1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/FPEnv.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
47 /// markers.
48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
49                                       const LangOptions &LangOpts) {
50   if (CGOpts.DisableLifetimeMarkers)
51     return false;
52 
53   // Sanitizers may use markers.
54   if (CGOpts.SanitizeAddressUseAfterScope ||
55       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
56       LangOpts.Sanitize.has(SanitizerKind::Memory))
57     return true;
58 
59   // For now, only in optimized builds.
60   return CGOpts.OptimizationLevel != 0;
61 }
62 
63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66               CGBuilderInserterTy(this)),
67       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70   if (!suppressNewContext)
71     CGM.getCXXABI().getMangleContext().startNewFunction();
72 
73   llvm::FastMathFlags FMF;
74   if (CGM.getLangOpts().FastMath)
75     FMF.setFast();
76   if (CGM.getLangOpts().FiniteMathOnly) {
77     FMF.setNoNaNs();
78     FMF.setNoInfs();
79   }
80   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81     FMF.setNoNaNs();
82   }
83   if (CGM.getCodeGenOpts().NoSignedZeros) {
84     FMF.setNoSignedZeros();
85   }
86   if (CGM.getCodeGenOpts().ReciprocalMath) {
87     FMF.setAllowReciprocal();
88   }
89   if (CGM.getCodeGenOpts().Reassociate) {
90     FMF.setAllowReassoc();
91   }
92   Builder.setFastMathFlags(FMF);
93   SetFPModel();
94 }
95 
96 CodeGenFunction::~CodeGenFunction() {
97   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
98 
99   // If there are any unclaimed block infos, go ahead and destroy them
100   // now.  This can happen if IR-gen gets clever and skips evaluating
101   // something.
102   if (FirstBlockInfo)
103     destroyBlockInfos(FirstBlockInfo);
104 
105   if (getLangOpts().OpenMP && CurFn)
106     CGM.getOpenMPRuntime().functionFinished(*this);
107 }
108 
109 // Map the LangOption for rounding mode into
110 // the corresponding enum in the IR.
111 static llvm::fp::RoundingMode ToConstrainedRoundingMD(
112   LangOptions::FPRoundingModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPR_ToNearest:  return llvm::fp::rmToNearest;
116   case LangOptions::FPR_Downward:   return llvm::fp::rmDownward;
117   case LangOptions::FPR_Upward:     return llvm::fp::rmUpward;
118   case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero;
119   case LangOptions::FPR_Dynamic:    return llvm::fp::rmDynamic;
120   }
121   llvm_unreachable("Unsupported FP RoundingMode");
122 }
123 
124 // Map the LangOption for exception behavior into
125 // the corresponding enum in the IR.
126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
127   LangOptions::FPExceptionModeKind Kind) {
128 
129   switch (Kind) {
130   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
131   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
132   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
133   }
134   llvm_unreachable("Unsupported FP Exception Behavior");
135 }
136 
137 void CodeGenFunction::SetFPModel() {
138   auto fpRoundingMode = ToConstrainedRoundingMD(
139                           getLangOpts().getFPRoundingMode());
140   auto fpExceptionBehavior = ToConstrainedExceptMD(
141                                getLangOpts().getFPExceptionMode());
142 
143   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
144       fpRoundingMode == llvm::fp::rmToNearest)
145     // Constrained intrinsics are not used.
146     ;
147   else {
148     Builder.setIsFPConstrained(true);
149     Builder.setDefaultConstrainedRounding(fpRoundingMode);
150     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
151   }
152 }
153 
154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
155                                                     LValueBaseInfo *BaseInfo,
156                                                     TBAAAccessInfo *TBAAInfo) {
157   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
158                                  /* forPointeeType= */ true);
159 }
160 
161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
162                                                    LValueBaseInfo *BaseInfo,
163                                                    TBAAAccessInfo *TBAAInfo,
164                                                    bool forPointeeType) {
165   if (TBAAInfo)
166     *TBAAInfo = CGM.getTBAAAccessInfo(T);
167 
168   // Honor alignment typedef attributes even on incomplete types.
169   // We also honor them straight for C++ class types, even as pointees;
170   // there's an expressivity gap here.
171   if (auto TT = T->getAs<TypedefType>()) {
172     if (auto Align = TT->getDecl()->getMaxAlignment()) {
173       if (BaseInfo)
174         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
175       return getContext().toCharUnitsFromBits(Align);
176     }
177   }
178 
179   if (BaseInfo)
180     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
181 
182   CharUnits Alignment;
183   if (T->isIncompleteType()) {
184     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
185   } else {
186     // For C++ class pointees, we don't know whether we're pointing at a
187     // base or a complete object, so we generally need to use the
188     // non-virtual alignment.
189     const CXXRecordDecl *RD;
190     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
191       Alignment = CGM.getClassPointerAlignment(RD);
192     } else {
193       Alignment = getContext().getTypeAlignInChars(T);
194       if (T.getQualifiers().hasUnaligned())
195         Alignment = CharUnits::One();
196     }
197 
198     // Cap to the global maximum type alignment unless the alignment
199     // was somehow explicit on the type.
200     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
201       if (Alignment.getQuantity() > MaxAlign &&
202           !getContext().isAlignmentRequired(T))
203         Alignment = CharUnits::fromQuantity(MaxAlign);
204     }
205   }
206   return Alignment;
207 }
208 
209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
210   LValueBaseInfo BaseInfo;
211   TBAAAccessInfo TBAAInfo;
212   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
213   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
214                           TBAAInfo);
215 }
216 
217 /// Given a value of type T* that may not be to a complete object,
218 /// construct an l-value with the natural pointee alignment of T.
219 LValue
220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
221   LValueBaseInfo BaseInfo;
222   TBAAAccessInfo TBAAInfo;
223   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
224                                             /* forPointeeType= */ true);
225   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
226 }
227 
228 
229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
230   return CGM.getTypes().ConvertTypeForMem(T);
231 }
232 
233 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
234   return CGM.getTypes().ConvertType(T);
235 }
236 
237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
238   type = type.getCanonicalType();
239   while (true) {
240     switch (type->getTypeClass()) {
241 #define TYPE(name, parent)
242 #define ABSTRACT_TYPE(name, parent)
243 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
244 #define DEPENDENT_TYPE(name, parent) case Type::name:
245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
246 #include "clang/AST/TypeNodes.inc"
247       llvm_unreachable("non-canonical or dependent type in IR-generation");
248 
249     case Type::Auto:
250     case Type::DeducedTemplateSpecialization:
251       llvm_unreachable("undeduced type in IR-generation");
252 
253     // Various scalar types.
254     case Type::Builtin:
255     case Type::Pointer:
256     case Type::BlockPointer:
257     case Type::LValueReference:
258     case Type::RValueReference:
259     case Type::MemberPointer:
260     case Type::Vector:
261     case Type::ExtVector:
262     case Type::FunctionProto:
263     case Type::FunctionNoProto:
264     case Type::Enum:
265     case Type::ObjCObjectPointer:
266     case Type::Pipe:
267       return TEK_Scalar;
268 
269     // Complexes.
270     case Type::Complex:
271       return TEK_Complex;
272 
273     // Arrays, records, and Objective-C objects.
274     case Type::ConstantArray:
275     case Type::IncompleteArray:
276     case Type::VariableArray:
277     case Type::Record:
278     case Type::ObjCObject:
279     case Type::ObjCInterface:
280       return TEK_Aggregate;
281 
282     // We operate on atomic values according to their underlying type.
283     case Type::Atomic:
284       type = cast<AtomicType>(type)->getValueType();
285       continue;
286     }
287     llvm_unreachable("unknown type kind!");
288   }
289 }
290 
291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
292   // For cleanliness, we try to avoid emitting the return block for
293   // simple cases.
294   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
295 
296   if (CurBB) {
297     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
298 
299     // We have a valid insert point, reuse it if it is empty or there are no
300     // explicit jumps to the return block.
301     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
302       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
303       delete ReturnBlock.getBlock();
304       ReturnBlock = JumpDest();
305     } else
306       EmitBlock(ReturnBlock.getBlock());
307     return llvm::DebugLoc();
308   }
309 
310   // Otherwise, if the return block is the target of a single direct
311   // branch then we can just put the code in that block instead. This
312   // cleans up functions which started with a unified return block.
313   if (ReturnBlock.getBlock()->hasOneUse()) {
314     llvm::BranchInst *BI =
315       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
316     if (BI && BI->isUnconditional() &&
317         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
318       // Record/return the DebugLoc of the simple 'return' expression to be used
319       // later by the actual 'ret' instruction.
320       llvm::DebugLoc Loc = BI->getDebugLoc();
321       Builder.SetInsertPoint(BI->getParent());
322       BI->eraseFromParent();
323       delete ReturnBlock.getBlock();
324       ReturnBlock = JumpDest();
325       return Loc;
326     }
327   }
328 
329   // FIXME: We are at an unreachable point, there is no reason to emit the block
330   // unless it has uses. However, we still need a place to put the debug
331   // region.end for now.
332 
333   EmitBlock(ReturnBlock.getBlock());
334   return llvm::DebugLoc();
335 }
336 
337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
338   if (!BB) return;
339   if (!BB->use_empty())
340     return CGF.CurFn->getBasicBlockList().push_back(BB);
341   delete BB;
342 }
343 
344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
345   assert(BreakContinueStack.empty() &&
346          "mismatched push/pop in break/continue stack!");
347 
348   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
349     && NumSimpleReturnExprs == NumReturnExprs
350     && ReturnBlock.getBlock()->use_empty();
351   // Usually the return expression is evaluated before the cleanup
352   // code.  If the function contains only a simple return statement,
353   // such as a constant, the location before the cleanup code becomes
354   // the last useful breakpoint in the function, because the simple
355   // return expression will be evaluated after the cleanup code. To be
356   // safe, set the debug location for cleanup code to the location of
357   // the return statement.  Otherwise the cleanup code should be at the
358   // end of the function's lexical scope.
359   //
360   // If there are multiple branches to the return block, the branch
361   // instructions will get the location of the return statements and
362   // all will be fine.
363   if (CGDebugInfo *DI = getDebugInfo()) {
364     if (OnlySimpleReturnStmts)
365       DI->EmitLocation(Builder, LastStopPoint);
366     else
367       DI->EmitLocation(Builder, EndLoc);
368   }
369 
370   // Pop any cleanups that might have been associated with the
371   // parameters.  Do this in whatever block we're currently in; it's
372   // important to do this before we enter the return block or return
373   // edges will be *really* confused.
374   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
375   bool HasOnlyLifetimeMarkers =
376       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
377   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
378   if (HasCleanups) {
379     // Make sure the line table doesn't jump back into the body for
380     // the ret after it's been at EndLoc.
381     Optional<ApplyDebugLocation> AL;
382     if (CGDebugInfo *DI = getDebugInfo()) {
383       if (OnlySimpleReturnStmts)
384         DI->EmitLocation(Builder, EndLoc);
385       else
386         // We may not have a valid end location. Try to apply it anyway, and
387         // fall back to an artificial location if needed.
388         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
389     }
390 
391     PopCleanupBlocks(PrologueCleanupDepth);
392   }
393 
394   // Emit function epilog (to return).
395   llvm::DebugLoc Loc = EmitReturnBlock();
396 
397   if (ShouldInstrumentFunction()) {
398     if (CGM.getCodeGenOpts().InstrumentFunctions)
399       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
400     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
401       CurFn->addFnAttr("instrument-function-exit-inlined",
402                        "__cyg_profile_func_exit");
403   }
404 
405   // Emit debug descriptor for function end.
406   if (CGDebugInfo *DI = getDebugInfo())
407     DI->EmitFunctionEnd(Builder, CurFn);
408 
409   // Reset the debug location to that of the simple 'return' expression, if any
410   // rather than that of the end of the function's scope '}'.
411   ApplyDebugLocation AL(*this, Loc);
412   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
413   EmitEndEHSpec(CurCodeDecl);
414 
415   assert(EHStack.empty() &&
416          "did not remove all scopes from cleanup stack!");
417 
418   // If someone did an indirect goto, emit the indirect goto block at the end of
419   // the function.
420   if (IndirectBranch) {
421     EmitBlock(IndirectBranch->getParent());
422     Builder.ClearInsertionPoint();
423   }
424 
425   // If some of our locals escaped, insert a call to llvm.localescape in the
426   // entry block.
427   if (!EscapedLocals.empty()) {
428     // Invert the map from local to index into a simple vector. There should be
429     // no holes.
430     SmallVector<llvm::Value *, 4> EscapeArgs;
431     EscapeArgs.resize(EscapedLocals.size());
432     for (auto &Pair : EscapedLocals)
433       EscapeArgs[Pair.second] = Pair.first;
434     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
435         &CGM.getModule(), llvm::Intrinsic::localescape);
436     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
437   }
438 
439   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
440   llvm::Instruction *Ptr = AllocaInsertPt;
441   AllocaInsertPt = nullptr;
442   Ptr->eraseFromParent();
443 
444   // If someone took the address of a label but never did an indirect goto, we
445   // made a zero entry PHI node, which is illegal, zap it now.
446   if (IndirectBranch) {
447     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
448     if (PN->getNumIncomingValues() == 0) {
449       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
450       PN->eraseFromParent();
451     }
452   }
453 
454   EmitIfUsed(*this, EHResumeBlock);
455   EmitIfUsed(*this, TerminateLandingPad);
456   EmitIfUsed(*this, TerminateHandler);
457   EmitIfUsed(*this, UnreachableBlock);
458 
459   for (const auto &FuncletAndParent : TerminateFunclets)
460     EmitIfUsed(*this, FuncletAndParent.second);
461 
462   if (CGM.getCodeGenOpts().EmitDeclMetadata)
463     EmitDeclMetadata();
464 
465   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
466            I = DeferredReplacements.begin(),
467            E = DeferredReplacements.end();
468        I != E; ++I) {
469     I->first->replaceAllUsesWith(I->second);
470     I->first->eraseFromParent();
471   }
472 
473   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
474   // PHIs if the current function is a coroutine. We don't do it for all
475   // functions as it may result in slight increase in numbers of instructions
476   // if compiled with no optimizations. We do it for coroutine as the lifetime
477   // of CleanupDestSlot alloca make correct coroutine frame building very
478   // difficult.
479   if (NormalCleanupDest.isValid() && isCoroutine()) {
480     llvm::DominatorTree DT(*CurFn);
481     llvm::PromoteMemToReg(
482         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
483     NormalCleanupDest = Address::invalid();
484   }
485 
486   // Scan function arguments for vector width.
487   for (llvm::Argument &A : CurFn->args())
488     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
489       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
490                                    VT->getPrimitiveSizeInBits().getFixedSize());
491 
492   // Update vector width based on return type.
493   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
494     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
495                                   VT->getPrimitiveSizeInBits().getFixedSize());
496 
497   // Add the required-vector-width attribute. This contains the max width from:
498   // 1. min-vector-width attribute used in the source program.
499   // 2. Any builtins used that have a vector width specified.
500   // 3. Values passed in and out of inline assembly.
501   // 4. Width of vector arguments and return types for this function.
502   // 5. Width of vector aguments and return types for functions called by this
503   //    function.
504   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 /// ShouldXRayInstrument - Return true if the current function should be
533 /// instrumented with XRay nop sleds.
534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536 }
537 
538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Custom);
545 }
546 
547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551               XRayInstrKind::Typed);
552 }
553 
554 llvm::Constant *
555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                             llvm::Constant *Addr) {
557   // Addresses stored in prologue data can't require run-time fixups and must
558   // be PC-relative. Run-time fixups are undesirable because they necessitate
559   // writable text segments, which are unsafe. And absolute addresses are
560   // undesirable because they break PIE mode.
561 
562   // Add a layer of indirection through a private global. Taking its address
563   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                       /*isConstant=*/true,
566                                       llvm::GlobalValue::PrivateLinkage, Addr);
567 
568   // Create a PC-relative address.
569   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572   return (IntPtrTy == Int32Ty)
573              ? PCRelAsInt
574              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575 }
576 
577 llvm::Value *
578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                           llvm::Value *EncodedAddr) {
580   // Reconstruct the address of the global.
581   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585 
586   // Load the original pointer through the global.
587   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                             "decoded_addr");
589 }
590 
591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                llvm::Function *Fn)
593 {
594   if (!FD->hasAttr<OpenCLKernelAttr>())
595     return;
596 
597   llvm::LLVMContext &Context = getLLVMContext();
598 
599   CGM.GenOpenCLArgMetadata(Fn, FD, this);
600 
601   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602     QualType HintQTy = A->getTypeHint();
603     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604     bool IsSignedInteger =
605         HintQTy->isSignedIntegerType() ||
606         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607     llvm::Metadata *AttrMDArgs[] = {
608         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609             CGM.getTypes().ConvertType(A->getTypeHint()))),
610         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611             llvm::IntegerType::get(Context, 32),
612             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625     llvm::Metadata *AttrMDArgs[] = {
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 
632   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636     Fn->setMetadata("intel_reqd_sub_group_size",
637                     llvm::MDNode::get(Context, AttrMDArgs));
638   }
639 }
640 
641 /// Determine whether the function F ends with a return stmt.
642 static bool endsWithReturn(const Decl* F) {
643   const Stmt *Body = nullptr;
644   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645     Body = FD->getBody();
646   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647     Body = OMD->getBody();
648 
649   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650     auto LastStmt = CS->body_rbegin();
651     if (LastStmt != CS->body_rend())
652       return isa<ReturnStmt>(*LastStmt);
653   }
654   return false;
655 }
656 
657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658   if (SanOpts.has(SanitizerKind::Thread)) {
659     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661   }
662 }
663 
664 /// Check if the return value of this function requires sanitization.
665 bool CodeGenFunction::requiresReturnValueCheck() const {
666   return requiresReturnValueNullabilityCheck() ||
667          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669 }
670 
671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676     return false;
677 
678   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679     return false;
680 
681   if (MD->getNumParams() == 2) {
682     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683     if (!PT || !PT->isVoidPointerType() ||
684         !PT->getPointeeType().isConstQualified())
685       return false;
686   }
687 
688   return true;
689 }
690 
691 /// Return the UBSan prologue signature for \p FD if one is available.
692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                             const FunctionDecl *FD) {
694   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695     if (!MD->isStatic())
696       return nullptr;
697   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698 }
699 
700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                     llvm::Function *Fn,
702                                     const CGFunctionInfo &FnInfo,
703                                     const FunctionArgList &Args,
704                                     SourceLocation Loc,
705                                     SourceLocation StartLoc) {
706   assert(!CurFn &&
707          "Do not use a CodeGenFunction object for more than one function");
708 
709   const Decl *D = GD.getDecl();
710 
711   DidCallStackSave = false;
712   CurCodeDecl = D;
713   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
714     if (FD->usesSEHTry())
715       CurSEHParent = FD;
716   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717   FnRetTy = RetTy;
718   CurFn = Fn;
719   CurFnInfo = &FnInfo;
720   assert(CurFn->isDeclaration() && "Function already has body?");
721 
722   // If this function has been blacklisted for any of the enabled sanitizers,
723   // disable the sanitizer for the function.
724   do {
725 #define SANITIZER(NAME, ID)                                                    \
726   if (SanOpts.empty())                                                         \
727     break;                                                                     \
728   if (SanOpts.has(SanitizerKind::ID))                                          \
729     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
730       SanOpts.set(SanitizerKind::ID, false);
731 
732 #include "clang/Basic/Sanitizers.def"
733 #undef SANITIZER
734   } while (0);
735 
736   if (D) {
737     // Apply the no_sanitize* attributes to SanOpts.
738     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739       SanitizerMask mask = Attr->getMask();
740       SanOpts.Mask &= ~mask;
741       if (mask & SanitizerKind::Address)
742         SanOpts.set(SanitizerKind::KernelAddress, false);
743       if (mask & SanitizerKind::KernelAddress)
744         SanOpts.set(SanitizerKind::Address, false);
745       if (mask & SanitizerKind::HWAddress)
746         SanOpts.set(SanitizerKind::KernelHWAddress, false);
747       if (mask & SanitizerKind::KernelHWAddress)
748         SanOpts.set(SanitizerKind::HWAddress, false);
749     }
750   }
751 
752   // Apply sanitizer attributes to the function.
753   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
754     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
755   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
756     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
757   if (SanOpts.has(SanitizerKind::MemTag))
758     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
759   if (SanOpts.has(SanitizerKind::Thread))
760     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
761   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
762     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
763   if (SanOpts.has(SanitizerKind::SafeStack))
764     Fn->addFnAttr(llvm::Attribute::SafeStack);
765   if (SanOpts.has(SanitizerKind::ShadowCallStack))
766     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
767 
768   // Apply fuzzing attribute to the function.
769   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
770     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
771 
772   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
773   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
774   if (SanOpts.has(SanitizerKind::Thread)) {
775     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
776       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
777       if (OMD->getMethodFamily() == OMF_dealloc ||
778           OMD->getMethodFamily() == OMF_initialize ||
779           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
780         markAsIgnoreThreadCheckingAtRuntime(Fn);
781       }
782     }
783   }
784 
785   // Ignore unrelated casts in STL allocate() since the allocator must cast
786   // from void* to T* before object initialization completes. Don't match on the
787   // namespace because not all allocators are in std::
788   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
789     if (matchesStlAllocatorFn(D, getContext()))
790       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
791   }
792 
793   // Ignore null checks in coroutine functions since the coroutines passes
794   // are not aware of how to move the extra UBSan instructions across the split
795   // coroutine boundaries.
796   if (D && SanOpts.has(SanitizerKind::Null))
797     if (const auto *FD = dyn_cast<FunctionDecl>(D))
798       if (FD->getBody() &&
799           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
800         SanOpts.Mask &= ~SanitizerKind::Null;
801 
802   if (D) {
803     // Apply xray attributes to the function (as a string, for now)
804     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
805       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
806               XRayInstrKind::Function)) {
807         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
808           Fn->addFnAttr("function-instrument", "xray-always");
809         if (XRayAttr->neverXRayInstrument())
810           Fn->addFnAttr("function-instrument", "xray-never");
811         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
812           if (ShouldXRayInstrumentFunction())
813             Fn->addFnAttr("xray-log-args",
814                           llvm::utostr(LogArgs->getArgumentCount()));
815       }
816     } else {
817       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
818         Fn->addFnAttr(
819             "xray-instruction-threshold",
820             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
821     }
822 
823     if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) {
824       // Attr->getStart is currently ignored.
825       Fn->addFnAttr("patchable-function-entry",
826                     std::to_string(Attr->getCount()));
827     }
828   }
829 
830   // Add no-jump-tables value.
831   Fn->addFnAttr("no-jump-tables",
832                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
833 
834   // Add no-inline-line-tables value.
835   if (CGM.getCodeGenOpts().NoInlineLineTables)
836     Fn->addFnAttr("no-inline-line-tables");
837 
838   // Add profile-sample-accurate value.
839   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
840     Fn->addFnAttr("profile-sample-accurate");
841 
842   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
843     Fn->addFnAttr("cfi-canonical-jump-table");
844 
845   if (getLangOpts().OpenCL) {
846     // Add metadata for a kernel function.
847     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
848       EmitOpenCLKernelMetadata(FD, Fn);
849   }
850 
851   // If we are checking function types, emit a function type signature as
852   // prologue data.
853   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
854     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
855       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
856         // Remove any (C++17) exception specifications, to allow calling e.g. a
857         // noexcept function through a non-noexcept pointer.
858         auto ProtoTy =
859           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
860                                                         EST_None);
861         llvm::Constant *FTRTTIConst =
862             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
863         llvm::Constant *FTRTTIConstEncoded =
864             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
865         llvm::Constant *PrologueStructElems[] = {PrologueSig,
866                                                  FTRTTIConstEncoded};
867         llvm::Constant *PrologueStructConst =
868             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
869         Fn->setPrologueData(PrologueStructConst);
870       }
871     }
872   }
873 
874   // If we're checking nullability, we need to know whether we can check the
875   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
876   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
877     auto Nullability = FnRetTy->getNullability(getContext());
878     if (Nullability && *Nullability == NullabilityKind::NonNull) {
879       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
880             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
881         RetValNullabilityPrecondition =
882             llvm::ConstantInt::getTrue(getLLVMContext());
883     }
884   }
885 
886   // If we're in C++ mode and the function name is "main", it is guaranteed
887   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
888   // used within a program").
889   if (getLangOpts().CPlusPlus)
890     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
891       if (FD->isMain())
892         Fn->addFnAttr(llvm::Attribute::NoRecurse);
893 
894   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
895     if (FD->usesFPIntrin())
896       Fn->addFnAttr(llvm::Attribute::StrictFP);
897 
898   // If a custom alignment is used, force realigning to this alignment on
899   // any main function which certainly will need it.
900   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
901     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
902         CGM.getCodeGenOpts().StackAlignment)
903       Fn->addFnAttr("stackrealign");
904 
905   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
906 
907   // Create a marker to make it easy to insert allocas into the entryblock
908   // later.  Don't create this with the builder, because we don't want it
909   // folded.
910   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
911   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
912 
913   ReturnBlock = getJumpDestInCurrentScope("return");
914 
915   Builder.SetInsertPoint(EntryBB);
916 
917   // If we're checking the return value, allocate space for a pointer to a
918   // precise source location of the checked return statement.
919   if (requiresReturnValueCheck()) {
920     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
921     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
922   }
923 
924   // Emit subprogram debug descriptor.
925   if (CGDebugInfo *DI = getDebugInfo()) {
926     // Reconstruct the type from the argument list so that implicit parameters,
927     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
928     // convention.
929     CallingConv CC = CallingConv::CC_C;
930     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
931       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
932         CC = SrcFnTy->getCallConv();
933     SmallVector<QualType, 16> ArgTypes;
934     for (const VarDecl *VD : Args)
935       ArgTypes.push_back(VD->getType());
936     QualType FnType = getContext().getFunctionType(
937         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
938     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
939                           Builder);
940   }
941 
942   if (ShouldInstrumentFunction()) {
943     if (CGM.getCodeGenOpts().InstrumentFunctions)
944       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
945     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
946       CurFn->addFnAttr("instrument-function-entry-inlined",
947                        "__cyg_profile_func_enter");
948     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
949       CurFn->addFnAttr("instrument-function-entry-inlined",
950                        "__cyg_profile_func_enter_bare");
951   }
952 
953   // Since emitting the mcount call here impacts optimizations such as function
954   // inlining, we just add an attribute to insert a mcount call in backend.
955   // The attribute "counting-function" is set to mcount function name which is
956   // architecture dependent.
957   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
958     // Calls to fentry/mcount should not be generated if function has
959     // the no_instrument_function attribute.
960     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
961       if (CGM.getCodeGenOpts().CallFEntry)
962         Fn->addFnAttr("fentry-call", "true");
963       else {
964         Fn->addFnAttr("instrument-function-entry-inlined",
965                       getTarget().getMCountName());
966       }
967       if (CGM.getCodeGenOpts().MNopMCount) {
968         if (!CGM.getCodeGenOpts().CallFEntry)
969           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
970             << "-mnop-mcount" << "-mfentry";
971         Fn->addFnAttr("mnop-mcount");
972       }
973 
974       if (CGM.getCodeGenOpts().RecordMCount) {
975         if (!CGM.getCodeGenOpts().CallFEntry)
976           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
977             << "-mrecord-mcount" << "-mfentry";
978         Fn->addFnAttr("mrecord-mcount");
979       }
980     }
981   }
982 
983   if (CGM.getCodeGenOpts().PackedStack) {
984     if (getContext().getTargetInfo().getTriple().getArch() !=
985         llvm::Triple::systemz)
986       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
987         << "-mpacked-stack";
988     Fn->addFnAttr("packed-stack");
989   }
990 
991   if (RetTy->isVoidType()) {
992     // Void type; nothing to return.
993     ReturnValue = Address::invalid();
994 
995     // Count the implicit return.
996     if (!endsWithReturn(D))
997       ++NumReturnExprs;
998   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
999     // Indirect return; emit returned value directly into sret slot.
1000     // This reduces code size, and affects correctness in C++.
1001     auto AI = CurFn->arg_begin();
1002     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1003       ++AI;
1004     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1005     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1006       ReturnValuePointer =
1007           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1008       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1009                               ReturnValue.getPointer(), Int8PtrTy),
1010                           ReturnValuePointer);
1011     }
1012   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1013              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1014     // Load the sret pointer from the argument struct and return into that.
1015     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1016     llvm::Function::arg_iterator EI = CurFn->arg_end();
1017     --EI;
1018     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1019     ReturnValuePointer = Address(Addr, getPointerAlign());
1020     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1021     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1022   } else {
1023     ReturnValue = CreateIRTemp(RetTy, "retval");
1024 
1025     // Tell the epilog emitter to autorelease the result.  We do this
1026     // now so that various specialized functions can suppress it
1027     // during their IR-generation.
1028     if (getLangOpts().ObjCAutoRefCount &&
1029         !CurFnInfo->isReturnsRetained() &&
1030         RetTy->isObjCRetainableType())
1031       AutoreleaseResult = true;
1032   }
1033 
1034   EmitStartEHSpec(CurCodeDecl);
1035 
1036   PrologueCleanupDepth = EHStack.stable_begin();
1037 
1038   // Emit OpenMP specific initialization of the device functions.
1039   if (getLangOpts().OpenMP && CurCodeDecl)
1040     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1041 
1042   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1043 
1044   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1045     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1046     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1047     if (MD->getParent()->isLambda() &&
1048         MD->getOverloadedOperator() == OO_Call) {
1049       // We're in a lambda; figure out the captures.
1050       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1051                                         LambdaThisCaptureField);
1052       if (LambdaThisCaptureField) {
1053         // If the lambda captures the object referred to by '*this' - either by
1054         // value or by reference, make sure CXXThisValue points to the correct
1055         // object.
1056 
1057         // Get the lvalue for the field (which is a copy of the enclosing object
1058         // or contains the address of the enclosing object).
1059         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1060         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1061           // If the enclosing object was captured by value, just use its address.
1062           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1063         } else {
1064           // Load the lvalue pointed to by the field, since '*this' was captured
1065           // by reference.
1066           CXXThisValue =
1067               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1068         }
1069       }
1070       for (auto *FD : MD->getParent()->fields()) {
1071         if (FD->hasCapturedVLAType()) {
1072           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1073                                            SourceLocation()).getScalarVal();
1074           auto VAT = FD->getCapturedVLAType();
1075           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1076         }
1077       }
1078     } else {
1079       // Not in a lambda; just use 'this' from the method.
1080       // FIXME: Should we generate a new load for each use of 'this'?  The
1081       // fast register allocator would be happier...
1082       CXXThisValue = CXXABIThisValue;
1083     }
1084 
1085     // Check the 'this' pointer once per function, if it's available.
1086     if (CXXABIThisValue) {
1087       SanitizerSet SkippedChecks;
1088       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1089       QualType ThisTy = MD->getThisType();
1090 
1091       // If this is the call operator of a lambda with no capture-default, it
1092       // may have a static invoker function, which may call this operator with
1093       // a null 'this' pointer.
1094       if (isLambdaCallOperator(MD) &&
1095           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1096         SkippedChecks.set(SanitizerKind::Null, true);
1097 
1098       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1099                                                 : TCK_MemberCall,
1100                     Loc, CXXABIThisValue, ThisTy,
1101                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1102                     SkippedChecks);
1103     }
1104   }
1105 
1106   // If any of the arguments have a variably modified type, make sure to
1107   // emit the type size.
1108   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1109        i != e; ++i) {
1110     const VarDecl *VD = *i;
1111 
1112     // Dig out the type as written from ParmVarDecls; it's unclear whether
1113     // the standard (C99 6.9.1p10) requires this, but we're following the
1114     // precedent set by gcc.
1115     QualType Ty;
1116     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1117       Ty = PVD->getOriginalType();
1118     else
1119       Ty = VD->getType();
1120 
1121     if (Ty->isVariablyModifiedType())
1122       EmitVariablyModifiedType(Ty);
1123   }
1124   // Emit a location at the end of the prologue.
1125   if (CGDebugInfo *DI = getDebugInfo())
1126     DI->EmitLocation(Builder, StartLoc);
1127 
1128   // TODO: Do we need to handle this in two places like we do with
1129   // target-features/target-cpu?
1130   if (CurFuncDecl)
1131     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1132       LargestVectorWidth = VecWidth->getVectorWidth();
1133 }
1134 
1135 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1136   incrementProfileCounter(Body);
1137   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1138     EmitCompoundStmtWithoutScope(*S);
1139   else
1140     EmitStmt(Body);
1141 }
1142 
1143 /// When instrumenting to collect profile data, the counts for some blocks
1144 /// such as switch cases need to not include the fall-through counts, so
1145 /// emit a branch around the instrumentation code. When not instrumenting,
1146 /// this just calls EmitBlock().
1147 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1148                                                const Stmt *S) {
1149   llvm::BasicBlock *SkipCountBB = nullptr;
1150   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1151     // When instrumenting for profiling, the fallthrough to certain
1152     // statements needs to skip over the instrumentation code so that we
1153     // get an accurate count.
1154     SkipCountBB = createBasicBlock("skipcount");
1155     EmitBranch(SkipCountBB);
1156   }
1157   EmitBlock(BB);
1158   uint64_t CurrentCount = getCurrentProfileCount();
1159   incrementProfileCounter(S);
1160   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1161   if (SkipCountBB)
1162     EmitBlock(SkipCountBB);
1163 }
1164 
1165 /// Tries to mark the given function nounwind based on the
1166 /// non-existence of any throwing calls within it.  We believe this is
1167 /// lightweight enough to do at -O0.
1168 static void TryMarkNoThrow(llvm::Function *F) {
1169   // LLVM treats 'nounwind' on a function as part of the type, so we
1170   // can't do this on functions that can be overwritten.
1171   if (F->isInterposable()) return;
1172 
1173   for (llvm::BasicBlock &BB : *F)
1174     for (llvm::Instruction &I : BB)
1175       if (I.mayThrow())
1176         return;
1177 
1178   F->setDoesNotThrow();
1179 }
1180 
1181 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1182                                                FunctionArgList &Args) {
1183   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1184   QualType ResTy = FD->getReturnType();
1185 
1186   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1187   if (MD && MD->isInstance()) {
1188     if (CGM.getCXXABI().HasThisReturn(GD))
1189       ResTy = MD->getThisType();
1190     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1191       ResTy = CGM.getContext().VoidPtrTy;
1192     CGM.getCXXABI().buildThisParam(*this, Args);
1193   }
1194 
1195   // The base version of an inheriting constructor whose constructed base is a
1196   // virtual base is not passed any arguments (because it doesn't actually call
1197   // the inherited constructor).
1198   bool PassedParams = true;
1199   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1200     if (auto Inherited = CD->getInheritedConstructor())
1201       PassedParams =
1202           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1203 
1204   if (PassedParams) {
1205     for (auto *Param : FD->parameters()) {
1206       Args.push_back(Param);
1207       if (!Param->hasAttr<PassObjectSizeAttr>())
1208         continue;
1209 
1210       auto *Implicit = ImplicitParamDecl::Create(
1211           getContext(), Param->getDeclContext(), Param->getLocation(),
1212           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1213       SizeArguments[Param] = Implicit;
1214       Args.push_back(Implicit);
1215     }
1216   }
1217 
1218   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1219     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1220 
1221   return ResTy;
1222 }
1223 
1224 static bool
1225 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1226                                              const ASTContext &Context) {
1227   QualType T = FD->getReturnType();
1228   // Avoid the optimization for functions that return a record type with a
1229   // trivial destructor or another trivially copyable type.
1230   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1231     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1232       return !ClassDecl->hasTrivialDestructor();
1233   }
1234   return !T.isTriviallyCopyableType(Context);
1235 }
1236 
1237 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1238                                    const CGFunctionInfo &FnInfo) {
1239   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1240   CurGD = GD;
1241 
1242   FunctionArgList Args;
1243   QualType ResTy = BuildFunctionArgList(GD, Args);
1244 
1245   // Check if we should generate debug info for this function.
1246   if (FD->hasAttr<NoDebugAttr>())
1247     DebugInfo = nullptr; // disable debug info indefinitely for this function
1248 
1249   // The function might not have a body if we're generating thunks for a
1250   // function declaration.
1251   SourceRange BodyRange;
1252   if (Stmt *Body = FD->getBody())
1253     BodyRange = Body->getSourceRange();
1254   else
1255     BodyRange = FD->getLocation();
1256   CurEHLocation = BodyRange.getEnd();
1257 
1258   // Use the location of the start of the function to determine where
1259   // the function definition is located. By default use the location
1260   // of the declaration as the location for the subprogram. A function
1261   // may lack a declaration in the source code if it is created by code
1262   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1263   SourceLocation Loc = FD->getLocation();
1264 
1265   // If this is a function specialization then use the pattern body
1266   // as the location for the function.
1267   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1268     if (SpecDecl->hasBody(SpecDecl))
1269       Loc = SpecDecl->getLocation();
1270 
1271   Stmt *Body = FD->getBody();
1272 
1273   // Initialize helper which will detect jumps which can cause invalid lifetime
1274   // markers.
1275   if (Body && ShouldEmitLifetimeMarkers)
1276     Bypasses.Init(Body);
1277 
1278   // Emit the standard function prologue.
1279   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1280 
1281   // Generate the body of the function.
1282   PGO.assignRegionCounters(GD, CurFn);
1283   if (isa<CXXDestructorDecl>(FD))
1284     EmitDestructorBody(Args);
1285   else if (isa<CXXConstructorDecl>(FD))
1286     EmitConstructorBody(Args);
1287   else if (getLangOpts().CUDA &&
1288            !getLangOpts().CUDAIsDevice &&
1289            FD->hasAttr<CUDAGlobalAttr>())
1290     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1291   else if (isa<CXXMethodDecl>(FD) &&
1292            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1293     // The lambda static invoker function is special, because it forwards or
1294     // clones the body of the function call operator (but is actually static).
1295     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1296   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1297              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1298               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1299     // Implicit copy-assignment gets the same special treatment as implicit
1300     // copy-constructors.
1301     emitImplicitAssignmentOperatorBody(Args);
1302   } else if (Body) {
1303     EmitFunctionBody(Body);
1304   } else
1305     llvm_unreachable("no definition for emitted function");
1306 
1307   // C++11 [stmt.return]p2:
1308   //   Flowing off the end of a function [...] results in undefined behavior in
1309   //   a value-returning function.
1310   // C11 6.9.1p12:
1311   //   If the '}' that terminates a function is reached, and the value of the
1312   //   function call is used by the caller, the behavior is undefined.
1313   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1314       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1315     bool ShouldEmitUnreachable =
1316         CGM.getCodeGenOpts().StrictReturn ||
1317         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1318     if (SanOpts.has(SanitizerKind::Return)) {
1319       SanitizerScope SanScope(this);
1320       llvm::Value *IsFalse = Builder.getFalse();
1321       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1322                 SanitizerHandler::MissingReturn,
1323                 EmitCheckSourceLocation(FD->getLocation()), None);
1324     } else if (ShouldEmitUnreachable) {
1325       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1326         EmitTrapCall(llvm::Intrinsic::trap);
1327     }
1328     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1329       Builder.CreateUnreachable();
1330       Builder.ClearInsertionPoint();
1331     }
1332   }
1333 
1334   // Emit the standard function epilogue.
1335   FinishFunction(BodyRange.getEnd());
1336 
1337   // If we haven't marked the function nothrow through other means, do
1338   // a quick pass now to see if we can.
1339   if (!CurFn->doesNotThrow())
1340     TryMarkNoThrow(CurFn);
1341 }
1342 
1343 /// ContainsLabel - Return true if the statement contains a label in it.  If
1344 /// this statement is not executed normally, it not containing a label means
1345 /// that we can just remove the code.
1346 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1347   // Null statement, not a label!
1348   if (!S) return false;
1349 
1350   // If this is a label, we have to emit the code, consider something like:
1351   // if (0) {  ...  foo:  bar(); }  goto foo;
1352   //
1353   // TODO: If anyone cared, we could track __label__'s, since we know that you
1354   // can't jump to one from outside their declared region.
1355   if (isa<LabelStmt>(S))
1356     return true;
1357 
1358   // If this is a case/default statement, and we haven't seen a switch, we have
1359   // to emit the code.
1360   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1361     return true;
1362 
1363   // If this is a switch statement, we want to ignore cases below it.
1364   if (isa<SwitchStmt>(S))
1365     IgnoreCaseStmts = true;
1366 
1367   // Scan subexpressions for verboten labels.
1368   for (const Stmt *SubStmt : S->children())
1369     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1370       return true;
1371 
1372   return false;
1373 }
1374 
1375 /// containsBreak - Return true if the statement contains a break out of it.
1376 /// If the statement (recursively) contains a switch or loop with a break
1377 /// inside of it, this is fine.
1378 bool CodeGenFunction::containsBreak(const Stmt *S) {
1379   // Null statement, not a label!
1380   if (!S) return false;
1381 
1382   // If this is a switch or loop that defines its own break scope, then we can
1383   // include it and anything inside of it.
1384   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1385       isa<ForStmt>(S))
1386     return false;
1387 
1388   if (isa<BreakStmt>(S))
1389     return true;
1390 
1391   // Scan subexpressions for verboten breaks.
1392   for (const Stmt *SubStmt : S->children())
1393     if (containsBreak(SubStmt))
1394       return true;
1395 
1396   return false;
1397 }
1398 
1399 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1400   if (!S) return false;
1401 
1402   // Some statement kinds add a scope and thus never add a decl to the current
1403   // scope. Note, this list is longer than the list of statements that might
1404   // have an unscoped decl nested within them, but this way is conservatively
1405   // correct even if more statement kinds are added.
1406   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1407       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1408       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1409       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1410     return false;
1411 
1412   if (isa<DeclStmt>(S))
1413     return true;
1414 
1415   for (const Stmt *SubStmt : S->children())
1416     if (mightAddDeclToScope(SubStmt))
1417       return true;
1418 
1419   return false;
1420 }
1421 
1422 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1423 /// to a constant, or if it does but contains a label, return false.  If it
1424 /// constant folds return true and set the boolean result in Result.
1425 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1426                                                    bool &ResultBool,
1427                                                    bool AllowLabels) {
1428   llvm::APSInt ResultInt;
1429   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1430     return false;
1431 
1432   ResultBool = ResultInt.getBoolValue();
1433   return true;
1434 }
1435 
1436 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1437 /// to a constant, or if it does but contains a label, return false.  If it
1438 /// constant folds return true and set the folded value.
1439 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1440                                                    llvm::APSInt &ResultInt,
1441                                                    bool AllowLabels) {
1442   // FIXME: Rename and handle conversion of other evaluatable things
1443   // to bool.
1444   Expr::EvalResult Result;
1445   if (!Cond->EvaluateAsInt(Result, getContext()))
1446     return false;  // Not foldable, not integer or not fully evaluatable.
1447 
1448   llvm::APSInt Int = Result.Val.getInt();
1449   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1450     return false;  // Contains a label.
1451 
1452   ResultInt = Int;
1453   return true;
1454 }
1455 
1456 
1457 
1458 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1459 /// statement) to the specified blocks.  Based on the condition, this might try
1460 /// to simplify the codegen of the conditional based on the branch.
1461 ///
1462 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1463                                            llvm::BasicBlock *TrueBlock,
1464                                            llvm::BasicBlock *FalseBlock,
1465                                            uint64_t TrueCount) {
1466   Cond = Cond->IgnoreParens();
1467 
1468   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1469 
1470     // Handle X && Y in a condition.
1471     if (CondBOp->getOpcode() == BO_LAnd) {
1472       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1473       // folded if the case was simple enough.
1474       bool ConstantBool = false;
1475       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1476           ConstantBool) {
1477         // br(1 && X) -> br(X).
1478         incrementProfileCounter(CondBOp);
1479         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1480                                     TrueCount);
1481       }
1482 
1483       // If we have "X && 1", simplify the code to use an uncond branch.
1484       // "X && 0" would have been constant folded to 0.
1485       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1486           ConstantBool) {
1487         // br(X && 1) -> br(X).
1488         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1489                                     TrueCount);
1490       }
1491 
1492       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1493       // want to jump to the FalseBlock.
1494       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1495       // The counter tells us how often we evaluate RHS, and all of TrueCount
1496       // can be propagated to that branch.
1497       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1498 
1499       ConditionalEvaluation eval(*this);
1500       {
1501         ApplyDebugLocation DL(*this, Cond);
1502         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1503         EmitBlock(LHSTrue);
1504       }
1505 
1506       incrementProfileCounter(CondBOp);
1507       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1508 
1509       // Any temporaries created here are conditional.
1510       eval.begin(*this);
1511       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1512       eval.end(*this);
1513 
1514       return;
1515     }
1516 
1517     if (CondBOp->getOpcode() == BO_LOr) {
1518       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1519       // folded if the case was simple enough.
1520       bool ConstantBool = false;
1521       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1522           !ConstantBool) {
1523         // br(0 || X) -> br(X).
1524         incrementProfileCounter(CondBOp);
1525         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1526                                     TrueCount);
1527       }
1528 
1529       // If we have "X || 0", simplify the code to use an uncond branch.
1530       // "X || 1" would have been constant folded to 1.
1531       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1532           !ConstantBool) {
1533         // br(X || 0) -> br(X).
1534         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1535                                     TrueCount);
1536       }
1537 
1538       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1539       // want to jump to the TrueBlock.
1540       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1541       // We have the count for entry to the RHS and for the whole expression
1542       // being true, so we can divy up True count between the short circuit and
1543       // the RHS.
1544       uint64_t LHSCount =
1545           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1546       uint64_t RHSCount = TrueCount - LHSCount;
1547 
1548       ConditionalEvaluation eval(*this);
1549       {
1550         ApplyDebugLocation DL(*this, Cond);
1551         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1552         EmitBlock(LHSFalse);
1553       }
1554 
1555       incrementProfileCounter(CondBOp);
1556       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1557 
1558       // Any temporaries created here are conditional.
1559       eval.begin(*this);
1560       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1561 
1562       eval.end(*this);
1563 
1564       return;
1565     }
1566   }
1567 
1568   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1569     // br(!x, t, f) -> br(x, f, t)
1570     if (CondUOp->getOpcode() == UO_LNot) {
1571       // Negate the count.
1572       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1573       // Negate the condition and swap the destination blocks.
1574       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1575                                   FalseCount);
1576     }
1577   }
1578 
1579   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1580     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1581     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1582     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1583 
1584     ConditionalEvaluation cond(*this);
1585     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1586                          getProfileCount(CondOp));
1587 
1588     // When computing PGO branch weights, we only know the overall count for
1589     // the true block. This code is essentially doing tail duplication of the
1590     // naive code-gen, introducing new edges for which counts are not
1591     // available. Divide the counts proportionally between the LHS and RHS of
1592     // the conditional operator.
1593     uint64_t LHSScaledTrueCount = 0;
1594     if (TrueCount) {
1595       double LHSRatio =
1596           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1597       LHSScaledTrueCount = TrueCount * LHSRatio;
1598     }
1599 
1600     cond.begin(*this);
1601     EmitBlock(LHSBlock);
1602     incrementProfileCounter(CondOp);
1603     {
1604       ApplyDebugLocation DL(*this, Cond);
1605       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1606                            LHSScaledTrueCount);
1607     }
1608     cond.end(*this);
1609 
1610     cond.begin(*this);
1611     EmitBlock(RHSBlock);
1612     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1613                          TrueCount - LHSScaledTrueCount);
1614     cond.end(*this);
1615 
1616     return;
1617   }
1618 
1619   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1620     // Conditional operator handling can give us a throw expression as a
1621     // condition for a case like:
1622     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1623     // Fold this to:
1624     //   br(c, throw x, br(y, t, f))
1625     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1626     return;
1627   }
1628 
1629   // If the branch has a condition wrapped by __builtin_unpredictable,
1630   // create metadata that specifies that the branch is unpredictable.
1631   // Don't bother if not optimizing because that metadata would not be used.
1632   llvm::MDNode *Unpredictable = nullptr;
1633   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1634   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1635     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1636     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1637       llvm::MDBuilder MDHelper(getLLVMContext());
1638       Unpredictable = MDHelper.createUnpredictable();
1639     }
1640   }
1641 
1642   // Create branch weights based on the number of times we get here and the
1643   // number of times the condition should be true.
1644   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1645   llvm::MDNode *Weights =
1646       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1647 
1648   // Emit the code with the fully general case.
1649   llvm::Value *CondV;
1650   {
1651     ApplyDebugLocation DL(*this, Cond);
1652     CondV = EvaluateExprAsBool(Cond);
1653   }
1654   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1655 }
1656 
1657 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1658 /// specified stmt yet.
1659 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1660   CGM.ErrorUnsupported(S, Type);
1661 }
1662 
1663 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1664 /// variable-length array whose elements have a non-zero bit-pattern.
1665 ///
1666 /// \param baseType the inner-most element type of the array
1667 /// \param src - a char* pointing to the bit-pattern for a single
1668 /// base element of the array
1669 /// \param sizeInChars - the total size of the VLA, in chars
1670 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1671                                Address dest, Address src,
1672                                llvm::Value *sizeInChars) {
1673   CGBuilderTy &Builder = CGF.Builder;
1674 
1675   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1676   llvm::Value *baseSizeInChars
1677     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1678 
1679   Address begin =
1680     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1681   llvm::Value *end =
1682     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1683 
1684   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1685   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1686   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1687 
1688   // Make a loop over the VLA.  C99 guarantees that the VLA element
1689   // count must be nonzero.
1690   CGF.EmitBlock(loopBB);
1691 
1692   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1693   cur->addIncoming(begin.getPointer(), originBB);
1694 
1695   CharUnits curAlign =
1696     dest.getAlignment().alignmentOfArrayElement(baseSize);
1697 
1698   // memcpy the individual element bit-pattern.
1699   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1700                        /*volatile*/ false);
1701 
1702   // Go to the next element.
1703   llvm::Value *next =
1704     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1705 
1706   // Leave if that's the end of the VLA.
1707   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1708   Builder.CreateCondBr(done, contBB, loopBB);
1709   cur->addIncoming(next, loopBB);
1710 
1711   CGF.EmitBlock(contBB);
1712 }
1713 
1714 void
1715 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1716   // Ignore empty classes in C++.
1717   if (getLangOpts().CPlusPlus) {
1718     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1719       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1720         return;
1721     }
1722   }
1723 
1724   // Cast the dest ptr to the appropriate i8 pointer type.
1725   if (DestPtr.getElementType() != Int8Ty)
1726     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1727 
1728   // Get size and alignment info for this aggregate.
1729   CharUnits size = getContext().getTypeSizeInChars(Ty);
1730 
1731   llvm::Value *SizeVal;
1732   const VariableArrayType *vla;
1733 
1734   // Don't bother emitting a zero-byte memset.
1735   if (size.isZero()) {
1736     // But note that getTypeInfo returns 0 for a VLA.
1737     if (const VariableArrayType *vlaType =
1738           dyn_cast_or_null<VariableArrayType>(
1739                                           getContext().getAsArrayType(Ty))) {
1740       auto VlaSize = getVLASize(vlaType);
1741       SizeVal = VlaSize.NumElts;
1742       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1743       if (!eltSize.isOne())
1744         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1745       vla = vlaType;
1746     } else {
1747       return;
1748     }
1749   } else {
1750     SizeVal = CGM.getSize(size);
1751     vla = nullptr;
1752   }
1753 
1754   // If the type contains a pointer to data member we can't memset it to zero.
1755   // Instead, create a null constant and copy it to the destination.
1756   // TODO: there are other patterns besides zero that we can usefully memset,
1757   // like -1, which happens to be the pattern used by member-pointers.
1758   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1759     // For a VLA, emit a single element, then splat that over the VLA.
1760     if (vla) Ty = getContext().getBaseElementType(vla);
1761 
1762     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1763 
1764     llvm::GlobalVariable *NullVariable =
1765       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1766                                /*isConstant=*/true,
1767                                llvm::GlobalVariable::PrivateLinkage,
1768                                NullConstant, Twine());
1769     CharUnits NullAlign = DestPtr.getAlignment();
1770     NullVariable->setAlignment(NullAlign.getAsAlign());
1771     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1772                    NullAlign);
1773 
1774     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1775 
1776     // Get and call the appropriate llvm.memcpy overload.
1777     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1778     return;
1779   }
1780 
1781   // Otherwise, just memset the whole thing to zero.  This is legal
1782   // because in LLVM, all default initializers (other than the ones we just
1783   // handled above) are guaranteed to have a bit pattern of all zeros.
1784   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1785 }
1786 
1787 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1788   // Make sure that there is a block for the indirect goto.
1789   if (!IndirectBranch)
1790     GetIndirectGotoBlock();
1791 
1792   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1793 
1794   // Make sure the indirect branch includes all of the address-taken blocks.
1795   IndirectBranch->addDestination(BB);
1796   return llvm::BlockAddress::get(CurFn, BB);
1797 }
1798 
1799 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1800   // If we already made the indirect branch for indirect goto, return its block.
1801   if (IndirectBranch) return IndirectBranch->getParent();
1802 
1803   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1804 
1805   // Create the PHI node that indirect gotos will add entries to.
1806   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1807                                               "indirect.goto.dest");
1808 
1809   // Create the indirect branch instruction.
1810   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1811   return IndirectBranch->getParent();
1812 }
1813 
1814 /// Computes the length of an array in elements, as well as the base
1815 /// element type and a properly-typed first element pointer.
1816 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1817                                               QualType &baseType,
1818                                               Address &addr) {
1819   const ArrayType *arrayType = origArrayType;
1820 
1821   // If it's a VLA, we have to load the stored size.  Note that
1822   // this is the size of the VLA in bytes, not its size in elements.
1823   llvm::Value *numVLAElements = nullptr;
1824   if (isa<VariableArrayType>(arrayType)) {
1825     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1826 
1827     // Walk into all VLAs.  This doesn't require changes to addr,
1828     // which has type T* where T is the first non-VLA element type.
1829     do {
1830       QualType elementType = arrayType->getElementType();
1831       arrayType = getContext().getAsArrayType(elementType);
1832 
1833       // If we only have VLA components, 'addr' requires no adjustment.
1834       if (!arrayType) {
1835         baseType = elementType;
1836         return numVLAElements;
1837       }
1838     } while (isa<VariableArrayType>(arrayType));
1839 
1840     // We get out here only if we find a constant array type
1841     // inside the VLA.
1842   }
1843 
1844   // We have some number of constant-length arrays, so addr should
1845   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1846   // down to the first element of addr.
1847   SmallVector<llvm::Value*, 8> gepIndices;
1848 
1849   // GEP down to the array type.
1850   llvm::ConstantInt *zero = Builder.getInt32(0);
1851   gepIndices.push_back(zero);
1852 
1853   uint64_t countFromCLAs = 1;
1854   QualType eltType;
1855 
1856   llvm::ArrayType *llvmArrayType =
1857     dyn_cast<llvm::ArrayType>(addr.getElementType());
1858   while (llvmArrayType) {
1859     assert(isa<ConstantArrayType>(arrayType));
1860     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1861              == llvmArrayType->getNumElements());
1862 
1863     gepIndices.push_back(zero);
1864     countFromCLAs *= llvmArrayType->getNumElements();
1865     eltType = arrayType->getElementType();
1866 
1867     llvmArrayType =
1868       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1869     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1870     assert((!llvmArrayType || arrayType) &&
1871            "LLVM and Clang types are out-of-synch");
1872   }
1873 
1874   if (arrayType) {
1875     // From this point onwards, the Clang array type has been emitted
1876     // as some other type (probably a packed struct). Compute the array
1877     // size, and just emit the 'begin' expression as a bitcast.
1878     while (arrayType) {
1879       countFromCLAs *=
1880           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1881       eltType = arrayType->getElementType();
1882       arrayType = getContext().getAsArrayType(eltType);
1883     }
1884 
1885     llvm::Type *baseType = ConvertType(eltType);
1886     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1887   } else {
1888     // Create the actual GEP.
1889     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1890                                              gepIndices, "array.begin"),
1891                    addr.getAlignment());
1892   }
1893 
1894   baseType = eltType;
1895 
1896   llvm::Value *numElements
1897     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1898 
1899   // If we had any VLA dimensions, factor them in.
1900   if (numVLAElements)
1901     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1902 
1903   return numElements;
1904 }
1905 
1906 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1907   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1908   assert(vla && "type was not a variable array type!");
1909   return getVLASize(vla);
1910 }
1911 
1912 CodeGenFunction::VlaSizePair
1913 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1914   // The number of elements so far; always size_t.
1915   llvm::Value *numElements = nullptr;
1916 
1917   QualType elementType;
1918   do {
1919     elementType = type->getElementType();
1920     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1921     assert(vlaSize && "no size for VLA!");
1922     assert(vlaSize->getType() == SizeTy);
1923 
1924     if (!numElements) {
1925       numElements = vlaSize;
1926     } else {
1927       // It's undefined behavior if this wraps around, so mark it that way.
1928       // FIXME: Teach -fsanitize=undefined to trap this.
1929       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1930     }
1931   } while ((type = getContext().getAsVariableArrayType(elementType)));
1932 
1933   return { numElements, elementType };
1934 }
1935 
1936 CodeGenFunction::VlaSizePair
1937 CodeGenFunction::getVLAElements1D(QualType type) {
1938   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1939   assert(vla && "type was not a variable array type!");
1940   return getVLAElements1D(vla);
1941 }
1942 
1943 CodeGenFunction::VlaSizePair
1944 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1945   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1946   assert(VlaSize && "no size for VLA!");
1947   assert(VlaSize->getType() == SizeTy);
1948   return { VlaSize, Vla->getElementType() };
1949 }
1950 
1951 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1952   assert(type->isVariablyModifiedType() &&
1953          "Must pass variably modified type to EmitVLASizes!");
1954 
1955   EnsureInsertPoint();
1956 
1957   // We're going to walk down into the type and look for VLA
1958   // expressions.
1959   do {
1960     assert(type->isVariablyModifiedType());
1961 
1962     const Type *ty = type.getTypePtr();
1963     switch (ty->getTypeClass()) {
1964 
1965 #define TYPE(Class, Base)
1966 #define ABSTRACT_TYPE(Class, Base)
1967 #define NON_CANONICAL_TYPE(Class, Base)
1968 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1969 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1970 #include "clang/AST/TypeNodes.inc"
1971       llvm_unreachable("unexpected dependent type!");
1972 
1973     // These types are never variably-modified.
1974     case Type::Builtin:
1975     case Type::Complex:
1976     case Type::Vector:
1977     case Type::ExtVector:
1978     case Type::Record:
1979     case Type::Enum:
1980     case Type::Elaborated:
1981     case Type::TemplateSpecialization:
1982     case Type::ObjCTypeParam:
1983     case Type::ObjCObject:
1984     case Type::ObjCInterface:
1985     case Type::ObjCObjectPointer:
1986       llvm_unreachable("type class is never variably-modified!");
1987 
1988     case Type::Adjusted:
1989       type = cast<AdjustedType>(ty)->getAdjustedType();
1990       break;
1991 
1992     case Type::Decayed:
1993       type = cast<DecayedType>(ty)->getPointeeType();
1994       break;
1995 
1996     case Type::Pointer:
1997       type = cast<PointerType>(ty)->getPointeeType();
1998       break;
1999 
2000     case Type::BlockPointer:
2001       type = cast<BlockPointerType>(ty)->getPointeeType();
2002       break;
2003 
2004     case Type::LValueReference:
2005     case Type::RValueReference:
2006       type = cast<ReferenceType>(ty)->getPointeeType();
2007       break;
2008 
2009     case Type::MemberPointer:
2010       type = cast<MemberPointerType>(ty)->getPointeeType();
2011       break;
2012 
2013     case Type::ConstantArray:
2014     case Type::IncompleteArray:
2015       // Losing element qualification here is fine.
2016       type = cast<ArrayType>(ty)->getElementType();
2017       break;
2018 
2019     case Type::VariableArray: {
2020       // Losing element qualification here is fine.
2021       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2022 
2023       // Unknown size indication requires no size computation.
2024       // Otherwise, evaluate and record it.
2025       if (const Expr *size = vat->getSizeExpr()) {
2026         // It's possible that we might have emitted this already,
2027         // e.g. with a typedef and a pointer to it.
2028         llvm::Value *&entry = VLASizeMap[size];
2029         if (!entry) {
2030           llvm::Value *Size = EmitScalarExpr(size);
2031 
2032           // C11 6.7.6.2p5:
2033           //   If the size is an expression that is not an integer constant
2034           //   expression [...] each time it is evaluated it shall have a value
2035           //   greater than zero.
2036           if (SanOpts.has(SanitizerKind::VLABound) &&
2037               size->getType()->isSignedIntegerType()) {
2038             SanitizerScope SanScope(this);
2039             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2040             llvm::Constant *StaticArgs[] = {
2041                 EmitCheckSourceLocation(size->getBeginLoc()),
2042                 EmitCheckTypeDescriptor(size->getType())};
2043             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2044                                      SanitizerKind::VLABound),
2045                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2046           }
2047 
2048           // Always zexting here would be wrong if it weren't
2049           // undefined behavior to have a negative bound.
2050           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2051         }
2052       }
2053       type = vat->getElementType();
2054       break;
2055     }
2056 
2057     case Type::FunctionProto:
2058     case Type::FunctionNoProto:
2059       type = cast<FunctionType>(ty)->getReturnType();
2060       break;
2061 
2062     case Type::Paren:
2063     case Type::TypeOf:
2064     case Type::UnaryTransform:
2065     case Type::Attributed:
2066     case Type::SubstTemplateTypeParm:
2067     case Type::PackExpansion:
2068     case Type::MacroQualified:
2069       // Keep walking after single level desugaring.
2070       type = type.getSingleStepDesugaredType(getContext());
2071       break;
2072 
2073     case Type::Typedef:
2074     case Type::Decltype:
2075     case Type::Auto:
2076     case Type::DeducedTemplateSpecialization:
2077       // Stop walking: nothing to do.
2078       return;
2079 
2080     case Type::TypeOfExpr:
2081       // Stop walking: emit typeof expression.
2082       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2083       return;
2084 
2085     case Type::Atomic:
2086       type = cast<AtomicType>(ty)->getValueType();
2087       break;
2088 
2089     case Type::Pipe:
2090       type = cast<PipeType>(ty)->getElementType();
2091       break;
2092     }
2093   } while (type->isVariablyModifiedType());
2094 }
2095 
2096 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2097   if (getContext().getBuiltinVaListType()->isArrayType())
2098     return EmitPointerWithAlignment(E);
2099   return EmitLValue(E).getAddress(*this);
2100 }
2101 
2102 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2103   return EmitLValue(E).getAddress(*this);
2104 }
2105 
2106 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2107                                               const APValue &Init) {
2108   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2109   if (CGDebugInfo *Dbg = getDebugInfo())
2110     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2111       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2112 }
2113 
2114 CodeGenFunction::PeepholeProtection
2115 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2116   // At the moment, the only aggressive peephole we do in IR gen
2117   // is trunc(zext) folding, but if we add more, we can easily
2118   // extend this protection.
2119 
2120   if (!rvalue.isScalar()) return PeepholeProtection();
2121   llvm::Value *value = rvalue.getScalarVal();
2122   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2123 
2124   // Just make an extra bitcast.
2125   assert(HaveInsertPoint());
2126   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2127                                                   Builder.GetInsertBlock());
2128 
2129   PeepholeProtection protection;
2130   protection.Inst = inst;
2131   return protection;
2132 }
2133 
2134 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2135   if (!protection.Inst) return;
2136 
2137   // In theory, we could try to duplicate the peepholes now, but whatever.
2138   protection.Inst->eraseFromParent();
2139 }
2140 
2141 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2142                                               QualType Ty, SourceLocation Loc,
2143                                               SourceLocation AssumptionLoc,
2144                                               llvm::Value *Alignment,
2145                                               llvm::Value *OffsetValue) {
2146   llvm::Value *TheCheck;
2147   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2148       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2149   if (SanOpts.has(SanitizerKind::Alignment)) {
2150     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2151                                  OffsetValue, TheCheck, Assumption);
2152   }
2153 }
2154 
2155 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2156                                               const Expr *E,
2157                                               SourceLocation AssumptionLoc,
2158                                               llvm::Value *Alignment,
2159                                               llvm::Value *OffsetValue) {
2160   if (auto *CE = dyn_cast<CastExpr>(E))
2161     E = CE->getSubExprAsWritten();
2162   QualType Ty = E->getType();
2163   SourceLocation Loc = E->getExprLoc();
2164 
2165   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2166                           OffsetValue);
2167 }
2168 
2169 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2170                                                  llvm::Value *AnnotatedVal,
2171                                                  StringRef AnnotationStr,
2172                                                  SourceLocation Location) {
2173   llvm::Value *Args[4] = {
2174     AnnotatedVal,
2175     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2176     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2177     CGM.EmitAnnotationLineNo(Location)
2178   };
2179   return Builder.CreateCall(AnnotationFn, Args);
2180 }
2181 
2182 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2183   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2184   // FIXME We create a new bitcast for every annotation because that's what
2185   // llvm-gcc was doing.
2186   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2187     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2188                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2189                        I->getAnnotation(), D->getLocation());
2190 }
2191 
2192 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2193                                               Address Addr) {
2194   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2195   llvm::Value *V = Addr.getPointer();
2196   llvm::Type *VTy = V->getType();
2197   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2198                                     CGM.Int8PtrTy);
2199 
2200   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2201     // FIXME Always emit the cast inst so we can differentiate between
2202     // annotation on the first field of a struct and annotation on the struct
2203     // itself.
2204     if (VTy != CGM.Int8PtrTy)
2205       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2206     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2207     V = Builder.CreateBitCast(V, VTy);
2208   }
2209 
2210   return Address(V, Addr.getAlignment());
2211 }
2212 
2213 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2214 
2215 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2216     : CGF(CGF) {
2217   assert(!CGF->IsSanitizerScope);
2218   CGF->IsSanitizerScope = true;
2219 }
2220 
2221 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2222   CGF->IsSanitizerScope = false;
2223 }
2224 
2225 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2226                                    const llvm::Twine &Name,
2227                                    llvm::BasicBlock *BB,
2228                                    llvm::BasicBlock::iterator InsertPt) const {
2229   LoopStack.InsertHelper(I);
2230   if (IsSanitizerScope)
2231     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2232 }
2233 
2234 void CGBuilderInserter::InsertHelper(
2235     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2236     llvm::BasicBlock::iterator InsertPt) const {
2237   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2238   if (CGF)
2239     CGF->InsertHelper(I, Name, BB, InsertPt);
2240 }
2241 
2242 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2243                                 CodeGenModule &CGM, const FunctionDecl *FD,
2244                                 std::string &FirstMissing) {
2245   // If there aren't any required features listed then go ahead and return.
2246   if (ReqFeatures.empty())
2247     return false;
2248 
2249   // Now build up the set of caller features and verify that all the required
2250   // features are there.
2251   llvm::StringMap<bool> CallerFeatureMap;
2252   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2253 
2254   // If we have at least one of the features in the feature list return
2255   // true, otherwise return false.
2256   return std::all_of(
2257       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2258         SmallVector<StringRef, 1> OrFeatures;
2259         Feature.split(OrFeatures, '|');
2260         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2261           if (!CallerFeatureMap.lookup(Feature)) {
2262             FirstMissing = Feature.str();
2263             return false;
2264           }
2265           return true;
2266         });
2267       });
2268 }
2269 
2270 // Emits an error if we don't have a valid set of target features for the
2271 // called function.
2272 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2273                                           const FunctionDecl *TargetDecl) {
2274   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2275 }
2276 
2277 // Emits an error if we don't have a valid set of target features for the
2278 // called function.
2279 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2280                                           const FunctionDecl *TargetDecl) {
2281   // Early exit if this is an indirect call.
2282   if (!TargetDecl)
2283     return;
2284 
2285   // Get the current enclosing function if it exists. If it doesn't
2286   // we can't check the target features anyhow.
2287   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2288   if (!FD)
2289     return;
2290 
2291   // Grab the required features for the call. For a builtin this is listed in
2292   // the td file with the default cpu, for an always_inline function this is any
2293   // listed cpu and any listed features.
2294   unsigned BuiltinID = TargetDecl->getBuiltinID();
2295   std::string MissingFeature;
2296   if (BuiltinID) {
2297     SmallVector<StringRef, 1> ReqFeatures;
2298     const char *FeatureList =
2299         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2300     // Return if the builtin doesn't have any required features.
2301     if (!FeatureList || StringRef(FeatureList) == "")
2302       return;
2303     StringRef(FeatureList).split(ReqFeatures, ',');
2304     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2305       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2306           << TargetDecl->getDeclName()
2307           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2308 
2309   } else if (!TargetDecl->isMultiVersion() &&
2310              TargetDecl->hasAttr<TargetAttr>()) {
2311     // Get the required features for the callee.
2312 
2313     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2314     ParsedTargetAttr ParsedAttr =
2315         CGM.getContext().filterFunctionTargetAttrs(TD);
2316 
2317     SmallVector<StringRef, 1> ReqFeatures;
2318     llvm::StringMap<bool> CalleeFeatureMap;
2319     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap,
2320                                            GlobalDecl(TargetDecl));
2321 
2322     for (const auto &F : ParsedAttr.Features) {
2323       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2324         ReqFeatures.push_back(StringRef(F).substr(1));
2325     }
2326 
2327     for (const auto &F : CalleeFeatureMap) {
2328       // Only positive features are "required".
2329       if (F.getValue())
2330         ReqFeatures.push_back(F.getKey());
2331     }
2332     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2333       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2334           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2335   }
2336 }
2337 
2338 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2339   if (!CGM.getCodeGenOpts().SanitizeStats)
2340     return;
2341 
2342   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2343   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2344   CGM.getSanStats().create(IRB, SSK);
2345 }
2346 
2347 llvm::Value *
2348 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2349   llvm::Value *Condition = nullptr;
2350 
2351   if (!RO.Conditions.Architecture.empty())
2352     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2353 
2354   if (!RO.Conditions.Features.empty()) {
2355     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2356     Condition =
2357         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2358   }
2359   return Condition;
2360 }
2361 
2362 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2363                                              llvm::Function *Resolver,
2364                                              CGBuilderTy &Builder,
2365                                              llvm::Function *FuncToReturn,
2366                                              bool SupportsIFunc) {
2367   if (SupportsIFunc) {
2368     Builder.CreateRet(FuncToReturn);
2369     return;
2370   }
2371 
2372   llvm::SmallVector<llvm::Value *, 10> Args;
2373   llvm::for_each(Resolver->args(),
2374                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2375 
2376   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2377   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2378 
2379   if (Resolver->getReturnType()->isVoidTy())
2380     Builder.CreateRetVoid();
2381   else
2382     Builder.CreateRet(Result);
2383 }
2384 
2385 void CodeGenFunction::EmitMultiVersionResolver(
2386     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2387   assert(getContext().getTargetInfo().getTriple().isX86() &&
2388          "Only implemented for x86 targets");
2389 
2390   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2391 
2392   // Main function's basic block.
2393   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2394   Builder.SetInsertPoint(CurBlock);
2395   EmitX86CpuInit();
2396 
2397   for (const MultiVersionResolverOption &RO : Options) {
2398     Builder.SetInsertPoint(CurBlock);
2399     llvm::Value *Condition = FormResolverCondition(RO);
2400 
2401     // The 'default' or 'generic' case.
2402     if (!Condition) {
2403       assert(&RO == Options.end() - 1 &&
2404              "Default or Generic case must be last");
2405       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2406                                        SupportsIFunc);
2407       return;
2408     }
2409 
2410     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2411     CGBuilderTy RetBuilder(*this, RetBlock);
2412     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2413                                      SupportsIFunc);
2414     CurBlock = createBasicBlock("resolver_else", Resolver);
2415     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2416   }
2417 
2418   // If no generic/default, emit an unreachable.
2419   Builder.SetInsertPoint(CurBlock);
2420   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2421   TrapCall->setDoesNotReturn();
2422   TrapCall->setDoesNotThrow();
2423   Builder.CreateUnreachable();
2424   Builder.ClearInsertionPoint();
2425 }
2426 
2427 // Loc - where the diagnostic will point, where in the source code this
2428 //  alignment has failed.
2429 // SecondaryLoc - if present (will be present if sufficiently different from
2430 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2431 //  It should be the location where the __attribute__((assume_aligned))
2432 //  was written e.g.
2433 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2434     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2435     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2436     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2437     llvm::Instruction *Assumption) {
2438   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2439          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2440              llvm::Intrinsic::getDeclaration(
2441                  Builder.GetInsertBlock()->getParent()->getParent(),
2442                  llvm::Intrinsic::assume) &&
2443          "Assumption should be a call to llvm.assume().");
2444   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2445          "Assumption should be the last instruction of the basic block, "
2446          "since the basic block is still being generated.");
2447 
2448   if (!SanOpts.has(SanitizerKind::Alignment))
2449     return;
2450 
2451   // Don't check pointers to volatile data. The behavior here is implementation-
2452   // defined.
2453   if (Ty->getPointeeType().isVolatileQualified())
2454     return;
2455 
2456   // We need to temorairly remove the assumption so we can insert the
2457   // sanitizer check before it, else the check will be dropped by optimizations.
2458   Assumption->removeFromParent();
2459 
2460   {
2461     SanitizerScope SanScope(this);
2462 
2463     if (!OffsetValue)
2464       OffsetValue = Builder.getInt1(0); // no offset.
2465 
2466     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2467                                     EmitCheckSourceLocation(SecondaryLoc),
2468                                     EmitCheckTypeDescriptor(Ty)};
2469     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2470                                   EmitCheckValue(Alignment),
2471                                   EmitCheckValue(OffsetValue)};
2472     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2473               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2474   }
2475 
2476   // We are now in the (new, empty) "cont" basic block.
2477   // Reintroduce the assumption.
2478   Builder.Insert(Assumption);
2479   // FIXME: Assumption still has it's original basic block as it's Parent.
2480 }
2481 
2482 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2483   if (CGDebugInfo *DI = getDebugInfo())
2484     return DI->SourceLocToDebugLoc(Location);
2485 
2486   return llvm::DebugLoc();
2487 }
2488