1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGException.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 32 llvm::SwitchInst *Switch, 33 llvm::BasicBlock *CleanupEntry); 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 36 : BlockFunction(cgm, *this, Builder), CGM(cgm), 37 Target(CGM.getContext().Target), 38 Builder(cgm.getModule().getContext()), 39 NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1), 40 ExceptionSlot(0), DebugInfo(0), IndirectBranch(0), 41 SwitchInsn(0), CaseRangeBlock(0), 42 DidCallStackSave(false), UnreachableBlock(0), 43 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 44 ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0), 45 TrapBB(0) { 46 47 // Get some frequently used types. 48 LLVMPointerWidth = Target.getPointerWidth(0); 49 llvm::LLVMContext &LLVMContext = CGM.getLLVMContext(); 50 IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth); 51 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 52 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 53 54 Exceptions = getContext().getLangOptions().Exceptions; 55 CatchUndefined = getContext().getLangOptions().CatchUndefined; 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 } 58 59 ASTContext &CodeGenFunction::getContext() const { 60 return CGM.getContext(); 61 } 62 63 64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 65 return CGM.getTypes().ConvertTypeForMem(T); 66 } 67 68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 69 return CGM.getTypes().ConvertType(T); 70 } 71 72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 73 return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || 74 T->isObjCObjectType(); 75 } 76 77 void CodeGenFunction::EmitReturnBlock() { 78 // For cleanliness, we try to avoid emitting the return block for 79 // simple cases. 80 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 81 82 if (CurBB) { 83 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 84 85 // We have a valid insert point, reuse it if it is empty or there are no 86 // explicit jumps to the return block. 87 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 88 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 89 delete ReturnBlock.getBlock(); 90 } else 91 EmitBlock(ReturnBlock.getBlock()); 92 return; 93 } 94 95 // Otherwise, if the return block is the target of a single direct 96 // branch then we can just put the code in that block instead. This 97 // cleans up functions which started with a unified return block. 98 if (ReturnBlock.getBlock()->hasOneUse()) { 99 llvm::BranchInst *BI = 100 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 101 if (BI && BI->isUnconditional() && 102 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 103 // Reset insertion point and delete the branch. 104 Builder.SetInsertPoint(BI->getParent()); 105 BI->eraseFromParent(); 106 delete ReturnBlock.getBlock(); 107 return; 108 } 109 } 110 111 // FIXME: We are at an unreachable point, there is no reason to emit the block 112 // unless it has uses. However, we still need a place to put the debug 113 // region.end for now. 114 115 EmitBlock(ReturnBlock.getBlock()); 116 } 117 118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 119 if (!BB) return; 120 if (!BB->use_empty()) 121 return CGF.CurFn->getBasicBlockList().push_back(BB); 122 delete BB; 123 } 124 125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 126 assert(BreakContinueStack.empty() && 127 "mismatched push/pop in break/continue stack!"); 128 129 // Emit function epilog (to return). 130 EmitReturnBlock(); 131 132 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 133 134 // Emit debug descriptor for function end. 135 if (CGDebugInfo *DI = getDebugInfo()) { 136 DI->setLocation(EndLoc); 137 DI->EmitFunctionEnd(Builder); 138 } 139 140 EmitFunctionEpilog(*CurFnInfo); 141 EmitEndEHSpec(CurCodeDecl); 142 143 assert(EHStack.empty() && 144 "did not remove all scopes from cleanup stack!"); 145 146 // If someone did an indirect goto, emit the indirect goto block at the end of 147 // the function. 148 if (IndirectBranch) { 149 EmitBlock(IndirectBranch->getParent()); 150 Builder.ClearInsertionPoint(); 151 } 152 153 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 154 llvm::Instruction *Ptr = AllocaInsertPt; 155 AllocaInsertPt = 0; 156 Ptr->eraseFromParent(); 157 158 // If someone took the address of a label but never did an indirect goto, we 159 // made a zero entry PHI node, which is illegal, zap it now. 160 if (IndirectBranch) { 161 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 162 if (PN->getNumIncomingValues() == 0) { 163 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 164 PN->eraseFromParent(); 165 } 166 } 167 168 EmitIfUsed(*this, RethrowBlock.getBlock()); 169 EmitIfUsed(*this, TerminateLandingPad); 170 EmitIfUsed(*this, TerminateHandler); 171 EmitIfUsed(*this, UnreachableBlock); 172 173 if (CGM.getCodeGenOpts().EmitDeclMetadata) 174 EmitDeclMetadata(); 175 } 176 177 /// ShouldInstrumentFunction - Return true if the current function should be 178 /// instrumented with __cyg_profile_func_* calls 179 bool CodeGenFunction::ShouldInstrumentFunction() { 180 if (!CGM.getCodeGenOpts().InstrumentFunctions) 181 return false; 182 if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 183 return false; 184 return true; 185 } 186 187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 188 /// instrumentation function with the current function and the call site, if 189 /// function instrumentation is enabled. 190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 191 if (!ShouldInstrumentFunction()) 192 return; 193 194 const llvm::PointerType *PointerTy; 195 const llvm::FunctionType *FunctionTy; 196 std::vector<const llvm::Type*> ProfileFuncArgs; 197 198 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 199 PointerTy = llvm::Type::getInt8PtrTy(VMContext); 200 ProfileFuncArgs.push_back(PointerTy); 201 ProfileFuncArgs.push_back(PointerTy); 202 FunctionTy = llvm::FunctionType::get( 203 llvm::Type::getVoidTy(VMContext), 204 ProfileFuncArgs, false); 205 206 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 207 llvm::CallInst *CallSite = Builder.CreateCall( 208 CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0), 209 llvm::ConstantInt::get(Int32Ty, 0), 210 "callsite"); 211 212 Builder.CreateCall2(F, 213 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 214 CallSite); 215 } 216 217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 218 llvm::Function *Fn, 219 const FunctionArgList &Args, 220 SourceLocation StartLoc) { 221 const Decl *D = GD.getDecl(); 222 223 DidCallStackSave = false; 224 CurCodeDecl = CurFuncDecl = D; 225 FnRetTy = RetTy; 226 CurFn = Fn; 227 assert(CurFn->isDeclaration() && "Function already has body?"); 228 229 // Pass inline keyword to optimizer if it appears explicitly on any 230 // declaration. 231 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 232 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 233 RE = FD->redecls_end(); RI != RE; ++RI) 234 if (RI->isInlineSpecified()) { 235 Fn->addFnAttr(llvm::Attribute::InlineHint); 236 break; 237 } 238 239 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 240 241 // Create a marker to make it easy to insert allocas into the entryblock 242 // later. Don't create this with the builder, because we don't want it 243 // folded. 244 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 245 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 246 if (Builder.isNamePreserving()) 247 AllocaInsertPt->setName("allocapt"); 248 249 ReturnBlock = getJumpDestInCurrentScope("return"); 250 251 Builder.SetInsertPoint(EntryBB); 252 253 // Emit subprogram debug descriptor. 254 if (CGDebugInfo *DI = getDebugInfo()) { 255 // FIXME: what is going on here and why does it ignore all these 256 // interesting type properties? 257 QualType FnType = 258 getContext().getFunctionType(RetTy, 0, 0, 259 FunctionProtoType::ExtProtoInfo()); 260 261 DI->setLocation(StartLoc); 262 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 263 } 264 265 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 266 267 // FIXME: Leaked. 268 // CC info is ignored, hopefully? 269 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args, 270 FunctionType::ExtInfo()); 271 272 if (RetTy->isVoidType()) { 273 // Void type; nothing to return. 274 ReturnValue = 0; 275 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 276 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 277 // Indirect aggregate return; emit returned value directly into sret slot. 278 // This reduces code size, and affects correctness in C++. 279 ReturnValue = CurFn->arg_begin(); 280 } else { 281 ReturnValue = CreateIRTemp(RetTy, "retval"); 282 } 283 284 EmitStartEHSpec(CurCodeDecl); 285 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 286 287 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 288 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 289 290 // If any of the arguments have a variably modified type, make sure to 291 // emit the type size. 292 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 293 i != e; ++i) { 294 QualType Ty = i->second; 295 296 if (Ty->isVariablyModifiedType()) 297 EmitVLASize(Ty); 298 } 299 } 300 301 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 302 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 303 assert(FD->getBody()); 304 EmitStmt(FD->getBody()); 305 } 306 307 /// Tries to mark the given function nounwind based on the 308 /// non-existence of any throwing calls within it. We believe this is 309 /// lightweight enough to do at -O0. 310 static void TryMarkNoThrow(llvm::Function *F) { 311 // LLVM treats 'nounwind' on a function as part of the type, so we 312 // can't do this on functions that can be overwritten. 313 if (F->mayBeOverridden()) return; 314 315 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 316 for (llvm::BasicBlock::iterator 317 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 318 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) 319 if (!Call->doesNotThrow()) 320 return; 321 F->setDoesNotThrow(true); 322 } 323 324 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) { 325 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 326 327 // Check if we should generate debug info for this function. 328 if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 329 DebugInfo = CGM.getDebugInfo(); 330 331 FunctionArgList Args; 332 QualType ResTy = FD->getResultType(); 333 334 CurGD = GD; 335 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 336 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 337 338 if (FD->getNumParams()) { 339 const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); 340 assert(FProto && "Function def must have prototype!"); 341 342 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 343 Args.push_back(std::make_pair(FD->getParamDecl(i), 344 FProto->getArgType(i))); 345 } 346 347 SourceRange BodyRange; 348 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 349 350 // Emit the standard function prologue. 351 StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin()); 352 353 // Generate the body of the function. 354 if (isa<CXXDestructorDecl>(FD)) 355 EmitDestructorBody(Args); 356 else if (isa<CXXConstructorDecl>(FD)) 357 EmitConstructorBody(Args); 358 else 359 EmitFunctionBody(Args); 360 361 // Emit the standard function epilogue. 362 FinishFunction(BodyRange.getEnd()); 363 364 // If we haven't marked the function nothrow through other means, do 365 // a quick pass now to see if we can. 366 if (!CurFn->doesNotThrow()) 367 TryMarkNoThrow(CurFn); 368 } 369 370 /// ContainsLabel - Return true if the statement contains a label in it. If 371 /// this statement is not executed normally, it not containing a label means 372 /// that we can just remove the code. 373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 374 // Null statement, not a label! 375 if (S == 0) return false; 376 377 // If this is a label, we have to emit the code, consider something like: 378 // if (0) { ... foo: bar(); } goto foo; 379 if (isa<LabelStmt>(S)) 380 return true; 381 382 // If this is a case/default statement, and we haven't seen a switch, we have 383 // to emit the code. 384 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 385 return true; 386 387 // If this is a switch statement, we want to ignore cases below it. 388 if (isa<SwitchStmt>(S)) 389 IgnoreCaseStmts = true; 390 391 // Scan subexpressions for verboten labels. 392 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 393 I != E; ++I) 394 if (ContainsLabel(*I, IgnoreCaseStmts)) 395 return true; 396 397 return false; 398 } 399 400 401 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 402 /// a constant, or if it does but contains a label, return 0. If it constant 403 /// folds to 'true' and does not contain a label, return 1, if it constant folds 404 /// to 'false' and does not contain a label, return -1. 405 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 406 // FIXME: Rename and handle conversion of other evaluatable things 407 // to bool. 408 Expr::EvalResult Result; 409 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 410 Result.HasSideEffects) 411 return 0; // Not foldable, not integer or not fully evaluatable. 412 413 if (CodeGenFunction::ContainsLabel(Cond)) 414 return 0; // Contains a label. 415 416 return Result.Val.getInt().getBoolValue() ? 1 : -1; 417 } 418 419 420 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 421 /// statement) to the specified blocks. Based on the condition, this might try 422 /// to simplify the codegen of the conditional based on the branch. 423 /// 424 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 425 llvm::BasicBlock *TrueBlock, 426 llvm::BasicBlock *FalseBlock) { 427 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 428 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 429 430 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 431 // Handle X && Y in a condition. 432 if (CondBOp->getOpcode() == BO_LAnd) { 433 // If we have "1 && X", simplify the code. "0 && X" would have constant 434 // folded if the case was simple enough. 435 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 436 // br(1 && X) -> br(X). 437 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 438 } 439 440 // If we have "X && 1", simplify the code to use an uncond branch. 441 // "X && 0" would have been constant folded to 0. 442 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 443 // br(X && 1) -> br(X). 444 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 445 } 446 447 // Emit the LHS as a conditional. If the LHS conditional is false, we 448 // want to jump to the FalseBlock. 449 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 450 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 451 EmitBlock(LHSTrue); 452 453 // Any temporaries created here are conditional. 454 BeginConditionalBranch(); 455 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 456 EndConditionalBranch(); 457 458 return; 459 } else if (CondBOp->getOpcode() == BO_LOr) { 460 // If we have "0 || X", simplify the code. "1 || X" would have constant 461 // folded if the case was simple enough. 462 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 463 // br(0 || X) -> br(X). 464 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 465 } 466 467 // If we have "X || 0", simplify the code to use an uncond branch. 468 // "X || 1" would have been constant folded to 1. 469 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 470 // br(X || 0) -> br(X). 471 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 472 } 473 474 // Emit the LHS as a conditional. If the LHS conditional is true, we 475 // want to jump to the TrueBlock. 476 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 477 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 478 EmitBlock(LHSFalse); 479 480 // Any temporaries created here are conditional. 481 BeginConditionalBranch(); 482 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 483 EndConditionalBranch(); 484 485 return; 486 } 487 } 488 489 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 490 // br(!x, t, f) -> br(x, f, t) 491 if (CondUOp->getOpcode() == UO_LNot) 492 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 493 } 494 495 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 496 // Handle ?: operator. 497 498 // Just ignore GNU ?: extension. 499 if (CondOp->getLHS()) { 500 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 501 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 502 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 503 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 504 EmitBlock(LHSBlock); 505 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 506 EmitBlock(RHSBlock); 507 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 508 return; 509 } 510 } 511 512 // Emit the code with the fully general case. 513 llvm::Value *CondV = EvaluateExprAsBool(Cond); 514 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 515 } 516 517 /// ErrorUnsupported - Print out an error that codegen doesn't support the 518 /// specified stmt yet. 519 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 520 bool OmitOnError) { 521 CGM.ErrorUnsupported(S, Type, OmitOnError); 522 } 523 524 void 525 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 526 // Ignore empty classes in C++. 527 if (getContext().getLangOptions().CPlusPlus) { 528 if (const RecordType *RT = Ty->getAs<RecordType>()) { 529 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 530 return; 531 } 532 } 533 534 // Cast the dest ptr to the appropriate i8 pointer type. 535 unsigned DestAS = 536 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 537 const llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 538 if (DestPtr->getType() != BP) 539 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 540 541 // Get size and alignment info for this aggregate. 542 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 543 uint64_t Size = TypeInfo.first / 8; 544 unsigned Align = TypeInfo.second / 8; 545 546 llvm::Value *SizeVal; 547 bool vla; 548 549 // Don't bother emitting a zero-byte memset. 550 if (Size == 0) { 551 // But note that getTypeInfo returns 0 for a VLA. 552 if (const VariableArrayType *vlaType = 553 dyn_cast_or_null<VariableArrayType>( 554 getContext().getAsArrayType(Ty))) { 555 SizeVal = GetVLASize(vlaType); 556 vla = true; 557 } else { 558 return; 559 } 560 } else { 561 SizeVal = llvm::ConstantInt::get(IntPtrTy, Size); 562 vla = false; 563 } 564 565 // If the type contains a pointer to data member we can't memset it to zero. 566 // Instead, create a null constant and copy it to the destination. 567 if (!CGM.getTypes().isZeroInitializable(Ty)) { 568 // FIXME: variable-size types! 569 if (vla) return; 570 571 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 572 573 llvm::GlobalVariable *NullVariable = 574 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 575 /*isConstant=*/true, 576 llvm::GlobalVariable::PrivateLinkage, 577 NullConstant, llvm::Twine()); 578 llvm::Value *SrcPtr = 579 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 580 581 // Get and call the appropriate llvm.memcpy overload. 582 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align, false); 583 return; 584 } 585 586 // Otherwise, just memset the whole thing to zero. This is legal 587 // because in LLVM, all default initializers (other than the ones we just 588 // handled above) are guaranteed to have a bit pattern of all zeros. 589 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, Align, false); 590 } 591 592 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) { 593 // Make sure that there is a block for the indirect goto. 594 if (IndirectBranch == 0) 595 GetIndirectGotoBlock(); 596 597 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 598 599 // Make sure the indirect branch includes all of the address-taken blocks. 600 IndirectBranch->addDestination(BB); 601 return llvm::BlockAddress::get(CurFn, BB); 602 } 603 604 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 605 // If we already made the indirect branch for indirect goto, return its block. 606 if (IndirectBranch) return IndirectBranch->getParent(); 607 608 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 609 610 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 611 612 // Create the PHI node that indirect gotos will add entries to. 613 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest"); 614 615 // Create the indirect branch instruction. 616 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 617 return IndirectBranch->getParent(); 618 } 619 620 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 621 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 622 623 assert(SizeEntry && "Did not emit size for type"); 624 return SizeEntry; 625 } 626 627 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 628 assert(Ty->isVariablyModifiedType() && 629 "Must pass variably modified type to EmitVLASizes!"); 630 631 EnsureInsertPoint(); 632 633 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 634 // unknown size indication requires no size computation. 635 if (!VAT->getSizeExpr()) 636 return 0; 637 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 638 639 if (!SizeEntry) { 640 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 641 642 // Get the element size; 643 QualType ElemTy = VAT->getElementType(); 644 llvm::Value *ElemSize; 645 if (ElemTy->isVariableArrayType()) 646 ElemSize = EmitVLASize(ElemTy); 647 else 648 ElemSize = llvm::ConstantInt::get(SizeTy, 649 getContext().getTypeSizeInChars(ElemTy).getQuantity()); 650 651 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 652 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 653 654 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 655 } 656 657 return SizeEntry; 658 } 659 660 if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 661 EmitVLASize(AT->getElementType()); 662 return 0; 663 } 664 665 if (const ParenType *PT = dyn_cast<ParenType>(Ty)) { 666 EmitVLASize(PT->getInnerType()); 667 return 0; 668 } 669 670 const PointerType *PT = Ty->getAs<PointerType>(); 671 assert(PT && "unknown VM type!"); 672 EmitVLASize(PT->getPointeeType()); 673 return 0; 674 } 675 676 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 677 if (getContext().getBuiltinVaListType()->isArrayType()) 678 return EmitScalarExpr(E); 679 return EmitLValue(E).getAddress(); 680 } 681 682 /// Pops cleanup blocks until the given savepoint is reached. 683 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) { 684 assert(Old.isValid()); 685 686 while (EHStack.stable_begin() != Old) { 687 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 688 689 // As long as Old strictly encloses the scope's enclosing normal 690 // cleanup, we're going to emit another normal cleanup which 691 // fallthrough can propagate through. 692 bool FallThroughIsBranchThrough = 693 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); 694 695 PopCleanupBlock(FallThroughIsBranchThrough); 696 } 697 } 698 699 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, 700 EHCleanupScope &Scope) { 701 assert(Scope.isNormalCleanup()); 702 llvm::BasicBlock *Entry = Scope.getNormalBlock(); 703 if (!Entry) { 704 Entry = CGF.createBasicBlock("cleanup"); 705 Scope.setNormalBlock(Entry); 706 } 707 return Entry; 708 } 709 710 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF, 711 EHCleanupScope &Scope) { 712 assert(Scope.isEHCleanup()); 713 llvm::BasicBlock *Entry = Scope.getEHBlock(); 714 if (!Entry) { 715 Entry = CGF.createBasicBlock("eh.cleanup"); 716 Scope.setEHBlock(Entry); 717 } 718 return Entry; 719 } 720 721 /// Transitions the terminator of the given exit-block of a cleanup to 722 /// be a cleanup switch. 723 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, 724 llvm::BasicBlock *Block) { 725 // If it's a branch, turn it into a switch whose default 726 // destination is its original target. 727 llvm::TerminatorInst *Term = Block->getTerminator(); 728 assert(Term && "can't transition block without terminator"); 729 730 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 731 assert(Br->isUnconditional()); 732 llvm::LoadInst *Load = 733 new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term); 734 llvm::SwitchInst *Switch = 735 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); 736 Br->eraseFromParent(); 737 return Switch; 738 } else { 739 return cast<llvm::SwitchInst>(Term); 740 } 741 } 742 743 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 744 /// is basically llvm::MergeBlockIntoPredecessor, except 745 /// simplified/optimized for the tighter constraints on cleanup blocks. 746 /// 747 /// Returns the new block, whatever it is. 748 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, 749 llvm::BasicBlock *Entry) { 750 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 751 if (!Pred) return Entry; 752 753 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 754 if (!Br || Br->isConditional()) return Entry; 755 assert(Br->getSuccessor(0) == Entry); 756 757 // If we were previously inserting at the end of the cleanup entry 758 // block, we'll need to continue inserting at the end of the 759 // predecessor. 760 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 761 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 762 763 // Kill the branch. 764 Br->eraseFromParent(); 765 766 // Merge the blocks. 767 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 768 769 // Replace all uses of the entry with the predecessor, in case there 770 // are phis in the cleanup. 771 Entry->replaceAllUsesWith(Pred); 772 773 // Kill the entry block. 774 Entry->eraseFromParent(); 775 776 if (WasInsertBlock) 777 CGF.Builder.SetInsertPoint(Pred); 778 779 return Pred; 780 } 781 782 static void EmitCleanup(CodeGenFunction &CGF, 783 EHScopeStack::Cleanup *Fn, 784 bool ForEH, 785 llvm::Value *ActiveFlag) { 786 // EH cleanups always occur within a terminate scope. 787 if (ForEH) CGF.EHStack.pushTerminate(); 788 789 // If there's an active flag, load it and skip the cleanup if it's 790 // false. 791 llvm::BasicBlock *ContBB = 0; 792 if (ActiveFlag) { 793 ContBB = CGF.createBasicBlock("cleanup.done"); 794 llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); 795 llvm::Value *IsActive 796 = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); 797 CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); 798 CGF.EmitBlock(CleanupBB); 799 } 800 801 // Ask the cleanup to emit itself. 802 Fn->Emit(CGF, ForEH); 803 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); 804 805 // Emit the continuation block if there was an active flag. 806 if (ActiveFlag) 807 CGF.EmitBlock(ContBB); 808 809 // Leave the terminate scope. 810 if (ForEH) CGF.EHStack.popTerminate(); 811 } 812 813 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, 814 llvm::BasicBlock *From, 815 llvm::BasicBlock *To) { 816 // Exit is the exit block of a cleanup, so it always terminates in 817 // an unconditional branch or a switch. 818 llvm::TerminatorInst *Term = Exit->getTerminator(); 819 820 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 821 assert(Br->isUnconditional() && Br->getSuccessor(0) == From); 822 Br->setSuccessor(0, To); 823 } else { 824 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term); 825 for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) 826 if (Switch->getSuccessor(I) == From) 827 Switch->setSuccessor(I, To); 828 } 829 } 830 831 /// Pops a cleanup block. If the block includes a normal cleanup, the 832 /// current insertion point is threaded through the cleanup, as are 833 /// any branch fixups on the cleanup. 834 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { 835 assert(!EHStack.empty() && "cleanup stack is empty!"); 836 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 837 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 838 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 839 840 // Remember activation information. 841 bool IsActive = Scope.isActive(); 842 llvm::Value *NormalActiveFlag = 843 Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0; 844 llvm::Value *EHActiveFlag = 845 Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0; 846 847 // Check whether we need an EH cleanup. This is only true if we've 848 // generated a lazy EH cleanup block. 849 bool RequiresEHCleanup = Scope.hasEHBranches(); 850 851 // Check the three conditions which might require a normal cleanup: 852 853 // - whether there are branch fix-ups through this cleanup 854 unsigned FixupDepth = Scope.getFixupDepth(); 855 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 856 857 // - whether there are branch-throughs or branch-afters 858 bool HasExistingBranches = Scope.hasBranches(); 859 860 // - whether there's a fallthrough 861 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); 862 bool HasFallthrough = (FallthroughSource != 0 && IsActive); 863 864 // Branch-through fall-throughs leave the insertion point set to the 865 // end of the last cleanup, which points to the current scope. The 866 // rest of IR gen doesn't need to worry about this; it only happens 867 // during the execution of PopCleanupBlocks(). 868 bool HasPrebranchedFallthrough = 869 (FallthroughSource && FallthroughSource->getTerminator()); 870 871 // If this is a normal cleanup, then having a prebranched 872 // fallthrough implies that the fallthrough source unconditionally 873 // jumps here. 874 assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || 875 (Scope.getNormalBlock() && 876 FallthroughSource->getTerminator()->getSuccessor(0) 877 == Scope.getNormalBlock())); 878 879 bool RequiresNormalCleanup = false; 880 if (Scope.isNormalCleanup() && 881 (HasFixups || HasExistingBranches || HasFallthrough)) { 882 RequiresNormalCleanup = true; 883 } 884 885 // Even if we don't need the normal cleanup, we might still have 886 // prebranched fallthrough to worry about. 887 if (Scope.isNormalCleanup() && !RequiresNormalCleanup && 888 HasPrebranchedFallthrough) { 889 assert(!IsActive); 890 891 llvm::BasicBlock *NormalEntry = Scope.getNormalBlock(); 892 893 // If we're branching through this cleanup, just forward the 894 // prebranched fallthrough to the next cleanup, leaving the insert 895 // point in the old block. 896 if (FallthroughIsBranchThrough) { 897 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 898 llvm::BasicBlock *EnclosingEntry = 899 CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 900 901 ForwardPrebranchedFallthrough(FallthroughSource, 902 NormalEntry, EnclosingEntry); 903 assert(NormalEntry->use_empty() && 904 "uses of entry remain after forwarding?"); 905 delete NormalEntry; 906 907 // Otherwise, we're branching out; just emit the next block. 908 } else { 909 EmitBlock(NormalEntry); 910 SimplifyCleanupEntry(*this, NormalEntry); 911 } 912 } 913 914 // If we don't need the cleanup at all, we're done. 915 if (!RequiresNormalCleanup && !RequiresEHCleanup) { 916 EHStack.popCleanup(); // safe because there are no fixups 917 assert(EHStack.getNumBranchFixups() == 0 || 918 EHStack.hasNormalCleanups()); 919 return; 920 } 921 922 // Copy the cleanup emission data out. Note that SmallVector 923 // guarantees maximal alignment for its buffer regardless of its 924 // type parameter. 925 llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer; 926 CleanupBuffer.reserve(Scope.getCleanupSize()); 927 memcpy(CleanupBuffer.data(), 928 Scope.getCleanupBuffer(), Scope.getCleanupSize()); 929 CleanupBuffer.set_size(Scope.getCleanupSize()); 930 EHScopeStack::Cleanup *Fn = 931 reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data()); 932 933 // We want to emit the EH cleanup after the normal cleanup, but go 934 // ahead and do the setup for the EH cleanup while the scope is still 935 // alive. 936 llvm::BasicBlock *EHEntry = 0; 937 llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend; 938 if (RequiresEHCleanup) { 939 EHEntry = CreateEHEntry(*this, Scope); 940 941 // Figure out the branch-through dest if necessary. 942 llvm::BasicBlock *EHBranchThroughDest = 0; 943 if (Scope.hasEHBranchThroughs()) { 944 assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end()); 945 EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup()); 946 EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S)); 947 } 948 949 // If we have exactly one branch-after and no branch-throughs, we 950 // can dispatch it without a switch. 951 if (!Scope.hasEHBranchThroughs() && 952 Scope.getNumEHBranchAfters() == 1) { 953 assert(!EHBranchThroughDest); 954 955 // TODO: remove the spurious eh.cleanup.dest stores if this edge 956 // never went through any switches. 957 llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0); 958 EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest)); 959 960 // Otherwise, if we have any branch-afters, we need a switch. 961 } else if (Scope.getNumEHBranchAfters()) { 962 // The default of the switch belongs to the branch-throughs if 963 // they exist. 964 llvm::BasicBlock *Default = 965 (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock()); 966 967 const unsigned SwitchCapacity = Scope.getNumEHBranchAfters(); 968 969 llvm::LoadInst *Load = 970 new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest"); 971 llvm::SwitchInst *Switch = 972 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 973 974 EHInstsToAppend.push_back(Load); 975 EHInstsToAppend.push_back(Switch); 976 977 for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I) 978 Switch->addCase(Scope.getEHBranchAfterIndex(I), 979 Scope.getEHBranchAfterBlock(I)); 980 981 // Otherwise, we have only branch-throughs; jump to the next EH 982 // cleanup. 983 } else { 984 assert(EHBranchThroughDest); 985 EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest)); 986 } 987 } 988 989 if (!RequiresNormalCleanup) { 990 EHStack.popCleanup(); 991 } else { 992 // If we have a fallthrough and no other need for the cleanup, 993 // emit it directly. 994 if (HasFallthrough && !HasPrebranchedFallthrough && 995 !HasFixups && !HasExistingBranches) { 996 997 // Fixups can cause us to optimistically create a normal block, 998 // only to later have no real uses for it. Just delete it in 999 // this case. 1000 // TODO: we can potentially simplify all the uses after this. 1001 if (Scope.getNormalBlock()) { 1002 Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock()); 1003 delete Scope.getNormalBlock(); 1004 } 1005 1006 EHStack.popCleanup(); 1007 1008 EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag); 1009 1010 // Otherwise, the best approach is to thread everything through 1011 // the cleanup block and then try to clean up after ourselves. 1012 } else { 1013 // Force the entry block to exist. 1014 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); 1015 1016 // I. Set up the fallthrough edge in. 1017 1018 // If there's a fallthrough, we need to store the cleanup 1019 // destination index. For fall-throughs this is always zero. 1020 if (HasFallthrough) { 1021 if (!HasPrebranchedFallthrough) 1022 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); 1023 1024 // Otherwise, clear the IP if we don't have fallthrough because 1025 // the cleanup is inactive. We don't need to save it because 1026 // it's still just FallthroughSource. 1027 } else if (FallthroughSource) { 1028 assert(!IsActive && "source without fallthrough for active cleanup"); 1029 Builder.ClearInsertionPoint(); 1030 } 1031 1032 // II. Emit the entry block. This implicitly branches to it if 1033 // we have fallthrough. All the fixups and existing branches 1034 // should already be branched to it. 1035 EmitBlock(NormalEntry); 1036 1037 // III. Figure out where we're going and build the cleanup 1038 // epilogue. 1039 1040 bool HasEnclosingCleanups = 1041 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); 1042 1043 // Compute the branch-through dest if we need it: 1044 // - if there are branch-throughs threaded through the scope 1045 // - if fall-through is a branch-through 1046 // - if there are fixups that will be optimistically forwarded 1047 // to the enclosing cleanup 1048 llvm::BasicBlock *BranchThroughDest = 0; 1049 if (Scope.hasBranchThroughs() || 1050 (FallthroughSource && FallthroughIsBranchThrough) || 1051 (HasFixups && HasEnclosingCleanups)) { 1052 assert(HasEnclosingCleanups); 1053 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 1054 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 1055 } 1056 1057 llvm::BasicBlock *FallthroughDest = 0; 1058 llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend; 1059 1060 // If there's exactly one branch-after and no other threads, 1061 // we can route it without a switch. 1062 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && 1063 Scope.getNumBranchAfters() == 1) { 1064 assert(!BranchThroughDest || !IsActive); 1065 1066 // TODO: clean up the possibly dead stores to the cleanup dest slot. 1067 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); 1068 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); 1069 1070 // Build a switch-out if we need it: 1071 // - if there are branch-afters threaded through the scope 1072 // - if fall-through is a branch-after 1073 // - if there are fixups that have nowhere left to go and 1074 // so must be immediately resolved 1075 } else if (Scope.getNumBranchAfters() || 1076 (HasFallthrough && !FallthroughIsBranchThrough) || 1077 (HasFixups && !HasEnclosingCleanups)) { 1078 1079 llvm::BasicBlock *Default = 1080 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); 1081 1082 // TODO: base this on the number of branch-afters and fixups 1083 const unsigned SwitchCapacity = 10; 1084 1085 llvm::LoadInst *Load = 1086 new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest"); 1087 llvm::SwitchInst *Switch = 1088 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 1089 1090 InstsToAppend.push_back(Load); 1091 InstsToAppend.push_back(Switch); 1092 1093 // Branch-after fallthrough. 1094 if (FallthroughSource && !FallthroughIsBranchThrough) { 1095 FallthroughDest = createBasicBlock("cleanup.cont"); 1096 if (HasFallthrough) 1097 Switch->addCase(Builder.getInt32(0), FallthroughDest); 1098 } 1099 1100 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { 1101 Switch->addCase(Scope.getBranchAfterIndex(I), 1102 Scope.getBranchAfterBlock(I)); 1103 } 1104 1105 // If there aren't any enclosing cleanups, we can resolve all 1106 // the fixups now. 1107 if (HasFixups && !HasEnclosingCleanups) 1108 ResolveAllBranchFixups(*this, Switch, NormalEntry); 1109 } else { 1110 // We should always have a branch-through destination in this case. 1111 assert(BranchThroughDest); 1112 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); 1113 } 1114 1115 // IV. Pop the cleanup and emit it. 1116 EHStack.popCleanup(); 1117 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); 1118 1119 EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag); 1120 1121 // Append the prepared cleanup prologue from above. 1122 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); 1123 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) 1124 NormalExit->getInstList().push_back(InstsToAppend[I]); 1125 1126 // Optimistically hope that any fixups will continue falling through. 1127 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 1128 I < E; ++I) { 1129 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 1130 if (!Fixup.Destination) continue; 1131 if (!Fixup.OptimisticBranchBlock) { 1132 new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex), 1133 getNormalCleanupDestSlot(), 1134 Fixup.InitialBranch); 1135 Fixup.InitialBranch->setSuccessor(0, NormalEntry); 1136 } 1137 Fixup.OptimisticBranchBlock = NormalExit; 1138 } 1139 1140 // V. Set up the fallthrough edge out. 1141 1142 // Case 1: a fallthrough source exists but shouldn't branch to 1143 // the cleanup because the cleanup is inactive. 1144 if (!HasFallthrough && FallthroughSource) { 1145 assert(!IsActive); 1146 1147 // If we have a prebranched fallthrough, that needs to be 1148 // forwarded to the right block. 1149 if (HasPrebranchedFallthrough) { 1150 llvm::BasicBlock *Next; 1151 if (FallthroughIsBranchThrough) { 1152 Next = BranchThroughDest; 1153 assert(!FallthroughDest); 1154 } else { 1155 Next = FallthroughDest; 1156 } 1157 1158 ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next); 1159 } 1160 Builder.SetInsertPoint(FallthroughSource); 1161 1162 // Case 2: a fallthrough source exists and should branch to the 1163 // cleanup, but we're not supposed to branch through to the next 1164 // cleanup. 1165 } else if (HasFallthrough && FallthroughDest) { 1166 assert(!FallthroughIsBranchThrough); 1167 EmitBlock(FallthroughDest); 1168 1169 // Case 3: a fallthrough source exists and should branch to the 1170 // cleanup and then through to the next. 1171 } else if (HasFallthrough) { 1172 // Everything is already set up for this. 1173 1174 // Case 4: no fallthrough source exists. 1175 } else { 1176 Builder.ClearInsertionPoint(); 1177 } 1178 1179 // VI. Assorted cleaning. 1180 1181 // Check whether we can merge NormalEntry into a single predecessor. 1182 // This might invalidate (non-IR) pointers to NormalEntry. 1183 llvm::BasicBlock *NewNormalEntry = 1184 SimplifyCleanupEntry(*this, NormalEntry); 1185 1186 // If it did invalidate those pointers, and NormalEntry was the same 1187 // as NormalExit, go back and patch up the fixups. 1188 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) 1189 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 1190 I < E; ++I) 1191 CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; 1192 } 1193 } 1194 1195 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); 1196 1197 // Emit the EH cleanup if required. 1198 if (RequiresEHCleanup) { 1199 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1200 1201 EmitBlock(EHEntry); 1202 EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag); 1203 1204 // Append the prepared cleanup prologue from above. 1205 llvm::BasicBlock *EHExit = Builder.GetInsertBlock(); 1206 for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I) 1207 EHExit->getInstList().push_back(EHInstsToAppend[I]); 1208 1209 Builder.restoreIP(SavedIP); 1210 1211 SimplifyCleanupEntry(*this, EHEntry); 1212 } 1213 } 1214 1215 /// Terminate the current block by emitting a branch which might leave 1216 /// the current cleanup-protected scope. The target scope may not yet 1217 /// be known, in which case this will require a fixup. 1218 /// 1219 /// As a side-effect, this method clears the insertion point. 1220 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 1221 assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup()) 1222 && "stale jump destination"); 1223 1224 if (!HaveInsertPoint()) 1225 return; 1226 1227 // Create the branch. 1228 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1229 1230 // Calculate the innermost active normal cleanup. 1231 EHScopeStack::stable_iterator 1232 TopCleanup = EHStack.getInnermostActiveNormalCleanup(); 1233 1234 // If we're not in an active normal cleanup scope, or if the 1235 // destination scope is within the innermost active normal cleanup 1236 // scope, we don't need to worry about fixups. 1237 if (TopCleanup == EHStack.stable_end() || 1238 TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid 1239 Builder.ClearInsertionPoint(); 1240 return; 1241 } 1242 1243 // If we can't resolve the destination cleanup scope, just add this 1244 // to the current cleanup scope as a branch fixup. 1245 if (!Dest.getScopeDepth().isValid()) { 1246 BranchFixup &Fixup = EHStack.addBranchFixup(); 1247 Fixup.Destination = Dest.getBlock(); 1248 Fixup.DestinationIndex = Dest.getDestIndex(); 1249 Fixup.InitialBranch = BI; 1250 Fixup.OptimisticBranchBlock = 0; 1251 1252 Builder.ClearInsertionPoint(); 1253 return; 1254 } 1255 1256 // Otherwise, thread through all the normal cleanups in scope. 1257 1258 // Store the index at the start. 1259 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1260 new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI); 1261 1262 // Adjust BI to point to the first cleanup block. 1263 { 1264 EHCleanupScope &Scope = 1265 cast<EHCleanupScope>(*EHStack.find(TopCleanup)); 1266 BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); 1267 } 1268 1269 // Add this destination to all the scopes involved. 1270 EHScopeStack::stable_iterator I = TopCleanup; 1271 EHScopeStack::stable_iterator E = Dest.getScopeDepth(); 1272 if (E.strictlyEncloses(I)) { 1273 while (true) { 1274 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1275 assert(Scope.isNormalCleanup()); 1276 I = Scope.getEnclosingNormalCleanup(); 1277 1278 // If this is the last cleanup we're propagating through, tell it 1279 // that there's a resolved jump moving through it. 1280 if (!E.strictlyEncloses(I)) { 1281 Scope.addBranchAfter(Index, Dest.getBlock()); 1282 break; 1283 } 1284 1285 // Otherwise, tell the scope that there's a jump propoagating 1286 // through it. If this isn't new information, all the rest of 1287 // the work has been done before. 1288 if (!Scope.addBranchThrough(Dest.getBlock())) 1289 break; 1290 } 1291 } 1292 1293 Builder.ClearInsertionPoint(); 1294 } 1295 1296 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) { 1297 // We should never get invalid scope depths for an UnwindDest; that 1298 // implies that the destination wasn't set up correctly. 1299 assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?"); 1300 1301 if (!HaveInsertPoint()) 1302 return; 1303 1304 // Create the branch. 1305 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1306 1307 // Calculate the innermost active cleanup. 1308 EHScopeStack::stable_iterator 1309 InnermostCleanup = EHStack.getInnermostActiveEHCleanup(); 1310 1311 // If the destination is in the same EH cleanup scope as us, we 1312 // don't need to thread through anything. 1313 if (InnermostCleanup.encloses(Dest.getScopeDepth())) { 1314 Builder.ClearInsertionPoint(); 1315 return; 1316 } 1317 assert(InnermostCleanup != EHStack.stable_end()); 1318 1319 // Store the index at the start. 1320 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1321 new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI); 1322 1323 // Adjust BI to point to the first cleanup block. 1324 { 1325 EHCleanupScope &Scope = 1326 cast<EHCleanupScope>(*EHStack.find(InnermostCleanup)); 1327 BI->setSuccessor(0, CreateEHEntry(*this, Scope)); 1328 } 1329 1330 // Add this destination to all the scopes involved. 1331 for (EHScopeStack::stable_iterator 1332 I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) { 1333 assert(E.strictlyEncloses(I)); 1334 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1335 assert(Scope.isEHCleanup()); 1336 I = Scope.getEnclosingEHCleanup(); 1337 1338 // If this is the last cleanup we're propagating through, add this 1339 // as a branch-after. 1340 if (I == E) { 1341 Scope.addEHBranchAfter(Index, Dest.getBlock()); 1342 break; 1343 } 1344 1345 // Otherwise, add it as a branch-through. If this isn't new 1346 // information, all the rest of the work has been done before. 1347 if (!Scope.addEHBranchThrough(Dest.getBlock())) 1348 break; 1349 } 1350 1351 Builder.ClearInsertionPoint(); 1352 } 1353 1354 /// All the branch fixups on the EH stack have propagated out past the 1355 /// outermost normal cleanup; resolve them all by adding cases to the 1356 /// given switch instruction. 1357 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 1358 llvm::SwitchInst *Switch, 1359 llvm::BasicBlock *CleanupEntry) { 1360 llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; 1361 1362 for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { 1363 // Skip this fixup if its destination isn't set. 1364 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 1365 if (Fixup.Destination == 0) continue; 1366 1367 // If there isn't an OptimisticBranchBlock, then InitialBranch is 1368 // still pointing directly to its destination; forward it to the 1369 // appropriate cleanup entry. This is required in the specific 1370 // case of 1371 // { std::string s; goto lbl; } 1372 // lbl: 1373 // i.e. where there's an unresolved fixup inside a single cleanup 1374 // entry which we're currently popping. 1375 if (Fixup.OptimisticBranchBlock == 0) { 1376 new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex), 1377 CGF.getNormalCleanupDestSlot(), 1378 Fixup.InitialBranch); 1379 Fixup.InitialBranch->setSuccessor(0, CleanupEntry); 1380 } 1381 1382 // Don't add this case to the switch statement twice. 1383 if (!CasesAdded.insert(Fixup.Destination)) continue; 1384 1385 Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), 1386 Fixup.Destination); 1387 } 1388 1389 CGF.EHStack.clearFixups(); 1390 } 1391 1392 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { 1393 assert(Block && "resolving a null target block"); 1394 if (!EHStack.getNumBranchFixups()) return; 1395 1396 assert(EHStack.hasNormalCleanups() && 1397 "branch fixups exist with no normal cleanups on stack"); 1398 1399 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; 1400 bool ResolvedAny = false; 1401 1402 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 1403 // Skip this fixup if its destination doesn't match. 1404 BranchFixup &Fixup = EHStack.getBranchFixup(I); 1405 if (Fixup.Destination != Block) continue; 1406 1407 Fixup.Destination = 0; 1408 ResolvedAny = true; 1409 1410 // If it doesn't have an optimistic branch block, LatestBranch is 1411 // already pointing to the right place. 1412 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; 1413 if (!BranchBB) 1414 continue; 1415 1416 // Don't process the same optimistic branch block twice. 1417 if (!ModifiedOptimisticBlocks.insert(BranchBB)) 1418 continue; 1419 1420 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); 1421 1422 // Add a case to the switch. 1423 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); 1424 } 1425 1426 if (ResolvedAny) 1427 EHStack.popNullFixups(); 1428 } 1429 1430 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, 1431 EHScopeStack::stable_iterator C) { 1432 // If we needed a normal block for any reason, that counts. 1433 if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock()) 1434 return true; 1435 1436 // Check whether any enclosed cleanups were needed. 1437 for (EHScopeStack::stable_iterator 1438 I = EHStack.getInnermostNormalCleanup(); 1439 I != C; ) { 1440 assert(C.strictlyEncloses(I)); 1441 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 1442 if (S.getNormalBlock()) return true; 1443 I = S.getEnclosingNormalCleanup(); 1444 } 1445 1446 return false; 1447 } 1448 1449 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, 1450 EHScopeStack::stable_iterator C) { 1451 // If we needed an EH block for any reason, that counts. 1452 if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock()) 1453 return true; 1454 1455 // Check whether any enclosed cleanups were needed. 1456 for (EHScopeStack::stable_iterator 1457 I = EHStack.getInnermostEHCleanup(); I != C; ) { 1458 assert(C.strictlyEncloses(I)); 1459 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 1460 if (S.getEHBlock()) return true; 1461 I = S.getEnclosingEHCleanup(); 1462 } 1463 1464 return false; 1465 } 1466 1467 enum ForActivation_t { 1468 ForActivation, 1469 ForDeactivation 1470 }; 1471 1472 /// The given cleanup block is changing activation state. Configure a 1473 /// cleanup variable if necessary. 1474 /// 1475 /// It would be good if we had some way of determining if there were 1476 /// extra uses *after* the change-over point. 1477 static void SetupCleanupBlockActivation(CodeGenFunction &CGF, 1478 EHScopeStack::stable_iterator C, 1479 ForActivation_t Kind) { 1480 EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C)); 1481 1482 // We always need the flag if we're activating the cleanup, because 1483 // we have to assume that the current location doesn't necessarily 1484 // dominate all future uses of the cleanup. 1485 bool NeedFlag = (Kind == ForActivation); 1486 1487 // Calculate whether the cleanup was used: 1488 1489 // - as a normal cleanup 1490 if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) { 1491 Scope.setTestFlagInNormalCleanup(); 1492 NeedFlag = true; 1493 } 1494 1495 // - as an EH cleanup 1496 if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) { 1497 Scope.setTestFlagInEHCleanup(); 1498 NeedFlag = true; 1499 } 1500 1501 // If it hasn't yet been used as either, we're done. 1502 if (!NeedFlag) return; 1503 1504 llvm::AllocaInst *Var = Scope.getActiveFlag(); 1505 if (!Var) { 1506 Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive"); 1507 Scope.setActiveFlag(Var); 1508 1509 // Initialize to true or false depending on whether it was 1510 // active up to this point. 1511 CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation)); 1512 } 1513 1514 CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var); 1515 } 1516 1517 /// Activate a cleanup that was created in an inactivated state. 1518 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) { 1519 assert(C != EHStack.stable_end() && "activating bottom of stack?"); 1520 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1521 assert(!Scope.isActive() && "double activation"); 1522 1523 SetupCleanupBlockActivation(*this, C, ForActivation); 1524 1525 Scope.setActive(true); 1526 } 1527 1528 /// Deactive a cleanup that was created in an active state. 1529 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) { 1530 assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); 1531 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1532 assert(Scope.isActive() && "double deactivation"); 1533 1534 // If it's the top of the stack, just pop it. 1535 if (C == EHStack.stable_begin()) { 1536 // If it's a normal cleanup, we need to pretend that the 1537 // fallthrough is unreachable. 1538 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1539 PopCleanupBlock(); 1540 Builder.restoreIP(SavedIP); 1541 return; 1542 } 1543 1544 // Otherwise, follow the general case. 1545 SetupCleanupBlockActivation(*this, C, ForDeactivation); 1546 1547 Scope.setActive(false); 1548 } 1549 1550 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() { 1551 if (!NormalCleanupDest) 1552 NormalCleanupDest = 1553 CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); 1554 return NormalCleanupDest; 1555 } 1556 1557 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() { 1558 if (!EHCleanupDest) 1559 EHCleanupDest = 1560 CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot"); 1561 return EHCleanupDest; 1562 } 1563 1564 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1565 llvm::Constant *Init) { 1566 assert (Init && "Invalid DeclRefExpr initializer!"); 1567 if (CGDebugInfo *Dbg = getDebugInfo()) 1568 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1569 } 1570