDest);
1167           } else {
1168             Next = FallthroughDest;
1169           }
1170 
1171           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1172         }
1173         Builder.SetInsertPoint(FallthroughSource);
1174 
1175       // Case 2: a fallthrough source exists and should branch to the
1176       // cleanup, but we're not supposed to branch through to the next
1177       // cleanup.
1178       } else if (HasFallthrough && FallthroughDest) {
1179         assert(!FallthroughIsBranchThrough);
1180         EmitBlock(FallthroughDest);
1181 
1182       // Case 3: a fallthrough source exists and should branch to the
1183       // cleanup and then through to the next.
1184       } else if (HasFallthrough) {
1185         // Everything is already set up for this.
1186 
1187       // Case 4: no fallthrough source exists.
1188       } else {
1189         Builder.ClearInsertionPoint();
1190       }
1191 
1192       // VI.  Assorted cleaning.
1193 
1194       // Check whether we can merge NormalEntry into a single predecessor.
1195       // This might invalidate (non-IR) pointers to NormalEntry.
1196       llvm::BasicBlock *NewNormalEntry =
1197         SimplifyCleanupEntry(*this, NormalEntry);
1198 
1199       // If it did invalidate those pointers, and NormalEntry was the same
1200       // as NormalExit, go back and patch up the fixups.
1201       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1202         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1203                I < E; ++I)
1204           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1205     }
1206   }
1207 
1208   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1209 
1210   // Emit the EH cleanup if required.
1211   if (RequiresEHCleanup) {
1212     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1213 
1214     EmitBlock(EHEntry);
1215     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1216 
1217     // Append the prepared cleanup prologue from above.
1218     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1219     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1220       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1221 
1222     Builder.restoreIP(SavedIP);
1223 
1224     SimplifyCleanupEntry(*this, EHEntry);
1225   }
1226 }
1227 
1228 /// Terminate the current block by emitting a branch which might leave
1229 /// the current cleanup-protected scope.  The target scope may not yet
1230 /// be known, in which case this will require a fixup.
1231 ///
1232 /// As a side-effect, this method clears the insertion point.
1233 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1234   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1235          && "stale jump destination");
1236 
1237   if (!HaveInsertPoint())
1238     return;
1239 
1240   // Create the branch.
1241   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1242 
1243   // Calculate the innermost active normal cleanup.
1244   EHScopeStack::stable_iterator
1245     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1246 
1247   // If we're not in an active normal cleanup scope, or if the
1248   // destination scope is within the innermost active normal cleanup
1249   // scope, we don't need to worry about fixups.
1250   if (TopCleanup == EHStack.stable_end() ||
1251       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1252     Builder.ClearInsertionPoint();
1253     return;
1254   }
1255 
1256   // If we can't resolve the destination cleanup scope, just add this
1257   // to the current cleanup scope as a branch fixup.
1258   if (!Dest.getScopeDepth().isValid()) {
1259     BranchFixup &Fixup = EHStack.addBranchFixup();
1260     Fixup.Destination = Dest.getBlock();
1261     Fixup.DestinationIndex = Dest.getDestIndex();
1262     Fixup.InitialBranch = BI;
1263     Fixup.OptimisticBranchBlock = 0;
1264 
1265     Builder.ClearInsertionPoint();
1266     return;
1267   }
1268 
1269   // Otherwise, thread through all the normal cleanups in scope.
1270 
1271   // Store the index at the start.
1272   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1273   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1274 
1275   // Adjust BI to point to the first cleanup block.
1276   {
1277     EHCleanupScope &Scope =
1278       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1279     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1280   }
1281 
1282   // Add this destination to all the scopes involved.
1283   EHScopeStack::stable_iterator I = TopCleanup;
1284   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1285   if (E.strictlyEncloses(I)) {
1286     while (true) {
1287       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1288       assert(Scope.isNormalCleanup());
1289       I = Scope.getEnclosingNormalCleanup();
1290 
1291       // If this is the last cleanup we're propagating through, tell it
1292       // that there's a resolved jump moving through it.
1293       if (!E.strictlyEncloses(I)) {
1294         Scope.addBranchAfter(Index, Dest.getBlock());
1295         break;
1296       }
1297 
1298       // Otherwise, tell the scope that there's a jump propoagating
1299       // through it.  If this isn't new information, all the rest of
1300       // the work has been done before.
1301       if (!Scope.addBranchThrough(Dest.getBlock()))
1302         break;
1303     }
1304   }
1305 
1306   Builder.ClearInsertionPoint();
1307 }
1308 
1309 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1310   // We should never get invalid scope depths for an UnwindDest; that
1311   // implies that the destination wasn't set up correctly.
1312   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1313 
1314   if (!HaveInsertPoint())
1315     return;
1316 
1317   // Create the branch.
1318   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1319 
1320   // Calculate the innermost active cleanup.
1321   EHScopeStack::stable_iterator
1322     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1323 
1324   // If the destination is in the same EH cleanup scope as us, we
1325   // don't need to thread through anything.
1326   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1327     Builder.ClearInsertionPoint();
1328     return;
1329   }
1330   assert(InnermostCleanup != EHStack.stable_end());
1331 
1332   // Store the index at the start.
1333   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1334   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1335 
1336   // Adjust BI to point to the first cleanup block.
1337   {
1338     EHCleanupScope &Scope =
1339       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1340     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1341   }
1342 
1343   // Add this destination to all the scopes involved.
1344   for (EHScopeStack::stable_iterator
1345          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1346     assert(E.strictlyEncloses(I));
1347     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1348     assert(Scope.isEHCleanup());
1349     I = Scope.getEnclosingEHCleanup();
1350 
1351     // If this is the last cleanup we're propagating through, add this
1352     // as a branch-after.
1353     if (I == E) {
1354       Scope.addEHBranchAfter(Index, Dest.getBlock());
1355       break;
1356     }
1357 
1358     // Otherwise, add it as a branch-through.  If this isn't new
1359     // information, all the rest of the work has been done before.
1360     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1361       break;
1362   }
1363 
1364   Builder.ClearInsertionPoint();
1365 }
1366 
1367 /// All the branch fixups on the EH stack have propagated out past the
1368 /// outermost normal cleanup; resolve them all by adding cases to the
1369 /// given switch instruction.
1370 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1371                                    llvm::SwitchInst *Switch,
1372                                    llvm::BasicBlock *CleanupEntry) {
1373   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1374 
1375   for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1376     // Skip this fixup if its destination isn't set.
1377     BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1378     if (Fixup.Destination == 0) continue;
1379 
1380     // If there isn't an OptimisticBranchBlock, then InitialBranch is
1381     // still pointing directly to its destination; forward it to the
1382     // appropriate cleanup entry.  This is required in the specific
1383     // case of
1384     //   { std::string s; goto lbl; }
1385     //   lbl:
1386     // i.e. where there's an unresolved fixup inside a single cleanup
1387     // entry which we're currently popping.
1388     if (Fixup.OptimisticBranchBlock == 0) {
1389       new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1390                           CGF.getNormalCleanupDestSlot(),
1391                           Fixup.InitialBranch);
1392       Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1393     }
1394 
1395     // Don't add this case to the switch statement twice.
1396     if (!CasesAdded.insert(Fixup.Destination)) continue;
1397 
1398     Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1399                     Fixup.Destination);
1400   }
1401 
1402   CGF.EHStack.clearFixups();
1403 }
1404 
1405 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1406   assert(Block && "resolving a null target block");
1407   if (!EHStack.getNumBranchFixups()) return;
1408 
1409   assert(EHStack.hasNormalCleanups() &&
1410          "branch fixups exist with no normal cleanups on stack");
1411 
1412   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1413   bool ResolvedAny = false;
1414 
1415   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1416     // Skip this fixup if its destination doesn't match.
1417     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1418     if (Fixup.Destination != Block) continue;
1419 
1420     Fixup.Destination = 0;
1421     ResolvedAny = true;
1422 
1423     // If it doesn't have an optimistic branch block, LatestBranch is
1424     // already pointing to the right place.
1425     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1426     if (!BranchBB)
1427       continue;
1428 
1429     // Don't process the same optimistic branch block twice.
1430     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1431       continue;
1432 
1433     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1434 
1435     // Add a case to the switch.
1436     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1437   }
1438 
1439   if (ResolvedAny)
1440     EHStack.popNullFixups();
1441 }
1442 
1443 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1444                                   EHScopeStack::stable_iterator C) {
1445   // If we needed a normal block for any reason, that counts.
1446   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1447     return true;
1448 
1449   // Check whether any enclosed cleanups were needed.
1450   for (EHScopeStack::stable_iterator
1451          I = EHStack.getInnermostNormalCleanup();
1452          I != C; ) {
1453     assert(C.strictlyEncloses(I));
1454     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1455     if (S.getNormalBlock()) return true;
1456     I = S.getEnclosingNormalCleanup();
1457   }
1458 
1459   return false;
1460 }
1461 
1462 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1463                               EHScopeStack::stable_iterator C) {
1464   // If we needed an EH block for any reason, that counts.
1465   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1466     return true;
1467 
1468   // Check whether any enclosed cleanups were needed.
1469   for (EHScopeStack::stable_iterator
1470          I = EHStack.getInnermostEHCleanup(); I != C; ) {
1471     assert(C.strictlyEncloses(I));
1472     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1473     if (S.getEHBlock()) return true;
1474     I = S.getEnclosingEHCleanup();
1475   }
1476 
1477   return false;
1478 }
1479 
1480 enum ForActivation_t {
1481   ForActivation,
1482   ForDeactivation
1483 };
1484 
1485 /// The given cleanup block is changing activation state.  Configure a
1486 /// cleanup variable if necessary.
1487 ///
1488 /// It would be good if we had some way of determining if there were
1489 /// extra uses *after* the change-over point.
1490 static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1491                                         EHScopeStack::stable_iterator C,
1492                                         ForActivation_t Kind) {
1493   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1494 
1495   // We always need the flag if we're activating the cleanup, because
1496   // we have to assume that the current location doesn't necessarily
1497   // dominate all future uses of the cleanup.
1498   bool NeedFlag = (Kind == ForActivation);
1499 
1500   // Calculate whether the cleanup was used:
1501 
1502   //   - as a normal cleanup
1503   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1504     Scope.setTestFlagInNormalCleanup();
1505     NeedFlag = true;
1506   }
1507 
1508   //  - as an EH cleanup
1509   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1510     Scope.setTestFlagInEHCleanup();
1511     NeedFlag = true;
1512   }
1513 
1514   // If it hasn't yet been used as either, we're done.
1515   if (!NeedFlag) return;
1516 
1517   llvm::AllocaInst *Var = Scope.getActiveFlag();
1518   if (!Var) {
1519     Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1520     Scope.setActiveFlag(Var);
1521 
1522     // Initialize to true or false depending on whether it was
1523     // active up to this point.
1524     CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1525   }
1526 
1527   CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1528 }
1529 
1530 /// Activate a cleanup that was created in an inactivated state.
1531 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1532   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1533   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1534   assert(!Scope.isActive() && "double activation");
1535 
1536   SetupCleanupBlockActivation(*this, C, ForActivation);
1537 
1538   Scope.setActive(true);
1539 }
1540 
1541 /// Deactive a cleanup that was created in an active state.
1542 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1543   assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1544   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1545   assert(Scope.isActive() && "double deactivation");
1546 
1547   // If it's the top of the stack, just pop it.
1548   if (C == EHStack.stable_begin()) {
1549     // If it's a normal cleanup, we need to pretend that the
1550     // fallthrough is unreachable.
1551     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1552     PopCleanupBlock();
1553     Builder.restoreIP(SavedIP);
1554     return;
1555   }
1556 
1557   // Otherwise, follow the general case.
1558   SetupCleanupBlockActivation(*this, C, ForDeactivation);
1559 
1560   Scope.setActive(false);
1561 }
1562 
1563 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1564   if (!NormalCleanupDest)
1565     NormalCleanupDest =
1566       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1567   return NormalCleanupDest;
1568 }
1569 
1570 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1571   if (!EHCleanupDest)
1572     EHCleanupDest =
1573       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1574   return EHCleanupDest;
1575 }
1576 
1577 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1578                                               llvm::Constant *Init) {
1579   assert (Init && "Invalid DeclRefExpr initializer!");
1580   if (CGDebugInfo *Dbg = getDebugInfo())
1581     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1582 }
1583