1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/IR/Operator.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
39     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
40       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
41               CGBuilderInserterTy(this)),
42       CurFn(nullptr), CapturedStmtInfo(nullptr),
43       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
44       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
45       IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr),
46       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
47       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
48       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
49       DebugInfo(CGM.getModuleDebugInfo()),
50       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
51       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
52       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
53       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
54       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
55       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
56       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
57       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
58       TerminateHandler(nullptr), TrapBB(nullptr) {
59   if (!suppressNewContext)
60     CGM.getCXXABI().getMangleContext().startNewFunction();
61 
62   llvm::FastMathFlags FMF;
63   if (CGM.getLangOpts().FastMath)
64     FMF.setUnsafeAlgebra();
65   if (CGM.getLangOpts().FiniteMathOnly) {
66     FMF.setNoNaNs();
67     FMF.setNoInfs();
68   }
69   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
70     FMF.setNoNaNs();
71   }
72   if (CGM.getCodeGenOpts().NoSignedZeros) {
73     FMF.setNoSignedZeros();
74   }
75   if (CGM.getCodeGenOpts().ReciprocalMath) {
76     FMF.setAllowReciprocal();
77   }
78   Builder.SetFastMathFlags(FMF);
79 }
80 
81 CodeGenFunction::~CodeGenFunction() {
82   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
83 
84   // If there are any unclaimed block infos, go ahead and destroy them
85   // now.  This can happen if IR-gen gets clever and skips evaluating
86   // something.
87   if (FirstBlockInfo)
88     destroyBlockInfos(FirstBlockInfo);
89 
90   if (getLangOpts().OpenMP) {
91     CGM.getOpenMPRuntime().functionFinished(*this);
92   }
93 }
94 
95 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
96   CharUnits Alignment;
97   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
98     Alignment = getContext().getTypeAlignInChars(T);
99     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
100     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
101         !getContext().isAlignmentRequired(T))
102       Alignment = CharUnits::fromQuantity(MaxAlign);
103   }
104   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
105 }
106 
107 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
108   return CGM.getTypes().ConvertTypeForMem(T);
109 }
110 
111 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
112   return CGM.getTypes().ConvertType(T);
113 }
114 
115 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
116   type = type.getCanonicalType();
117   while (true) {
118     switch (type->getTypeClass()) {
119 #define TYPE(name, parent)
120 #define ABSTRACT_TYPE(name, parent)
121 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
122 #define DEPENDENT_TYPE(name, parent) case Type::name:
123 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
124 #include "clang/AST/TypeNodes.def"
125       llvm_unreachable("non-canonical or dependent type in IR-generation");
126 
127     case Type::Auto:
128       llvm_unreachable("undeduced auto type in IR-generation");
129 
130     // Various scalar types.
131     case Type::Builtin:
132     case Type::Pointer:
133     case Type::BlockPointer:
134     case Type::LValueReference:
135     case Type::RValueReference:
136     case Type::MemberPointer:
137     case Type::Vector:
138     case Type::ExtVector:
139     case Type::FunctionProto:
140     case Type::FunctionNoProto:
141     case Type::Enum:
142     case Type::ObjCObjectPointer:
143       return TEK_Scalar;
144 
145     // Complexes.
146     case Type::Complex:
147       return TEK_Complex;
148 
149     // Arrays, records, and Objective-C objects.
150     case Type::ConstantArray:
151     case Type::IncompleteArray:
152     case Type::VariableArray:
153     case Type::Record:
154     case Type::ObjCObject:
155     case Type::ObjCInterface:
156       return TEK_Aggregate;
157 
158     // We operate on atomic values according to their underlying type.
159     case Type::Atomic:
160       type = cast<AtomicType>(type)->getValueType();
161       continue;
162     }
163     llvm_unreachable("unknown type kind!");
164   }
165 }
166 
167 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
168   // For cleanliness, we try to avoid emitting the return block for
169   // simple cases.
170   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
171 
172   if (CurBB) {
173     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
174 
175     // We have a valid insert point, reuse it if it is empty or there are no
176     // explicit jumps to the return block.
177     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
178       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
179       delete ReturnBlock.getBlock();
180     } else
181       EmitBlock(ReturnBlock.getBlock());
182     return llvm::DebugLoc();
183   }
184 
185   // Otherwise, if the return block is the target of a single direct
186   // branch then we can just put the code in that block instead. This
187   // cleans up functions which started with a unified return block.
188   if (ReturnBlock.getBlock()->hasOneUse()) {
189     llvm::BranchInst *BI =
190       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
191     if (BI && BI->isUnconditional() &&
192         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
193       // Record/return the DebugLoc of the simple 'return' expression to be used
194       // later by the actual 'ret' instruction.
195       llvm::DebugLoc Loc = BI->getDebugLoc();
196       Builder.SetInsertPoint(BI->getParent());
197       BI->eraseFromParent();
198       delete ReturnBlock.getBlock();
199       return Loc;
200     }
201   }
202 
203   // FIXME: We are at an unreachable point, there is no reason to emit the block
204   // unless it has uses. However, we still need a place to put the debug
205   // region.end for now.
206 
207   EmitBlock(ReturnBlock.getBlock());
208   return llvm::DebugLoc();
209 }
210 
211 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
212   if (!BB) return;
213   if (!BB->use_empty())
214     return CGF.CurFn->getBasicBlockList().push_back(BB);
215   delete BB;
216 }
217 
218 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
219   assert(BreakContinueStack.empty() &&
220          "mismatched push/pop in break/continue stack!");
221 
222   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
223     && NumSimpleReturnExprs == NumReturnExprs
224     && ReturnBlock.getBlock()->use_empty();
225   // Usually the return expression is evaluated before the cleanup
226   // code.  If the function contains only a simple return statement,
227   // such as a constant, the location before the cleanup code becomes
228   // the last useful breakpoint in the function, because the simple
229   // return expression will be evaluated after the cleanup code. To be
230   // safe, set the debug location for cleanup code to the location of
231   // the return statement.  Otherwise the cleanup code should be at the
232   // end of the function's lexical scope.
233   //
234   // If there are multiple branches to the return block, the branch
235   // instructions will get the location of the return statements and
236   // all will be fine.
237   if (CGDebugInfo *DI = getDebugInfo()) {
238     if (OnlySimpleReturnStmts)
239       DI->EmitLocation(Builder, LastStopPoint);
240     else
241       DI->EmitLocation(Builder, EndLoc);
242   }
243 
244   // Pop any cleanups that might have been associated with the
245   // parameters.  Do this in whatever block we're currently in; it's
246   // important to do this before we enter the return block or return
247   // edges will be *really* confused.
248   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
249   bool HasOnlyLifetimeMarkers =
250       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
251   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
252   if (HasCleanups) {
253     // Make sure the line table doesn't jump back into the body for
254     // the ret after it's been at EndLoc.
255     if (CGDebugInfo *DI = getDebugInfo())
256       if (OnlySimpleReturnStmts)
257         DI->EmitLocation(Builder, EndLoc);
258 
259     PopCleanupBlocks(PrologueCleanupDepth);
260   }
261 
262   // Emit function epilog (to return).
263   llvm::DebugLoc Loc = EmitReturnBlock();
264 
265   if (ShouldInstrumentFunction())
266     EmitFunctionInstrumentation("__cyg_profile_func_exit");
267 
268   // Emit debug descriptor for function end.
269   if (CGDebugInfo *DI = getDebugInfo())
270     DI->EmitFunctionEnd(Builder);
271 
272   // Reset the debug location to that of the simple 'return' expression, if any
273   // rather than that of the end of the function's scope '}'.
274   ApplyDebugLocation AL(*this, Loc);
275   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
276   EmitEndEHSpec(CurCodeDecl);
277 
278   assert(EHStack.empty() &&
279          "did not remove all scopes from cleanup stack!");
280 
281   // If someone did an indirect goto, emit the indirect goto block at the end of
282   // the function.
283   if (IndirectBranch) {
284     EmitBlock(IndirectBranch->getParent());
285     Builder.ClearInsertionPoint();
286   }
287 
288   // If some of our locals escaped, insert a call to llvm.localescape in the
289   // entry block.
290   if (!EscapedLocals.empty()) {
291     // Invert the map from local to index into a simple vector. There should be
292     // no holes.
293     SmallVector<llvm::Value *, 4> EscapeArgs;
294     EscapeArgs.resize(EscapedLocals.size());
295     for (auto &Pair : EscapedLocals)
296       EscapeArgs[Pair.second] = Pair.first;
297     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
298         &CGM.getModule(), llvm::Intrinsic::localescape);
299     CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
300   }
301 
302   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
303   llvm::Instruction *Ptr = AllocaInsertPt;
304   AllocaInsertPt = nullptr;
305   Ptr->eraseFromParent();
306 
307   // If someone took the address of a label but never did an indirect goto, we
308   // made a zero entry PHI node, which is illegal, zap it now.
309   if (IndirectBranch) {
310     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
311     if (PN->getNumIncomingValues() == 0) {
312       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
313       PN->eraseFromParent();
314     }
315   }
316 
317   EmitIfUsed(*this, EHResumeBlock);
318   EmitIfUsed(*this, TerminateLandingPad);
319   EmitIfUsed(*this, TerminateHandler);
320   EmitIfUsed(*this, UnreachableBlock);
321 
322   if (CGM.getCodeGenOpts().EmitDeclMetadata)
323     EmitDeclMetadata();
324 
325   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
326            I = DeferredReplacements.begin(),
327            E = DeferredReplacements.end();
328        I != E; ++I) {
329     I->first->replaceAllUsesWith(I->second);
330     I->first->eraseFromParent();
331   }
332 }
333 
334 /// ShouldInstrumentFunction - Return true if the current function should be
335 /// instrumented with __cyg_profile_func_* calls
336 bool CodeGenFunction::ShouldInstrumentFunction() {
337   if (!CGM.getCodeGenOpts().InstrumentFunctions)
338     return false;
339   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
340     return false;
341   return true;
342 }
343 
344 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
345 /// instrumentation function with the current function and the call site, if
346 /// function instrumentation is enabled.
347 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
348   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
349   llvm::PointerType *PointerTy = Int8PtrTy;
350   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
351   llvm::FunctionType *FunctionTy =
352     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
353 
354   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
355   llvm::CallInst *CallSite = Builder.CreateCall(
356     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
357     llvm::ConstantInt::get(Int32Ty, 0),
358     "callsite");
359 
360   llvm::Value *args[] = {
361     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
362     CallSite
363   };
364 
365   EmitNounwindRuntimeCall(F, args);
366 }
367 
368 void CodeGenFunction::EmitMCountInstrumentation() {
369   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
370 
371   llvm::Constant *MCountFn =
372     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
373   EmitNounwindRuntimeCall(MCountFn);
374 }
375 
376 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
377 // information in the program executable. The argument information stored
378 // includes the argument name, its type, the address and access qualifiers used.
379 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
380                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
381                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
382                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
383   // Create MDNodes that represent the kernel arg metadata.
384   // Each MDNode is a list in the form of "key", N number of values which is
385   // the same number of values as their are kernel arguments.
386 
387   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
388 
389   // MDNode for the kernel argument address space qualifiers.
390   SmallVector<llvm::Metadata *, 8> addressQuals;
391   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
392 
393   // MDNode for the kernel argument access qualifiers (images only).
394   SmallVector<llvm::Metadata *, 8> accessQuals;
395   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
396 
397   // MDNode for the kernel argument type names.
398   SmallVector<llvm::Metadata *, 8> argTypeNames;
399   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
400 
401   // MDNode for the kernel argument base type names.
402   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
403   argBaseTypeNames.push_back(
404       llvm::MDString::get(Context, "kernel_arg_base_type"));
405 
406   // MDNode for the kernel argument type qualifiers.
407   SmallVector<llvm::Metadata *, 8> argTypeQuals;
408   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
409 
410   // MDNode for the kernel argument names.
411   SmallVector<llvm::Metadata *, 8> argNames;
412   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
413 
414   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
415     const ParmVarDecl *parm = FD->getParamDecl(i);
416     QualType ty = parm->getType();
417     std::string typeQuals;
418 
419     if (ty->isPointerType()) {
420       QualType pointeeTy = ty->getPointeeType();
421 
422       // Get address qualifier.
423       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
424           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
425 
426       // Get argument type name.
427       std::string typeName =
428           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
429 
430       // Turn "unsigned type" to "utype"
431       std::string::size_type pos = typeName.find("unsigned");
432       if (pointeeTy.isCanonical() && pos != std::string::npos)
433         typeName.erase(pos+1, 8);
434 
435       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
436 
437       std::string baseTypeName =
438           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
439               Policy) +
440           "*";
441 
442       // Turn "unsigned type" to "utype"
443       pos = baseTypeName.find("unsigned");
444       if (pos != std::string::npos)
445         baseTypeName.erase(pos+1, 8);
446 
447       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
448 
449       // Get argument type qualifiers:
450       if (ty.isRestrictQualified())
451         typeQuals = "restrict";
452       if (pointeeTy.isConstQualified() ||
453           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
454         typeQuals += typeQuals.empty() ? "const" : " const";
455       if (pointeeTy.isVolatileQualified())
456         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
457     } else {
458       uint32_t AddrSpc = 0;
459       if (ty->isImageType())
460         AddrSpc =
461           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
462 
463       addressQuals.push_back(
464           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
465 
466       // Get argument type name.
467       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
468 
469       // Turn "unsigned type" to "utype"
470       std::string::size_type pos = typeName.find("unsigned");
471       if (ty.isCanonical() && pos != std::string::npos)
472         typeName.erase(pos+1, 8);
473 
474       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
475 
476       std::string baseTypeName =
477           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
478 
479       // Turn "unsigned type" to "utype"
480       pos = baseTypeName.find("unsigned");
481       if (pos != std::string::npos)
482         baseTypeName.erase(pos+1, 8);
483 
484       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
485 
486       // Get argument type qualifiers:
487       if (ty.isConstQualified())
488         typeQuals = "const";
489       if (ty.isVolatileQualified())
490         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
491     }
492 
493     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
494 
495     // Get image access qualifier:
496     if (ty->isImageType()) {
497       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
498       if (A && A->isWriteOnly())
499         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
500       else
501         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
502       // FIXME: what about read_write?
503     } else
504       accessQuals.push_back(llvm::MDString::get(Context, "none"));
505 
506     // Get argument name.
507     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
508   }
509 
510   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
511   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
512   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
513   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
514   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
515   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
516     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
517 }
518 
519 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
520                                                llvm::Function *Fn)
521 {
522   if (!FD->hasAttr<OpenCLKernelAttr>())
523     return;
524 
525   llvm::LLVMContext &Context = getLLVMContext();
526 
527   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
528   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
529 
530   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
531                        getContext());
532 
533   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
534     QualType hintQTy = A->getTypeHint();
535     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
536     bool isSignedInteger =
537         hintQTy->isSignedIntegerType() ||
538         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
539     llvm::Metadata *attrMDArgs[] = {
540         llvm::MDString::get(Context, "vec_type_hint"),
541         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
542             CGM.getTypes().ConvertType(A->getTypeHint()))),
543         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544             llvm::IntegerType::get(Context, 32),
545             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
546     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
547   }
548 
549   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
550     llvm::Metadata *attrMDArgs[] = {
551         llvm::MDString::get(Context, "work_group_size_hint"),
552         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
553         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
554         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
555     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
556   }
557 
558   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
559     llvm::Metadata *attrMDArgs[] = {
560         llvm::MDString::get(Context, "reqd_work_group_size"),
561         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
562         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
563         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
564     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
565   }
566 
567   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
568   llvm::NamedMDNode *OpenCLKernelMetadata =
569     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
570   OpenCLKernelMetadata->addOperand(kernelMDNode);
571 }
572 
573 /// Determine whether the function F ends with a return stmt.
574 static bool endsWithReturn(const Decl* F) {
575   const Stmt *Body = nullptr;
576   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
577     Body = FD->getBody();
578   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
579     Body = OMD->getBody();
580 
581   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
582     auto LastStmt = CS->body_rbegin();
583     if (LastStmt != CS->body_rend())
584       return isa<ReturnStmt>(*LastStmt);
585   }
586   return false;
587 }
588 
589 void CodeGenFunction::StartFunction(GlobalDecl GD,
590                                     QualType RetTy,
591                                     llvm::Function *Fn,
592                                     const CGFunctionInfo &FnInfo,
593                                     const FunctionArgList &Args,
594                                     SourceLocation Loc,
595                                     SourceLocation StartLoc) {
596   assert(!CurFn &&
597          "Do not use a CodeGenFunction object for more than one function");
598 
599   const Decl *D = GD.getDecl();
600 
601   DidCallStackSave = false;
602   CurCodeDecl = D;
603   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
604   FnRetTy = RetTy;
605   CurFn = Fn;
606   CurFnInfo = &FnInfo;
607   assert(CurFn->isDeclaration() && "Function already has body?");
608 
609   if (CGM.isInSanitizerBlacklist(Fn, Loc))
610     SanOpts.clear();
611 
612   if (D) {
613     // Apply the no_sanitize* attributes to SanOpts.
614     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
615       SanOpts.Mask &= ~Attr->getMask();
616   }
617 
618   // Apply sanitizer attributes to the function.
619   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
620     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
621   if (SanOpts.has(SanitizerKind::Thread))
622     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
623   if (SanOpts.has(SanitizerKind::Memory))
624     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
625   if (SanOpts.has(SanitizerKind::SafeStack))
626     Fn->addFnAttr(llvm::Attribute::SafeStack);
627 
628   // Pass inline keyword to optimizer if it appears explicitly on any
629   // declaration. Also, in the case of -fno-inline attach NoInline
630   // attribute to all function that are not marked AlwaysInline.
631   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
632     if (!CGM.getCodeGenOpts().NoInline) {
633       for (auto RI : FD->redecls())
634         if (RI->isInlineSpecified()) {
635           Fn->addFnAttr(llvm::Attribute::InlineHint);
636           break;
637         }
638     } else if (!FD->hasAttr<AlwaysInlineAttr>())
639       Fn->addFnAttr(llvm::Attribute::NoInline);
640   }
641 
642   if (getLangOpts().OpenCL) {
643     // Add metadata for a kernel function.
644     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
645       EmitOpenCLKernelMetadata(FD, Fn);
646   }
647 
648   // If we are checking function types, emit a function type signature as
649   // prologue data.
650   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
651     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
652       if (llvm::Constant *PrologueSig =
653               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
654         llvm::Constant *FTRTTIConst =
655             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
656         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
657         llvm::Constant *PrologueStructConst =
658             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
659         Fn->setPrologueData(PrologueStructConst);
660       }
661     }
662   }
663 
664   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
665 
666   // Create a marker to make it easy to insert allocas into the entryblock
667   // later.  Don't create this with the builder, because we don't want it
668   // folded.
669   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
670   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
671   if (Builder.isNamePreserving())
672     AllocaInsertPt->setName("allocapt");
673 
674   ReturnBlock = getJumpDestInCurrentScope("return");
675 
676   Builder.SetInsertPoint(EntryBB);
677 
678   // Emit subprogram debug descriptor.
679   if (CGDebugInfo *DI = getDebugInfo()) {
680     SmallVector<QualType, 16> ArgTypes;
681     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
682 	 i != e; ++i) {
683       ArgTypes.push_back((*i)->getType());
684     }
685 
686     QualType FnType =
687       getContext().getFunctionType(RetTy, ArgTypes,
688                                    FunctionProtoType::ExtProtoInfo());
689     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
690   }
691 
692   if (ShouldInstrumentFunction())
693     EmitFunctionInstrumentation("__cyg_profile_func_enter");
694 
695   if (CGM.getCodeGenOpts().InstrumentForProfiling)
696     EmitMCountInstrumentation();
697 
698   if (RetTy->isVoidType()) {
699     // Void type; nothing to return.
700     ReturnValue = nullptr;
701 
702     // Count the implicit return.
703     if (!endsWithReturn(D))
704       ++NumReturnExprs;
705   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
706              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
707     // Indirect aggregate return; emit returned value directly into sret slot.
708     // This reduces code size, and affects correctness in C++.
709     auto AI = CurFn->arg_begin();
710     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
711       ++AI;
712     ReturnValue = AI;
713   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
714              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
715     // Load the sret pointer from the argument struct and return into that.
716     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
717     llvm::Function::arg_iterator EI = CurFn->arg_end();
718     --EI;
719     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
720     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
721   } else {
722     ReturnValue = CreateIRTemp(RetTy, "retval");
723 
724     // Tell the epilog emitter to autorelease the result.  We do this
725     // now so that various specialized functions can suppress it
726     // during their IR-generation.
727     if (getLangOpts().ObjCAutoRefCount &&
728         !CurFnInfo->isReturnsRetained() &&
729         RetTy->isObjCRetainableType())
730       AutoreleaseResult = true;
731   }
732 
733   EmitStartEHSpec(CurCodeDecl);
734 
735   PrologueCleanupDepth = EHStack.stable_begin();
736   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
737 
738   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
739     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
740     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
741     if (MD->getParent()->isLambda() &&
742         MD->getOverloadedOperator() == OO_Call) {
743       // We're in a lambda; figure out the captures.
744       MD->getParent()->getCaptureFields(LambdaCaptureFields,
745                                         LambdaThisCaptureField);
746       if (LambdaThisCaptureField) {
747         // If this lambda captures this, load it.
748         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
749         CXXThisValue = EmitLoadOfLValue(ThisLValue,
750                                         SourceLocation()).getScalarVal();
751       }
752       for (auto *FD : MD->getParent()->fields()) {
753         if (FD->hasCapturedVLAType()) {
754           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
755                                            SourceLocation()).getScalarVal();
756           auto VAT = FD->getCapturedVLAType();
757           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
758         }
759       }
760     } else {
761       // Not in a lambda; just use 'this' from the method.
762       // FIXME: Should we generate a new load for each use of 'this'?  The
763       // fast register allocator would be happier...
764       CXXThisValue = CXXABIThisValue;
765     }
766   }
767 
768   // If any of the arguments have a variably modified type, make sure to
769   // emit the type size.
770   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
771        i != e; ++i) {
772     const VarDecl *VD = *i;
773 
774     // Dig out the type as written from ParmVarDecls; it's unclear whether
775     // the standard (C99 6.9.1p10) requires this, but we're following the
776     // precedent set by gcc.
777     QualType Ty;
778     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
779       Ty = PVD->getOriginalType();
780     else
781       Ty = VD->getType();
782 
783     if (Ty->isVariablyModifiedType())
784       EmitVariablyModifiedType(Ty);
785   }
786   // Emit a location at the end of the prologue.
787   if (CGDebugInfo *DI = getDebugInfo())
788     DI->EmitLocation(Builder, StartLoc);
789 }
790 
791 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
792                                        const Stmt *Body) {
793   incrementProfileCounter(Body);
794   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
795     EmitCompoundStmtWithoutScope(*S);
796   else
797     EmitStmt(Body);
798 }
799 
800 /// When instrumenting to collect profile data, the counts for some blocks
801 /// such as switch cases need to not include the fall-through counts, so
802 /// emit a branch around the instrumentation code. When not instrumenting,
803 /// this just calls EmitBlock().
804 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
805                                                const Stmt *S) {
806   llvm::BasicBlock *SkipCountBB = nullptr;
807   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
808     // When instrumenting for profiling, the fallthrough to certain
809     // statements needs to skip over the instrumentation code so that we
810     // get an accurate count.
811     SkipCountBB = createBasicBlock("skipcount");
812     EmitBranch(SkipCountBB);
813   }
814   EmitBlock(BB);
815   uint64_t CurrentCount = getCurrentProfileCount();
816   incrementProfileCounter(S);
817   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
818   if (SkipCountBB)
819     EmitBlock(SkipCountBB);
820 }
821 
822 /// Tries to mark the given function nounwind based on the
823 /// non-existence of any throwing calls within it.  We believe this is
824 /// lightweight enough to do at -O0.
825 static void TryMarkNoThrow(llvm::Function *F) {
826   // LLVM treats 'nounwind' on a function as part of the type, so we
827   // can't do this on functions that can be overwritten.
828   if (F->mayBeOverridden()) return;
829 
830   for (llvm::BasicBlock &BB : *F)
831     for (llvm::Instruction &I : BB)
832       if (I.mayThrow())
833         return;
834 
835   F->setDoesNotThrow();
836 }
837 
838 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
839                                    const CGFunctionInfo &FnInfo) {
840   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
841 
842   // Check if we should generate debug info for this function.
843   if (FD->hasAttr<NoDebugAttr>())
844     DebugInfo = nullptr; // disable debug info indefinitely for this function
845 
846   FunctionArgList Args;
847   QualType ResTy = FD->getReturnType();
848 
849   CurGD = GD;
850   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
851   if (MD && MD->isInstance()) {
852     if (CGM.getCXXABI().HasThisReturn(GD))
853       ResTy = MD->getThisType(getContext());
854     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
855       ResTy = CGM.getContext().VoidPtrTy;
856     CGM.getCXXABI().buildThisParam(*this, Args);
857   }
858 
859   Args.append(FD->param_begin(), FD->param_end());
860 
861   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
862     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
863 
864   SourceRange BodyRange;
865   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
866   CurEHLocation = BodyRange.getEnd();
867 
868   // Use the location of the start of the function to determine where
869   // the function definition is located. By default use the location
870   // of the declaration as the location for the subprogram. A function
871   // may lack a declaration in the source code if it is created by code
872   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
873   SourceLocation Loc = FD->getLocation();
874 
875   // If this is a function specialization then use the pattern body
876   // as the location for the function.
877   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
878     if (SpecDecl->hasBody(SpecDecl))
879       Loc = SpecDecl->getLocation();
880 
881   // Emit the standard function prologue.
882   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
883 
884   // Generate the body of the function.
885   PGO.checkGlobalDecl(GD);
886   PGO.assignRegionCounters(GD.getDecl(), CurFn);
887   if (isa<CXXDestructorDecl>(FD))
888     EmitDestructorBody(Args);
889   else if (isa<CXXConstructorDecl>(FD))
890     EmitConstructorBody(Args);
891   else if (getLangOpts().CUDA &&
892            !getLangOpts().CUDAIsDevice &&
893            FD->hasAttr<CUDAGlobalAttr>())
894     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
895   else if (isa<CXXConversionDecl>(FD) &&
896            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
897     // The lambda conversion to block pointer is special; the semantics can't be
898     // expressed in the AST, so IRGen needs to special-case it.
899     EmitLambdaToBlockPointerBody(Args);
900   } else if (isa<CXXMethodDecl>(FD) &&
901              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
902     // The lambda static invoker function is special, because it forwards or
903     // clones the body of the function call operator (but is actually static).
904     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
905   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
906              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
907               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
908     // Implicit copy-assignment gets the same special treatment as implicit
909     // copy-constructors.
910     emitImplicitAssignmentOperatorBody(Args);
911   } else if (Stmt *Body = FD->getBody()) {
912     EmitFunctionBody(Args, Body);
913   } else
914     llvm_unreachable("no definition for emitted function");
915 
916   // C++11 [stmt.return]p2:
917   //   Flowing off the end of a function [...] results in undefined behavior in
918   //   a value-returning function.
919   // C11 6.9.1p12:
920   //   If the '}' that terminates a function is reached, and the value of the
921   //   function call is used by the caller, the behavior is undefined.
922   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
923       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
924     if (SanOpts.has(SanitizerKind::Return)) {
925       SanitizerScope SanScope(this);
926       llvm::Value *IsFalse = Builder.getFalse();
927       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
928                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
929                 None);
930     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
931       EmitTrapCall(llvm::Intrinsic::trap);
932     }
933     Builder.CreateUnreachable();
934     Builder.ClearInsertionPoint();
935   }
936 
937   // Emit the standard function epilogue.
938   FinishFunction(BodyRange.getEnd());
939 
940   // If we haven't marked the function nothrow through other means, do
941   // a quick pass now to see if we can.
942   if (!CurFn->doesNotThrow())
943     TryMarkNoThrow(CurFn);
944 }
945 
946 /// ContainsLabel - Return true if the statement contains a label in it.  If
947 /// this statement is not executed normally, it not containing a label means
948 /// that we can just remove the code.
949 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
950   // Null statement, not a label!
951   if (!S) return false;
952 
953   // If this is a label, we have to emit the code, consider something like:
954   // if (0) {  ...  foo:  bar(); }  goto foo;
955   //
956   // TODO: If anyone cared, we could track __label__'s, since we know that you
957   // can't jump to one from outside their declared region.
958   if (isa<LabelStmt>(S))
959     return true;
960 
961   // If this is a case/default statement, and we haven't seen a switch, we have
962   // to emit the code.
963   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
964     return true;
965 
966   // If this is a switch statement, we want to ignore cases below it.
967   if (isa<SwitchStmt>(S))
968     IgnoreCaseStmts = true;
969 
970   // Scan subexpressions for verboten labels.
971   for (const Stmt *SubStmt : S->children())
972     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
973       return true;
974 
975   return false;
976 }
977 
978 /// containsBreak - Return true if the statement contains a break out of it.
979 /// If the statement (recursively) contains a switch or loop with a break
980 /// inside of it, this is fine.
981 bool CodeGenFunction::containsBreak(const Stmt *S) {
982   // Null statement, not a label!
983   if (!S) return false;
984 
985   // If this is a switch or loop that defines its own break scope, then we can
986   // include it and anything inside of it.
987   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
988       isa<ForStmt>(S))
989     return false;
990 
991   if (isa<BreakStmt>(S))
992     return true;
993 
994   // Scan subexpressions for verboten breaks.
995   for (const Stmt *SubStmt : S->children())
996     if (containsBreak(SubStmt))
997       return true;
998 
999   return false;
1000 }
1001 
1002 
1003 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1004 /// to a constant, or if it does but contains a label, return false.  If it
1005 /// constant folds return true and set the boolean result in Result.
1006 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1007                                                    bool &ResultBool) {
1008   llvm::APSInt ResultInt;
1009   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1010     return false;
1011 
1012   ResultBool = ResultInt.getBoolValue();
1013   return true;
1014 }
1015 
1016 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1017 /// to a constant, or if it does but contains a label, return false.  If it
1018 /// constant folds return true and set the folded value.
1019 bool CodeGenFunction::
1020 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1021   // FIXME: Rename and handle conversion of other evaluatable things
1022   // to bool.
1023   llvm::APSInt Int;
1024   if (!Cond->EvaluateAsInt(Int, getContext()))
1025     return false;  // Not foldable, not integer or not fully evaluatable.
1026 
1027   if (CodeGenFunction::ContainsLabel(Cond))
1028     return false;  // Contains a label.
1029 
1030   ResultInt = Int;
1031   return true;
1032 }
1033 
1034 
1035 
1036 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1037 /// statement) to the specified blocks.  Based on the condition, this might try
1038 /// to simplify the codegen of the conditional based on the branch.
1039 ///
1040 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1041                                            llvm::BasicBlock *TrueBlock,
1042                                            llvm::BasicBlock *FalseBlock,
1043                                            uint64_t TrueCount) {
1044   Cond = Cond->IgnoreParens();
1045 
1046   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1047 
1048     // Handle X && Y in a condition.
1049     if (CondBOp->getOpcode() == BO_LAnd) {
1050       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1051       // folded if the case was simple enough.
1052       bool ConstantBool = false;
1053       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1054           ConstantBool) {
1055         // br(1 && X) -> br(X).
1056         incrementProfileCounter(CondBOp);
1057         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1058                                     TrueCount);
1059       }
1060 
1061       // If we have "X && 1", simplify the code to use an uncond branch.
1062       // "X && 0" would have been constant folded to 0.
1063       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1064           ConstantBool) {
1065         // br(X && 1) -> br(X).
1066         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1067                                     TrueCount);
1068       }
1069 
1070       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1071       // want to jump to the FalseBlock.
1072       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1073       // The counter tells us how often we evaluate RHS, and all of TrueCount
1074       // can be propagated to that branch.
1075       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1076 
1077       ConditionalEvaluation eval(*this);
1078       {
1079         ApplyDebugLocation DL(*this, Cond);
1080         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1081         EmitBlock(LHSTrue);
1082       }
1083 
1084       incrementProfileCounter(CondBOp);
1085       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1086 
1087       // Any temporaries created here are conditional.
1088       eval.begin(*this);
1089       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1090       eval.end(*this);
1091 
1092       return;
1093     }
1094 
1095     if (CondBOp->getOpcode() == BO_LOr) {
1096       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1097       // folded if the case was simple enough.
1098       bool ConstantBool = false;
1099       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1100           !ConstantBool) {
1101         // br(0 || X) -> br(X).
1102         incrementProfileCounter(CondBOp);
1103         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1104                                     TrueCount);
1105       }
1106 
1107       // If we have "X || 0", simplify the code to use an uncond branch.
1108       // "X || 1" would have been constant folded to 1.
1109       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1110           !ConstantBool) {
1111         // br(X || 0) -> br(X).
1112         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1113                                     TrueCount);
1114       }
1115 
1116       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1117       // want to jump to the TrueBlock.
1118       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1119       // We have the count for entry to the RHS and for the whole expression
1120       // being true, so we can divy up True count between the short circuit and
1121       // the RHS.
1122       uint64_t LHSCount =
1123           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1124       uint64_t RHSCount = TrueCount - LHSCount;
1125 
1126       ConditionalEvaluation eval(*this);
1127       {
1128         ApplyDebugLocation DL(*this, Cond);
1129         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1130         EmitBlock(LHSFalse);
1131       }
1132 
1133       incrementProfileCounter(CondBOp);
1134       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1135 
1136       // Any temporaries created here are conditional.
1137       eval.begin(*this);
1138       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1139 
1140       eval.end(*this);
1141 
1142       return;
1143     }
1144   }
1145 
1146   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1147     // br(!x, t, f) -> br(x, f, t)
1148     if (CondUOp->getOpcode() == UO_LNot) {
1149       // Negate the count.
1150       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1151       // Negate the condition and swap the destination blocks.
1152       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1153                                   FalseCount);
1154     }
1155   }
1156 
1157   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1158     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1159     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1160     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1161 
1162     ConditionalEvaluation cond(*this);
1163     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1164                          getProfileCount(CondOp));
1165 
1166     // When computing PGO branch weights, we only know the overall count for
1167     // the true block. This code is essentially doing tail duplication of the
1168     // naive code-gen, introducing new edges for which counts are not
1169     // available. Divide the counts proportionally between the LHS and RHS of
1170     // the conditional operator.
1171     uint64_t LHSScaledTrueCount = 0;
1172     if (TrueCount) {
1173       double LHSRatio =
1174           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1175       LHSScaledTrueCount = TrueCount * LHSRatio;
1176     }
1177 
1178     cond.begin(*this);
1179     EmitBlock(LHSBlock);
1180     incrementProfileCounter(CondOp);
1181     {
1182       ApplyDebugLocation DL(*this, Cond);
1183       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1184                            LHSScaledTrueCount);
1185     }
1186     cond.end(*this);
1187 
1188     cond.begin(*this);
1189     EmitBlock(RHSBlock);
1190     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1191                          TrueCount - LHSScaledTrueCount);
1192     cond.end(*this);
1193 
1194     return;
1195   }
1196 
1197   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1198     // Conditional operator handling can give us a throw expression as a
1199     // condition for a case like:
1200     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1201     // Fold this to:
1202     //   br(c, throw x, br(y, t, f))
1203     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1204     return;
1205   }
1206 
1207   // If the branch has a condition wrapped by __builtin_unpredictable,
1208   // create metadata that specifies that the branch is unpredictable.
1209   // Don't bother if not optimizing because that metadata would not be used.
1210   llvm::MDNode *Unpredictable = nullptr;
1211   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1212     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
1213       const Decl *TargetDecl = Call->getCalleeDecl();
1214       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1215         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1216           llvm::MDBuilder MDHelper(getLLVMContext());
1217           Unpredictable = MDHelper.createUnpredictable();
1218         }
1219       }
1220     }
1221   }
1222 
1223   // Create branch weights based on the number of times we get here and the
1224   // number of times the condition should be true.
1225   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1226   llvm::MDNode *Weights =
1227       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1228 
1229   // Emit the code with the fully general case.
1230   llvm::Value *CondV;
1231   {
1232     ApplyDebugLocation DL(*this, Cond);
1233     CondV = EvaluateExprAsBool(Cond);
1234   }
1235   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1236 }
1237 
1238 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1239 /// specified stmt yet.
1240 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1241   CGM.ErrorUnsupported(S, Type);
1242 }
1243 
1244 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1245 /// variable-length array whose elements have a non-zero bit-pattern.
1246 ///
1247 /// \param baseType the inner-most element type of the array
1248 /// \param src - a char* pointing to the bit-pattern for a single
1249 /// base element of the array
1250 /// \param sizeInChars - the total size of the VLA, in chars
1251 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1252                                llvm::Value *dest, llvm::Value *src,
1253                                llvm::Value *sizeInChars) {
1254   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1255     = CGF.getContext().getTypeInfoInChars(baseType);
1256 
1257   CGBuilderTy &Builder = CGF.Builder;
1258 
1259   llvm::Value *baseSizeInChars
1260     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1261 
1262   llvm::Type *i8p = Builder.getInt8PtrTy();
1263 
1264   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1265   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1266 
1267   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1268   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1269   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1270 
1271   // Make a loop over the VLA.  C99 guarantees that the VLA element
1272   // count must be nonzero.
1273   CGF.EmitBlock(loopBB);
1274 
1275   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1276   cur->addIncoming(begin, originBB);
1277 
1278   // memcpy the individual element bit-pattern.
1279   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1280                        baseSizeAndAlign.second.getQuantity(),
1281                        /*volatile*/ false);
1282 
1283   // Go to the next element.
1284   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(),
1285                                                          cur, 1, "vla.next");
1286 
1287   // Leave if that's the end of the VLA.
1288   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1289   Builder.CreateCondBr(done, contBB, loopBB);
1290   cur->addIncoming(next, loopBB);
1291 
1292   CGF.EmitBlock(contBB);
1293 }
1294 
1295 void
1296 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1297   // Ignore empty classes in C++.
1298   if (getLangOpts().CPlusPlus) {
1299     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1300       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1301         return;
1302     }
1303   }
1304 
1305   // Cast the dest ptr to the appropriate i8 pointer type.
1306   unsigned DestAS =
1307     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1308   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1309   if (DestPtr->getType() != BP)
1310     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1311 
1312   // Get size and alignment info for this aggregate.
1313   std::pair<CharUnits, CharUnits> TypeInfo =
1314     getContext().getTypeInfoInChars(Ty);
1315   CharUnits Size = TypeInfo.first;
1316   CharUnits Align = TypeInfo.second;
1317 
1318   llvm::Value *SizeVal;
1319   const VariableArrayType *vla;
1320 
1321   // Don't bother emitting a zero-byte memset.
1322   if (Size.isZero()) {
1323     // But note that getTypeInfo returns 0 for a VLA.
1324     if (const VariableArrayType *vlaType =
1325           dyn_cast_or_null<VariableArrayType>(
1326                                           getContext().getAsArrayType(Ty))) {
1327       QualType eltType;
1328       llvm::Value *numElts;
1329       std::tie(numElts, eltType) = getVLASize(vlaType);
1330 
1331       SizeVal = numElts;
1332       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1333       if (!eltSize.isOne())
1334         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1335       vla = vlaType;
1336     } else {
1337       return;
1338     }
1339   } else {
1340     SizeVal = CGM.getSize(Size);
1341     vla = nullptr;
1342   }
1343 
1344   // If the type contains a pointer to data member we can't memset it to zero.
1345   // Instead, create a null constant and copy it to the destination.
1346   // TODO: there are other patterns besides zero that we can usefully memset,
1347   // like -1, which happens to be the pattern used by member-pointers.
1348   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1349     // For a VLA, emit a single element, then splat that over the VLA.
1350     if (vla) Ty = getContext().getBaseElementType(vla);
1351 
1352     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1353 
1354     llvm::GlobalVariable *NullVariable =
1355       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1356                                /*isConstant=*/true,
1357                                llvm::GlobalVariable::PrivateLinkage,
1358                                NullConstant, Twine());
1359     llvm::Value *SrcPtr =
1360       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1361 
1362     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1363 
1364     // Get and call the appropriate llvm.memcpy overload.
1365     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1366     return;
1367   }
1368 
1369   // Otherwise, just memset the whole thing to zero.  This is legal
1370   // because in LLVM, all default initializers (other than the ones we just
1371   // handled above) are guaranteed to have a bit pattern of all zeros.
1372   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1373                        Align.getQuantity(), false);
1374 }
1375 
1376 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1377   // Make sure that there is a block for the indirect goto.
1378   if (!IndirectBranch)
1379     GetIndirectGotoBlock();
1380 
1381   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1382 
1383   // Make sure the indirect branch includes all of the address-taken blocks.
1384   IndirectBranch->addDestination(BB);
1385   return llvm::BlockAddress::get(CurFn, BB);
1386 }
1387 
1388 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1389   // If we already made the indirect branch for indirect goto, return its block.
1390   if (IndirectBranch) return IndirectBranch->getParent();
1391 
1392   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1393 
1394   // Create the PHI node that indirect gotos will add entries to.
1395   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1396                                               "indirect.goto.dest");
1397 
1398   // Create the indirect branch instruction.
1399   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1400   return IndirectBranch->getParent();
1401 }
1402 
1403 /// Computes the length of an array in elements, as well as the base
1404 /// element type and a properly-typed first element pointer.
1405 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1406                                               QualType &baseType,
1407                                               llvm::Value *&addr) {
1408   const ArrayType *arrayType = origArrayType;
1409 
1410   // If it's a VLA, we have to load the stored size.  Note that
1411   // this is the size of the VLA in bytes, not its size in elements.
1412   llvm::Value *numVLAElements = nullptr;
1413   if (isa<VariableArrayType>(arrayType)) {
1414     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1415 
1416     // Walk into all VLAs.  This doesn't require changes to addr,
1417     // which has type T* where T is the first non-VLA element type.
1418     do {
1419       QualType elementType = arrayType->getElementType();
1420       arrayType = getContext().getAsArrayType(elementType);
1421 
1422       // If we only have VLA components, 'addr' requires no adjustment.
1423       if (!arrayType) {
1424         baseType = elementType;
1425         return numVLAElements;
1426       }
1427     } while (isa<VariableArrayType>(arrayType));
1428 
1429     // We get out here only if we find a constant array type
1430     // inside the VLA.
1431   }
1432 
1433   // We have some number of constant-length arrays, so addr should
1434   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1435   // down to the first element of addr.
1436   SmallVector<llvm::Value*, 8> gepIndices;
1437 
1438   // GEP down to the array type.
1439   llvm::ConstantInt *zero = Builder.getInt32(0);
1440   gepIndices.push_back(zero);
1441 
1442   uint64_t countFromCLAs = 1;
1443   QualType eltType;
1444 
1445   llvm::ArrayType *llvmArrayType =
1446     dyn_cast<llvm::ArrayType>(
1447       cast<llvm::PointerType>(addr->getType())->getElementType());
1448   while (llvmArrayType) {
1449     assert(isa<ConstantArrayType>(arrayType));
1450     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1451              == llvmArrayType->getNumElements());
1452 
1453     gepIndices.push_back(zero);
1454     countFromCLAs *= llvmArrayType->getNumElements();
1455     eltType = arrayType->getElementType();
1456 
1457     llvmArrayType =
1458       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1459     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1460     assert((!llvmArrayType || arrayType) &&
1461            "LLVM and Clang types are out-of-synch");
1462   }
1463 
1464   if (arrayType) {
1465     // From this point onwards, the Clang array type has been emitted
1466     // as some other type (probably a packed struct). Compute the array
1467     // size, and just emit the 'begin' expression as a bitcast.
1468     while (arrayType) {
1469       countFromCLAs *=
1470           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1471       eltType = arrayType->getElementType();
1472       arrayType = getContext().getAsArrayType(eltType);
1473     }
1474 
1475     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1476     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1477     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1478   } else {
1479     // Create the actual GEP.
1480     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1481   }
1482 
1483   baseType = eltType;
1484 
1485   llvm::Value *numElements
1486     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1487 
1488   // If we had any VLA dimensions, factor them in.
1489   if (numVLAElements)
1490     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1491 
1492   return numElements;
1493 }
1494 
1495 std::pair<llvm::Value*, QualType>
1496 CodeGenFunction::getVLASize(QualType type) {
1497   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1498   assert(vla && "type was not a variable array type!");
1499   return getVLASize(vla);
1500 }
1501 
1502 std::pair<llvm::Value*, QualType>
1503 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1504   // The number of elements so far; always size_t.
1505   llvm::Value *numElements = nullptr;
1506 
1507   QualType elementType;
1508   do {
1509     elementType = type->getElementType();
1510     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1511     assert(vlaSize && "no size for VLA!");
1512     assert(vlaSize->getType() == SizeTy);
1513 
1514     if (!numElements) {
1515       numElements = vlaSize;
1516     } else {
1517       // It's undefined behavior if this wraps around, so mark it that way.
1518       // FIXME: Teach -fsanitize=undefined to trap this.
1519       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1520     }
1521   } while ((type = getContext().getAsVariableArrayType(elementType)));
1522 
1523   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1524 }
1525 
1526 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1527   assert(type->isVariablyModifiedType() &&
1528          "Must pass variably modified type to EmitVLASizes!");
1529 
1530   EnsureInsertPoint();
1531 
1532   // We're going to walk down into the type and look for VLA
1533   // expressions.
1534   do {
1535     assert(type->isVariablyModifiedType());
1536 
1537     const Type *ty = type.getTypePtr();
1538     switch (ty->getTypeClass()) {
1539 
1540 #define TYPE(Class, Base)
1541 #define ABSTRACT_TYPE(Class, Base)
1542 #define NON_CANONICAL_TYPE(Class, Base)
1543 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1544 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1545 #include "clang/AST/TypeNodes.def"
1546       llvm_unreachable("unexpected dependent type!");
1547 
1548     // These types are never variably-modified.
1549     case Type::Builtin:
1550     case Type::Complex:
1551     case Type::Vector:
1552     case Type::ExtVector:
1553     case Type::Record:
1554     case Type::Enum:
1555     case Type::Elaborated:
1556     case Type::TemplateSpecialization:
1557     case Type::ObjCObject:
1558     case Type::ObjCInterface:
1559     case Type::ObjCObjectPointer:
1560       llvm_unreachable("type class is never variably-modified!");
1561 
1562     case Type::Adjusted:
1563       type = cast<AdjustedType>(ty)->getAdjustedType();
1564       break;
1565 
1566     case Type::Decayed:
1567       type = cast<DecayedType>(ty)->getPointeeType();
1568       break;
1569 
1570     case Type::Pointer:
1571       type = cast<PointerType>(ty)->getPointeeType();
1572       break;
1573 
1574     case Type::BlockPointer:
1575       type = cast<BlockPointerType>(ty)->getPointeeType();
1576       break;
1577 
1578     case Type::LValueReference:
1579     case Type::RValueReference:
1580       type = cast<ReferenceType>(ty)->getPointeeType();
1581       break;
1582 
1583     case Type::MemberPointer:
1584       type = cast<MemberPointerType>(ty)->getPointeeType();
1585       break;
1586 
1587     case Type::ConstantArray:
1588     case Type::IncompleteArray:
1589       // Losing element qualification here is fine.
1590       type = cast<ArrayType>(ty)->getElementType();
1591       break;
1592 
1593     case Type::VariableArray: {
1594       // Losing element qualification here is fine.
1595       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1596 
1597       // Unknown size indication requires no size computation.
1598       // Otherwise, evaluate and record it.
1599       if (const Expr *size = vat->getSizeExpr()) {
1600         // It's possible that we might have emitted this already,
1601         // e.g. with a typedef and a pointer to it.
1602         llvm::Value *&entry = VLASizeMap[size];
1603         if (!entry) {
1604           llvm::Value *Size = EmitScalarExpr(size);
1605 
1606           // C11 6.7.6.2p5:
1607           //   If the size is an expression that is not an integer constant
1608           //   expression [...] each time it is evaluated it shall have a value
1609           //   greater than zero.
1610           if (SanOpts.has(SanitizerKind::VLABound) &&
1611               size->getType()->isSignedIntegerType()) {
1612             SanitizerScope SanScope(this);
1613             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1614             llvm::Constant *StaticArgs[] = {
1615               EmitCheckSourceLocation(size->getLocStart()),
1616               EmitCheckTypeDescriptor(size->getType())
1617             };
1618             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1619                                      SanitizerKind::VLABound),
1620                       "vla_bound_not_positive", StaticArgs, Size);
1621           }
1622 
1623           // Always zexting here would be wrong if it weren't
1624           // undefined behavior to have a negative bound.
1625           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1626         }
1627       }
1628       type = vat->getElementType();
1629       break;
1630     }
1631 
1632     case Type::FunctionProto:
1633     case Type::FunctionNoProto:
1634       type = cast<FunctionType>(ty)->getReturnType();
1635       break;
1636 
1637     case Type::Paren:
1638     case Type::TypeOf:
1639     case Type::UnaryTransform:
1640     case Type::Attributed:
1641     case Type::SubstTemplateTypeParm:
1642     case Type::PackExpansion:
1643       // Keep walking after single level desugaring.
1644       type = type.getSingleStepDesugaredType(getContext());
1645       break;
1646 
1647     case Type::Typedef:
1648     case Type::Decltype:
1649     case Type::Auto:
1650       // Stop walking: nothing to do.
1651       return;
1652 
1653     case Type::TypeOfExpr:
1654       // Stop walking: emit typeof expression.
1655       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1656       return;
1657 
1658     case Type::Atomic:
1659       type = cast<AtomicType>(ty)->getValueType();
1660       break;
1661     }
1662   } while (type->isVariablyModifiedType());
1663 }
1664 
1665 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1666   if (getContext().getBuiltinVaListType()->isArrayType())
1667     return EmitScalarExpr(E);
1668   return EmitLValue(E).getAddress();
1669 }
1670 
1671 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1672                                               llvm::Constant *Init) {
1673   assert (Init && "Invalid DeclRefExpr initializer!");
1674   if (CGDebugInfo *Dbg = getDebugInfo())
1675     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1676       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1677 }
1678 
1679 CodeGenFunction::PeepholeProtection
1680 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1681   // At the moment, the only aggressive peephole we do in IR gen
1682   // is trunc(zext) folding, but if we add more, we can easily
1683   // extend this protection.
1684 
1685   if (!rvalue.isScalar()) return PeepholeProtection();
1686   llvm::Value *value = rvalue.getScalarVal();
1687   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1688 
1689   // Just make an extra bitcast.
1690   assert(HaveInsertPoint());
1691   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1692                                                   Builder.GetInsertBlock());
1693 
1694   PeepholeProtection protection;
1695   protection.Inst = inst;
1696   return protection;
1697 }
1698 
1699 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1700   if (!protection.Inst) return;
1701 
1702   // In theory, we could try to duplicate the peepholes now, but whatever.
1703   protection.Inst->eraseFromParent();
1704 }
1705 
1706 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1707                                                  llvm::Value *AnnotatedVal,
1708                                                  StringRef AnnotationStr,
1709                                                  SourceLocation Location) {
1710   llvm::Value *Args[4] = {
1711     AnnotatedVal,
1712     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1713     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1714     CGM.EmitAnnotationLineNo(Location)
1715   };
1716   return Builder.CreateCall(AnnotationFn, Args);
1717 }
1718 
1719 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1720   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1721   // FIXME We create a new bitcast for every annotation because that's what
1722   // llvm-gcc was doing.
1723   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1724     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1725                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1726                        I->getAnnotation(), D->getLocation());
1727 }
1728 
1729 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1730                                                    llvm::Value *V) {
1731   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1732   llvm::Type *VTy = V->getType();
1733   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1734                                     CGM.Int8PtrTy);
1735 
1736   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1737     // FIXME Always emit the cast inst so we can differentiate between
1738     // annotation on the first field of a struct and annotation on the struct
1739     // itself.
1740     if (VTy != CGM.Int8PtrTy)
1741       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1742     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1743     V = Builder.CreateBitCast(V, VTy);
1744   }
1745 
1746   return V;
1747 }
1748 
1749 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1750 
1751 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1752     : CGF(CGF) {
1753   assert(!CGF->IsSanitizerScope);
1754   CGF->IsSanitizerScope = true;
1755 }
1756 
1757 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1758   CGF->IsSanitizerScope = false;
1759 }
1760 
1761 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1762                                    const llvm::Twine &Name,
1763                                    llvm::BasicBlock *BB,
1764                                    llvm::BasicBlock::iterator InsertPt) const {
1765   LoopStack.InsertHelper(I);
1766   if (IsSanitizerScope)
1767     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1768 }
1769 
1770 template <bool PreserveNames>
1771 void CGBuilderInserter<PreserveNames>::InsertHelper(
1772     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1773     llvm::BasicBlock::iterator InsertPt) const {
1774   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1775                                                               InsertPt);
1776   if (CGF)
1777     CGF->InsertHelper(I, Name, BB, InsertPt);
1778 }
1779 
1780 #ifdef NDEBUG
1781 #define PreserveNames false
1782 #else
1783 #define PreserveNames true
1784 #endif
1785 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1786     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1787     llvm::BasicBlock::iterator InsertPt) const;
1788 #undef PreserveNames
1789