1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(Address::invalid()), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr), LargestVectorWidth(0),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   if (CGM.getCodeGenOpts().Reassociate) {
107     FMF.setAllowReassoc();
108   }
109   Builder.setFastMathFlags(FMF);
110 }
111 
112 CodeGenFunction::~CodeGenFunction() {
113   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
114 
115   // If there are any unclaimed block infos, go ahead and destroy them
116   // now.  This can happen if IR-gen gets clever and skips evaluating
117   // something.
118   if (FirstBlockInfo)
119     destroyBlockInfos(FirstBlockInfo);
120 
121   if (getLangOpts().OpenMP && CurFn)
122     CGM.getOpenMPRuntime().functionFinished(*this);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
126                                                     LValueBaseInfo *BaseInfo,
127                                                     TBAAAccessInfo *TBAAInfo) {
128   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
129                                  /* forPointeeType= */ true);
130 }
131 
132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
133                                                    LValueBaseInfo *BaseInfo,
134                                                    TBAAAccessInfo *TBAAInfo,
135                                                    bool forPointeeType) {
136   if (TBAAInfo)
137     *TBAAInfo = CGM.getTBAAAccessInfo(T);
138 
139   // Honor alignment typedef attributes even on incomplete types.
140   // We also honor them straight for C++ class types, even as pointees;
141   // there's an expressivity gap here.
142   if (auto TT = T->getAs<TypedefType>()) {
143     if (auto Align = TT->getDecl()->getMaxAlignment()) {
144       if (BaseInfo)
145         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
146       return getContext().toCharUnitsFromBits(Align);
147     }
148   }
149 
150   if (BaseInfo)
151     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
152 
153   CharUnits Alignment;
154   if (T->isIncompleteType()) {
155     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
156   } else {
157     // For C++ class pointees, we don't know whether we're pointing at a
158     // base or a complete object, so we generally need to use the
159     // non-virtual alignment.
160     const CXXRecordDecl *RD;
161     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
162       Alignment = CGM.getClassPointerAlignment(RD);
163     } else {
164       Alignment = getContext().getTypeAlignInChars(T);
165       if (T.getQualifiers().hasUnaligned())
166         Alignment = CharUnits::One();
167     }
168 
169     // Cap to the global maximum type alignment unless the alignment
170     // was somehow explicit on the type.
171     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
172       if (Alignment.getQuantity() > MaxAlign &&
173           !getContext().isAlignmentRequired(T))
174         Alignment = CharUnits::fromQuantity(MaxAlign);
175     }
176   }
177   return Alignment;
178 }
179 
180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   TBAAAccessInfo TBAAInfo;
183   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
184   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
185                           TBAAInfo);
186 }
187 
188 /// Given a value of type T* that may not be to a complete object,
189 /// construct an l-value with the natural pointee alignment of T.
190 LValue
191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
192   LValueBaseInfo BaseInfo;
193   TBAAAccessInfo TBAAInfo;
194   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
195                                             /* forPointeeType= */ true);
196   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
197 }
198 
199 
200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
201   return CGM.getTypes().ConvertTypeForMem(T);
202 }
203 
204 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
205   return CGM.getTypes().ConvertType(T);
206 }
207 
208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
209   type = type.getCanonicalType();
210   while (true) {
211     switch (type->getTypeClass()) {
212 #define TYPE(name, parent)
213 #define ABSTRACT_TYPE(name, parent)
214 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
215 #define DEPENDENT_TYPE(name, parent) case Type::name:
216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
217 #include "clang/AST/TypeNodes.def"
218       llvm_unreachable("non-canonical or dependent type in IR-generation");
219 
220     case Type::Auto:
221     case Type::DeducedTemplateSpecialization:
222       llvm_unreachable("undeduced type in IR-generation");
223 
224     // Various scalar types.
225     case Type::Builtin:
226     case Type::Pointer:
227     case Type::BlockPointer:
228     case Type::LValueReference:
229     case Type::RValueReference:
230     case Type::MemberPointer:
231     case Type::Vector:
232     case Type::ExtVector:
233     case Type::FunctionProto:
234     case Type::FunctionNoProto:
235     case Type::Enum:
236     case Type::ObjCObjectPointer:
237     case Type::Pipe:
238       return TEK_Scalar;
239 
240     // Complexes.
241     case Type::Complex:
242       return TEK_Complex;
243 
244     // Arrays, records, and Objective-C objects.
245     case Type::ConstantArray:
246     case Type::IncompleteArray:
247     case Type::VariableArray:
248     case Type::Record:
249     case Type::ObjCObject:
250     case Type::ObjCInterface:
251       return TEK_Aggregate;
252 
253     // We operate on atomic values according to their underlying type.
254     case Type::Atomic:
255       type = cast<AtomicType>(type)->getValueType();
256       continue;
257     }
258     llvm_unreachable("unknown type kind!");
259   }
260 }
261 
262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
263   // For cleanliness, we try to avoid emitting the return block for
264   // simple cases.
265   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
266 
267   if (CurBB) {
268     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
269 
270     // We have a valid insert point, reuse it if it is empty or there are no
271     // explicit jumps to the return block.
272     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
273       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
274       delete ReturnBlock.getBlock();
275     } else
276       EmitBlock(ReturnBlock.getBlock());
277     return llvm::DebugLoc();
278   }
279 
280   // Otherwise, if the return block is the target of a single direct
281   // branch then we can just put the code in that block instead. This
282   // cleans up functions which started with a unified return block.
283   if (ReturnBlock.getBlock()->hasOneUse()) {
284     llvm::BranchInst *BI =
285       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
286     if (BI && BI->isUnconditional() &&
287         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
288       // Record/return the DebugLoc of the simple 'return' expression to be used
289       // later by the actual 'ret' instruction.
290       llvm::DebugLoc Loc = BI->getDebugLoc();
291       Builder.SetInsertPoint(BI->getParent());
292       BI->eraseFromParent();
293       delete ReturnBlock.getBlock();
294       return Loc;
295     }
296   }
297 
298   // FIXME: We are at an unreachable point, there is no reason to emit the block
299   // unless it has uses. However, we still need a place to put the debug
300   // region.end for now.
301 
302   EmitBlock(ReturnBlock.getBlock());
303   return llvm::DebugLoc();
304 }
305 
306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
307   if (!BB) return;
308   if (!BB->use_empty())
309     return CGF.CurFn->getBasicBlockList().push_back(BB);
310   delete BB;
311 }
312 
313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
314   assert(BreakContinueStack.empty() &&
315          "mismatched push/pop in break/continue stack!");
316 
317   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
318     && NumSimpleReturnExprs == NumReturnExprs
319     && ReturnBlock.getBlock()->use_empty();
320   // Usually the return expression is evaluated before the cleanup
321   // code.  If the function contains only a simple return statement,
322   // such as a constant, the location before the cleanup code becomes
323   // the last useful breakpoint in the function, because the simple
324   // return expression will be evaluated after the cleanup code. To be
325   // safe, set the debug location for cleanup code to the location of
326   // the return statement.  Otherwise the cleanup code should be at the
327   // end of the function's lexical scope.
328   //
329   // If there are multiple branches to the return block, the branch
330   // instructions will get the location of the return statements and
331   // all will be fine.
332   if (CGDebugInfo *DI = getDebugInfo()) {
333     if (OnlySimpleReturnStmts)
334       DI->EmitLocation(Builder, LastStopPoint);
335     else
336       DI->EmitLocation(Builder, EndLoc);
337   }
338 
339   // Pop any cleanups that might have been associated with the
340   // parameters.  Do this in whatever block we're currently in; it's
341   // important to do this before we enter the return block or return
342   // edges will be *really* confused.
343   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
344   bool HasOnlyLifetimeMarkers =
345       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
346   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
347   if (HasCleanups) {
348     // Make sure the line table doesn't jump back into the body for
349     // the ret after it's been at EndLoc.
350     if (CGDebugInfo *DI = getDebugInfo())
351       if (OnlySimpleReturnStmts)
352         DI->EmitLocation(Builder, EndLoc);
353 
354     PopCleanupBlocks(PrologueCleanupDepth);
355   }
356 
357   // Emit function epilog (to return).
358   llvm::DebugLoc Loc = EmitReturnBlock();
359 
360   if (ShouldInstrumentFunction()) {
361     if (CGM.getCodeGenOpts().InstrumentFunctions)
362       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
363     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
364       CurFn->addFnAttr("instrument-function-exit-inlined",
365                        "__cyg_profile_func_exit");
366   }
367 
368   // Emit debug descriptor for function end.
369   if (CGDebugInfo *DI = getDebugInfo())
370     DI->EmitFunctionEnd(Builder, CurFn);
371 
372   // Reset the debug location to that of the simple 'return' expression, if any
373   // rather than that of the end of the function's scope '}'.
374   ApplyDebugLocation AL(*this, Loc);
375   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
376   EmitEndEHSpec(CurCodeDecl);
377 
378   assert(EHStack.empty() &&
379          "did not remove all scopes from cleanup stack!");
380 
381   // If someone did an indirect goto, emit the indirect goto block at the end of
382   // the function.
383   if (IndirectBranch) {
384     EmitBlock(IndirectBranch->getParent());
385     Builder.ClearInsertionPoint();
386   }
387 
388   // If some of our locals escaped, insert a call to llvm.localescape in the
389   // entry block.
390   if (!EscapedLocals.empty()) {
391     // Invert the map from local to index into a simple vector. There should be
392     // no holes.
393     SmallVector<llvm::Value *, 4> EscapeArgs;
394     EscapeArgs.resize(EscapedLocals.size());
395     for (auto &Pair : EscapedLocals)
396       EscapeArgs[Pair.second] = Pair.first;
397     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
398         &CGM.getModule(), llvm::Intrinsic::localescape);
399     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
400   }
401 
402   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
403   llvm::Instruction *Ptr = AllocaInsertPt;
404   AllocaInsertPt = nullptr;
405   Ptr->eraseFromParent();
406 
407   // If someone took the address of a label but never did an indirect goto, we
408   // made a zero entry PHI node, which is illegal, zap it now.
409   if (IndirectBranch) {
410     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
411     if (PN->getNumIncomingValues() == 0) {
412       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
413       PN->eraseFromParent();
414     }
415   }
416 
417   EmitIfUsed(*this, EHResumeBlock);
418   EmitIfUsed(*this, TerminateLandingPad);
419   EmitIfUsed(*this, TerminateHandler);
420   EmitIfUsed(*this, UnreachableBlock);
421 
422   for (const auto &FuncletAndParent : TerminateFunclets)
423     EmitIfUsed(*this, FuncletAndParent.second);
424 
425   if (CGM.getCodeGenOpts().EmitDeclMetadata)
426     EmitDeclMetadata();
427 
428   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
429            I = DeferredReplacements.begin(),
430            E = DeferredReplacements.end();
431        I != E; ++I) {
432     I->first->replaceAllUsesWith(I->second);
433     I->first->eraseFromParent();
434   }
435 
436   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
437   // PHIs if the current function is a coroutine. We don't do it for all
438   // functions as it may result in slight increase in numbers of instructions
439   // if compiled with no optimizations. We do it for coroutine as the lifetime
440   // of CleanupDestSlot alloca make correct coroutine frame building very
441   // difficult.
442   if (NormalCleanupDest.isValid() && isCoroutine()) {
443     llvm::DominatorTree DT(*CurFn);
444     llvm::PromoteMemToReg(
445         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
446     NormalCleanupDest = Address::invalid();
447   }
448 
449   // Add the required-vector-width attribute.
450   if (LargestVectorWidth != 0)
451     CurFn->addFnAttr("min-legal-vector-width",
452                      llvm::utostr(LargestVectorWidth));
453 }
454 
455 /// ShouldInstrumentFunction - Return true if the current function should be
456 /// instrumented with __cyg_profile_func_* calls
457 bool CodeGenFunction::ShouldInstrumentFunction() {
458   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
459       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
460       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
461     return false;
462   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
463     return false;
464   return true;
465 }
466 
467 /// ShouldXRayInstrument - Return true if the current function should be
468 /// instrumented with XRay nop sleds.
469 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
470   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
471 }
472 
473 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
474 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
475 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
476   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
477          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
478           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
479               XRayInstrKind::Custom);
480 }
481 
482 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
483   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
484          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
485           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
486               XRayInstrKind::Typed);
487 }
488 
489 llvm::Constant *
490 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
491                                             llvm::Constant *Addr) {
492   // Addresses stored in prologue data can't require run-time fixups and must
493   // be PC-relative. Run-time fixups are undesirable because they necessitate
494   // writable text segments, which are unsafe. And absolute addresses are
495   // undesirable because they break PIE mode.
496 
497   // Add a layer of indirection through a private global. Taking its address
498   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
499   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
500                                       /*isConstant=*/true,
501                                       llvm::GlobalValue::PrivateLinkage, Addr);
502 
503   // Create a PC-relative address.
504   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
505   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
506   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
507   return (IntPtrTy == Int32Ty)
508              ? PCRelAsInt
509              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
510 }
511 
512 llvm::Value *
513 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
514                                           llvm::Value *EncodedAddr) {
515   // Reconstruct the address of the global.
516   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
517   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
518   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
519   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
520 
521   // Load the original pointer through the global.
522   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
523                             "decoded_addr");
524 }
525 
526 static void removeImageAccessQualifier(std::string& TyName) {
527   std::string ReadOnlyQual("__read_only");
528   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
529   if (ReadOnlyPos != std::string::npos)
530     // "+ 1" for the space after access qualifier.
531     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
532   else {
533     std::string WriteOnlyQual("__write_only");
534     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
535     if (WriteOnlyPos != std::string::npos)
536       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
537     else {
538       std::string ReadWriteQual("__read_write");
539       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
540       if (ReadWritePos != std::string::npos)
541         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
542     }
543   }
544 }
545 
546 // Returns the address space id that should be produced to the
547 // kernel_arg_addr_space metadata. This is always fixed to the ids
548 // as specified in the SPIR 2.0 specification in order to differentiate
549 // for example in clGetKernelArgInfo() implementation between the address
550 // spaces with targets without unique mapping to the OpenCL address spaces
551 // (basically all single AS CPUs).
552 static unsigned ArgInfoAddressSpace(LangAS AS) {
553   switch (AS) {
554   case LangAS::opencl_global:   return 1;
555   case LangAS::opencl_constant: return 2;
556   case LangAS::opencl_local:    return 3;
557   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
558   default:
559     return 0; // Assume private.
560   }
561 }
562 
563 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
564 // information in the program executable. The argument information stored
565 // includes the argument name, its type, the address and access qualifiers used.
566 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
567                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
568                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
569   // Create MDNodes that represent the kernel arg metadata.
570   // Each MDNode is a list in the form of "key", N number of values which is
571   // the same number of values as their are kernel arguments.
572 
573   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
574 
575   // MDNode for the kernel argument address space qualifiers.
576   SmallVector<llvm::Metadata *, 8> addressQuals;
577 
578   // MDNode for the kernel argument access qualifiers (images only).
579   SmallVector<llvm::Metadata *, 8> accessQuals;
580 
581   // MDNode for the kernel argument type names.
582   SmallVector<llvm::Metadata *, 8> argTypeNames;
583 
584   // MDNode for the kernel argument base type names.
585   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
586 
587   // MDNode for the kernel argument type qualifiers.
588   SmallVector<llvm::Metadata *, 8> argTypeQuals;
589 
590   // MDNode for the kernel argument names.
591   SmallVector<llvm::Metadata *, 8> argNames;
592 
593   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
594     const ParmVarDecl *parm = FD->getParamDecl(i);
595     QualType ty = parm->getType();
596     std::string typeQuals;
597 
598     if (ty->isPointerType()) {
599       QualType pointeeTy = ty->getPointeeType();
600 
601       // Get address qualifier.
602       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
603         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
604 
605       // Get argument type name.
606       std::string typeName =
607           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
608 
609       // Turn "unsigned type" to "utype"
610       std::string::size_type pos = typeName.find("unsigned");
611       if (pointeeTy.isCanonical() && pos != std::string::npos)
612         typeName.erase(pos+1, 8);
613 
614       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
615 
616       std::string baseTypeName =
617           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
618               Policy) +
619           "*";
620 
621       // Turn "unsigned type" to "utype"
622       pos = baseTypeName.find("unsigned");
623       if (pos != std::string::npos)
624         baseTypeName.erase(pos+1, 8);
625 
626       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
627 
628       // Get argument type qualifiers:
629       if (ty.isRestrictQualified())
630         typeQuals = "restrict";
631       if (pointeeTy.isConstQualified() ||
632           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
633         typeQuals += typeQuals.empty() ? "const" : " const";
634       if (pointeeTy.isVolatileQualified())
635         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
636     } else {
637       uint32_t AddrSpc = 0;
638       bool isPipe = ty->isPipeType();
639       if (ty->isImageType() || isPipe)
640         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
641 
642       addressQuals.push_back(
643           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
644 
645       // Get argument type name.
646       std::string typeName;
647       if (isPipe)
648         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
649                      .getAsString(Policy);
650       else
651         typeName = ty.getUnqualifiedType().getAsString(Policy);
652 
653       // Turn "unsigned type" to "utype"
654       std::string::size_type pos = typeName.find("unsigned");
655       if (ty.isCanonical() && pos != std::string::npos)
656         typeName.erase(pos+1, 8);
657 
658       std::string baseTypeName;
659       if (isPipe)
660         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
661                           ->getElementType().getCanonicalType()
662                           .getAsString(Policy);
663       else
664         baseTypeName =
665           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
666 
667       // Remove access qualifiers on images
668       // (as they are inseparable from type in clang implementation,
669       // but OpenCL spec provides a special query to get access qualifier
670       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
671       if (ty->isImageType()) {
672         removeImageAccessQualifier(typeName);
673         removeImageAccessQualifier(baseTypeName);
674       }
675 
676       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
677 
678       // Turn "unsigned type" to "utype"
679       pos = baseTypeName.find("unsigned");
680       if (pos != std::string::npos)
681         baseTypeName.erase(pos+1, 8);
682 
683       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
684 
685       if (isPipe)
686         typeQuals = "pipe";
687     }
688 
689     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
690 
691     // Get image and pipe access qualifier:
692     if (ty->isImageType()|| ty->isPipeType()) {
693       const Decl *PDecl = parm;
694       if (auto *TD = dyn_cast<TypedefType>(ty))
695         PDecl = TD->getDecl();
696       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
697       if (A && A->isWriteOnly())
698         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
699       else if (A && A->isReadWrite())
700         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
701       else
702         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
703     } else
704       accessQuals.push_back(llvm::MDString::get(Context, "none"));
705 
706     // Get argument name.
707     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
708   }
709 
710   Fn->setMetadata("kernel_arg_addr_space",
711                   llvm::MDNode::get(Context, addressQuals));
712   Fn->setMetadata("kernel_arg_access_qual",
713                   llvm::MDNode::get(Context, accessQuals));
714   Fn->setMetadata("kernel_arg_type",
715                   llvm::MDNode::get(Context, argTypeNames));
716   Fn->setMetadata("kernel_arg_base_type",
717                   llvm::MDNode::get(Context, argBaseTypeNames));
718   Fn->setMetadata("kernel_arg_type_qual",
719                   llvm::MDNode::get(Context, argTypeQuals));
720   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
721     Fn->setMetadata("kernel_arg_name",
722                     llvm::MDNode::get(Context, argNames));
723 }
724 
725 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
726                                                llvm::Function *Fn)
727 {
728   if (!FD->hasAttr<OpenCLKernelAttr>())
729     return;
730 
731   llvm::LLVMContext &Context = getLLVMContext();
732 
733   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
734 
735   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
736     QualType HintQTy = A->getTypeHint();
737     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
738     bool IsSignedInteger =
739         HintQTy->isSignedIntegerType() ||
740         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
741     llvm::Metadata *AttrMDArgs[] = {
742         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
743             CGM.getTypes().ConvertType(A->getTypeHint()))),
744         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
745             llvm::IntegerType::get(Context, 32),
746             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
747     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
748   }
749 
750   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
751     llvm::Metadata *AttrMDArgs[] = {
752         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
753         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
754         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
755     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
756   }
757 
758   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
759     llvm::Metadata *AttrMDArgs[] = {
760         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
761         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
762         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
763     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
764   }
765 
766   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
767           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
768     llvm::Metadata *AttrMDArgs[] = {
769         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
770     Fn->setMetadata("intel_reqd_sub_group_size",
771                     llvm::MDNode::get(Context, AttrMDArgs));
772   }
773 }
774 
775 /// Determine whether the function F ends with a return stmt.
776 static bool endsWithReturn(const Decl* F) {
777   const Stmt *Body = nullptr;
778   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
779     Body = FD->getBody();
780   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
781     Body = OMD->getBody();
782 
783   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
784     auto LastStmt = CS->body_rbegin();
785     if (LastStmt != CS->body_rend())
786       return isa<ReturnStmt>(*LastStmt);
787   }
788   return false;
789 }
790 
791 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
792   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
793   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
794 }
795 
796 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
797   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
798   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
799       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
800       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
801     return false;
802 
803   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
804     return false;
805 
806   if (MD->getNumParams() == 2) {
807     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
808     if (!PT || !PT->isVoidPointerType() ||
809         !PT->getPointeeType().isConstQualified())
810       return false;
811   }
812 
813   return true;
814 }
815 
816 /// Return the UBSan prologue signature for \p FD if one is available.
817 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
818                                             const FunctionDecl *FD) {
819   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
820     if (!MD->isStatic())
821       return nullptr;
822   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
823 }
824 
825 void CodeGenFunction::StartFunction(GlobalDecl GD,
826                                     QualType RetTy,
827                                     llvm::Function *Fn,
828                                     const CGFunctionInfo &FnInfo,
829                                     const FunctionArgList &Args,
830                                     SourceLocation Loc,
831                                     SourceLocation StartLoc) {
832   assert(!CurFn &&
833          "Do not use a CodeGenFunction object for more than one function");
834 
835   const Decl *D = GD.getDecl();
836 
837   DidCallStackSave = false;
838   CurCodeDecl = D;
839   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
840     if (FD->usesSEHTry())
841       CurSEHParent = FD;
842   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
843   FnRetTy = RetTy;
844   CurFn = Fn;
845   CurFnInfo = &FnInfo;
846   assert(CurFn->isDeclaration() && "Function already has body?");
847 
848   // If this function has been blacklisted for any of the enabled sanitizers,
849   // disable the sanitizer for the function.
850   do {
851 #define SANITIZER(NAME, ID)                                                    \
852   if (SanOpts.empty())                                                         \
853     break;                                                                     \
854   if (SanOpts.has(SanitizerKind::ID))                                          \
855     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
856       SanOpts.set(SanitizerKind::ID, false);
857 
858 #include "clang/Basic/Sanitizers.def"
859 #undef SANITIZER
860   } while (0);
861 
862   if (D) {
863     // Apply the no_sanitize* attributes to SanOpts.
864     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
865       SanitizerMask mask = Attr->getMask();
866       SanOpts.Mask &= ~mask;
867       if (mask & SanitizerKind::Address)
868         SanOpts.set(SanitizerKind::KernelAddress, false);
869       if (mask & SanitizerKind::KernelAddress)
870         SanOpts.set(SanitizerKind::Address, false);
871       if (mask & SanitizerKind::HWAddress)
872         SanOpts.set(SanitizerKind::KernelHWAddress, false);
873       if (mask & SanitizerKind::KernelHWAddress)
874         SanOpts.set(SanitizerKind::HWAddress, false);
875     }
876   }
877 
878   // Apply sanitizer attributes to the function.
879   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
880     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
881   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
882     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
883   if (SanOpts.has(SanitizerKind::Thread))
884     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
885   if (SanOpts.has(SanitizerKind::Memory))
886     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
887   if (SanOpts.has(SanitizerKind::SafeStack))
888     Fn->addFnAttr(llvm::Attribute::SafeStack);
889   if (SanOpts.has(SanitizerKind::ShadowCallStack))
890     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
891 
892   // Apply fuzzing attribute to the function.
893   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
894     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
895 
896   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
897   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
898   if (SanOpts.has(SanitizerKind::Thread)) {
899     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
900       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
901       if (OMD->getMethodFamily() == OMF_dealloc ||
902           OMD->getMethodFamily() == OMF_initialize ||
903           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
904         markAsIgnoreThreadCheckingAtRuntime(Fn);
905       }
906     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
907       IdentifierInfo *II = FD->getIdentifier();
908       if (II && II->isStr("__destroy_helper_block_"))
909         markAsIgnoreThreadCheckingAtRuntime(Fn);
910     }
911   }
912 
913   // Ignore unrelated casts in STL allocate() since the allocator must cast
914   // from void* to T* before object initialization completes. Don't match on the
915   // namespace because not all allocators are in std::
916   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
917     if (matchesStlAllocatorFn(D, getContext()))
918       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
919   }
920 
921   // Apply xray attributes to the function (as a string, for now)
922   bool InstrumentXray = ShouldXRayInstrumentFunction() &&
923                         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
924                             XRayInstrKind::Function);
925   if (D && InstrumentXray) {
926     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
927       if (XRayAttr->alwaysXRayInstrument())
928         Fn->addFnAttr("function-instrument", "xray-always");
929       if (XRayAttr->neverXRayInstrument())
930         Fn->addFnAttr("function-instrument", "xray-never");
931       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
932         Fn->addFnAttr("xray-log-args",
933                       llvm::utostr(LogArgs->getArgumentCount()));
934       }
935     } else {
936       if (!CGM.imbueXRayAttrs(Fn, Loc))
937         Fn->addFnAttr(
938             "xray-instruction-threshold",
939             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
940     }
941   }
942 
943   // Add no-jump-tables value.
944   Fn->addFnAttr("no-jump-tables",
945                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
946 
947   // Add profile-sample-accurate value.
948   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
949     Fn->addFnAttr("profile-sample-accurate");
950 
951   if (getLangOpts().OpenCL) {
952     // Add metadata for a kernel function.
953     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
954       EmitOpenCLKernelMetadata(FD, Fn);
955   }
956 
957   // If we are checking function types, emit a function type signature as
958   // prologue data.
959   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
960     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
961       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
962         // Remove any (C++17) exception specifications, to allow calling e.g. a
963         // noexcept function through a non-noexcept pointer.
964         auto ProtoTy =
965           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
966                                                         EST_None);
967         llvm::Constant *FTRTTIConst =
968             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
969         llvm::Constant *FTRTTIConstEncoded =
970             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
971         llvm::Constant *PrologueStructElems[] = {PrologueSig,
972                                                  FTRTTIConstEncoded};
973         llvm::Constant *PrologueStructConst =
974             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
975         Fn->setPrologueData(PrologueStructConst);
976       }
977     }
978   }
979 
980   // If we're checking nullability, we need to know whether we can check the
981   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
982   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
983     auto Nullability = FnRetTy->getNullability(getContext());
984     if (Nullability && *Nullability == NullabilityKind::NonNull) {
985       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
986             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
987         RetValNullabilityPrecondition =
988             llvm::ConstantInt::getTrue(getLLVMContext());
989     }
990   }
991 
992   // If we're in C++ mode and the function name is "main", it is guaranteed
993   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
994   // used within a program").
995   if (getLangOpts().CPlusPlus)
996     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
997       if (FD->isMain())
998         Fn->addFnAttr(llvm::Attribute::NoRecurse);
999 
1000   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1001 
1002   // Create a marker to make it easy to insert allocas into the entryblock
1003   // later.  Don't create this with the builder, because we don't want it
1004   // folded.
1005   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1006   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1007 
1008   ReturnBlock = getJumpDestInCurrentScope("return");
1009 
1010   Builder.SetInsertPoint(EntryBB);
1011 
1012   // If we're checking the return value, allocate space for a pointer to a
1013   // precise source location of the checked return statement.
1014   if (requiresReturnValueCheck()) {
1015     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1016     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
1017   }
1018 
1019   // Emit subprogram debug descriptor.
1020   if (CGDebugInfo *DI = getDebugInfo()) {
1021     // Reconstruct the type from the argument list so that implicit parameters,
1022     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1023     // convention.
1024     CallingConv CC = CallingConv::CC_C;
1025     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
1026       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1027         CC = SrcFnTy->getCallConv();
1028     SmallVector<QualType, 16> ArgTypes;
1029     for (const VarDecl *VD : Args)
1030       ArgTypes.push_back(VD->getType());
1031     QualType FnType = getContext().getFunctionType(
1032         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1033     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
1034                           Builder);
1035   }
1036 
1037   if (ShouldInstrumentFunction()) {
1038     if (CGM.getCodeGenOpts().InstrumentFunctions)
1039       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1040     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1041       CurFn->addFnAttr("instrument-function-entry-inlined",
1042                        "__cyg_profile_func_enter");
1043     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1044       CurFn->addFnAttr("instrument-function-entry-inlined",
1045                        "__cyg_profile_func_enter_bare");
1046   }
1047 
1048   // Since emitting the mcount call here impacts optimizations such as function
1049   // inlining, we just add an attribute to insert a mcount call in backend.
1050   // The attribute "counting-function" is set to mcount function name which is
1051   // architecture dependent.
1052   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1053     // Calls to fentry/mcount should not be generated if function has
1054     // the no_instrument_function attribute.
1055     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1056       if (CGM.getCodeGenOpts().CallFEntry)
1057         Fn->addFnAttr("fentry-call", "true");
1058       else {
1059         Fn->addFnAttr("instrument-function-entry-inlined",
1060                       getTarget().getMCountName());
1061       }
1062     }
1063   }
1064 
1065   if (RetTy->isVoidType()) {
1066     // Void type; nothing to return.
1067     ReturnValue = Address::invalid();
1068 
1069     // Count the implicit return.
1070     if (!endsWithReturn(D))
1071       ++NumReturnExprs;
1072   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1073              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1074     // Indirect aggregate return; emit returned value directly into sret slot.
1075     // This reduces code size, and affects correctness in C++.
1076     auto AI = CurFn->arg_begin();
1077     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1078       ++AI;
1079     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1080   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1081              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1082     // Load the sret pointer from the argument struct and return into that.
1083     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1084     llvm::Function::arg_iterator EI = CurFn->arg_end();
1085     --EI;
1086     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1087     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1088     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1089   } else {
1090     ReturnValue = CreateIRTemp(RetTy, "retval");
1091 
1092     // Tell the epilog emitter to autorelease the result.  We do this
1093     // now so that various specialized functions can suppress it
1094     // during their IR-generation.
1095     if (getLangOpts().ObjCAutoRefCount &&
1096         !CurFnInfo->isReturnsRetained() &&
1097         RetTy->isObjCRetainableType())
1098       AutoreleaseResult = true;
1099   }
1100 
1101   EmitStartEHSpec(CurCodeDecl);
1102 
1103   PrologueCleanupDepth = EHStack.stable_begin();
1104 
1105   // Emit OpenMP specific initialization of the device functions.
1106   if (getLangOpts().OpenMP && CurCodeDecl)
1107     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1108 
1109   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1110 
1111   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1112     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1113     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1114     if (MD->getParent()->isLambda() &&
1115         MD->getOverloadedOperator() == OO_Call) {
1116       // We're in a lambda; figure out the captures.
1117       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1118                                         LambdaThisCaptureField);
1119       if (LambdaThisCaptureField) {
1120         // If the lambda captures the object referred to by '*this' - either by
1121         // value or by reference, make sure CXXThisValue points to the correct
1122         // object.
1123 
1124         // Get the lvalue for the field (which is a copy of the enclosing object
1125         // or contains the address of the enclosing object).
1126         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1127         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1128           // If the enclosing object was captured by value, just use its address.
1129           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1130         } else {
1131           // Load the lvalue pointed to by the field, since '*this' was captured
1132           // by reference.
1133           CXXThisValue =
1134               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1135         }
1136       }
1137       for (auto *FD : MD->getParent()->fields()) {
1138         if (FD->hasCapturedVLAType()) {
1139           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1140                                            SourceLocation()).getScalarVal();
1141           auto VAT = FD->getCapturedVLAType();
1142           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1143         }
1144       }
1145     } else {
1146       // Not in a lambda; just use 'this' from the method.
1147       // FIXME: Should we generate a new load for each use of 'this'?  The
1148       // fast register allocator would be happier...
1149       CXXThisValue = CXXABIThisValue;
1150     }
1151 
1152     // Check the 'this' pointer once per function, if it's available.
1153     if (CXXABIThisValue) {
1154       SanitizerSet SkippedChecks;
1155       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1156       QualType ThisTy = MD->getThisType(getContext());
1157 
1158       // If this is the call operator of a lambda with no capture-default, it
1159       // may have a static invoker function, which may call this operator with
1160       // a null 'this' pointer.
1161       if (isLambdaCallOperator(MD) &&
1162           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1163         SkippedChecks.set(SanitizerKind::Null, true);
1164 
1165       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1166                                                 : TCK_MemberCall,
1167                     Loc, CXXABIThisValue, ThisTy,
1168                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1169                     SkippedChecks);
1170     }
1171   }
1172 
1173   // If any of the arguments have a variably modified type, make sure to
1174   // emit the type size.
1175   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1176        i != e; ++i) {
1177     const VarDecl *VD = *i;
1178 
1179     // Dig out the type as written from ParmVarDecls; it's unclear whether
1180     // the standard (C99 6.9.1p10) requires this, but we're following the
1181     // precedent set by gcc.
1182     QualType Ty;
1183     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1184       Ty = PVD->getOriginalType();
1185     else
1186       Ty = VD->getType();
1187 
1188     if (Ty->isVariablyModifiedType())
1189       EmitVariablyModifiedType(Ty);
1190   }
1191   // Emit a location at the end of the prologue.
1192   if (CGDebugInfo *DI = getDebugInfo())
1193     DI->EmitLocation(Builder, StartLoc);
1194 
1195   // TODO: Do we need to handle this in two places like we do with
1196   // target-features/target-cpu?
1197   if (CurFuncDecl)
1198     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1199       LargestVectorWidth = VecWidth->getVectorWidth();
1200 }
1201 
1202 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1203                                        const Stmt *Body) {
1204   incrementProfileCounter(Body);
1205   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1206     EmitCompoundStmtWithoutScope(*S);
1207   else
1208     EmitStmt(Body);
1209 }
1210 
1211 /// When instrumenting to collect profile data, the counts for some blocks
1212 /// such as switch cases need to not include the fall-through counts, so
1213 /// emit a branch around the instrumentation code. When not instrumenting,
1214 /// this just calls EmitBlock().
1215 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1216                                                const Stmt *S) {
1217   llvm::BasicBlock *SkipCountBB = nullptr;
1218   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1219     // When instrumenting for profiling, the fallthrough to certain
1220     // statements needs to skip over the instrumentation code so that we
1221     // get an accurate count.
1222     SkipCountBB = createBasicBlock("skipcount");
1223     EmitBranch(SkipCountBB);
1224   }
1225   EmitBlock(BB);
1226   uint64_t CurrentCount = getCurrentProfileCount();
1227   incrementProfileCounter(S);
1228   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1229   if (SkipCountBB)
1230     EmitBlock(SkipCountBB);
1231 }
1232 
1233 /// Tries to mark the given function nounwind based on the
1234 /// non-existence of any throwing calls within it.  We believe this is
1235 /// lightweight enough to do at -O0.
1236 static void TryMarkNoThrow(llvm::Function *F) {
1237   // LLVM treats 'nounwind' on a function as part of the type, so we
1238   // can't do this on functions that can be overwritten.
1239   if (F->isInterposable()) return;
1240 
1241   for (llvm::BasicBlock &BB : *F)
1242     for (llvm::Instruction &I : BB)
1243       if (I.mayThrow())
1244         return;
1245 
1246   F->setDoesNotThrow();
1247 }
1248 
1249 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1250                                                FunctionArgList &Args) {
1251   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1252   QualType ResTy = FD->getReturnType();
1253 
1254   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1255   if (MD && MD->isInstance()) {
1256     if (CGM.getCXXABI().HasThisReturn(GD))
1257       ResTy = MD->getThisType(getContext());
1258     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1259       ResTy = CGM.getContext().VoidPtrTy;
1260     CGM.getCXXABI().buildThisParam(*this, Args);
1261   }
1262 
1263   // The base version of an inheriting constructor whose constructed base is a
1264   // virtual base is not passed any arguments (because it doesn't actually call
1265   // the inherited constructor).
1266   bool PassedParams = true;
1267   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1268     if (auto Inherited = CD->getInheritedConstructor())
1269       PassedParams =
1270           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1271 
1272   if (PassedParams) {
1273     for (auto *Param : FD->parameters()) {
1274       Args.push_back(Param);
1275       if (!Param->hasAttr<PassObjectSizeAttr>())
1276         continue;
1277 
1278       auto *Implicit = ImplicitParamDecl::Create(
1279           getContext(), Param->getDeclContext(), Param->getLocation(),
1280           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1281       SizeArguments[Param] = Implicit;
1282       Args.push_back(Implicit);
1283     }
1284   }
1285 
1286   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1287     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1288 
1289   return ResTy;
1290 }
1291 
1292 static bool
1293 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1294                                              const ASTContext &Context) {
1295   QualType T = FD->getReturnType();
1296   // Avoid the optimization for functions that return a record type with a
1297   // trivial destructor or another trivially copyable type.
1298   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1299     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1300       return !ClassDecl->hasTrivialDestructor();
1301   }
1302   return !T.isTriviallyCopyableType(Context);
1303 }
1304 
1305 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1306                                    const CGFunctionInfo &FnInfo) {
1307   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1308   CurGD = GD;
1309 
1310   FunctionArgList Args;
1311   QualType ResTy = BuildFunctionArgList(GD, Args);
1312 
1313   // Check if we should generate debug info for this function.
1314   if (FD->hasAttr<NoDebugAttr>())
1315     DebugInfo = nullptr; // disable debug info indefinitely for this function
1316 
1317   // The function might not have a body if we're generating thunks for a
1318   // function declaration.
1319   SourceRange BodyRange;
1320   if (Stmt *Body = FD->getBody())
1321     BodyRange = Body->getSourceRange();
1322   else
1323     BodyRange = FD->getLocation();
1324   CurEHLocation = BodyRange.getEnd();
1325 
1326   // Use the location of the start of the function to determine where
1327   // the function definition is located. By default use the location
1328   // of the declaration as the location for the subprogram. A function
1329   // may lack a declaration in the source code if it is created by code
1330   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1331   SourceLocation Loc = FD->getLocation();
1332 
1333   // If this is a function specialization then use the pattern body
1334   // as the location for the function.
1335   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1336     if (SpecDecl->hasBody(SpecDecl))
1337       Loc = SpecDecl->getLocation();
1338 
1339   Stmt *Body = FD->getBody();
1340 
1341   // Initialize helper which will detect jumps which can cause invalid lifetime
1342   // markers.
1343   if (Body && ShouldEmitLifetimeMarkers)
1344     Bypasses.Init(Body);
1345 
1346   // Emit the standard function prologue.
1347   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1348 
1349   // Generate the body of the function.
1350   PGO.assignRegionCounters(GD, CurFn);
1351   if (isa<CXXDestructorDecl>(FD))
1352     EmitDestructorBody(Args);
1353   else if (isa<CXXConstructorDecl>(FD))
1354     EmitConstructorBody(Args);
1355   else if (getLangOpts().CUDA &&
1356            !getLangOpts().CUDAIsDevice &&
1357            FD->hasAttr<CUDAGlobalAttr>())
1358     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1359   else if (isa<CXXMethodDecl>(FD) &&
1360            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1361     // The lambda static invoker function is special, because it forwards or
1362     // clones the body of the function call operator (but is actually static).
1363     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1364   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1365              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1366               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1367     // Implicit copy-assignment gets the same special treatment as implicit
1368     // copy-constructors.
1369     emitImplicitAssignmentOperatorBody(Args);
1370   } else if (Body) {
1371     EmitFunctionBody(Args, Body);
1372   } else
1373     llvm_unreachable("no definition for emitted function");
1374 
1375   // C++11 [stmt.return]p2:
1376   //   Flowing off the end of a function [...] results in undefined behavior in
1377   //   a value-returning function.
1378   // C11 6.9.1p12:
1379   //   If the '}' that terminates a function is reached, and the value of the
1380   //   function call is used by the caller, the behavior is undefined.
1381   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1382       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1383     bool ShouldEmitUnreachable =
1384         CGM.getCodeGenOpts().StrictReturn ||
1385         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1386     if (SanOpts.has(SanitizerKind::Return)) {
1387       SanitizerScope SanScope(this);
1388       llvm::Value *IsFalse = Builder.getFalse();
1389       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1390                 SanitizerHandler::MissingReturn,
1391                 EmitCheckSourceLocation(FD->getLocation()), None);
1392     } else if (ShouldEmitUnreachable) {
1393       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1394         EmitTrapCall(llvm::Intrinsic::trap);
1395     }
1396     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1397       Builder.CreateUnreachable();
1398       Builder.ClearInsertionPoint();
1399     }
1400   }
1401 
1402   // Emit the standard function epilogue.
1403   FinishFunction(BodyRange.getEnd());
1404 
1405   // If we haven't marked the function nothrow through other means, do
1406   // a quick pass now to see if we can.
1407   if (!CurFn->doesNotThrow())
1408     TryMarkNoThrow(CurFn);
1409 }
1410 
1411 /// ContainsLabel - Return true if the statement contains a label in it.  If
1412 /// this statement is not executed normally, it not containing a label means
1413 /// that we can just remove the code.
1414 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1415   // Null statement, not a label!
1416   if (!S) return false;
1417 
1418   // If this is a label, we have to emit the code, consider something like:
1419   // if (0) {  ...  foo:  bar(); }  goto foo;
1420   //
1421   // TODO: If anyone cared, we could track __label__'s, since we know that you
1422   // can't jump to one from outside their declared region.
1423   if (isa<LabelStmt>(S))
1424     return true;
1425 
1426   // If this is a case/default statement, and we haven't seen a switch, we have
1427   // to emit the code.
1428   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1429     return true;
1430 
1431   // If this is a switch statement, we want to ignore cases below it.
1432   if (isa<SwitchStmt>(S))
1433     IgnoreCaseStmts = true;
1434 
1435   // Scan subexpressions for verboten labels.
1436   for (const Stmt *SubStmt : S->children())
1437     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1438       return true;
1439 
1440   return false;
1441 }
1442 
1443 /// containsBreak - Return true if the statement contains a break out of it.
1444 /// If the statement (recursively) contains a switch or loop with a break
1445 /// inside of it, this is fine.
1446 bool CodeGenFunction::containsBreak(const Stmt *S) {
1447   // Null statement, not a label!
1448   if (!S) return false;
1449 
1450   // If this is a switch or loop that defines its own break scope, then we can
1451   // include it and anything inside of it.
1452   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1453       isa<ForStmt>(S))
1454     return false;
1455 
1456   if (isa<BreakStmt>(S))
1457     return true;
1458 
1459   // Scan subexpressions for verboten breaks.
1460   for (const Stmt *SubStmt : S->children())
1461     if (containsBreak(SubStmt))
1462       return true;
1463 
1464   return false;
1465 }
1466 
1467 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1468   if (!S) return false;
1469 
1470   // Some statement kinds add a scope and thus never add a decl to the current
1471   // scope. Note, this list is longer than the list of statements that might
1472   // have an unscoped decl nested within them, but this way is conservatively
1473   // correct even if more statement kinds are added.
1474   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1475       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1476       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1477       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1478     return false;
1479 
1480   if (isa<DeclStmt>(S))
1481     return true;
1482 
1483   for (const Stmt *SubStmt : S->children())
1484     if (mightAddDeclToScope(SubStmt))
1485       return true;
1486 
1487   return false;
1488 }
1489 
1490 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1491 /// to a constant, or if it does but contains a label, return false.  If it
1492 /// constant folds return true and set the boolean result in Result.
1493 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1494                                                    bool &ResultBool,
1495                                                    bool AllowLabels) {
1496   llvm::APSInt ResultInt;
1497   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1498     return false;
1499 
1500   ResultBool = ResultInt.getBoolValue();
1501   return true;
1502 }
1503 
1504 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1505 /// to a constant, or if it does but contains a label, return false.  If it
1506 /// constant folds return true and set the folded value.
1507 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1508                                                    llvm::APSInt &ResultInt,
1509                                                    bool AllowLabels) {
1510   // FIXME: Rename and handle conversion of other evaluatable things
1511   // to bool.
1512   llvm::APSInt Int;
1513   if (!Cond->EvaluateAsInt(Int, getContext()))
1514     return false;  // Not foldable, not integer or not fully evaluatable.
1515 
1516   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1517     return false;  // Contains a label.
1518 
1519   ResultInt = Int;
1520   return true;
1521 }
1522 
1523 
1524 
1525 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1526 /// statement) to the specified blocks.  Based on the condition, this might try
1527 /// to simplify the codegen of the conditional based on the branch.
1528 ///
1529 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1530                                            llvm::BasicBlock *TrueBlock,
1531                                            llvm::BasicBlock *FalseBlock,
1532                                            uint64_t TrueCount) {
1533   Cond = Cond->IgnoreParens();
1534 
1535   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1536 
1537     // Handle X && Y in a condition.
1538     if (CondBOp->getOpcode() == BO_LAnd) {
1539       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1540       // folded if the case was simple enough.
1541       bool ConstantBool = false;
1542       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1543           ConstantBool) {
1544         // br(1 && X) -> br(X).
1545         incrementProfileCounter(CondBOp);
1546         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1547                                     TrueCount);
1548       }
1549 
1550       // If we have "X && 1", simplify the code to use an uncond branch.
1551       // "X && 0" would have been constant folded to 0.
1552       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1553           ConstantBool) {
1554         // br(X && 1) -> br(X).
1555         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1556                                     TrueCount);
1557       }
1558 
1559       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1560       // want to jump to the FalseBlock.
1561       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1562       // The counter tells us how often we evaluate RHS, and all of TrueCount
1563       // can be propagated to that branch.
1564       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1565 
1566       ConditionalEvaluation eval(*this);
1567       {
1568         ApplyDebugLocation DL(*this, Cond);
1569         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1570         EmitBlock(LHSTrue);
1571       }
1572 
1573       incrementProfileCounter(CondBOp);
1574       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1575 
1576       // Any temporaries created here are conditional.
1577       eval.begin(*this);
1578       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1579       eval.end(*this);
1580 
1581       return;
1582     }
1583 
1584     if (CondBOp->getOpcode() == BO_LOr) {
1585       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1586       // folded if the case was simple enough.
1587       bool ConstantBool = false;
1588       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1589           !ConstantBool) {
1590         // br(0 || X) -> br(X).
1591         incrementProfileCounter(CondBOp);
1592         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1593                                     TrueCount);
1594       }
1595 
1596       // If we have "X || 0", simplify the code to use an uncond branch.
1597       // "X || 1" would have been constant folded to 1.
1598       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1599           !ConstantBool) {
1600         // br(X || 0) -> br(X).
1601         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1602                                     TrueCount);
1603       }
1604 
1605       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1606       // want to jump to the TrueBlock.
1607       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1608       // We have the count for entry to the RHS and for the whole expression
1609       // being true, so we can divy up True count between the short circuit and
1610       // the RHS.
1611       uint64_t LHSCount =
1612           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1613       uint64_t RHSCount = TrueCount - LHSCount;
1614 
1615       ConditionalEvaluation eval(*this);
1616       {
1617         ApplyDebugLocation DL(*this, Cond);
1618         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1619         EmitBlock(LHSFalse);
1620       }
1621 
1622       incrementProfileCounter(CondBOp);
1623       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1624 
1625       // Any temporaries created here are conditional.
1626       eval.begin(*this);
1627       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1628 
1629       eval.end(*this);
1630 
1631       return;
1632     }
1633   }
1634 
1635   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1636     // br(!x, t, f) -> br(x, f, t)
1637     if (CondUOp->getOpcode() == UO_LNot) {
1638       // Negate the count.
1639       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1640       // Negate the condition and swap the destination blocks.
1641       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1642                                   FalseCount);
1643     }
1644   }
1645 
1646   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1647     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1648     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1649     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1650 
1651     ConditionalEvaluation cond(*this);
1652     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1653                          getProfileCount(CondOp));
1654 
1655     // When computing PGO branch weights, we only know the overall count for
1656     // the true block. This code is essentially doing tail duplication of the
1657     // naive code-gen, introducing new edges for which counts are not
1658     // available. Divide the counts proportionally between the LHS and RHS of
1659     // the conditional operator.
1660     uint64_t LHSScaledTrueCount = 0;
1661     if (TrueCount) {
1662       double LHSRatio =
1663           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1664       LHSScaledTrueCount = TrueCount * LHSRatio;
1665     }
1666 
1667     cond.begin(*this);
1668     EmitBlock(LHSBlock);
1669     incrementProfileCounter(CondOp);
1670     {
1671       ApplyDebugLocation DL(*this, Cond);
1672       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1673                            LHSScaledTrueCount);
1674     }
1675     cond.end(*this);
1676 
1677     cond.begin(*this);
1678     EmitBlock(RHSBlock);
1679     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1680                          TrueCount - LHSScaledTrueCount);
1681     cond.end(*this);
1682 
1683     return;
1684   }
1685 
1686   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1687     // Conditional operator handling can give us a throw expression as a
1688     // condition for a case like:
1689     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1690     // Fold this to:
1691     //   br(c, throw x, br(y, t, f))
1692     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1693     return;
1694   }
1695 
1696   // If the branch has a condition wrapped by __builtin_unpredictable,
1697   // create metadata that specifies that the branch is unpredictable.
1698   // Don't bother if not optimizing because that metadata would not be used.
1699   llvm::MDNode *Unpredictable = nullptr;
1700   auto *Call = dyn_cast<CallExpr>(Cond);
1701   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1702     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1703     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1704       llvm::MDBuilder MDHelper(getLLVMContext());
1705       Unpredictable = MDHelper.createUnpredictable();
1706     }
1707   }
1708 
1709   // Create branch weights based on the number of times we get here and the
1710   // number of times the condition should be true.
1711   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1712   llvm::MDNode *Weights =
1713       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1714 
1715   // Emit the code with the fully general case.
1716   llvm::Value *CondV;
1717   {
1718     ApplyDebugLocation DL(*this, Cond);
1719     CondV = EvaluateExprAsBool(Cond);
1720   }
1721   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1722 }
1723 
1724 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1725 /// specified stmt yet.
1726 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1727   CGM.ErrorUnsupported(S, Type);
1728 }
1729 
1730 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1731 /// variable-length array whose elements have a non-zero bit-pattern.
1732 ///
1733 /// \param baseType the inner-most element type of the array
1734 /// \param src - a char* pointing to the bit-pattern for a single
1735 /// base element of the array
1736 /// \param sizeInChars - the total size of the VLA, in chars
1737 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1738                                Address dest, Address src,
1739                                llvm::Value *sizeInChars) {
1740   CGBuilderTy &Builder = CGF.Builder;
1741 
1742   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1743   llvm::Value *baseSizeInChars
1744     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1745 
1746   Address begin =
1747     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1748   llvm::Value *end =
1749     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1750 
1751   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1752   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1753   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1754 
1755   // Make a loop over the VLA.  C99 guarantees that the VLA element
1756   // count must be nonzero.
1757   CGF.EmitBlock(loopBB);
1758 
1759   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1760   cur->addIncoming(begin.getPointer(), originBB);
1761 
1762   CharUnits curAlign =
1763     dest.getAlignment().alignmentOfArrayElement(baseSize);
1764 
1765   // memcpy the individual element bit-pattern.
1766   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1767                        /*volatile*/ false);
1768 
1769   // Go to the next element.
1770   llvm::Value *next =
1771     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1772 
1773   // Leave if that's the end of the VLA.
1774   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1775   Builder.CreateCondBr(done, contBB, loopBB);
1776   cur->addIncoming(next, loopBB);
1777 
1778   CGF.EmitBlock(contBB);
1779 }
1780 
1781 void
1782 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1783   // Ignore empty classes in C++.
1784   if (getLangOpts().CPlusPlus) {
1785     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1786       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1787         return;
1788     }
1789   }
1790 
1791   // Cast the dest ptr to the appropriate i8 pointer type.
1792   if (DestPtr.getElementType() != Int8Ty)
1793     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1794 
1795   // Get size and alignment info for this aggregate.
1796   CharUnits size = getContext().getTypeSizeInChars(Ty);
1797 
1798   llvm::Value *SizeVal;
1799   const VariableArrayType *vla;
1800 
1801   // Don't bother emitting a zero-byte memset.
1802   if (size.isZero()) {
1803     // But note that getTypeInfo returns 0 for a VLA.
1804     if (const VariableArrayType *vlaType =
1805           dyn_cast_or_null<VariableArrayType>(
1806                                           getContext().getAsArrayType(Ty))) {
1807       auto VlaSize = getVLASize(vlaType);
1808       SizeVal = VlaSize.NumElts;
1809       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1810       if (!eltSize.isOne())
1811         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1812       vla = vlaType;
1813     } else {
1814       return;
1815     }
1816   } else {
1817     SizeVal = CGM.getSize(size);
1818     vla = nullptr;
1819   }
1820 
1821   // If the type contains a pointer to data member we can't memset it to zero.
1822   // Instead, create a null constant and copy it to the destination.
1823   // TODO: there are other patterns besides zero that we can usefully memset,
1824   // like -1, which happens to be the pattern used by member-pointers.
1825   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1826     // For a VLA, emit a single element, then splat that over the VLA.
1827     if (vla) Ty = getContext().getBaseElementType(vla);
1828 
1829     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1830 
1831     llvm::GlobalVariable *NullVariable =
1832       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1833                                /*isConstant=*/true,
1834                                llvm::GlobalVariable::PrivateLinkage,
1835                                NullConstant, Twine());
1836     CharUnits NullAlign = DestPtr.getAlignment();
1837     NullVariable->setAlignment(NullAlign.getQuantity());
1838     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1839                    NullAlign);
1840 
1841     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1842 
1843     // Get and call the appropriate llvm.memcpy overload.
1844     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1845     return;
1846   }
1847 
1848   // Otherwise, just memset the whole thing to zero.  This is legal
1849   // because in LLVM, all default initializers (other than the ones we just
1850   // handled above) are guaranteed to have a bit pattern of all zeros.
1851   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1852 }
1853 
1854 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1855   // Make sure that there is a block for the indirect goto.
1856   if (!IndirectBranch)
1857     GetIndirectGotoBlock();
1858 
1859   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1860 
1861   // Make sure the indirect branch includes all of the address-taken blocks.
1862   IndirectBranch->addDestination(BB);
1863   return llvm::BlockAddress::get(CurFn, BB);
1864 }
1865 
1866 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1867   // If we already made the indirect branch for indirect goto, return its block.
1868   if (IndirectBranch) return IndirectBranch->getParent();
1869 
1870   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1871 
1872   // Create the PHI node that indirect gotos will add entries to.
1873   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1874                                               "indirect.goto.dest");
1875 
1876   // Create the indirect branch instruction.
1877   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1878   return IndirectBranch->getParent();
1879 }
1880 
1881 /// Computes the length of an array in elements, as well as the base
1882 /// element type and a properly-typed first element pointer.
1883 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1884                                               QualType &baseType,
1885                                               Address &addr) {
1886   const ArrayType *arrayType = origArrayType;
1887 
1888   // If it's a VLA, we have to load the stored size.  Note that
1889   // this is the size of the VLA in bytes, not its size in elements.
1890   llvm::Value *numVLAElements = nullptr;
1891   if (isa<VariableArrayType>(arrayType)) {
1892     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1893 
1894     // Walk into all VLAs.  This doesn't require changes to addr,
1895     // which has type T* where T is the first non-VLA element type.
1896     do {
1897       QualType elementType = arrayType->getElementType();
1898       arrayType = getContext().getAsArrayType(elementType);
1899 
1900       // If we only have VLA components, 'addr' requires no adjustment.
1901       if (!arrayType) {
1902         baseType = elementType;
1903         return numVLAElements;
1904       }
1905     } while (isa<VariableArrayType>(arrayType));
1906 
1907     // We get out here only if we find a constant array type
1908     // inside the VLA.
1909   }
1910 
1911   // We have some number of constant-length arrays, so addr should
1912   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1913   // down to the first element of addr.
1914   SmallVector<llvm::Value*, 8> gepIndices;
1915 
1916   // GEP down to the array type.
1917   llvm::ConstantInt *zero = Builder.getInt32(0);
1918   gepIndices.push_back(zero);
1919 
1920   uint64_t countFromCLAs = 1;
1921   QualType eltType;
1922 
1923   llvm::ArrayType *llvmArrayType =
1924     dyn_cast<llvm::ArrayType>(addr.getElementType());
1925   while (llvmArrayType) {
1926     assert(isa<ConstantArrayType>(arrayType));
1927     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1928              == llvmArrayType->getNumElements());
1929 
1930     gepIndices.push_back(zero);
1931     countFromCLAs *= llvmArrayType->getNumElements();
1932     eltType = arrayType->getElementType();
1933 
1934     llvmArrayType =
1935       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1936     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1937     assert((!llvmArrayType || arrayType) &&
1938            "LLVM and Clang types are out-of-synch");
1939   }
1940 
1941   if (arrayType) {
1942     // From this point onwards, the Clang array type has been emitted
1943     // as some other type (probably a packed struct). Compute the array
1944     // size, and just emit the 'begin' expression as a bitcast.
1945     while (arrayType) {
1946       countFromCLAs *=
1947           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1948       eltType = arrayType->getElementType();
1949       arrayType = getContext().getAsArrayType(eltType);
1950     }
1951 
1952     llvm::Type *baseType = ConvertType(eltType);
1953     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1954   } else {
1955     // Create the actual GEP.
1956     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1957                                              gepIndices, "array.begin"),
1958                    addr.getAlignment());
1959   }
1960 
1961   baseType = eltType;
1962 
1963   llvm::Value *numElements
1964     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1965 
1966   // If we had any VLA dimensions, factor them in.
1967   if (numVLAElements)
1968     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1969 
1970   return numElements;
1971 }
1972 
1973 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1974   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1975   assert(vla && "type was not a variable array type!");
1976   return getVLASize(vla);
1977 }
1978 
1979 CodeGenFunction::VlaSizePair
1980 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1981   // The number of elements so far; always size_t.
1982   llvm::Value *numElements = nullptr;
1983 
1984   QualType elementType;
1985   do {
1986     elementType = type->getElementType();
1987     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1988     assert(vlaSize && "no size for VLA!");
1989     assert(vlaSize->getType() == SizeTy);
1990 
1991     if (!numElements) {
1992       numElements = vlaSize;
1993     } else {
1994       // It's undefined behavior if this wraps around, so mark it that way.
1995       // FIXME: Teach -fsanitize=undefined to trap this.
1996       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1997     }
1998   } while ((type = getContext().getAsVariableArrayType(elementType)));
1999 
2000   return { numElements, elementType };
2001 }
2002 
2003 CodeGenFunction::VlaSizePair
2004 CodeGenFunction::getVLAElements1D(QualType type) {
2005   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2006   assert(vla && "type was not a variable array type!");
2007   return getVLAElements1D(vla);
2008 }
2009 
2010 CodeGenFunction::VlaSizePair
2011 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2012   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2013   assert(VlaSize && "no size for VLA!");
2014   assert(VlaSize->getType() == SizeTy);
2015   return { VlaSize, Vla->getElementType() };
2016 }
2017 
2018 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2019   assert(type->isVariablyModifiedType() &&
2020          "Must pass variably modified type to EmitVLASizes!");
2021 
2022   EnsureInsertPoint();
2023 
2024   // We're going to walk down into the type and look for VLA
2025   // expressions.
2026   do {
2027     assert(type->isVariablyModifiedType());
2028 
2029     const Type *ty = type.getTypePtr();
2030     switch (ty->getTypeClass()) {
2031 
2032 #define TYPE(Class, Base)
2033 #define ABSTRACT_TYPE(Class, Base)
2034 #define NON_CANONICAL_TYPE(Class, Base)
2035 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2036 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2037 #include "clang/AST/TypeNodes.def"
2038       llvm_unreachable("unexpected dependent type!");
2039 
2040     // These types are never variably-modified.
2041     case Type::Builtin:
2042     case Type::Complex:
2043     case Type::Vector:
2044     case Type::ExtVector:
2045     case Type::Record:
2046     case Type::Enum:
2047     case Type::Elaborated:
2048     case Type::TemplateSpecialization:
2049     case Type::ObjCTypeParam:
2050     case Type::ObjCObject:
2051     case Type::ObjCInterface:
2052     case Type::ObjCObjectPointer:
2053       llvm_unreachable("type class is never variably-modified!");
2054 
2055     case Type::Adjusted:
2056       type = cast<AdjustedType>(ty)->getAdjustedType();
2057       break;
2058 
2059     case Type::Decayed:
2060       type = cast<DecayedType>(ty)->getPointeeType();
2061       break;
2062 
2063     case Type::Pointer:
2064       type = cast<PointerType>(ty)->getPointeeType();
2065       break;
2066 
2067     case Type::BlockPointer:
2068       type = cast<BlockPointerType>(ty)->getPointeeType();
2069       break;
2070 
2071     case Type::LValueReference:
2072     case Type::RValueReference:
2073       type = cast<ReferenceType>(ty)->getPointeeType();
2074       break;
2075 
2076     case Type::MemberPointer:
2077       type = cast<MemberPointerType>(ty)->getPointeeType();
2078       break;
2079 
2080     case Type::ConstantArray:
2081     case Type::IncompleteArray:
2082       // Losing element qualification here is fine.
2083       type = cast<ArrayType>(ty)->getElementType();
2084       break;
2085 
2086     case Type::VariableArray: {
2087       // Losing element qualification here is fine.
2088       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2089 
2090       // Unknown size indication requires no size computation.
2091       // Otherwise, evaluate and record it.
2092       if (const Expr *size = vat->getSizeExpr()) {
2093         // It's possible that we might have emitted this already,
2094         // e.g. with a typedef and a pointer to it.
2095         llvm::Value *&entry = VLASizeMap[size];
2096         if (!entry) {
2097           llvm::Value *Size = EmitScalarExpr(size);
2098 
2099           // C11 6.7.6.2p5:
2100           //   If the size is an expression that is not an integer constant
2101           //   expression [...] each time it is evaluated it shall have a value
2102           //   greater than zero.
2103           if (SanOpts.has(SanitizerKind::VLABound) &&
2104               size->getType()->isSignedIntegerType()) {
2105             SanitizerScope SanScope(this);
2106             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2107             llvm::Constant *StaticArgs[] = {
2108               EmitCheckSourceLocation(size->getLocStart()),
2109               EmitCheckTypeDescriptor(size->getType())
2110             };
2111             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2112                                      SanitizerKind::VLABound),
2113                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2114           }
2115 
2116           // Always zexting here would be wrong if it weren't
2117           // undefined behavior to have a negative bound.
2118           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2119         }
2120       }
2121       type = vat->getElementType();
2122       break;
2123     }
2124 
2125     case Type::FunctionProto:
2126     case Type::FunctionNoProto:
2127       type = cast<FunctionType>(ty)->getReturnType();
2128       break;
2129 
2130     case Type::Paren:
2131     case Type::TypeOf:
2132     case Type::UnaryTransform:
2133     case Type::Attributed:
2134     case Type::SubstTemplateTypeParm:
2135     case Type::PackExpansion:
2136       // Keep walking after single level desugaring.
2137       type = type.getSingleStepDesugaredType(getContext());
2138       break;
2139 
2140     case Type::Typedef:
2141     case Type::Decltype:
2142     case Type::Auto:
2143     case Type::DeducedTemplateSpecialization:
2144       // Stop walking: nothing to do.
2145       return;
2146 
2147     case Type::TypeOfExpr:
2148       // Stop walking: emit typeof expression.
2149       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2150       return;
2151 
2152     case Type::Atomic:
2153       type = cast<AtomicType>(ty)->getValueType();
2154       break;
2155 
2156     case Type::Pipe:
2157       type = cast<PipeType>(ty)->getElementType();
2158       break;
2159     }
2160   } while (type->isVariablyModifiedType());
2161 }
2162 
2163 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2164   if (getContext().getBuiltinVaListType()->isArrayType())
2165     return EmitPointerWithAlignment(E);
2166   return EmitLValue(E).getAddress();
2167 }
2168 
2169 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2170   return EmitLValue(E).getAddress();
2171 }
2172 
2173 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2174                                               const APValue &Init) {
2175   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2176   if (CGDebugInfo *Dbg = getDebugInfo())
2177     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2178       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2179 }
2180 
2181 CodeGenFunction::PeepholeProtection
2182 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2183   // At the moment, the only aggressive peephole we do in IR gen
2184   // is trunc(zext) folding, but if we add more, we can easily
2185   // extend this protection.
2186 
2187   if (!rvalue.isScalar()) return PeepholeProtection();
2188   llvm::Value *value = rvalue.getScalarVal();
2189   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2190 
2191   // Just make an extra bitcast.
2192   assert(HaveInsertPoint());
2193   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2194                                                   Builder.GetInsertBlock());
2195 
2196   PeepholeProtection protection;
2197   protection.Inst = inst;
2198   return protection;
2199 }
2200 
2201 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2202   if (!protection.Inst) return;
2203 
2204   // In theory, we could try to duplicate the peepholes now, but whatever.
2205   protection.Inst->eraseFromParent();
2206 }
2207 
2208 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2209                                                  llvm::Value *AnnotatedVal,
2210                                                  StringRef AnnotationStr,
2211                                                  SourceLocation Location) {
2212   llvm::Value *Args[4] = {
2213     AnnotatedVal,
2214     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2215     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2216     CGM.EmitAnnotationLineNo(Location)
2217   };
2218   return Builder.CreateCall(AnnotationFn, Args);
2219 }
2220 
2221 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2222   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2223   // FIXME We create a new bitcast for every annotation because that's what
2224   // llvm-gcc was doing.
2225   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2226     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2227                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2228                        I->getAnnotation(), D->getLocation());
2229 }
2230 
2231 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2232                                               Address Addr) {
2233   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2234   llvm::Value *V = Addr.getPointer();
2235   llvm::Type *VTy = V->getType();
2236   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2237                                     CGM.Int8PtrTy);
2238 
2239   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2240     // FIXME Always emit the cast inst so we can differentiate between
2241     // annotation on the first field of a struct and annotation on the struct
2242     // itself.
2243     if (VTy != CGM.Int8PtrTy)
2244       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2245     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2246     V = Builder.CreateBitCast(V, VTy);
2247   }
2248 
2249   return Address(V, Addr.getAlignment());
2250 }
2251 
2252 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2253 
2254 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2255     : CGF(CGF) {
2256   assert(!CGF->IsSanitizerScope);
2257   CGF->IsSanitizerScope = true;
2258 }
2259 
2260 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2261   CGF->IsSanitizerScope = false;
2262 }
2263 
2264 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2265                                    const llvm::Twine &Name,
2266                                    llvm::BasicBlock *BB,
2267                                    llvm::BasicBlock::iterator InsertPt) const {
2268   LoopStack.InsertHelper(I);
2269   if (IsSanitizerScope)
2270     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2271 }
2272 
2273 void CGBuilderInserter::InsertHelper(
2274     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2275     llvm::BasicBlock::iterator InsertPt) const {
2276   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2277   if (CGF)
2278     CGF->InsertHelper(I, Name, BB, InsertPt);
2279 }
2280 
2281 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2282                                 CodeGenModule &CGM, const FunctionDecl *FD,
2283                                 std::string &FirstMissing) {
2284   // If there aren't any required features listed then go ahead and return.
2285   if (ReqFeatures.empty())
2286     return false;
2287 
2288   // Now build up the set of caller features and verify that all the required
2289   // features are there.
2290   llvm::StringMap<bool> CallerFeatureMap;
2291   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2292 
2293   // If we have at least one of the features in the feature list return
2294   // true, otherwise return false.
2295   return std::all_of(
2296       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2297         SmallVector<StringRef, 1> OrFeatures;
2298         Feature.split(OrFeatures, '|');
2299         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2300                            [&](StringRef Feature) {
2301                              if (!CallerFeatureMap.lookup(Feature)) {
2302                                FirstMissing = Feature.str();
2303                                return false;
2304                              }
2305                              return true;
2306                            });
2307       });
2308 }
2309 
2310 // Emits an error if we don't have a valid set of target features for the
2311 // called function.
2312 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2313                                           const FunctionDecl *TargetDecl) {
2314   // Early exit if this is an indirect call.
2315   if (!TargetDecl)
2316     return;
2317 
2318   // Get the current enclosing function if it exists. If it doesn't
2319   // we can't check the target features anyhow.
2320   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2321   if (!FD)
2322     return;
2323 
2324   // Grab the required features for the call. For a builtin this is listed in
2325   // the td file with the default cpu, for an always_inline function this is any
2326   // listed cpu and any listed features.
2327   unsigned BuiltinID = TargetDecl->getBuiltinID();
2328   std::string MissingFeature;
2329   if (BuiltinID) {
2330     SmallVector<StringRef, 1> ReqFeatures;
2331     const char *FeatureList =
2332         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2333     // Return if the builtin doesn't have any required features.
2334     if (!FeatureList || StringRef(FeatureList) == "")
2335       return;
2336     StringRef(FeatureList).split(ReqFeatures, ',');
2337     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2338       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2339           << TargetDecl->getDeclName()
2340           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2341 
2342   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2343     // Get the required features for the callee.
2344 
2345     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2346     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2347 
2348     SmallVector<StringRef, 1> ReqFeatures;
2349     llvm::StringMap<bool> CalleeFeatureMap;
2350     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2351 
2352     for (const auto &F : ParsedAttr.Features) {
2353       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2354         ReqFeatures.push_back(StringRef(F).substr(1));
2355     }
2356 
2357     for (const auto &F : CalleeFeatureMap) {
2358       // Only positive features are "required".
2359       if (F.getValue())
2360         ReqFeatures.push_back(F.getKey());
2361     }
2362     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2363       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2364           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2365   }
2366 }
2367 
2368 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2369   if (!CGM.getCodeGenOpts().SanitizeStats)
2370     return;
2371 
2372   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2373   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2374   CGM.getSanStats().create(IRB, SSK);
2375 }
2376 
2377 llvm::Value *
2378 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2379   llvm::Value *TrueCondition = nullptr;
2380   if (!RO.ParsedAttribute.Architecture.empty())
2381     TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture);
2382 
2383   if (!RO.ParsedAttribute.Features.empty()) {
2384     SmallVector<StringRef, 8> FeatureList;
2385     llvm::for_each(RO.ParsedAttribute.Features,
2386                    [&FeatureList](const std::string &Feature) {
2387                      FeatureList.push_back(StringRef{Feature}.substr(1));
2388                    });
2389     llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList);
2390     TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp)
2391                                   : FeatureCmp;
2392   }
2393   return TrueCondition;
2394 }
2395 
2396 void CodeGenFunction::EmitMultiVersionResolver(
2397     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2398   assert((getContext().getTargetInfo().getTriple().getArch() ==
2399               llvm::Triple::x86 ||
2400           getContext().getTargetInfo().getTriple().getArch() ==
2401               llvm::Triple::x86_64) &&
2402          "Only implemented for x86 targets");
2403 
2404   // Main function's basic block.
2405   llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver);
2406   Builder.SetInsertPoint(CurBlock);
2407   EmitX86CpuInit();
2408 
2409   llvm::Function *DefaultFunc = nullptr;
2410   for (const MultiVersionResolverOption &RO : Options) {
2411     Builder.SetInsertPoint(CurBlock);
2412     llvm::Value *TrueCondition = FormResolverCondition(RO);
2413 
2414     if (!TrueCondition) {
2415       DefaultFunc = RO.Function;
2416     } else {
2417       llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver);
2418       llvm::IRBuilder<> RetBuilder(RetBlock);
2419       RetBuilder.CreateRet(RO.Function);
2420       CurBlock = createBasicBlock("ro_else", Resolver);
2421       Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock);
2422     }
2423   }
2424 
2425   assert(DefaultFunc && "No default version?");
2426   // Emit return from the 'else-ist' block.
2427   Builder.SetInsertPoint(CurBlock);
2428   Builder.CreateRet(DefaultFunc);
2429 }
2430 
2431 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2432   if (CGDebugInfo *DI = getDebugInfo())
2433     return DI->SourceLocToDebugLoc(Location);
2434 
2435   return llvm::DebugLoc();
2436 }
2437