1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "llvm/Target/TargetData.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 27 : BlockFunction(cgm, *this, Builder), CGM(cgm), 28 Target(CGM.getContext().Target), 29 Builder(cgm.getModule().getContext()), 30 DebugInfo(0), SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0), 31 CXXThisDecl(0) { 32 LLVMIntTy = ConvertType(getContext().IntTy); 33 LLVMPointerWidth = Target.getPointerWidth(0); 34 } 35 36 ASTContext &CodeGenFunction::getContext() const { 37 return CGM.getContext(); 38 } 39 40 41 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 42 llvm::BasicBlock *&BB = LabelMap[S]; 43 if (BB) return BB; 44 45 // Create, but don't insert, the new block. 46 return BB = createBasicBlock(S->getName()); 47 } 48 49 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { 50 llvm::Value *Res = LocalDeclMap[VD]; 51 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 52 return Res; 53 } 54 55 llvm::Constant * 56 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 57 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 58 } 59 60 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 61 return CGM.getTypes().ConvertTypeForMem(T); 62 } 63 64 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 65 return CGM.getTypes().ConvertType(T); 66 } 67 68 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 69 // FIXME: Use positive checks instead of negative ones to be more robust in 70 // the face of extension. 71 return !T->hasPointerRepresentation() && !T->isRealType() && 72 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() && 73 !T->isBlockPointerType() && !T->isMemberPointerType(); 74 } 75 76 void CodeGenFunction::EmitReturnBlock() { 77 // For cleanliness, we try to avoid emitting the return block for 78 // simple cases. 79 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 80 81 if (CurBB) { 82 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 83 84 // We have a valid insert point, reuse it if it is empty or there are no 85 // explicit jumps to the return block. 86 if (CurBB->empty() || ReturnBlock->use_empty()) { 87 ReturnBlock->replaceAllUsesWith(CurBB); 88 delete ReturnBlock; 89 } else 90 EmitBlock(ReturnBlock); 91 return; 92 } 93 94 // Otherwise, if the return block is the target of a single direct 95 // branch then we can just put the code in that block instead. This 96 // cleans up functions which started with a unified return block. 97 if (ReturnBlock->hasOneUse()) { 98 llvm::BranchInst *BI = 99 dyn_cast<llvm::BranchInst>(*ReturnBlock->use_begin()); 100 if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) { 101 // Reset insertion point and delete the branch. 102 Builder.SetInsertPoint(BI->getParent()); 103 BI->eraseFromParent(); 104 delete ReturnBlock; 105 return; 106 } 107 } 108 109 // FIXME: We are at an unreachable point, there is no reason to emit the block 110 // unless it has uses. However, we still need a place to put the debug 111 // region.end for now. 112 113 EmitBlock(ReturnBlock); 114 } 115 116 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 117 // Finish emission of indirect switches. 118 EmitIndirectSwitches(); 119 120 assert(BreakContinueStack.empty() && 121 "mismatched push/pop in break/continue stack!"); 122 assert(BlockScopes.empty() && 123 "did not remove all blocks from block scope map!"); 124 assert(CleanupEntries.empty() && 125 "mismatched push/pop in cleanup stack!"); 126 127 // Emit function epilog (to return). 128 EmitReturnBlock(); 129 130 // Emit debug descriptor for function end. 131 if (CGDebugInfo *DI = getDebugInfo()) { 132 DI->setLocation(EndLoc); 133 DI->EmitRegionEnd(CurFn, Builder); 134 } 135 136 EmitFunctionEpilog(*CurFnInfo, ReturnValue); 137 138 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 139 llvm::Instruction *Ptr = AllocaInsertPt; 140 AllocaInsertPt = 0; 141 Ptr->eraseFromParent(); 142 } 143 144 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, 145 llvm::Function *Fn, 146 const FunctionArgList &Args, 147 SourceLocation StartLoc) { 148 DidCallStackSave = false; 149 CurCodeDecl = CurFuncDecl = D; 150 FnRetTy = RetTy; 151 CurFn = Fn; 152 assert(CurFn->isDeclaration() && "Function already has body?"); 153 154 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 155 156 // Create a marker to make it easy to insert allocas into the entryblock 157 // later. Don't create this with the builder, because we don't want it 158 // folded. 159 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty); 160 AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "", 161 EntryBB); 162 if (Builder.isNamePreserving()) 163 AllocaInsertPt->setName("allocapt"); 164 165 ReturnBlock = createBasicBlock("return"); 166 ReturnValue = 0; 167 if (!RetTy->isVoidType()) 168 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 169 170 Builder.SetInsertPoint(EntryBB); 171 172 // Emit subprogram debug descriptor. 173 // FIXME: The cast here is a huge hack. 174 if (CGDebugInfo *DI = getDebugInfo()) { 175 DI->setLocation(StartLoc); 176 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 177 DI->EmitFunctionStart(CGM.getMangledName(FD), RetTy, CurFn, Builder); 178 } else { 179 // Just use LLVM function name. 180 181 // FIXME: Remove unnecessary conversion to std::string when API settles. 182 DI->EmitFunctionStart(std::string(Fn->getName()).c_str(), 183 RetTy, CurFn, Builder); 184 } 185 } 186 187 // FIXME: Leaked. 188 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args); 189 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 190 191 // If any of the arguments have a variably modified type, make sure to 192 // emit the type size. 193 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 194 i != e; ++i) { 195 QualType Ty = i->second; 196 197 if (Ty->isVariablyModifiedType()) 198 EmitVLASize(Ty); 199 } 200 } 201 202 void CodeGenFunction::GenerateCode(const FunctionDecl *FD, 203 llvm::Function *Fn) { 204 // Check if we should generate debug info for this function. 205 if (CGM.getDebugInfo() && !FD->hasAttr<NodebugAttr>()) 206 DebugInfo = CGM.getDebugInfo(); 207 208 FunctionArgList Args; 209 210 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 211 if (MD->isInstance()) { 212 // Create the implicit 'this' decl. 213 // FIXME: I'm not entirely sure I like using a fake decl just for code 214 // generation. Maybe we can come up with a better way? 215 CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 216 &getContext().Idents.get("this"), 217 MD->getThisType(getContext())); 218 Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); 219 } 220 } 221 222 if (FD->getNumParams()) { 223 const FunctionProtoType* FProto = FD->getType()->getAsFunctionProtoType(); 224 assert(FProto && "Function def must have prototype!"); 225 226 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 227 Args.push_back(std::make_pair(FD->getParamDecl(i), 228 FProto->getArgType(i))); 229 } 230 231 // FIXME: Support CXXTryStmt here, too. 232 if (const CompoundStmt *S = FD->getCompoundBody()) { 233 StartFunction(FD, FD->getResultType(), Fn, Args, S->getLBracLoc()); 234 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 235 EmitCtorPrologue(CD); 236 EmitStmt(S); 237 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 238 EmitDtorEpilogue(DD); 239 FinishFunction(S->getRBracLoc()); 240 } 241 else 242 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 243 const CXXRecordDecl *ClassDecl = 244 cast<CXXRecordDecl>(CD->getDeclContext()); 245 (void) ClassDecl; 246 if (CD->isCopyConstructor(getContext())) { 247 assert(!ClassDecl->hasUserDeclaredCopyConstructor() && 248 "bogus constructor is being synthesize"); 249 SynthesizeCXXCopyConstructor(CD, FD, Fn, Args); 250 } 251 else { 252 assert(!ClassDecl->hasUserDeclaredConstructor() && 253 "bogus constructor is being synthesize"); 254 SynthesizeDefaultConstructor(CD, FD, Fn, Args); 255 } 256 } 257 258 // Destroy the 'this' declaration. 259 if (CXXThisDecl) 260 CXXThisDecl->Destroy(getContext()); 261 } 262 263 /// ContainsLabel - Return true if the statement contains a label in it. If 264 /// this statement is not executed normally, it not containing a label means 265 /// that we can just remove the code. 266 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 267 // Null statement, not a label! 268 if (S == 0) return false; 269 270 // If this is a label, we have to emit the code, consider something like: 271 // if (0) { ... foo: bar(); } goto foo; 272 if (isa<LabelStmt>(S)) 273 return true; 274 275 // If this is a case/default statement, and we haven't seen a switch, we have 276 // to emit the code. 277 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 278 return true; 279 280 // If this is a switch statement, we want to ignore cases below it. 281 if (isa<SwitchStmt>(S)) 282 IgnoreCaseStmts = true; 283 284 // Scan subexpressions for verboten labels. 285 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 286 I != E; ++I) 287 if (ContainsLabel(*I, IgnoreCaseStmts)) 288 return true; 289 290 return false; 291 } 292 293 294 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 295 /// a constant, or if it does but contains a label, return 0. If it constant 296 /// folds to 'true' and does not contain a label, return 1, if it constant folds 297 /// to 'false' and does not contain a label, return -1. 298 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 299 // FIXME: Rename and handle conversion of other evaluatable things 300 // to bool. 301 Expr::EvalResult Result; 302 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 303 Result.HasSideEffects) 304 return 0; // Not foldable, not integer or not fully evaluatable. 305 306 if (CodeGenFunction::ContainsLabel(Cond)) 307 return 0; // Contains a label. 308 309 return Result.Val.getInt().getBoolValue() ? 1 : -1; 310 } 311 312 313 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 314 /// statement) to the specified blocks. Based on the condition, this might try 315 /// to simplify the codegen of the conditional based on the branch. 316 /// 317 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 318 llvm::BasicBlock *TrueBlock, 319 llvm::BasicBlock *FalseBlock) { 320 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 321 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 322 323 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 324 // Handle X && Y in a condition. 325 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 326 // If we have "1 && X", simplify the code. "0 && X" would have constant 327 // folded if the case was simple enough. 328 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 329 // br(1 && X) -> br(X). 330 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 331 } 332 333 // If we have "X && 1", simplify the code to use an uncond branch. 334 // "X && 0" would have been constant folded to 0. 335 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 336 // br(X && 1) -> br(X). 337 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 338 } 339 340 // Emit the LHS as a conditional. If the LHS conditional is false, we 341 // want to jump to the FalseBlock. 342 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 343 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 344 EmitBlock(LHSTrue); 345 346 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 347 return; 348 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 349 // If we have "0 || X", simplify the code. "1 || X" would have constant 350 // folded if the case was simple enough. 351 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 352 // br(0 || X) -> br(X). 353 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 354 } 355 356 // If we have "X || 0", simplify the code to use an uncond branch. 357 // "X || 1" would have been constant folded to 1. 358 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 359 // br(X || 0) -> br(X). 360 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 361 } 362 363 // Emit the LHS as a conditional. If the LHS conditional is true, we 364 // want to jump to the TrueBlock. 365 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 366 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 367 EmitBlock(LHSFalse); 368 369 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 370 return; 371 } 372 } 373 374 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 375 // br(!x, t, f) -> br(x, f, t) 376 if (CondUOp->getOpcode() == UnaryOperator::LNot) 377 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 378 } 379 380 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 381 // Handle ?: operator. 382 383 // Just ignore GNU ?: extension. 384 if (CondOp->getLHS()) { 385 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 386 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 387 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 388 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 389 EmitBlock(LHSBlock); 390 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 391 EmitBlock(RHSBlock); 392 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 393 return; 394 } 395 } 396 397 // Emit the code with the fully general case. 398 llvm::Value *CondV = EvaluateExprAsBool(Cond); 399 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 400 } 401 402 /// getCGRecordLayout - Return record layout info. 403 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, 404 QualType Ty) { 405 const RecordType *RTy = Ty->getAs<RecordType>(); 406 assert (RTy && "Unexpected type. RecordType expected here."); 407 408 return CGT.getCGRecordLayout(RTy->getDecl()); 409 } 410 411 /// ErrorUnsupported - Print out an error that codegen doesn't support the 412 /// specified stmt yet. 413 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 414 bool OmitOnError) { 415 CGM.ErrorUnsupported(S, Type, OmitOnError); 416 } 417 418 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 419 // Use LabelIDs.size() as the new ID if one hasn't been assigned. 420 return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; 421 } 422 423 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) { 424 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 425 if (DestPtr->getType() != BP) 426 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 427 428 // Get size and alignment info for this aggregate. 429 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 430 431 // Don't bother emitting a zero-byte memset. 432 if (TypeInfo.first == 0) 433 return; 434 435 // FIXME: Handle variable sized types. 436 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 437 438 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 439 llvm::Constant::getNullValue(llvm::Type::Int8Ty), 440 // TypeInfo.first describes size in bits. 441 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 442 llvm::ConstantInt::get(llvm::Type::Int32Ty, 443 TypeInfo.second/8)); 444 } 445 446 void CodeGenFunction::EmitIndirectSwitches() { 447 llvm::BasicBlock *Default; 448 449 if (IndirectSwitches.empty()) 450 return; 451 452 if (!LabelIDs.empty()) { 453 Default = getBasicBlockForLabel(LabelIDs.begin()->first); 454 } else { 455 // No possible targets for indirect goto, just emit an infinite 456 // loop. 457 Default = createBasicBlock("indirectgoto.loop", CurFn); 458 llvm::BranchInst::Create(Default, Default); 459 } 460 461 for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(), 462 e = IndirectSwitches.end(); i != e; ++i) { 463 llvm::SwitchInst *I = *i; 464 465 I->setSuccessor(0, Default); 466 for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(), 467 LE = LabelIDs.end(); LI != LE; ++LI) { 468 I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty, 469 LI->second), 470 getBasicBlockForLabel(LI->first)); 471 } 472 } 473 } 474 475 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 476 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 477 478 assert(SizeEntry && "Did not emit size for type"); 479 return SizeEntry; 480 } 481 482 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 483 assert(Ty->isVariablyModifiedType() && 484 "Must pass variably modified type to EmitVLASizes!"); 485 486 EnsureInsertPoint(); 487 488 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 489 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 490 491 if (!SizeEntry) { 492 // Get the element size; 493 llvm::Value *ElemSize; 494 495 QualType ElemTy = VAT->getElementType(); 496 497 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 498 499 if (ElemTy->isVariableArrayType()) 500 ElemSize = EmitVLASize(ElemTy); 501 else { 502 ElemSize = llvm::ConstantInt::get(SizeTy, 503 getContext().getTypeSize(ElemTy) / 8); 504 } 505 506 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 507 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 508 509 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 510 } 511 512 return SizeEntry; 513 } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 514 EmitVLASize(AT->getElementType()); 515 } else if (const PointerType *PT = Ty->getAs<PointerType>()) 516 EmitVLASize(PT->getPointeeType()); 517 else { 518 assert(0 && "unknown VM type!"); 519 } 520 521 return 0; 522 } 523 524 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 525 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { 526 return EmitScalarExpr(E); 527 } 528 return EmitLValue(E).getAddress(); 529 } 530 531 void CodeGenFunction::PushCleanupBlock(llvm::BasicBlock *CleanupBlock) 532 { 533 CleanupEntries.push_back(CleanupEntry(CleanupBlock)); 534 } 535 536 void CodeGenFunction::EmitCleanupBlocks(size_t OldCleanupStackSize) 537 { 538 assert(CleanupEntries.size() >= OldCleanupStackSize && 539 "Cleanup stack mismatch!"); 540 541 while (CleanupEntries.size() > OldCleanupStackSize) 542 EmitCleanupBlock(); 543 } 544 545 CodeGenFunction::CleanupBlockInfo CodeGenFunction::PopCleanupBlock() 546 { 547 CleanupEntry &CE = CleanupEntries.back(); 548 549 llvm::BasicBlock *CleanupBlock = CE.CleanupBlock; 550 551 std::vector<llvm::BasicBlock *> Blocks; 552 std::swap(Blocks, CE.Blocks); 553 554 std::vector<llvm::BranchInst *> BranchFixups; 555 std::swap(BranchFixups, CE.BranchFixups); 556 557 CleanupEntries.pop_back(); 558 559 // Check if any branch fixups pointed to the scope we just popped. If so, 560 // we can remove them. 561 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 562 llvm::BasicBlock *Dest = BranchFixups[i]->getSuccessor(0); 563 BlockScopeMap::iterator I = BlockScopes.find(Dest); 564 565 if (I == BlockScopes.end()) 566 continue; 567 568 assert(I->second <= CleanupEntries.size() && "Invalid branch fixup!"); 569 570 if (I->second == CleanupEntries.size()) { 571 // We don't need to do this branch fixup. 572 BranchFixups[i] = BranchFixups.back(); 573 BranchFixups.pop_back(); 574 i--; 575 e--; 576 continue; 577 } 578 } 579 580 llvm::BasicBlock *SwitchBlock = 0; 581 llvm::BasicBlock *EndBlock = 0; 582 if (!BranchFixups.empty()) { 583 SwitchBlock = createBasicBlock("cleanup.switch"); 584 EndBlock = createBasicBlock("cleanup.end"); 585 586 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 587 588 Builder.SetInsertPoint(SwitchBlock); 589 590 llvm::Value *DestCodePtr = CreateTempAlloca(llvm::Type::Int32Ty, 591 "cleanup.dst"); 592 llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp"); 593 594 // Create a switch instruction to determine where to jump next. 595 llvm::SwitchInst *SI = Builder.CreateSwitch(DestCode, EndBlock, 596 BranchFixups.size()); 597 598 // Restore the current basic block (if any) 599 if (CurBB) { 600 Builder.SetInsertPoint(CurBB); 601 602 // If we had a current basic block, we also need to emit an instruction 603 // to initialize the cleanup destination. 604 Builder.CreateStore(llvm::Constant::getNullValue(llvm::Type::Int32Ty), 605 DestCodePtr); 606 } else 607 Builder.ClearInsertionPoint(); 608 609 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 610 llvm::BranchInst *BI = BranchFixups[i]; 611 llvm::BasicBlock *Dest = BI->getSuccessor(0); 612 613 // Fixup the branch instruction to point to the cleanup block. 614 BI->setSuccessor(0, CleanupBlock); 615 616 if (CleanupEntries.empty()) { 617 llvm::ConstantInt *ID; 618 619 // Check if we already have a destination for this block. 620 if (Dest == SI->getDefaultDest()) 621 ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); 622 else { 623 ID = SI->findCaseDest(Dest); 624 if (!ID) { 625 // No code found, get a new unique one by using the number of 626 // switch successors. 627 ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, 628 SI->getNumSuccessors()); 629 SI->addCase(ID, Dest); 630 } 631 } 632 633 // Store the jump destination before the branch instruction. 634 new llvm::StoreInst(ID, DestCodePtr, BI); 635 } else { 636 // We need to jump through another cleanup block. Create a pad block 637 // with a branch instruction that jumps to the final destination and 638 // add it as a branch fixup to the current cleanup scope. 639 640 // Create the pad block. 641 llvm::BasicBlock *CleanupPad = createBasicBlock("cleanup.pad", CurFn); 642 643 // Create a unique case ID. 644 llvm::ConstantInt *ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, 645 SI->getNumSuccessors()); 646 647 // Store the jump destination before the branch instruction. 648 new llvm::StoreInst(ID, DestCodePtr, BI); 649 650 // Add it as the destination. 651 SI->addCase(ID, CleanupPad); 652 653 // Create the branch to the final destination. 654 llvm::BranchInst *BI = llvm::BranchInst::Create(Dest); 655 CleanupPad->getInstList().push_back(BI); 656 657 // And add it as a branch fixup. 658 CleanupEntries.back().BranchFixups.push_back(BI); 659 } 660 } 661 } 662 663 // Remove all blocks from the block scope map. 664 for (size_t i = 0, e = Blocks.size(); i != e; ++i) { 665 assert(BlockScopes.count(Blocks[i]) && 666 "Did not find block in scope map!"); 667 668 BlockScopes.erase(Blocks[i]); 669 } 670 671 return CleanupBlockInfo(CleanupBlock, SwitchBlock, EndBlock); 672 } 673 674 void CodeGenFunction::EmitCleanupBlock() 675 { 676 CleanupBlockInfo Info = PopCleanupBlock(); 677 678 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 679 if (CurBB && !CurBB->getTerminator() && 680 Info.CleanupBlock->getNumUses() == 0) { 681 CurBB->getInstList().splice(CurBB->end(), Info.CleanupBlock->getInstList()); 682 delete Info.CleanupBlock; 683 } else 684 EmitBlock(Info.CleanupBlock); 685 686 if (Info.SwitchBlock) 687 EmitBlock(Info.SwitchBlock); 688 if (Info.EndBlock) 689 EmitBlock(Info.EndBlock); 690 } 691 692 void CodeGenFunction::AddBranchFixup(llvm::BranchInst *BI) 693 { 694 assert(!CleanupEntries.empty() && 695 "Trying to add branch fixup without cleanup block!"); 696 697 // FIXME: We could be more clever here and check if there's already a branch 698 // fixup for this destination and recycle it. 699 CleanupEntries.back().BranchFixups.push_back(BI); 700 } 701 702 void CodeGenFunction::EmitBranchThroughCleanup(llvm::BasicBlock *Dest) 703 { 704 if (!HaveInsertPoint()) 705 return; 706 707 llvm::BranchInst* BI = Builder.CreateBr(Dest); 708 709 Builder.ClearInsertionPoint(); 710 711 // The stack is empty, no need to do any cleanup. 712 if (CleanupEntries.empty()) 713 return; 714 715 if (!Dest->getParent()) { 716 // We are trying to branch to a block that hasn't been inserted yet. 717 AddBranchFixup(BI); 718 return; 719 } 720 721 BlockScopeMap::iterator I = BlockScopes.find(Dest); 722 if (I == BlockScopes.end()) { 723 // We are trying to jump to a block that is outside of any cleanup scope. 724 AddBranchFixup(BI); 725 return; 726 } 727 728 assert(I->second < CleanupEntries.size() && 729 "Trying to branch into cleanup region"); 730 731 if (I->second == CleanupEntries.size() - 1) { 732 // We have a branch to a block in the same scope. 733 return; 734 } 735 736 AddBranchFixup(BI); 737 } 738