1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39               CGBuilderInserterTy(this)), CapturedStmtInfo(nullptr),
40       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
41                                CGM.getSanOpts().Alignment |
42                                CGM.getSanOpts().ObjectSize |
43                                CGM.getSanOpts().Vptr),
44       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(nullptr),
45       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
46       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
47       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
48       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
49       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
50       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
51       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
52       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
53       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
54       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
55       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
56       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
57       TerminateHandler(nullptr), TrapBB(nullptr) {
58   if (!suppressNewContext)
59     CGM.getCXXABI().getMangleContext().startNewFunction();
60 
61   llvm::FastMathFlags FMF;
62   if (CGM.getLangOpts().FastMath)
63     FMF.setUnsafeAlgebra();
64   if (CGM.getLangOpts().FiniteMathOnly) {
65     FMF.setNoNaNs();
66     FMF.setNoInfs();
67   }
68   Builder.SetFastMathFlags(FMF);
69 }
70 
71 CodeGenFunction::~CodeGenFunction() {
72   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
73 
74   // If there are any unclaimed block infos, go ahead and destroy them
75   // now.  This can happen if IR-gen gets clever and skips evaluating
76   // something.
77   if (FirstBlockInfo)
78     destroyBlockInfos(FirstBlockInfo);
79 
80   if (getLangOpts().OpenMP) {
81     CGM.getOpenMPRuntime().FunctionFinished(*this);
82   }
83 }
84 
85 
86 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
87   return CGM.getTypes().ConvertTypeForMem(T);
88 }
89 
90 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
91   return CGM.getTypes().ConvertType(T);
92 }
93 
94 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
95   type = type.getCanonicalType();
96   while (true) {
97     switch (type->getTypeClass()) {
98 #define TYPE(name, parent)
99 #define ABSTRACT_TYPE(name, parent)
100 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
101 #define DEPENDENT_TYPE(name, parent) case Type::name:
102 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
103 #include "clang/AST/TypeNodes.def"
104       llvm_unreachable("non-canonical or dependent type in IR-generation");
105 
106     case Type::Auto:
107       llvm_unreachable("undeduced auto type in IR-generation");
108 
109     // Various scalar types.
110     case Type::Builtin:
111     case Type::Pointer:
112     case Type::BlockPointer:
113     case Type::LValueReference:
114     case Type::RValueReference:
115     case Type::MemberPointer:
116     case Type::Vector:
117     case Type::ExtVector:
118     case Type::FunctionProto:
119     case Type::FunctionNoProto:
120     case Type::Enum:
121     case Type::ObjCObjectPointer:
122       return TEK_Scalar;
123 
124     // Complexes.
125     case Type::Complex:
126       return TEK_Complex;
127 
128     // Arrays, records, and Objective-C objects.
129     case Type::ConstantArray:
130     case Type::IncompleteArray:
131     case Type::VariableArray:
132     case Type::Record:
133     case Type::ObjCObject:
134     case Type::ObjCInterface:
135       return TEK_Aggregate;
136 
137     // We operate on atomic values according to their underlying type.
138     case Type::Atomic:
139       type = cast<AtomicType>(type)->getValueType();
140       continue;
141     }
142     llvm_unreachable("unknown type kind!");
143   }
144 }
145 
146 void CodeGenFunction::EmitReturnBlock() {
147   // For cleanliness, we try to avoid emitting the return block for
148   // simple cases.
149   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
150 
151   if (CurBB) {
152     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
153 
154     // We have a valid insert point, reuse it if it is empty or there are no
155     // explicit jumps to the return block.
156     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
157       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
158       delete ReturnBlock.getBlock();
159     } else
160       EmitBlock(ReturnBlock.getBlock());
161     return;
162   }
163 
164   // Otherwise, if the return block is the target of a single direct
165   // branch then we can just put the code in that block instead. This
166   // cleans up functions which started with a unified return block.
167   if (ReturnBlock.getBlock()->hasOneUse()) {
168     llvm::BranchInst *BI =
169       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
170     if (BI && BI->isUnconditional() &&
171         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
172       // Reset insertion point, including debug location, and delete the
173       // branch.  This is really subtle and only works because the next change
174       // in location will hit the caching in CGDebugInfo::EmitLocation and not
175       // override this.
176       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
177       Builder.SetInsertPoint(BI->getParent());
178       BI->eraseFromParent();
179       delete ReturnBlock.getBlock();
180       return;
181     }
182   }
183 
184   // FIXME: We are at an unreachable point, there is no reason to emit the block
185   // unless it has uses. However, we still need a place to put the debug
186   // region.end for now.
187 
188   EmitBlock(ReturnBlock.getBlock());
189 }
190 
191 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
192   if (!BB) return;
193   if (!BB->use_empty())
194     return CGF.CurFn->getBasicBlockList().push_back(BB);
195   delete BB;
196 }
197 
198 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
199   assert(BreakContinueStack.empty() &&
200          "mismatched push/pop in break/continue stack!");
201 
202   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
203     && NumSimpleReturnExprs == NumReturnExprs
204     && ReturnBlock.getBlock()->use_empty();
205   // Usually the return expression is evaluated before the cleanup
206   // code.  If the function contains only a simple return statement,
207   // such as a constant, the location before the cleanup code becomes
208   // the last useful breakpoint in the function, because the simple
209   // return expression will be evaluated after the cleanup code. To be
210   // safe, set the debug location for cleanup code to the location of
211   // the return statement.  Otherwise the cleanup code should be at the
212   // end of the function's lexical scope.
213   //
214   // If there are multiple branches to the return block, the branch
215   // instructions will get the location of the return statements and
216   // all will be fine.
217   if (CGDebugInfo *DI = getDebugInfo()) {
218     if (OnlySimpleReturnStmts)
219       DI->EmitLocation(Builder, LastStopPoint);
220     else
221       DI->EmitLocation(Builder, EndLoc);
222   }
223 
224   // Pop any cleanups that might have been associated with the
225   // parameters.  Do this in whatever block we're currently in; it's
226   // important to do this before we enter the return block or return
227   // edges will be *really* confused.
228   bool EmitRetDbgLoc = true;
229   if (EHStack.stable_begin() != PrologueCleanupDepth) {
230     PopCleanupBlocks(PrologueCleanupDepth);
231 
232     // Make sure the line table doesn't jump back into the body for
233     // the ret after it's been at EndLoc.
234     EmitRetDbgLoc = false;
235 
236     if (CGDebugInfo *DI = getDebugInfo())
237       if (OnlySimpleReturnStmts)
238         DI->EmitLocation(Builder, EndLoc);
239   }
240 
241   // Emit function epilog (to return).
242   EmitReturnBlock();
243 
244   if (ShouldInstrumentFunction())
245     EmitFunctionInstrumentation("__cyg_profile_func_exit");
246 
247   // Emit debug descriptor for function end.
248   if (CGDebugInfo *DI = getDebugInfo()) {
249     DI->EmitFunctionEnd(Builder);
250   }
251 
252   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
253   EmitEndEHSpec(CurCodeDecl);
254 
255   assert(EHStack.empty() &&
256          "did not remove all scopes from cleanup stack!");
257 
258   // If someone did an indirect goto, emit the indirect goto block at the end of
259   // the function.
260   if (IndirectBranch) {
261     EmitBlock(IndirectBranch->getParent());
262     Builder.ClearInsertionPoint();
263   }
264 
265   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
266   llvm::Instruction *Ptr = AllocaInsertPt;
267   AllocaInsertPt = nullptr;
268   Ptr->eraseFromParent();
269 
270   // If someone took the address of a label but never did an indirect goto, we
271   // made a zero entry PHI node, which is illegal, zap it now.
272   if (IndirectBranch) {
273     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
274     if (PN->getNumIncomingValues() == 0) {
275       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
276       PN->eraseFromParent();
277     }
278   }
279 
280   EmitIfUsed(*this, EHResumeBlock);
281   EmitIfUsed(*this, TerminateLandingPad);
282   EmitIfUsed(*this, TerminateHandler);
283   EmitIfUsed(*this, UnreachableBlock);
284 
285   if (CGM.getCodeGenOpts().EmitDeclMetadata)
286     EmitDeclMetadata();
287 
288   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
289            I = DeferredReplacements.begin(),
290            E = DeferredReplacements.end();
291        I != E; ++I) {
292     I->first->replaceAllUsesWith(I->second);
293     I->first->eraseFromParent();
294   }
295 }
296 
297 /// ShouldInstrumentFunction - Return true if the current function should be
298 /// instrumented with __cyg_profile_func_* calls
299 bool CodeGenFunction::ShouldInstrumentFunction() {
300   if (!CGM.getCodeGenOpts().InstrumentFunctions)
301     return false;
302   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
303     return false;
304   return true;
305 }
306 
307 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
308 /// instrumentation function with the current function and the call site, if
309 /// function instrumentation is enabled.
310 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
311   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
312   llvm::PointerType *PointerTy = Int8PtrTy;
313   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
314   llvm::FunctionType *FunctionTy =
315     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
316 
317   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
318   llvm::CallInst *CallSite = Builder.CreateCall(
319     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
320     llvm::ConstantInt::get(Int32Ty, 0),
321     "callsite");
322 
323   llvm::Value *args[] = {
324     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
325     CallSite
326   };
327 
328   EmitNounwindRuntimeCall(F, args);
329 }
330 
331 void CodeGenFunction::EmitMCountInstrumentation() {
332   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
333 
334   llvm::Constant *MCountFn =
335     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
336   EmitNounwindRuntimeCall(MCountFn);
337 }
338 
339 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
340 // information in the program executable. The argument information stored
341 // includes the argument name, its type, the address and access qualifiers used.
342 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
343                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
344                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
345                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
346   // Create MDNodes that represent the kernel arg metadata.
347   // Each MDNode is a list in the form of "key", N number of values which is
348   // the same number of values as their are kernel arguments.
349 
350   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
351 
352   // MDNode for the kernel argument address space qualifiers.
353   SmallVector<llvm::Value*, 8> addressQuals;
354   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
355 
356   // MDNode for the kernel argument access qualifiers (images only).
357   SmallVector<llvm::Value*, 8> accessQuals;
358   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
359 
360   // MDNode for the kernel argument type names.
361   SmallVector<llvm::Value*, 8> argTypeNames;
362   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
363 
364   // MDNode for the kernel argument type qualifiers.
365   SmallVector<llvm::Value*, 8> argTypeQuals;
366   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
367 
368   // MDNode for the kernel argument names.
369   SmallVector<llvm::Value*, 8> argNames;
370   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
371 
372   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
373     const ParmVarDecl *parm = FD->getParamDecl(i);
374     QualType ty = parm->getType();
375     std::string typeQuals;
376 
377     if (ty->isPointerType()) {
378       QualType pointeeTy = ty->getPointeeType();
379 
380       // Get address qualifier.
381       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
382         pointeeTy.getAddressSpace())));
383 
384       // Get argument type name.
385       std::string typeName =
386           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
387 
388       // Turn "unsigned type" to "utype"
389       std::string::size_type pos = typeName.find("unsigned");
390       if (pos != std::string::npos)
391         typeName.erase(pos+1, 8);
392 
393       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
394 
395       // Get argument type qualifiers:
396       if (ty.isRestrictQualified())
397         typeQuals = "restrict";
398       if (pointeeTy.isConstQualified() ||
399           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
400         typeQuals += typeQuals.empty() ? "const" : " const";
401       if (pointeeTy.isVolatileQualified())
402         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
403     } else {
404       uint32_t AddrSpc = 0;
405       if (ty->isImageType())
406         AddrSpc =
407           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
408 
409       addressQuals.push_back(Builder.getInt32(AddrSpc));
410 
411       // Get argument type name.
412       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
413 
414       // Turn "unsigned type" to "utype"
415       std::string::size_type pos = typeName.find("unsigned");
416       if (pos != std::string::npos)
417         typeName.erase(pos+1, 8);
418 
419       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
420 
421       // Get argument type qualifiers:
422       if (ty.isConstQualified())
423         typeQuals = "const";
424       if (ty.isVolatileQualified())
425         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
426     }
427 
428     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
429 
430     // Get image access qualifier:
431     if (ty->isImageType()) {
432       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
433       if (A && A->isWriteOnly())
434         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
435       else
436         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
437       // FIXME: what about read_write?
438     } else
439       accessQuals.push_back(llvm::MDString::get(Context, "none"));
440 
441     // Get argument name.
442     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
443   }
444 
445   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
446   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
447   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
448   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
449   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
450 }
451 
452 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
453                                                llvm::Function *Fn)
454 {
455   if (!FD->hasAttr<OpenCLKernelAttr>())
456     return;
457 
458   llvm::LLVMContext &Context = getLLVMContext();
459 
460   SmallVector <llvm::Value*, 5> kernelMDArgs;
461   kernelMDArgs.push_back(Fn);
462 
463   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
464     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
465                          Builder, getContext());
466 
467   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
468     QualType hintQTy = A->getTypeHint();
469     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
470     bool isSignedInteger =
471         hintQTy->isSignedIntegerType() ||
472         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
473     llvm::Value *attrMDArgs[] = {
474       llvm::MDString::get(Context, "vec_type_hint"),
475       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
476       llvm::ConstantInt::get(
477           llvm::IntegerType::get(Context, 32),
478           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
479     };
480     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
481   }
482 
483   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
484     llvm::Value *attrMDArgs[] = {
485       llvm::MDString::get(Context, "work_group_size_hint"),
486       Builder.getInt32(A->getXDim()),
487       Builder.getInt32(A->getYDim()),
488       Builder.getInt32(A->getZDim())
489     };
490     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
491   }
492 
493   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
494     llvm::Value *attrMDArgs[] = {
495       llvm::MDString::get(Context, "reqd_work_group_size"),
496       Builder.getInt32(A->getXDim()),
497       Builder.getInt32(A->getYDim()),
498       Builder.getInt32(A->getZDim())
499     };
500     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
501   }
502 
503   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
504   llvm::NamedMDNode *OpenCLKernelMetadata =
505     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
506   OpenCLKernelMetadata->addOperand(kernelMDNode);
507 }
508 
509 /// Determine whether the function F ends with a return stmt.
510 static bool endsWithReturn(const Decl* F) {
511   const Stmt *Body = nullptr;
512   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
513     Body = FD->getBody();
514   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
515     Body = OMD->getBody();
516 
517   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
518     auto LastStmt = CS->body_rbegin();
519     if (LastStmt != CS->body_rend())
520       return isa<ReturnStmt>(*LastStmt);
521   }
522   return false;
523 }
524 
525 void CodeGenFunction::StartFunction(GlobalDecl GD,
526                                     QualType RetTy,
527                                     llvm::Function *Fn,
528                                     const CGFunctionInfo &FnInfo,
529                                     const FunctionArgList &Args,
530                                     SourceLocation Loc,
531                                     SourceLocation StartLoc) {
532   const Decl *D = GD.getDecl();
533 
534   DidCallStackSave = false;
535   CurCodeDecl = D;
536   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
537   FnRetTy = RetTy;
538   CurFn = Fn;
539   CurFnInfo = &FnInfo;
540   assert(CurFn->isDeclaration() && "Function already has body?");
541 
542   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
543     SanOpts = &SanitizerOptions::Disabled;
544     SanitizePerformTypeCheck = false;
545   }
546 
547   // Pass inline keyword to optimizer if it appears explicitly on any
548   // declaration. Also, in the case of -fno-inline attach NoInline
549   // attribute to all function that are not marked AlwaysInline.
550   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
551     if (!CGM.getCodeGenOpts().NoInline) {
552       for (auto RI : FD->redecls())
553         if (RI->isInlineSpecified()) {
554           Fn->addFnAttr(llvm::Attribute::InlineHint);
555           break;
556         }
557     } else if (!FD->hasAttr<AlwaysInlineAttr>())
558       Fn->addFnAttr(llvm::Attribute::NoInline);
559   }
560 
561   if (getLangOpts().OpenCL) {
562     // Add metadata for a kernel function.
563     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
564       EmitOpenCLKernelMetadata(FD, Fn);
565   }
566 
567   // If we are checking function types, emit a function type signature as
568   // prefix data.
569   if (getLangOpts().CPlusPlus && SanOpts->Function) {
570     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
571       if (llvm::Constant *PrefixSig =
572               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
573         llvm::Constant *FTRTTIConst =
574             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
575         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
576         llvm::Constant *PrefixStructConst =
577             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
578         Fn->setPrefixData(PrefixStructConst);
579       }
580     }
581   }
582 
583   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
584 
585   // Create a marker to make it easy to insert allocas into the entryblock
586   // later.  Don't create this with the builder, because we don't want it
587   // folded.
588   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
589   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
590   if (Builder.isNamePreserving())
591     AllocaInsertPt->setName("allocapt");
592 
593   ReturnBlock = getJumpDestInCurrentScope("return");
594 
595   Builder.SetInsertPoint(EntryBB);
596 
597   // Emit subprogram debug descriptor.
598   if (CGDebugInfo *DI = getDebugInfo()) {
599     SmallVector<QualType, 16> ArgTypes;
600     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
601 	 i != e; ++i) {
602       ArgTypes.push_back((*i)->getType());
603     }
604 
605     QualType FnType =
606       getContext().getFunctionType(RetTy, ArgTypes,
607                                    FunctionProtoType::ExtProtoInfo());
608     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
609   }
610 
611   if (ShouldInstrumentFunction())
612     EmitFunctionInstrumentation("__cyg_profile_func_enter");
613 
614   if (CGM.getCodeGenOpts().InstrumentForProfiling)
615     EmitMCountInstrumentation();
616 
617   if (RetTy->isVoidType()) {
618     // Void type; nothing to return.
619     ReturnValue = nullptr;
620 
621     // Count the implicit return.
622     if (!endsWithReturn(D))
623       ++NumReturnExprs;
624   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
625              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
626     // Indirect aggregate return; emit returned value directly into sret slot.
627     // This reduces code size, and affects correctness in C++.
628     auto AI = CurFn->arg_begin();
629     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
630       ++AI;
631     ReturnValue = AI;
632   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
633              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
634     // Load the sret pointer from the argument struct and return into that.
635     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
636     llvm::Function::arg_iterator EI = CurFn->arg_end();
637     --EI;
638     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
639     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
640   } else {
641     ReturnValue = CreateIRTemp(RetTy, "retval");
642 
643     // Tell the epilog emitter to autorelease the result.  We do this
644     // now so that various specialized functions can suppress it
645     // during their IR-generation.
646     if (getLangOpts().ObjCAutoRefCount &&
647         !CurFnInfo->isReturnsRetained() &&
648         RetTy->isObjCRetainableType())
649       AutoreleaseResult = true;
650   }
651 
652   EmitStartEHSpec(CurCodeDecl);
653 
654   PrologueCleanupDepth = EHStack.stable_begin();
655   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
656 
657   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
658     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
659     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
660     if (MD->getParent()->isLambda() &&
661         MD->getOverloadedOperator() == OO_Call) {
662       // We're in a lambda; figure out the captures.
663       MD->getParent()->getCaptureFields(LambdaCaptureFields,
664                                         LambdaThisCaptureField);
665       if (LambdaThisCaptureField) {
666         // If this lambda captures this, load it.
667         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
668         CXXThisValue = EmitLoadOfLValue(ThisLValue,
669                                         SourceLocation()).getScalarVal();
670       }
671     } else {
672       // Not in a lambda; just use 'this' from the method.
673       // FIXME: Should we generate a new load for each use of 'this'?  The
674       // fast register allocator would be happier...
675       CXXThisValue = CXXABIThisValue;
676     }
677   }
678 
679   // If any of the arguments have a variably modified type, make sure to
680   // emit the type size.
681   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
682        i != e; ++i) {
683     const VarDecl *VD = *i;
684 
685     // Dig out the type as written from ParmVarDecls; it's unclear whether
686     // the standard (C99 6.9.1p10) requires this, but we're following the
687     // precedent set by gcc.
688     QualType Ty;
689     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
690       Ty = PVD->getOriginalType();
691     else
692       Ty = VD->getType();
693 
694     if (Ty->isVariablyModifiedType())
695       EmitVariablyModifiedType(Ty);
696   }
697   // Emit a location at the end of the prologue.
698   if (CGDebugInfo *DI = getDebugInfo())
699     DI->EmitLocation(Builder, StartLoc);
700 }
701 
702 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
703                                        const Stmt *Body) {
704   RegionCounter Cnt = getPGORegionCounter(Body);
705   Cnt.beginRegion(Builder);
706   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
707     EmitCompoundStmtWithoutScope(*S);
708   else
709     EmitStmt(Body);
710 }
711 
712 /// When instrumenting to collect profile data, the counts for some blocks
713 /// such as switch cases need to not include the fall-through counts, so
714 /// emit a branch around the instrumentation code. When not instrumenting,
715 /// this just calls EmitBlock().
716 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
717                                                RegionCounter &Cnt) {
718   llvm::BasicBlock *SkipCountBB = nullptr;
719   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
720     // When instrumenting for profiling, the fallthrough to certain
721     // statements needs to skip over the instrumentation code so that we
722     // get an accurate count.
723     SkipCountBB = createBasicBlock("skipcount");
724     EmitBranch(SkipCountBB);
725   }
726   EmitBlock(BB);
727   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
728   if (SkipCountBB)
729     EmitBlock(SkipCountBB);
730 }
731 
732 /// Tries to mark the given function nounwind based on the
733 /// non-existence of any throwing calls within it.  We believe this is
734 /// lightweight enough to do at -O0.
735 static void TryMarkNoThrow(llvm::Function *F) {
736   // LLVM treats 'nounwind' on a function as part of the type, so we
737   // can't do this on functions that can be overwritten.
738   if (F->mayBeOverridden()) return;
739 
740   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
741     for (llvm::BasicBlock::iterator
742            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
743       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
744         if (!Call->doesNotThrow())
745           return;
746       } else if (isa<llvm::ResumeInst>(&*BI)) {
747         return;
748       }
749   F->setDoesNotThrow();
750 }
751 
752 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
753                                           const FunctionDecl *UnsizedDealloc) {
754   // This is a weak discardable definition of the sized deallocation function.
755   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
756 
757   // Call the unsized deallocation function and forward the first argument
758   // unchanged.
759   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
760   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
761 }
762 
763 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
764                                    const CGFunctionInfo &FnInfo) {
765   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
766 
767   // Check if we should generate debug info for this function.
768   if (FD->hasAttr<NoDebugAttr>())
769     DebugInfo = nullptr; // disable debug info indefinitely for this function
770 
771   FunctionArgList Args;
772   QualType ResTy = FD->getReturnType();
773 
774   CurGD = GD;
775   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
776   if (MD && MD->isInstance()) {
777     if (CGM.getCXXABI().HasThisReturn(GD))
778       ResTy = MD->getThisType(getContext());
779     CGM.getCXXABI().buildThisParam(*this, Args);
780   }
781 
782   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
783     Args.push_back(FD->getParamDecl(i));
784 
785   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
786     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
787 
788   SourceRange BodyRange;
789   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
790   CurEHLocation = BodyRange.getEnd();
791 
792   // Use the location of the start of the function to determine where
793   // the function definition is located. By default use the location
794   // of the declaration as the location for the subprogram. A function
795   // may lack a declaration in the source code if it is created by code
796   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
797   SourceLocation Loc;
798   if (FD) {
799     Loc = FD->getLocation();
800 
801     // If this is a function specialization then use the pattern body
802     // as the location for the function.
803     if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
804       if (SpecDecl->hasBody(SpecDecl))
805         Loc = SpecDecl->getLocation();
806   }
807 
808   // Emit the standard function prologue.
809   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
810 
811   // Generate the body of the function.
812   PGO.assignRegionCounters(GD.getDecl(), CurFn);
813   if (isa<CXXDestructorDecl>(FD))
814     EmitDestructorBody(Args);
815   else if (isa<CXXConstructorDecl>(FD))
816     EmitConstructorBody(Args);
817   else if (getLangOpts().CUDA &&
818            !CGM.getCodeGenOpts().CUDAIsDevice &&
819            FD->hasAttr<CUDAGlobalAttr>())
820     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
821   else if (isa<CXXConversionDecl>(FD) &&
822            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
823     // The lambda conversion to block pointer is special; the semantics can't be
824     // expressed in the AST, so IRGen needs to special-case it.
825     EmitLambdaToBlockPointerBody(Args);
826   } else if (isa<CXXMethodDecl>(FD) &&
827              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
828     // The lambda static invoker function is special, because it forwards or
829     // clones the body of the function call operator (but is actually static).
830     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
831   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
832              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
833               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
834     // Implicit copy-assignment gets the same special treatment as implicit
835     // copy-constructors.
836     emitImplicitAssignmentOperatorBody(Args);
837   } else if (Stmt *Body = FD->getBody()) {
838     EmitFunctionBody(Args, Body);
839   } else if (FunctionDecl *UnsizedDealloc =
840                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
841     // Global sized deallocation functions get an implicit weak definition if
842     // they don't have an explicit definition.
843     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
844   } else
845     llvm_unreachable("no definition for emitted function");
846 
847   // C++11 [stmt.return]p2:
848   //   Flowing off the end of a function [...] results in undefined behavior in
849   //   a value-returning function.
850   // C11 6.9.1p12:
851   //   If the '}' that terminates a function is reached, and the value of the
852   //   function call is used by the caller, the behavior is undefined.
853   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
854       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
855     if (SanOpts->Return)
856       EmitCheck(Builder.getFalse(), "missing_return",
857                 EmitCheckSourceLocation(FD->getLocation()),
858                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
859     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
860       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
861     Builder.CreateUnreachable();
862     Builder.ClearInsertionPoint();
863   }
864 
865   // Emit the standard function epilogue.
866   FinishFunction(BodyRange.getEnd());
867 
868   // If we haven't marked the function nothrow through other means, do
869   // a quick pass now to see if we can.
870   if (!CurFn->doesNotThrow())
871     TryMarkNoThrow(CurFn);
872 
873   PGO.emitInstrumentationData();
874   PGO.destroyRegionCounters();
875 }
876 
877 /// ContainsLabel - Return true if the statement contains a label in it.  If
878 /// this statement is not executed normally, it not containing a label means
879 /// that we can just remove the code.
880 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
881   // Null statement, not a label!
882   if (!S) return false;
883 
884   // If this is a label, we have to emit the code, consider something like:
885   // if (0) {  ...  foo:  bar(); }  goto foo;
886   //
887   // TODO: If anyone cared, we could track __label__'s, since we know that you
888   // can't jump to one from outside their declared region.
889   if (isa<LabelStmt>(S))
890     return true;
891 
892   // If this is a case/default statement, and we haven't seen a switch, we have
893   // to emit the code.
894   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
895     return true;
896 
897   // If this is a switch statement, we want to ignore cases below it.
898   if (isa<SwitchStmt>(S))
899     IgnoreCaseStmts = true;
900 
901   // Scan subexpressions for verboten labels.
902   for (Stmt::const_child_range I = S->children(); I; ++I)
903     if (ContainsLabel(*I, IgnoreCaseStmts))
904       return true;
905 
906   return false;
907 }
908 
909 /// containsBreak - Return true if the statement contains a break out of it.
910 /// If the statement (recursively) contains a switch or loop with a break
911 /// inside of it, this is fine.
912 bool CodeGenFunction::containsBreak(const Stmt *S) {
913   // Null statement, not a label!
914   if (!S) return false;
915 
916   // If this is a switch or loop that defines its own break scope, then we can
917   // include it and anything inside of it.
918   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
919       isa<ForStmt>(S))
920     return false;
921 
922   if (isa<BreakStmt>(S))
923     return true;
924 
925   // Scan subexpressions for verboten breaks.
926   for (Stmt::const_child_range I = S->children(); I; ++I)
927     if (containsBreak(*I))
928       return true;
929 
930   return false;
931 }
932 
933 
934 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
935 /// to a constant, or if it does but contains a label, return false.  If it
936 /// constant folds return true and set the boolean result in Result.
937 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
938                                                    bool &ResultBool) {
939   llvm::APSInt ResultInt;
940   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
941     return false;
942 
943   ResultBool = ResultInt.getBoolValue();
944   return true;
945 }
946 
947 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
948 /// to a constant, or if it does but contains a label, return false.  If it
949 /// constant folds return true and set the folded value.
950 bool CodeGenFunction::
951 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
952   // FIXME: Rename and handle conversion of other evaluatable things
953   // to bool.
954   llvm::APSInt Int;
955   if (!Cond->EvaluateAsInt(Int, getContext()))
956     return false;  // Not foldable, not integer or not fully evaluatable.
957 
958   if (CodeGenFunction::ContainsLabel(Cond))
959     return false;  // Contains a label.
960 
961   ResultInt = Int;
962   return true;
963 }
964 
965 
966 
967 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
968 /// statement) to the specified blocks.  Based on the condition, this might try
969 /// to simplify the codegen of the conditional based on the branch.
970 ///
971 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
972                                            llvm::BasicBlock *TrueBlock,
973                                            llvm::BasicBlock *FalseBlock,
974                                            uint64_t TrueCount) {
975   Cond = Cond->IgnoreParens();
976 
977   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
978 
979     // Handle X && Y in a condition.
980     if (CondBOp->getOpcode() == BO_LAnd) {
981       RegionCounter Cnt = getPGORegionCounter(CondBOp);
982 
983       // If we have "1 && X", simplify the code.  "0 && X" would have constant
984       // folded if the case was simple enough.
985       bool ConstantBool = false;
986       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
987           ConstantBool) {
988         // br(1 && X) -> br(X).
989         Cnt.beginRegion(Builder);
990         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
991                                     TrueCount);
992       }
993 
994       // If we have "X && 1", simplify the code to use an uncond branch.
995       // "X && 0" would have been constant folded to 0.
996       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
997           ConstantBool) {
998         // br(X && 1) -> br(X).
999         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1000                                     TrueCount);
1001       }
1002 
1003       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1004       // want to jump to the FalseBlock.
1005       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1006       // The counter tells us how often we evaluate RHS, and all of TrueCount
1007       // can be propagated to that branch.
1008       uint64_t RHSCount = Cnt.getCount();
1009 
1010       ConditionalEvaluation eval(*this);
1011       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1012       EmitBlock(LHSTrue);
1013 
1014       // Any temporaries created here are conditional.
1015       Cnt.beginRegion(Builder);
1016       eval.begin(*this);
1017       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1018       eval.end(*this);
1019 
1020       return;
1021     }
1022 
1023     if (CondBOp->getOpcode() == BO_LOr) {
1024       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1025 
1026       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1027       // folded if the case was simple enough.
1028       bool ConstantBool = false;
1029       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1030           !ConstantBool) {
1031         // br(0 || X) -> br(X).
1032         Cnt.beginRegion(Builder);
1033         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1034                                     TrueCount);
1035       }
1036 
1037       // If we have "X || 0", simplify the code to use an uncond branch.
1038       // "X || 1" would have been constant folded to 1.
1039       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1040           !ConstantBool) {
1041         // br(X || 0) -> br(X).
1042         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1043                                     TrueCount);
1044       }
1045 
1046       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1047       // want to jump to the TrueBlock.
1048       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1049       // We have the count for entry to the RHS and for the whole expression
1050       // being true, so we can divy up True count between the short circuit and
1051       // the RHS.
1052       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1053       uint64_t RHSCount = TrueCount - LHSCount;
1054 
1055       ConditionalEvaluation eval(*this);
1056       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1057       EmitBlock(LHSFalse);
1058 
1059       // Any temporaries created here are conditional.
1060       Cnt.beginRegion(Builder);
1061       eval.begin(*this);
1062       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1063 
1064       eval.end(*this);
1065 
1066       return;
1067     }
1068   }
1069 
1070   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1071     // br(!x, t, f) -> br(x, f, t)
1072     if (CondUOp->getOpcode() == UO_LNot) {
1073       // Negate the count.
1074       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1075       // Negate the condition and swap the destination blocks.
1076       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1077                                   FalseCount);
1078     }
1079   }
1080 
1081   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1082     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1083     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1084     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1085 
1086     RegionCounter Cnt = getPGORegionCounter(CondOp);
1087     ConditionalEvaluation cond(*this);
1088     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1089 
1090     // When computing PGO branch weights, we only know the overall count for
1091     // the true block. This code is essentially doing tail duplication of the
1092     // naive code-gen, introducing new edges for which counts are not
1093     // available. Divide the counts proportionally between the LHS and RHS of
1094     // the conditional operator.
1095     uint64_t LHSScaledTrueCount = 0;
1096     if (TrueCount) {
1097       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1098       LHSScaledTrueCount = TrueCount * LHSRatio;
1099     }
1100 
1101     cond.begin(*this);
1102     EmitBlock(LHSBlock);
1103     Cnt.beginRegion(Builder);
1104     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1105                          LHSScaledTrueCount);
1106     cond.end(*this);
1107 
1108     cond.begin(*this);
1109     EmitBlock(RHSBlock);
1110     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1111                          TrueCount - LHSScaledTrueCount);
1112     cond.end(*this);
1113 
1114     return;
1115   }
1116 
1117   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1118     // Conditional operator handling can give us a throw expression as a
1119     // condition for a case like:
1120     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1121     // Fold this to:
1122     //   br(c, throw x, br(y, t, f))
1123     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1124     return;
1125   }
1126 
1127   // Create branch weights based on the number of times we get here and the
1128   // number of times the condition should be true.
1129   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1130   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1131                                                   CurrentCount - TrueCount);
1132 
1133   // Emit the code with the fully general case.
1134   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1135   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1136 }
1137 
1138 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1139 /// specified stmt yet.
1140 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1141   CGM.ErrorUnsupported(S, Type);
1142 }
1143 
1144 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1145 /// variable-length array whose elements have a non-zero bit-pattern.
1146 ///
1147 /// \param baseType the inner-most element type of the array
1148 /// \param src - a char* pointing to the bit-pattern for a single
1149 /// base element of the array
1150 /// \param sizeInChars - the total size of the VLA, in chars
1151 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1152                                llvm::Value *dest, llvm::Value *src,
1153                                llvm::Value *sizeInChars) {
1154   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1155     = CGF.getContext().getTypeInfoInChars(baseType);
1156 
1157   CGBuilderTy &Builder = CGF.Builder;
1158 
1159   llvm::Value *baseSizeInChars
1160     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1161 
1162   llvm::Type *i8p = Builder.getInt8PtrTy();
1163 
1164   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1165   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1166 
1167   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1168   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1169   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1170 
1171   // Make a loop over the VLA.  C99 guarantees that the VLA element
1172   // count must be nonzero.
1173   CGF.EmitBlock(loopBB);
1174 
1175   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1176   cur->addIncoming(begin, originBB);
1177 
1178   // memcpy the individual element bit-pattern.
1179   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1180                        baseSizeAndAlign.second.getQuantity(),
1181                        /*volatile*/ false);
1182 
1183   // Go to the next element.
1184   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1185 
1186   // Leave if that's the end of the VLA.
1187   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1188   Builder.CreateCondBr(done, contBB, loopBB);
1189   cur->addIncoming(next, loopBB);
1190 
1191   CGF.EmitBlock(contBB);
1192 }
1193 
1194 void
1195 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1196   // Ignore empty classes in C++.
1197   if (getLangOpts().CPlusPlus) {
1198     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1199       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1200         return;
1201     }
1202   }
1203 
1204   // Cast the dest ptr to the appropriate i8 pointer type.
1205   unsigned DestAS =
1206     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1207   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1208   if (DestPtr->getType() != BP)
1209     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1210 
1211   // Get size and alignment info for this aggregate.
1212   std::pair<CharUnits, CharUnits> TypeInfo =
1213     getContext().getTypeInfoInChars(Ty);
1214   CharUnits Size = TypeInfo.first;
1215   CharUnits Align = TypeInfo.second;
1216 
1217   llvm::Value *SizeVal;
1218   const VariableArrayType *vla;
1219 
1220   // Don't bother emitting a zero-byte memset.
1221   if (Size.isZero()) {
1222     // But note that getTypeInfo returns 0 for a VLA.
1223     if (const VariableArrayType *vlaType =
1224           dyn_cast_or_null<VariableArrayType>(
1225                                           getContext().getAsArrayType(Ty))) {
1226       QualType eltType;
1227       llvm::Value *numElts;
1228       std::tie(numElts, eltType) = getVLASize(vlaType);
1229 
1230       SizeVal = numElts;
1231       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1232       if (!eltSize.isOne())
1233         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1234       vla = vlaType;
1235     } else {
1236       return;
1237     }
1238   } else {
1239     SizeVal = CGM.getSize(Size);
1240     vla = nullptr;
1241   }
1242 
1243   // If the type contains a pointer to data member we can't memset it to zero.
1244   // Instead, create a null constant and copy it to the destination.
1245   // TODO: there are other patterns besides zero that we can usefully memset,
1246   // like -1, which happens to be the pattern used by member-pointers.
1247   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1248     // For a VLA, emit a single element, then splat that over the VLA.
1249     if (vla) Ty = getContext().getBaseElementType(vla);
1250 
1251     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1252 
1253     llvm::GlobalVariable *NullVariable =
1254       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1255                                /*isConstant=*/true,
1256                                llvm::GlobalVariable::PrivateLinkage,
1257                                NullConstant, Twine());
1258     llvm::Value *SrcPtr =
1259       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1260 
1261     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1262 
1263     // Get and call the appropriate llvm.memcpy overload.
1264     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1265     return;
1266   }
1267 
1268   // Otherwise, just memset the whole thing to zero.  This is legal
1269   // because in LLVM, all default initializers (other than the ones we just
1270   // handled above) are guaranteed to have a bit pattern of all zeros.
1271   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1272                        Align.getQuantity(), false);
1273 }
1274 
1275 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1276   // Make sure that there is a block for the indirect goto.
1277   if (!IndirectBranch)
1278     GetIndirectGotoBlock();
1279 
1280   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1281 
1282   // Make sure the indirect branch includes all of the address-taken blocks.
1283   IndirectBranch->addDestination(BB);
1284   return llvm::BlockAddress::get(CurFn, BB);
1285 }
1286 
1287 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1288   // If we already made the indirect branch for indirect goto, return its block.
1289   if (IndirectBranch) return IndirectBranch->getParent();
1290 
1291   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1292 
1293   // Create the PHI node that indirect gotos will add entries to.
1294   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1295                                               "indirect.goto.dest");
1296 
1297   // Create the indirect branch instruction.
1298   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1299   return IndirectBranch->getParent();
1300 }
1301 
1302 /// Computes the length of an array in elements, as well as the base
1303 /// element type and a properly-typed first element pointer.
1304 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1305                                               QualType &baseType,
1306                                               llvm::Value *&addr) {
1307   const ArrayType *arrayType = origArrayType;
1308 
1309   // If it's a VLA, we have to load the stored size.  Note that
1310   // this is the size of the VLA in bytes, not its size in elements.
1311   llvm::Value *numVLAElements = nullptr;
1312   if (isa<VariableArrayType>(arrayType)) {
1313     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1314 
1315     // Walk into all VLAs.  This doesn't require changes to addr,
1316     // which has type T* where T is the first non-VLA element type.
1317     do {
1318       QualType elementType = arrayType->getElementType();
1319       arrayType = getContext().getAsArrayType(elementType);
1320 
1321       // If we only have VLA components, 'addr' requires no adjustment.
1322       if (!arrayType) {
1323         baseType = elementType;
1324         return numVLAElements;
1325       }
1326     } while (isa<VariableArrayType>(arrayType));
1327 
1328     // We get out here only if we find a constant array type
1329     // inside the VLA.
1330   }
1331 
1332   // We have some number of constant-length arrays, so addr should
1333   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1334   // down to the first element of addr.
1335   SmallVector<llvm::Value*, 8> gepIndices;
1336 
1337   // GEP down to the array type.
1338   llvm::ConstantInt *zero = Builder.getInt32(0);
1339   gepIndices.push_back(zero);
1340 
1341   uint64_t countFromCLAs = 1;
1342   QualType eltType;
1343 
1344   llvm::ArrayType *llvmArrayType =
1345     dyn_cast<llvm::ArrayType>(
1346       cast<llvm::PointerType>(addr->getType())->getElementType());
1347   while (llvmArrayType) {
1348     assert(isa<ConstantArrayType>(arrayType));
1349     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1350              == llvmArrayType->getNumElements());
1351 
1352     gepIndices.push_back(zero);
1353     countFromCLAs *= llvmArrayType->getNumElements();
1354     eltType = arrayType->getElementType();
1355 
1356     llvmArrayType =
1357       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1358     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1359     assert((!llvmArrayType || arrayType) &&
1360            "LLVM and Clang types are out-of-synch");
1361   }
1362 
1363   if (arrayType) {
1364     // From this point onwards, the Clang array type has been emitted
1365     // as some other type (probably a packed struct). Compute the array
1366     // size, and just emit the 'begin' expression as a bitcast.
1367     while (arrayType) {
1368       countFromCLAs *=
1369           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1370       eltType = arrayType->getElementType();
1371       arrayType = getContext().getAsArrayType(eltType);
1372     }
1373 
1374     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1375     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1376     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1377   } else {
1378     // Create the actual GEP.
1379     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1380   }
1381 
1382   baseType = eltType;
1383 
1384   llvm::Value *numElements
1385     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1386 
1387   // If we had any VLA dimensions, factor them in.
1388   if (numVLAElements)
1389     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1390 
1391   return numElements;
1392 }
1393 
1394 std::pair<llvm::Value*, QualType>
1395 CodeGenFunction::getVLASize(QualType type) {
1396   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1397   assert(vla && "type was not a variable array type!");
1398   return getVLASize(vla);
1399 }
1400 
1401 std::pair<llvm::Value*, QualType>
1402 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1403   // The number of elements so far; always size_t.
1404   llvm::Value *numElements = nullptr;
1405 
1406   QualType elementType;
1407   do {
1408     elementType = type->getElementType();
1409     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1410     assert(vlaSize && "no size for VLA!");
1411     assert(vlaSize->getType() == SizeTy);
1412 
1413     if (!numElements) {
1414       numElements = vlaSize;
1415     } else {
1416       // It's undefined behavior if this wraps around, so mark it that way.
1417       // FIXME: Teach -fsanitize=undefined to trap this.
1418       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1419     }
1420   } while ((type = getContext().getAsVariableArrayType(elementType)));
1421 
1422   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1423 }
1424 
1425 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1426   assert(type->isVariablyModifiedType() &&
1427          "Must pass variably modified type to EmitVLASizes!");
1428 
1429   EnsureInsertPoint();
1430 
1431   // We're going to walk down into the type and look for VLA
1432   // expressions.
1433   do {
1434     assert(type->isVariablyModifiedType());
1435 
1436     const Type *ty = type.getTypePtr();
1437     switch (ty->getTypeClass()) {
1438 
1439 #define TYPE(Class, Base)
1440 #define ABSTRACT_TYPE(Class, Base)
1441 #define NON_CANONICAL_TYPE(Class, Base)
1442 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1443 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1444 #include "clang/AST/TypeNodes.def"
1445       llvm_unreachable("unexpected dependent type!");
1446 
1447     // These types are never variably-modified.
1448     case Type::Builtin:
1449     case Type::Complex:
1450     case Type::Vector:
1451     case Type::ExtVector:
1452     case Type::Record:
1453     case Type::Enum:
1454     case Type::Elaborated:
1455     case Type::TemplateSpecialization:
1456     case Type::ObjCObject:
1457     case Type::ObjCInterface:
1458     case Type::ObjCObjectPointer:
1459       llvm_unreachable("type class is never variably-modified!");
1460 
1461     case Type::Adjusted:
1462       type = cast<AdjustedType>(ty)->getAdjustedType();
1463       break;
1464 
1465     case Type::Decayed:
1466       type = cast<DecayedType>(ty)->getPointeeType();
1467       break;
1468 
1469     case Type::Pointer:
1470       type = cast<PointerType>(ty)->getPointeeType();
1471       break;
1472 
1473     case Type::BlockPointer:
1474       type = cast<BlockPointerType>(ty)->getPointeeType();
1475       break;
1476 
1477     case Type::LValueReference:
1478     case Type::RValueReference:
1479       type = cast<ReferenceType>(ty)->getPointeeType();
1480       break;
1481 
1482     case Type::MemberPointer:
1483       type = cast<MemberPointerType>(ty)->getPointeeType();
1484       break;
1485 
1486     case Type::ConstantArray:
1487     case Type::IncompleteArray:
1488       // Losing element qualification here is fine.
1489       type = cast<ArrayType>(ty)->getElementType();
1490       break;
1491 
1492     case Type::VariableArray: {
1493       // Losing element qualification here is fine.
1494       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1495 
1496       // Unknown size indication requires no size computation.
1497       // Otherwise, evaluate and record it.
1498       if (const Expr *size = vat->getSizeExpr()) {
1499         // It's possible that we might have emitted this already,
1500         // e.g. with a typedef and a pointer to it.
1501         llvm::Value *&entry = VLASizeMap[size];
1502         if (!entry) {
1503           llvm::Value *Size = EmitScalarExpr(size);
1504 
1505           // C11 6.7.6.2p5:
1506           //   If the size is an expression that is not an integer constant
1507           //   expression [...] each time it is evaluated it shall have a value
1508           //   greater than zero.
1509           if (SanOpts->VLABound &&
1510               size->getType()->isSignedIntegerType()) {
1511             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1512             llvm::Constant *StaticArgs[] = {
1513               EmitCheckSourceLocation(size->getLocStart()),
1514               EmitCheckTypeDescriptor(size->getType())
1515             };
1516             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1517                       "vla_bound_not_positive", StaticArgs, Size,
1518                       CRK_Recoverable);
1519           }
1520 
1521           // Always zexting here would be wrong if it weren't
1522           // undefined behavior to have a negative bound.
1523           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1524         }
1525       }
1526       type = vat->getElementType();
1527       break;
1528     }
1529 
1530     case Type::FunctionProto:
1531     case Type::FunctionNoProto:
1532       type = cast<FunctionType>(ty)->getReturnType();
1533       break;
1534 
1535     case Type::Paren:
1536     case Type::TypeOf:
1537     case Type::UnaryTransform:
1538     case Type::Attributed:
1539     case Type::SubstTemplateTypeParm:
1540     case Type::PackExpansion:
1541       // Keep walking after single level desugaring.
1542       type = type.getSingleStepDesugaredType(getContext());
1543       break;
1544 
1545     case Type::Typedef:
1546     case Type::Decltype:
1547     case Type::Auto:
1548       // Stop walking: nothing to do.
1549       return;
1550 
1551     case Type::TypeOfExpr:
1552       // Stop walking: emit typeof expression.
1553       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1554       return;
1555 
1556     case Type::Atomic:
1557       type = cast<AtomicType>(ty)->getValueType();
1558       break;
1559     }
1560   } while (type->isVariablyModifiedType());
1561 }
1562 
1563 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1564   if (getContext().getBuiltinVaListType()->isArrayType())
1565     return EmitScalarExpr(E);
1566   return EmitLValue(E).getAddress();
1567 }
1568 
1569 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1570                                               llvm::Constant *Init) {
1571   assert (Init && "Invalid DeclRefExpr initializer!");
1572   if (CGDebugInfo *Dbg = getDebugInfo())
1573     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1574       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1575 }
1576 
1577 CodeGenFunction::PeepholeProtection
1578 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1579   // At the moment, the only aggressive peephole we do in IR gen
1580   // is trunc(zext) folding, but if we add more, we can easily
1581   // extend this protection.
1582 
1583   if (!rvalue.isScalar()) return PeepholeProtection();
1584   llvm::Value *value = rvalue.getScalarVal();
1585   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1586 
1587   // Just make an extra bitcast.
1588   assert(HaveInsertPoint());
1589   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1590                                                   Builder.GetInsertBlock());
1591 
1592   PeepholeProtection protection;
1593   protection.Inst = inst;
1594   return protection;
1595 }
1596 
1597 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1598   if (!protection.Inst) return;
1599 
1600   // In theory, we could try to duplicate the peepholes now, but whatever.
1601   protection.Inst->eraseFromParent();
1602 }
1603 
1604 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1605                                                  llvm::Value *AnnotatedVal,
1606                                                  StringRef AnnotationStr,
1607                                                  SourceLocation Location) {
1608   llvm::Value *Args[4] = {
1609     AnnotatedVal,
1610     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1611     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1612     CGM.EmitAnnotationLineNo(Location)
1613   };
1614   return Builder.CreateCall(AnnotationFn, Args);
1615 }
1616 
1617 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1618   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1619   // FIXME We create a new bitcast for every annotation because that's what
1620   // llvm-gcc was doing.
1621   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1622     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1623                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1624                        I->getAnnotation(), D->getLocation());
1625 }
1626 
1627 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1628                                                    llvm::Value *V) {
1629   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1630   llvm::Type *VTy = V->getType();
1631   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1632                                     CGM.Int8PtrTy);
1633 
1634   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1635     // FIXME Always emit the cast inst so we can differentiate between
1636     // annotation on the first field of a struct and annotation on the struct
1637     // itself.
1638     if (VTy != CGM.Int8PtrTy)
1639       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1640     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1641     V = Builder.CreateBitCast(V, VTy);
1642   }
1643 
1644   return V;
1645 }
1646 
1647 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1648 
1649 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1650                                    const llvm::Twine &Name,
1651                                    llvm::BasicBlock *BB,
1652                                    llvm::BasicBlock::iterator InsertPt) const {
1653   LoopStack.InsertHelper(I);
1654 }
1655 
1656 template <bool PreserveNames>
1657 void CGBuilderInserter<PreserveNames>::InsertHelper(
1658     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1659     llvm::BasicBlock::iterator InsertPt) const {
1660   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1661                                                               InsertPt);
1662   if (CGF)
1663     CGF->InsertHelper(I, Name, BB, InsertPt);
1664 }
1665 
1666 #ifdef NDEBUG
1667 #define PreserveNames false
1668 #else
1669 #define PreserveNames true
1670 #endif
1671 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1672     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1673     llvm::BasicBlock::iterator InsertPt) const;
1674 #undef PreserveNames
1675