1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                    llvm::SwitchInst *Switch,
33                                    llvm::BasicBlock *CleanupEntry);
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36   : BlockFunction(cgm, *this, Builder), CGM(cgm),
37     Target(CGM.getContext().Target),
38     Builder(cgm.getModule().getContext()),
39     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41     SwitchInsn(0), CaseRangeBlock(0),
42     DidCallStackSave(false), UnreachableBlock(0),
43     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
45     TrapBB(0) {
46 
47   // Get some frequently used types.
48   LLVMPointerWidth = Target.getPointerWidth(0);
49   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53 
54   Exceptions = getContext().getLangOptions().Exceptions;
55   CatchUndefined = getContext().getLangOptions().CatchUndefined;
56   CGM.getCXXABI().getMangleContext().startNewFunction();
57 }
58 
59 ASTContext &CodeGenFunction::getContext() const {
60   return CGM.getContext();
61 }
62 
63 
64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65   return CGM.getTypes().ConvertTypeForMem(T);
66 }
67 
68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69   return CGM.getTypes().ConvertType(T);
70 }
71 
72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74     T->isObjCObjectType();
75 }
76 
77 void CodeGenFunction::EmitReturnBlock() {
78   // For cleanliness, we try to avoid emitting the return block for
79   // simple cases.
80   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81 
82   if (CurBB) {
83     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84 
85     // We have a valid insert point, reuse it if it is empty or there are no
86     // explicit jumps to the return block.
87     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89       delete ReturnBlock.getBlock();
90     } else
91       EmitBlock(ReturnBlock.getBlock());
92     return;
93   }
94 
95   // Otherwise, if the return block is the target of a single direct
96   // branch then we can just put the code in that block instead. This
97   // cleans up functions which started with a unified return block.
98   if (ReturnBlock.getBlock()->hasOneUse()) {
99     llvm::BranchInst *BI =
100       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101     if (BI && BI->isUnconditional() &&
102         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103       // Reset insertion point and delete the branch.
104       Builder.SetInsertPoint(BI->getParent());
105       BI->eraseFromParent();
106       delete ReturnBlock.getBlock();
107       return;
108     }
109   }
110 
111   // FIXME: We are at an unreachable point, there is no reason to emit the block
112   // unless it has uses. However, we still need a place to put the debug
113   // region.end for now.
114 
115   EmitBlock(ReturnBlock.getBlock());
116 }
117 
118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119   if (!BB) return;
120   if (!BB->use_empty())
121     return CGF.CurFn->getBasicBlockList().push_back(BB);
122   delete BB;
123 }
124 
125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126   assert(BreakContinueStack.empty() &&
127          "mismatched push/pop in break/continue stack!");
128 
129   // Emit function epilog (to return).
130   EmitReturnBlock();
131 
132   EmitFunctionInstrumentation("__cyg_profile_func_exit");
133 
134   // Emit debug descriptor for function end.
135   if (CGDebugInfo *DI = getDebugInfo()) {
136     DI->setLocation(EndLoc);
137     DI->EmitFunctionEnd(Builder);
138   }
139 
140   EmitFunctionEpilog(*CurFnInfo);
141   EmitEndEHSpec(CurCodeDecl);
142 
143   assert(EHStack.empty() &&
144          "did not remove all scopes from cleanup stack!");
145 
146   // If someone did an indirect goto, emit the indirect goto block at the end of
147   // the function.
148   if (IndirectBranch) {
149     EmitBlock(IndirectBranch->getParent());
150     Builder.ClearInsertionPoint();
151   }
152 
153   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154   llvm::Instruction *Ptr = AllocaInsertPt;
155   AllocaInsertPt = 0;
156   Ptr->eraseFromParent();
157 
158   // If someone took the address of a label but never did an indirect goto, we
159   // made a zero entry PHI node, which is illegal, zap it now.
160   if (IndirectBranch) {
161     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162     if (PN->getNumIncomingValues() == 0) {
163       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164       PN->eraseFromParent();
165     }
166   }
167 
168   EmitIfUsed(*this, RethrowBlock.getBlock());
169   EmitIfUsed(*this, TerminateLandingPad);
170   EmitIfUsed(*this, TerminateHandler);
171   EmitIfUsed(*this, UnreachableBlock);
172 
173   if (CGM.getCodeGenOpts().EmitDeclMetadata)
174     EmitDeclMetadata();
175 }
176 
177 /// ShouldInstrumentFunction - Return true if the current function should be
178 /// instrumented with __cyg_profile_func_* calls
179 bool CodeGenFunction::ShouldInstrumentFunction() {
180   if (!CGM.getCodeGenOpts().InstrumentFunctions)
181     return false;
182   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183     return false;
184   return true;
185 }
186 
187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188 /// instrumentation function with the current function and the call site, if
189 /// function instrumentation is enabled.
190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191   if (!ShouldInstrumentFunction())
192     return;
193 
194   const llvm::PointerType *PointerTy;
195   const llvm::FunctionType *FunctionTy;
196   std::vector<const llvm::Type*> ProfileFuncArgs;
197 
198   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200   ProfileFuncArgs.push_back(PointerTy);
201   ProfileFuncArgs.push_back(PointerTy);
202   FunctionTy = llvm::FunctionType::get(
203     llvm::Type::getVoidTy(VMContext),
204     ProfileFuncArgs, false);
205 
206   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207   llvm::CallInst *CallSite = Builder.CreateCall(
208     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209     llvm::ConstantInt::get(Int32Ty, 0),
210     "callsite");
211 
212   Builder.CreateCall2(F,
213                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                       CallSite);
215 }
216 
217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                     llvm::Function *Fn,
219                                     const FunctionArgList &Args,
220                                     SourceLocation StartLoc) {
221   const Decl *D = GD.getDecl();
222 
223   DidCallStackSave = false;
224   CurCodeDecl = CurFuncDecl = D;
225   FnRetTy = RetTy;
226   CurFn = Fn;
227   assert(CurFn->isDeclaration() && "Function already has body?");
228 
229   // Pass inline keyword to optimizer if it appears explicitly on any
230   // declaration.
231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233            RE = FD->redecls_end(); RI != RE; ++RI)
234       if (RI->isInlineSpecified()) {
235         Fn->addFnAttr(llvm::Attribute::InlineHint);
236         break;
237       }
238 
239   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240 
241   // Create a marker to make it easy to insert allocas into the entryblock
242   // later.  Don't create this with the builder, because we don't want it
243   // folded.
244   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246   if (Builder.isNamePreserving())
247     AllocaInsertPt->setName("allocapt");
248 
249   ReturnBlock = getJumpDestInCurrentScope("return");
250 
251   Builder.SetInsertPoint(EntryBB);
252 
253   // Emit subprogram debug descriptor.
254   if (CGDebugInfo *DI = getDebugInfo()) {
255     // FIXME: what is going on here and why does it ignore all these
256     // interesting type properties?
257     QualType FnType =
258       getContext().getFunctionType(RetTy, 0, 0,
259                                    FunctionProtoType::ExtProtoInfo());
260 
261     DI->setLocation(StartLoc);
262     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
263   }
264 
265   EmitFunctionInstrumentation("__cyg_profile_func_enter");
266 
267   // FIXME: Leaked.
268   // CC info is ignored, hopefully?
269   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
270                                               FunctionType::ExtInfo());
271 
272   if (RetTy->isVoidType()) {
273     // Void type; nothing to return.
274     ReturnValue = 0;
275   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
276              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
277     // Indirect aggregate return; emit returned value directly into sret slot.
278     // This reduces code size, and affects correctness in C++.
279     ReturnValue = CurFn->arg_begin();
280   } else {
281     ReturnValue = CreateIRTemp(RetTy, "retval");
282   }
283 
284   EmitStartEHSpec(CurCodeDecl);
285   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
286 
287   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
288     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
289 
290   // If any of the arguments have a variably modified type, make sure to
291   // emit the type size.
292   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
293        i != e; ++i) {
294     QualType Ty = i->second;
295 
296     if (Ty->isVariablyModifiedType())
297       EmitVLASize(Ty);
298   }
299 }
300 
301 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
302   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
303   assert(FD->getBody());
304   EmitStmt(FD->getBody());
305 }
306 
307 /// Tries to mark the given function nounwind based on the
308 /// non-existence of any throwing calls within it.  We believe this is
309 /// lightweight enough to do at -O0.
310 static void TryMarkNoThrow(llvm::Function *F) {
311   // LLVM treats 'nounwind' on a function as part of the type, so we
312   // can't do this on functions that can be overwritten.
313   if (F->mayBeOverridden()) return;
314 
315   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
316     for (llvm::BasicBlock::iterator
317            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
318       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
319         if (!Call->doesNotThrow())
320           return;
321   F->setDoesNotThrow(true);
322 }
323 
324 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   // Check if we should generate debug info for this function.
328   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
329     DebugInfo = CGM.getDebugInfo();
330 
331   FunctionArgList Args;
332   QualType ResTy = FD->getResultType();
333 
334   CurGD = GD;
335   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
336     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
337 
338   if (FD->getNumParams()) {
339     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
340     assert(FProto && "Function def must have prototype!");
341 
342     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
343       Args.push_back(std::make_pair(FD->getParamDecl(i),
344                                     FProto->getArgType(i)));
345   }
346 
347   SourceRange BodyRange;
348   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
349 
350   // Emit the standard function prologue.
351   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
352 
353   // Generate the body of the function.
354   if (isa<CXXDestructorDecl>(FD))
355     EmitDestructorBody(Args);
356   else if (isa<CXXConstructorDecl>(FD))
357     EmitConstructorBody(Args);
358   else
359     EmitFunctionBody(Args);
360 
361   // Emit the standard function epilogue.
362   FinishFunction(BodyRange.getEnd());
363 
364   // If we haven't marked the function nothrow through other means, do
365   // a quick pass now to see if we can.
366   if (!CurFn->doesNotThrow())
367     TryMarkNoThrow(CurFn);
368 }
369 
370 /// ContainsLabel - Return true if the statement contains a label in it.  If
371 /// this statement is not executed normally, it not containing a label means
372 /// that we can just remove the code.
373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
374   // Null statement, not a label!
375   if (S == 0) return false;
376 
377   // If this is a label, we have to emit the code, consider something like:
378   // if (0) {  ...  foo:  bar(); }  goto foo;
379   if (isa<LabelStmt>(S))
380     return true;
381 
382   // If this is a case/default statement, and we haven't seen a switch, we have
383   // to emit the code.
384   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
385     return true;
386 
387   // If this is a switch statement, we want to ignore cases below it.
388   if (isa<SwitchStmt>(S))
389     IgnoreCaseStmts = true;
390 
391   // Scan subexpressions for verboten labels.
392   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
393        I != E; ++I)
394     if (ContainsLabel(*I, IgnoreCaseStmts))
395       return true;
396 
397   return false;
398 }
399 
400 
401 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
402 /// a constant, or if it does but contains a label, return 0.  If it constant
403 /// folds to 'true' and does not contain a label, return 1, if it constant folds
404 /// to 'false' and does not contain a label, return -1.
405 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
406   // FIXME: Rename and handle conversion of other evaluatable things
407   // to bool.
408   Expr::EvalResult Result;
409   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
410       Result.HasSideEffects)
411     return 0;  // Not foldable, not integer or not fully evaluatable.
412 
413   if (CodeGenFunction::ContainsLabel(Cond))
414     return 0;  // Contains a label.
415 
416   return Result.Val.getInt().getBoolValue() ? 1 : -1;
417 }
418 
419 
420 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
421 /// statement) to the specified blocks.  Based on the condition, this might try
422 /// to simplify the codegen of the conditional based on the branch.
423 ///
424 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
425                                            llvm::BasicBlock *TrueBlock,
426                                            llvm::BasicBlock *FalseBlock) {
427   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
428     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
429 
430   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
431     // Handle X && Y in a condition.
432     if (CondBOp->getOpcode() == BO_LAnd) {
433       // If we have "1 && X", simplify the code.  "0 && X" would have constant
434       // folded if the case was simple enough.
435       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
436         // br(1 && X) -> br(X).
437         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
438       }
439 
440       // If we have "X && 1", simplify the code to use an uncond branch.
441       // "X && 0" would have been constant folded to 0.
442       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
443         // br(X && 1) -> br(X).
444         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
445       }
446 
447       // Emit the LHS as a conditional.  If the LHS conditional is false, we
448       // want to jump to the FalseBlock.
449       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
450       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
451       EmitBlock(LHSTrue);
452 
453       // Any temporaries created here are conditional.
454       BeginConditionalBranch();
455       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
456       EndConditionalBranch();
457 
458       return;
459     } else if (CondBOp->getOpcode() == BO_LOr) {
460       // If we have "0 || X", simplify the code.  "1 || X" would have constant
461       // folded if the case was simple enough.
462       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
463         // br(0 || X) -> br(X).
464         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
465       }
466 
467       // If we have "X || 0", simplify the code to use an uncond branch.
468       // "X || 1" would have been constant folded to 1.
469       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
470         // br(X || 0) -> br(X).
471         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
472       }
473 
474       // Emit the LHS as a conditional.  If the LHS conditional is true, we
475       // want to jump to the TrueBlock.
476       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
477       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
478       EmitBlock(LHSFalse);
479 
480       // Any temporaries created here are conditional.
481       BeginConditionalBranch();
482       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
483       EndConditionalBranch();
484 
485       return;
486     }
487   }
488 
489   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
490     // br(!x, t, f) -> br(x, f, t)
491     if (CondUOp->getOpcode() == UO_LNot)
492       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
493   }
494 
495   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
496     // Handle ?: operator.
497 
498     // Just ignore GNU ?: extension.
499     if (CondOp->getLHS()) {
500       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
501       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
502       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
503       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
504       EmitBlock(LHSBlock);
505       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
506       EmitBlock(RHSBlock);
507       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
508       return;
509     }
510   }
511 
512   // Emit the code with the fully general case.
513   llvm::Value *CondV = EvaluateExprAsBool(Cond);
514   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
515 }
516 
517 /// ErrorUnsupported - Print out an error that codegen doesn't support the
518 /// specified stmt yet.
519 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
520                                        bool OmitOnError) {
521   CGM.ErrorUnsupported(S, Type, OmitOnError);
522 }
523 
524 void
525 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
526   // Ignore empty classes in C++.
527   if (getContext().getLangOptions().CPlusPlus) {
528     if (const RecordType *RT = Ty->getAs<RecordType>()) {
529       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
530         return;
531     }
532   }
533 
534   // Cast the dest ptr to the appropriate i8 pointer type.
535   unsigned DestAS =
536     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
537   const llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
538   if (DestPtr->getType() != BP)
539     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
540 
541   // Get size and alignment info for this aggregate.
542   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
543   uint64_t Size = TypeInfo.first / 8;
544   unsigned Align = TypeInfo.second / 8;
545 
546   llvm::Value *SizeVal;
547   bool vla;
548 
549   // Don't bother emitting a zero-byte memset.
550   if (Size == 0) {
551     // But note that getTypeInfo returns 0 for a VLA.
552     if (const VariableArrayType *vlaType =
553           dyn_cast_or_null<VariableArrayType>(
554                                           getContext().getAsArrayType(Ty))) {
555       SizeVal = GetVLASize(vlaType);
556       vla = true;
557     } else {
558       return;
559     }
560   } else {
561     SizeVal = llvm::ConstantInt::get(IntPtrTy, Size);
562     vla = false;
563   }
564 
565   // If the type contains a pointer to data member we can't memset it to zero.
566   // Instead, create a null constant and copy it to the destination.
567   if (!CGM.getTypes().isZeroInitializable(Ty)) {
568     // FIXME: variable-size types!
569     if (vla) return;
570 
571     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
572 
573     llvm::GlobalVariable *NullVariable =
574       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
575                                /*isConstant=*/true,
576                                llvm::GlobalVariable::PrivateLinkage,
577                                NullConstant, llvm::Twine());
578     llvm::Value *SrcPtr =
579       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
580 
581     // Get and call the appropriate llvm.memcpy overload.
582     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align, false);
583     return;
584   }
585 
586   // Otherwise, just memset the whole thing to zero.  This is legal
587   // because in LLVM, all default initializers (other than the ones we just
588   // handled above) are guaranteed to have a bit pattern of all zeros.
589   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, Align, false);
590 }
591 
592 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
593   // Make sure that there is a block for the indirect goto.
594   if (IndirectBranch == 0)
595     GetIndirectGotoBlock();
596 
597   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
598 
599   // Make sure the indirect branch includes all of the address-taken blocks.
600   IndirectBranch->addDestination(BB);
601   return llvm::BlockAddress::get(CurFn, BB);
602 }
603 
604 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
605   // If we already made the indirect branch for indirect goto, return its block.
606   if (IndirectBranch) return IndirectBranch->getParent();
607 
608   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
609 
610   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
611 
612   // Create the PHI node that indirect gotos will add entries to.
613   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
614 
615   // Create the indirect branch instruction.
616   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
617   return IndirectBranch->getParent();
618 }
619 
620 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
621   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
622 
623   assert(SizeEntry && "Did not emit size for type");
624   return SizeEntry;
625 }
626 
627 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
628   assert(Ty->isVariablyModifiedType() &&
629          "Must pass variably modified type to EmitVLASizes!");
630 
631   EnsureInsertPoint();
632 
633   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
634     // unknown size indication requires no size computation.
635     if (!VAT->getSizeExpr())
636       return 0;
637     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
638 
639     if (!SizeEntry) {
640       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
641 
642       // Get the element size;
643       QualType ElemTy = VAT->getElementType();
644       llvm::Value *ElemSize;
645       if (ElemTy->isVariableArrayType())
646         ElemSize = EmitVLASize(ElemTy);
647       else
648         ElemSize = llvm::ConstantInt::get(SizeTy,
649             getContext().getTypeSizeInChars(ElemTy).getQuantity());
650 
651       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
652       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
653 
654       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
655     }
656 
657     return SizeEntry;
658   }
659 
660   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
661     EmitVLASize(AT->getElementType());
662     return 0;
663   }
664 
665   if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
666     EmitVLASize(PT->getInnerType());
667     return 0;
668   }
669 
670   const PointerType *PT = Ty->getAs<PointerType>();
671   assert(PT && "unknown VM type!");
672   EmitVLASize(PT->getPointeeType());
673   return 0;
674 }
675 
676 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
677   if (getContext().getBuiltinVaListType()->isArrayType())
678     return EmitScalarExpr(E);
679   return EmitLValue(E).getAddress();
680 }
681 
682 /// Pops cleanup blocks until the given savepoint is reached.
683 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
684   assert(Old.isValid());
685 
686   while (EHStack.stable_begin() != Old) {
687     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
688 
689     // As long as Old strictly encloses the scope's enclosing normal
690     // cleanup, we're going to emit another normal cleanup which
691     // fallthrough can propagate through.
692     bool FallThroughIsBranchThrough =
693       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
694 
695     PopCleanupBlock(FallThroughIsBranchThrough);
696   }
697 }
698 
699 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
700                                            EHCleanupScope &Scope) {
701   assert(Scope.isNormalCleanup());
702   llvm::BasicBlock *Entry = Scope.getNormalBlock();
703   if (!Entry) {
704     Entry = CGF.createBasicBlock("cleanup");
705     Scope.setNormalBlock(Entry);
706   }
707   return Entry;
708 }
709 
710 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
711                                        EHCleanupScope &Scope) {
712   assert(Scope.isEHCleanup());
713   llvm::BasicBlock *Entry = Scope.getEHBlock();
714   if (!Entry) {
715     Entry = CGF.createBasicBlock("eh.cleanup");
716     Scope.setEHBlock(Entry);
717   }
718   return Entry;
719 }
720 
721 /// Transitions the terminator of the given exit-block of a cleanup to
722 /// be a cleanup switch.
723 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
724                                                    llvm::BasicBlock *Block) {
725   // If it's a branch, turn it into a switch whose default
726   // destination is its original target.
727   llvm::TerminatorInst *Term = Block->getTerminator();
728   assert(Term && "can't transition block without terminator");
729 
730   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
731     assert(Br->isUnconditional());
732     llvm::LoadInst *Load =
733       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
734     llvm::SwitchInst *Switch =
735       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
736     Br->eraseFromParent();
737     return Switch;
738   } else {
739     return cast<llvm::SwitchInst>(Term);
740   }
741 }
742 
743 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
744 /// is basically llvm::MergeBlockIntoPredecessor, except
745 /// simplified/optimized for the tighter constraints on cleanup blocks.
746 ///
747 /// Returns the new block, whatever it is.
748 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
749                                               llvm::BasicBlock *Entry) {
750   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
751   if (!Pred) return Entry;
752 
753   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
754   if (!Br || Br->isConditional()) return Entry;
755   assert(Br->getSuccessor(0) == Entry);
756 
757   // If we were previously inserting at the end of the cleanup entry
758   // block, we'll need to continue inserting at the end of the
759   // predecessor.
760   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
761   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
762 
763   // Kill the branch.
764   Br->eraseFromParent();
765 
766   // Merge the blocks.
767   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
768 
769   // Replace all uses of the entry with the predecessor, in case there
770   // are phis in the cleanup.
771   Entry->replaceAllUsesWith(Pred);
772 
773   // Kill the entry block.
774   Entry->eraseFromParent();
775 
776   if (WasInsertBlock)
777     CGF.Builder.SetInsertPoint(Pred);
778 
779   return Pred;
780 }
781 
782 static void EmitCleanup(CodeGenFunction &CGF,
783                         EHScopeStack::Cleanup *Fn,
784                         bool ForEH,
785                         llvm::Value *ActiveFlag) {
786   // EH cleanups always occur within a terminate scope.
787   if (ForEH) CGF.EHStack.pushTerminate();
788 
789   // If there's an active flag, load it and skip the cleanup if it's
790   // false.
791   llvm::BasicBlock *ContBB = 0;
792   if (ActiveFlag) {
793     ContBB = CGF.createBasicBlock("cleanup.done");
794     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
795     llvm::Value *IsActive
796       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
797     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
798     CGF.EmitBlock(CleanupBB);
799   }
800 
801   // Ask the cleanup to emit itself.
802   Fn->Emit(CGF, ForEH);
803   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
804 
805   // Emit the continuation block if there was an active flag.
806   if (ActiveFlag)
807     CGF.EmitBlock(ContBB);
808 
809   // Leave the terminate scope.
810   if (ForEH) CGF.EHStack.popTerminate();
811 }
812 
813 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
814                                           llvm::BasicBlock *From,
815                                           llvm::BasicBlock *To) {
816   // Exit is the exit block of a cleanup, so it always terminates in
817   // an unconditional branch or a switch.
818   llvm::TerminatorInst *Term = Exit->getTerminator();
819 
820   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
821     assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
822     Br->setSuccessor(0, To);
823   } else {
824     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
825     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
826       if (Switch->getSuccessor(I) == From)
827         Switch->setSuccessor(I, To);
828   }
829 }
830 
831 /// Pops a cleanup block.  If the block includes a normal cleanup, the
832 /// current insertion point is threaded through the cleanup, as are
833 /// any branch fixups on the cleanup.
834 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
835   assert(!EHStack.empty() && "cleanup stack is empty!");
836   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
837   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
838   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
839 
840   // Remember activation information.
841   bool IsActive = Scope.isActive();
842   llvm::Value *NormalActiveFlag =
843     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
844   llvm::Value *EHActiveFlag =
845     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
846 
847   // Check whether we need an EH cleanup.  This is only true if we've
848   // generated a lazy EH cleanup block.
849   bool RequiresEHCleanup = Scope.hasEHBranches();
850 
851   // Check the three conditions which might require a normal cleanup:
852 
853   // - whether there are branch fix-ups through this cleanup
854   unsigned FixupDepth = Scope.getFixupDepth();
855   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
856 
857   // - whether there are branch-throughs or branch-afters
858   bool HasExistingBranches = Scope.hasBranches();
859 
860   // - whether there's a fallthrough
861   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
862   bool HasFallthrough = (FallthroughSource != 0 && IsActive);
863 
864   // Branch-through fall-throughs leave the insertion point set to the
865   // end of the last cleanup, which points to the current scope.  The
866   // rest of IR gen doesn't need to worry about this; it only happens
867   // during the execution of PopCleanupBlocks().
868   bool HasPrebranchedFallthrough =
869     (FallthroughSource && FallthroughSource->getTerminator());
870 
871   // If this is a normal cleanup, then having a prebranched
872   // fallthrough implies that the fallthrough source unconditionally
873   // jumps here.
874   assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
875          (Scope.getNormalBlock() &&
876           FallthroughSource->getTerminator()->getSuccessor(0)
877             == Scope.getNormalBlock()));
878 
879   bool RequiresNormalCleanup = false;
880   if (Scope.isNormalCleanup() &&
881       (HasFixups || HasExistingBranches || HasFallthrough)) {
882     RequiresNormalCleanup = true;
883   }
884 
885   // Even if we don't need the normal cleanup, we might still have
886   // prebranched fallthrough to worry about.
887   if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
888       HasPrebranchedFallthrough) {
889     assert(!IsActive);
890 
891     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
892 
893     // If we're branching through this cleanup, just forward the
894     // prebranched fallthrough to the next cleanup, leaving the insert
895     // point in the old block.
896     if (FallthroughIsBranchThrough) {
897       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
898       llvm::BasicBlock *EnclosingEntry =
899         CreateNormalEntry(*this, cast<EHCleanupScope>(S));
900 
901       ForwardPrebranchedFallthrough(FallthroughSource,
902                                     NormalEntry, EnclosingEntry);
903       assert(NormalEntry->use_empty() &&
904              "uses of entry remain after forwarding?");
905       delete NormalEntry;
906 
907     // Otherwise, we're branching out;  just emit the next block.
908     } else {
909       EmitBlock(NormalEntry);
910       SimplifyCleanupEntry(*this, NormalEntry);
911     }
912   }
913 
914   // If we don't need the cleanup at all, we're done.
915   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
916     EHStack.popCleanup(); // safe because there are no fixups
917     assert(EHStack.getNumBranchFixups() == 0 ||
918            EHStack.hasNormalCleanups());
919     return;
920   }
921 
922   // Copy the cleanup emission data out.  Note that SmallVector
923   // guarantees maximal alignment for its buffer regardless of its
924   // type parameter.
925   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
926   CleanupBuffer.reserve(Scope.getCleanupSize());
927   memcpy(CleanupBuffer.data(),
928          Scope.getCleanupBuffer(), Scope.getCleanupSize());
929   CleanupBuffer.set_size(Scope.getCleanupSize());
930   EHScopeStack::Cleanup *Fn =
931     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
932 
933   // We want to emit the EH cleanup after the normal cleanup, but go
934   // ahead and do the setup for the EH cleanup while the scope is still
935   // alive.
936   llvm::BasicBlock *EHEntry = 0;
937   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
938   if (RequiresEHCleanup) {
939     EHEntry = CreateEHEntry(*this, Scope);
940 
941     // Figure out the branch-through dest if necessary.
942     llvm::BasicBlock *EHBranchThroughDest = 0;
943     if (Scope.hasEHBranchThroughs()) {
944       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
945       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
946       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
947     }
948 
949     // If we have exactly one branch-after and no branch-throughs, we
950     // can dispatch it without a switch.
951     if (!Scope.hasEHBranchThroughs() &&
952         Scope.getNumEHBranchAfters() == 1) {
953       assert(!EHBranchThroughDest);
954 
955       // TODO: remove the spurious eh.cleanup.dest stores if this edge
956       // never went through any switches.
957       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
958       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
959 
960     // Otherwise, if we have any branch-afters, we need a switch.
961     } else if (Scope.getNumEHBranchAfters()) {
962       // The default of the switch belongs to the branch-throughs if
963       // they exist.
964       llvm::BasicBlock *Default =
965         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
966 
967       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
968 
969       llvm::LoadInst *Load =
970         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
971       llvm::SwitchInst *Switch =
972         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
973 
974       EHInstsToAppend.push_back(Load);
975       EHInstsToAppend.push_back(Switch);
976 
977       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
978         Switch->addCase(Scope.getEHBranchAfterIndex(I),
979                         Scope.getEHBranchAfterBlock(I));
980 
981     // Otherwise, we have only branch-throughs; jump to the next EH
982     // cleanup.
983     } else {
984       assert(EHBranchThroughDest);
985       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
986     }
987   }
988 
989   if (!RequiresNormalCleanup) {
990     EHStack.popCleanup();
991   } else {
992     // If we have a fallthrough and no other need for the cleanup,
993     // emit it directly.
994     if (HasFallthrough && !HasPrebranchedFallthrough &&
995         !HasFixups && !HasExistingBranches) {
996 
997       // Fixups can cause us to optimistically create a normal block,
998       // only to later have no real uses for it.  Just delete it in
999       // this case.
1000       // TODO: we can potentially simplify all the uses after this.
1001       if (Scope.getNormalBlock()) {
1002         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
1003         delete Scope.getNormalBlock();
1004       }
1005 
1006       EHStack.popCleanup();
1007 
1008       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1009 
1010     // Otherwise, the best approach is to thread everything through
1011     // the cleanup block and then try to clean up after ourselves.
1012     } else {
1013       // Force the entry block to exist.
1014       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
1015 
1016       // I.  Set up the fallthrough edge in.
1017 
1018       // If there's a fallthrough, we need to store the cleanup
1019       // destination index.  For fall-throughs this is always zero.
1020       if (HasFallthrough) {
1021         if (!HasPrebranchedFallthrough)
1022           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1023 
1024       // Otherwise, clear the IP if we don't have fallthrough because
1025       // the cleanup is inactive.  We don't need to save it because
1026       // it's still just FallthroughSource.
1027       } else if (FallthroughSource) {
1028         assert(!IsActive && "source without fallthrough for active cleanup");
1029         Builder.ClearInsertionPoint();
1030       }
1031 
1032       // II.  Emit the entry block.  This implicitly branches to it if
1033       // we have fallthrough.  All the fixups and existing branches
1034       // should already be branched to it.
1035       EmitBlock(NormalEntry);
1036 
1037       // III.  Figure out where we're going and build the cleanup
1038       // epilogue.
1039 
1040       bool HasEnclosingCleanups =
1041         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1042 
1043       // Compute the branch-through dest if we need it:
1044       //   - if there are branch-throughs threaded through the scope
1045       //   - if fall-through is a branch-through
1046       //   - if there are fixups that will be optimistically forwarded
1047       //     to the enclosing cleanup
1048       llvm::BasicBlock *BranchThroughDest = 0;
1049       if (Scope.hasBranchThroughs() ||
1050           (FallthroughSource && FallthroughIsBranchThrough) ||
1051           (HasFixups && HasEnclosingCleanups)) {
1052         assert(HasEnclosingCleanups);
1053         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1054         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1055       }
1056 
1057       llvm::BasicBlock *FallthroughDest = 0;
1058       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1059 
1060       // If there's exactly one branch-after and no other threads,
1061       // we can route it without a switch.
1062       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1063           Scope.getNumBranchAfters() == 1) {
1064         assert(!BranchThroughDest || !IsActive);
1065 
1066         // TODO: clean up the possibly dead stores to the cleanup dest slot.
1067         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1068         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1069 
1070       // Build a switch-out if we need it:
1071       //   - if there are branch-afters threaded through the scope
1072       //   - if fall-through is a branch-after
1073       //   - if there are fixups that have nowhere left to go and
1074       //     so must be immediately resolved
1075       } else if (Scope.getNumBranchAfters() ||
1076                  (HasFallthrough && !FallthroughIsBranchThrough) ||
1077                  (HasFixups && !HasEnclosingCleanups)) {
1078 
1079         llvm::BasicBlock *Default =
1080           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1081 
1082         // TODO: base this on the number of branch-afters and fixups
1083         const unsigned SwitchCapacity = 10;
1084 
1085         llvm::LoadInst *Load =
1086           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1087         llvm::SwitchInst *Switch =
1088           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1089 
1090         InstsToAppend.push_back(Load);
1091         InstsToAppend.push_back(Switch);
1092 
1093         // Branch-after fallthrough.
1094         if (FallthroughSource && !FallthroughIsBranchThrough) {
1095           FallthroughDest = createBasicBlock("cleanup.cont");
1096           if (HasFallthrough)
1097             Switch->addCase(Builder.getInt32(0), FallthroughDest);
1098         }
1099 
1100         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1101           Switch->addCase(Scope.getBranchAfterIndex(I),
1102                           Scope.getBranchAfterBlock(I));
1103         }
1104 
1105         // If there aren't any enclosing cleanups, we can resolve all
1106         // the fixups now.
1107         if (HasFixups && !HasEnclosingCleanups)
1108           ResolveAllBranchFixups(*this, Switch, NormalEntry);
1109       } else {
1110         // We should always have a branch-through destination in this case.
1111         assert(BranchThroughDest);
1112         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1113       }
1114 
1115       // IV.  Pop the cleanup and emit it.
1116       EHStack.popCleanup();
1117       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1118 
1119       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1120 
1121       // Append the prepared cleanup prologue from above.
1122       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1123       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1124         NormalExit->getInstList().push_back(InstsToAppend[I]);
1125 
1126       // Optimistically hope that any fixups will continue falling through.
1127       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1128            I < E; ++I) {
1129         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1130         if (!Fixup.Destination) continue;
1131         if (!Fixup.OptimisticBranchBlock) {
1132           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1133                               getNormalCleanupDestSlot(),
1134                               Fixup.InitialBranch);
1135           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1136         }
1137         Fixup.OptimisticBranchBlock = NormalExit;
1138       }
1139 
1140       // V.  Set up the fallthrough edge out.
1141 
1142       // Case 1: a fallthrough source exists but shouldn't branch to
1143       // the cleanup because the cleanup is inactive.
1144       if (!HasFallthrough && FallthroughSource) {
1145         assert(!IsActive);
1146 
1147         // If we have a prebranched fallthrough, that needs to be
1148         // forwarded to the right block.
1149         if (HasPrebranchedFallthrough) {
1150           llvm::BasicBlock *Next;
1151           if (FallthroughIsBranchThrough) {
1152             Next = BranchThroughDest;
1153             assert(!FallthroughDest);
1154           } else {
1155             Next = FallthroughDest;
1156           }
1157 
1158           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1159         }
1160         Builder.SetInsertPoint(FallthroughSource);
1161 
1162       // Case 2: a fallthrough source exists and should branch to the
1163       // cleanup, but we're not supposed to branch through to the next
1164       // cleanup.
1165       } else if (HasFallthrough && FallthroughDest) {
1166         assert(!FallthroughIsBranchThrough);
1167         EmitBlock(FallthroughDest);
1168 
1169       // Case 3: a fallthrough source exists and should branch to the
1170       // cleanup and then through to the next.
1171       } else if (HasFallthrough) {
1172         // Everything is already set up for this.
1173 
1174       // Case 4: no fallthrough source exists.
1175       } else {
1176         Builder.ClearInsertionPoint();
1177       }
1178 
1179       // VI.  Assorted cleaning.
1180 
1181       // Check whether we can merge NormalEntry into a single predecessor.
1182       // This might invalidate (non-IR) pointers to NormalEntry.
1183       llvm::BasicBlock *NewNormalEntry =
1184         SimplifyCleanupEntry(*this, NormalEntry);
1185 
1186       // If it did invalidate those pointers, and NormalEntry was the same
1187       // as NormalExit, go back and patch up the fixups.
1188       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1189         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1190                I < E; ++I)
1191           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1192     }
1193   }
1194 
1195   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1196 
1197   // Emit the EH cleanup if required.
1198   if (RequiresEHCleanup) {
1199     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1200 
1201     EmitBlock(EHEntry);
1202     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1203 
1204     // Append the prepared cleanup prologue from above.
1205     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1206     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1207       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1208 
1209     Builder.restoreIP(SavedIP);
1210 
1211     SimplifyCleanupEntry(*this, EHEntry);
1212   }
1213 }
1214 
1215 /// Terminate the current block by emitting a branch which might leave
1216 /// the current cleanup-protected scope.  The target scope may not yet
1217 /// be known, in which case this will require a fixup.
1218 ///
1219 /// As a side-effect, this method clears the insertion point.
1220 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1221   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1222          && "stale jump destination");
1223 
1224   if (!HaveInsertPoint())
1225     return;
1226 
1227   // Create the branch.
1228   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1229 
1230   // Calculate the innermost active normal cleanup.
1231   EHScopeStack::stable_iterator
1232     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1233 
1234   // If we're not in an active normal cleanup scope, or if the
1235   // destination scope is within the innermost active normal cleanup
1236   // scope, we don't need to worry about fixups.
1237   if (TopCleanup == EHStack.stable_end() ||
1238       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1239     Builder.ClearInsertionPoint();
1240     return;
1241   }
1242 
1243   // If we can't resolve the destination cleanup scope, just add this
1244   // to the current cleanup scope as a branch fixup.
1245   if (!Dest.getScopeDepth().isValid()) {
1246     BranchFixup &Fixup = EHStack.addBranchFixup();
1247     Fixup.Destination = Dest.getBlock();
1248     Fixup.DestinationIndex = Dest.getDestIndex();
1249     Fixup.InitialBranch = BI;
1250     Fixup.OptimisticBranchBlock = 0;
1251 
1252     Builder.ClearInsertionPoint();
1253     return;
1254   }
1255 
1256   // Otherwise, thread through all the normal cleanups in scope.
1257 
1258   // Store the index at the start.
1259   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1260   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1261 
1262   // Adjust BI to point to the first cleanup block.
1263   {
1264     EHCleanupScope &Scope =
1265       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1266     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1267   }
1268 
1269   // Add this destination to all the scopes involved.
1270   EHScopeStack::stable_iterator I = TopCleanup;
1271   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1272   if (E.strictlyEncloses(I)) {
1273     while (true) {
1274       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1275       assert(Scope.isNormalCleanup());
1276       I = Scope.getEnclosingNormalCleanup();
1277 
1278       // If this is the last cleanup we're propagating through, tell it
1279       // that there's a resolved jump moving through it.
1280       if (!E.strictlyEncloses(I)) {
1281         Scope.addBranchAfter(Index, Dest.getBlock());
1282         break;
1283       }
1284 
1285       // Otherwise, tell the scope that there's a jump propoagating
1286       // through it.  If this isn't new information, all the rest of
1287       // the work has been done before.
1288       if (!Scope.addBranchThrough(Dest.getBlock()))
1289         break;
1290     }
1291   }
1292 
1293   Builder.ClearInsertionPoint();
1294 }
1295 
1296 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1297   // We should never get invalid scope depths for an UnwindDest; that
1298   // implies that the destination wasn't set up correctly.
1299   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1300 
1301   if (!HaveInsertPoint())
1302     return;
1303 
1304   // Create the branch.
1305   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1306 
1307   // Calculate the innermost active cleanup.
1308   EHScopeStack::stable_iterator
1309     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1310 
1311   // If the destination is in the same EH cleanup scope as us, we
1312   // don't need to thread through anything.
1313   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1314     Builder.ClearInsertionPoint();
1315     return;
1316   }
1317   assert(InnermostCleanup != EHStack.stable_end());
1318 
1319   // Store the index at the start.
1320   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1321   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1322 
1323   // Adjust BI to point to the first cleanup block.
1324   {
1325     EHCleanupScope &Scope =
1326       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1327     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1328   }
1329 
1330   // Add this destination to all the scopes involved.
1331   for (EHScopeStack::stable_iterator
1332          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1333     assert(E.strictlyEncloses(I));
1334     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1335     assert(Scope.isEHCleanup());
1336     I = Scope.getEnclosingEHCleanup();
1337 
1338     // If this is the last cleanup we're propagating through, add this
1339     // as a branch-after.
1340     if (I == E) {
1341       Scope.addEHBranchAfter(Index, Dest.getBlock());
1342       break;
1343     }
1344 
1345     // Otherwise, add it as a branch-through.  If this isn't new
1346     // information, all the rest of the work has been done before.
1347     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1348       break;
1349   }
1350 
1351   Builder.ClearInsertionPoint();
1352 }
1353 
1354 /// All the branch fixups on the EH stack have propagated out past the
1355 /// outermost normal cleanup; resolve them all by adding cases to the
1356 /// given switch instruction.
1357 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1358                                    llvm::SwitchInst *Switch,
1359                                    llvm::BasicBlock *CleanupEntry) {
1360   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1361 
1362   for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1363     // Skip this fixup if its destination isn't set.
1364     BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1365     if (Fixup.Destination == 0) continue;
1366 
1367     // If there isn't an OptimisticBranchBlock, then InitialBranch is
1368     // still pointing directly to its destination; forward it to the
1369     // appropriate cleanup entry.  This is required in the specific
1370     // case of
1371     //   { std::string s; goto lbl; }
1372     //   lbl:
1373     // i.e. where there's an unresolved fixup inside a single cleanup
1374     // entry which we're currently popping.
1375     if (Fixup.OptimisticBranchBlock == 0) {
1376       new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1377                           CGF.getNormalCleanupDestSlot(),
1378                           Fixup.InitialBranch);
1379       Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1380     }
1381 
1382     // Don't add this case to the switch statement twice.
1383     if (!CasesAdded.insert(Fixup.Destination)) continue;
1384 
1385     Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1386                     Fixup.Destination);
1387   }
1388 
1389   CGF.EHStack.clearFixups();
1390 }
1391 
1392 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1393   assert(Block && "resolving a null target block");
1394   if (!EHStack.getNumBranchFixups()) return;
1395 
1396   assert(EHStack.hasNormalCleanups() &&
1397          "branch fixups exist with no normal cleanups on stack");
1398 
1399   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1400   bool ResolvedAny = false;
1401 
1402   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1403     // Skip this fixup if its destination doesn't match.
1404     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1405     if (Fixup.Destination != Block) continue;
1406 
1407     Fixup.Destination = 0;
1408     ResolvedAny = true;
1409 
1410     // If it doesn't have an optimistic branch block, LatestBranch is
1411     // already pointing to the right place.
1412     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1413     if (!BranchBB)
1414       continue;
1415 
1416     // Don't process the same optimistic branch block twice.
1417     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1418       continue;
1419 
1420     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1421 
1422     // Add a case to the switch.
1423     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1424   }
1425 
1426   if (ResolvedAny)
1427     EHStack.popNullFixups();
1428 }
1429 
1430 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1431                                   EHScopeStack::stable_iterator C) {
1432   // If we needed a normal block for any reason, that counts.
1433   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1434     return true;
1435 
1436   // Check whether any enclosed cleanups were needed.
1437   for (EHScopeStack::stable_iterator
1438          I = EHStack.getInnermostNormalCleanup();
1439          I != C; ) {
1440     assert(C.strictlyEncloses(I));
1441     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1442     if (S.getNormalBlock()) return true;
1443     I = S.getEnclosingNormalCleanup();
1444   }
1445 
1446   return false;
1447 }
1448 
1449 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1450                               EHScopeStack::stable_iterator C) {
1451   // If we needed an EH block for any reason, that counts.
1452   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1453     return true;
1454 
1455   // Check whether any enclosed cleanups were needed.
1456   for (EHScopeStack::stable_iterator
1457          I = EHStack.getInnermostEHCleanup(); I != C; ) {
1458     assert(C.strictlyEncloses(I));
1459     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1460     if (S.getEHBlock()) return true;
1461     I = S.getEnclosingEHCleanup();
1462   }
1463 
1464   return false;
1465 }
1466 
1467 enum ForActivation_t {
1468   ForActivation,
1469   ForDeactivation
1470 };
1471 
1472 /// The given cleanup block is changing activation state.  Configure a
1473 /// cleanup variable if necessary.
1474 ///
1475 /// It would be good if we had some way of determining if there were
1476 /// extra uses *after* the change-over point.
1477 static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1478                                         EHScopeStack::stable_iterator C,
1479                                         ForActivation_t Kind) {
1480   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1481 
1482   // We always need the flag if we're activating the cleanup, because
1483   // we have to assume that the current location doesn't necessarily
1484   // dominate all future uses of the cleanup.
1485   bool NeedFlag = (Kind == ForActivation);
1486 
1487   // Calculate whether the cleanup was used:
1488 
1489   //   - as a normal cleanup
1490   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1491     Scope.setTestFlagInNormalCleanup();
1492     NeedFlag = true;
1493   }
1494 
1495   //  - as an EH cleanup
1496   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1497     Scope.setTestFlagInEHCleanup();
1498     NeedFlag = true;
1499   }
1500 
1501   // If it hasn't yet been used as either, we're done.
1502   if (!NeedFlag) return;
1503 
1504   llvm::AllocaInst *Var = Scope.getActiveFlag();
1505   if (!Var) {
1506     Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1507     Scope.setActiveFlag(Var);
1508 
1509     // Initialize to true or false depending on whether it was
1510     // active up to this point.
1511     CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1512   }
1513 
1514   CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1515 }
1516 
1517 /// Activate a cleanup that was created in an inactivated state.
1518 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1519   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1520   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1521   assert(!Scope.isActive() && "double activation");
1522 
1523   SetupCleanupBlockActivation(*this, C, ForActivation);
1524 
1525   Scope.setActive(true);
1526 }
1527 
1528 /// Deactive a cleanup that was created in an active state.
1529 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1530   assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1531   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1532   assert(Scope.isActive() && "double deactivation");
1533 
1534   // If it's the top of the stack, just pop it.
1535   if (C == EHStack.stable_begin()) {
1536     // If it's a normal cleanup, we need to pretend that the
1537     // fallthrough is unreachable.
1538     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1539     PopCleanupBlock();
1540     Builder.restoreIP(SavedIP);
1541     return;
1542   }
1543 
1544   // Otherwise, follow the general case.
1545   SetupCleanupBlockActivation(*this, C, ForDeactivation);
1546 
1547   Scope.setActive(false);
1548 }
1549 
1550 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1551   if (!NormalCleanupDest)
1552     NormalCleanupDest =
1553       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1554   return NormalCleanupDest;
1555 }
1556 
1557 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1558   if (!EHCleanupDest)
1559     EHCleanupDest =
1560       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1561   return EHCleanupDest;
1562 }
1563 
1564 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1565                                               llvm::Constant *Init) {
1566   assert (Init && "Invalid DeclRefExpr initializer!");
1567   if (CGDebugInfo *Dbg = getDebugInfo())
1568     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1569 }
1570