1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(Address::invalid()), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), LargestVectorWidth(0), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 for (const auto &FuncletAndParent : TerminateFunclets) 423 EmitIfUsed(*this, FuncletAndParent.second); 424 425 if (CGM.getCodeGenOpts().EmitDeclMetadata) 426 EmitDeclMetadata(); 427 428 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 429 I = DeferredReplacements.begin(), 430 E = DeferredReplacements.end(); 431 I != E; ++I) { 432 I->first->replaceAllUsesWith(I->second); 433 I->first->eraseFromParent(); 434 } 435 436 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 437 // PHIs if the current function is a coroutine. We don't do it for all 438 // functions as it may result in slight increase in numbers of instructions 439 // if compiled with no optimizations. We do it for coroutine as the lifetime 440 // of CleanupDestSlot alloca make correct coroutine frame building very 441 // difficult. 442 if (NormalCleanupDest.isValid() && isCoroutine()) { 443 llvm::DominatorTree DT(*CurFn); 444 llvm::PromoteMemToReg( 445 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 446 NormalCleanupDest = Address::invalid(); 447 } 448 449 // Add the required-vector-width attribute. 450 if (LargestVectorWidth != 0) 451 CurFn->addFnAttr("min-legal-vector-width", 452 llvm::utostr(LargestVectorWidth)); 453 } 454 455 /// ShouldInstrumentFunction - Return true if the current function should be 456 /// instrumented with __cyg_profile_func_* calls 457 bool CodeGenFunction::ShouldInstrumentFunction() { 458 if (!CGM.getCodeGenOpts().InstrumentFunctions && 459 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 460 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 461 return false; 462 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 463 return false; 464 return true; 465 } 466 467 /// ShouldXRayInstrument - Return true if the current function should be 468 /// instrumented with XRay nop sleds. 469 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 470 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 471 } 472 473 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 474 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 475 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 476 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 477 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 478 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 479 XRayInstrKind::Custom); 480 } 481 482 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 483 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 484 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 485 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 486 XRayInstrKind::Typed); 487 } 488 489 llvm::Constant * 490 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 491 llvm::Constant *Addr) { 492 // Addresses stored in prologue data can't require run-time fixups and must 493 // be PC-relative. Run-time fixups are undesirable because they necessitate 494 // writable text segments, which are unsafe. And absolute addresses are 495 // undesirable because they break PIE mode. 496 497 // Add a layer of indirection through a private global. Taking its address 498 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 499 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 500 /*isConstant=*/true, 501 llvm::GlobalValue::PrivateLinkage, Addr); 502 503 // Create a PC-relative address. 504 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 505 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 506 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 507 return (IntPtrTy == Int32Ty) 508 ? PCRelAsInt 509 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 510 } 511 512 llvm::Value * 513 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 514 llvm::Value *EncodedAddr) { 515 // Reconstruct the address of the global. 516 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 517 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 518 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 519 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 520 521 // Load the original pointer through the global. 522 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 523 "decoded_addr"); 524 } 525 526 static void removeImageAccessQualifier(std::string& TyName) { 527 std::string ReadOnlyQual("__read_only"); 528 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 529 if (ReadOnlyPos != std::string::npos) 530 // "+ 1" for the space after access qualifier. 531 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 532 else { 533 std::string WriteOnlyQual("__write_only"); 534 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 535 if (WriteOnlyPos != std::string::npos) 536 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 537 else { 538 std::string ReadWriteQual("__read_write"); 539 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 540 if (ReadWritePos != std::string::npos) 541 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 542 } 543 } 544 } 545 546 // Returns the address space id that should be produced to the 547 // kernel_arg_addr_space metadata. This is always fixed to the ids 548 // as specified in the SPIR 2.0 specification in order to differentiate 549 // for example in clGetKernelArgInfo() implementation between the address 550 // spaces with targets without unique mapping to the OpenCL address spaces 551 // (basically all single AS CPUs). 552 static unsigned ArgInfoAddressSpace(LangAS AS) { 553 switch (AS) { 554 case LangAS::opencl_global: return 1; 555 case LangAS::opencl_constant: return 2; 556 case LangAS::opencl_local: return 3; 557 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 558 default: 559 return 0; // Assume private. 560 } 561 } 562 563 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 564 // information in the program executable. The argument information stored 565 // includes the argument name, its type, the address and access qualifiers used. 566 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 567 CodeGenModule &CGM, llvm::LLVMContext &Context, 568 CGBuilderTy &Builder, ASTContext &ASTCtx) { 569 // Create MDNodes that represent the kernel arg metadata. 570 // Each MDNode is a list in the form of "key", N number of values which is 571 // the same number of values as their are kernel arguments. 572 573 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 574 575 // MDNode for the kernel argument address space qualifiers. 576 SmallVector<llvm::Metadata *, 8> addressQuals; 577 578 // MDNode for the kernel argument access qualifiers (images only). 579 SmallVector<llvm::Metadata *, 8> accessQuals; 580 581 // MDNode for the kernel argument type names. 582 SmallVector<llvm::Metadata *, 8> argTypeNames; 583 584 // MDNode for the kernel argument base type names. 585 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 586 587 // MDNode for the kernel argument type qualifiers. 588 SmallVector<llvm::Metadata *, 8> argTypeQuals; 589 590 // MDNode for the kernel argument names. 591 SmallVector<llvm::Metadata *, 8> argNames; 592 593 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 594 const ParmVarDecl *parm = FD->getParamDecl(i); 595 QualType ty = parm->getType(); 596 std::string typeQuals; 597 598 if (ty->isPointerType()) { 599 QualType pointeeTy = ty->getPointeeType(); 600 601 // Get address qualifier. 602 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 603 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 604 605 // Get argument type name. 606 std::string typeName = 607 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 608 609 // Turn "unsigned type" to "utype" 610 std::string::size_type pos = typeName.find("unsigned"); 611 if (pointeeTy.isCanonical() && pos != std::string::npos) 612 typeName.erase(pos+1, 8); 613 614 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 615 616 std::string baseTypeName = 617 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 618 Policy) + 619 "*"; 620 621 // Turn "unsigned type" to "utype" 622 pos = baseTypeName.find("unsigned"); 623 if (pos != std::string::npos) 624 baseTypeName.erase(pos+1, 8); 625 626 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 627 628 // Get argument type qualifiers: 629 if (ty.isRestrictQualified()) 630 typeQuals = "restrict"; 631 if (pointeeTy.isConstQualified() || 632 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 633 typeQuals += typeQuals.empty() ? "const" : " const"; 634 if (pointeeTy.isVolatileQualified()) 635 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 636 } else { 637 uint32_t AddrSpc = 0; 638 bool isPipe = ty->isPipeType(); 639 if (ty->isImageType() || isPipe) 640 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 641 642 addressQuals.push_back( 643 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 644 645 // Get argument type name. 646 std::string typeName; 647 if (isPipe) 648 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 649 .getAsString(Policy); 650 else 651 typeName = ty.getUnqualifiedType().getAsString(Policy); 652 653 // Turn "unsigned type" to "utype" 654 std::string::size_type pos = typeName.find("unsigned"); 655 if (ty.isCanonical() && pos != std::string::npos) 656 typeName.erase(pos+1, 8); 657 658 std::string baseTypeName; 659 if (isPipe) 660 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 661 ->getElementType().getCanonicalType() 662 .getAsString(Policy); 663 else 664 baseTypeName = 665 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 666 667 // Remove access qualifiers on images 668 // (as they are inseparable from type in clang implementation, 669 // but OpenCL spec provides a special query to get access qualifier 670 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 671 if (ty->isImageType()) { 672 removeImageAccessQualifier(typeName); 673 removeImageAccessQualifier(baseTypeName); 674 } 675 676 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 677 678 // Turn "unsigned type" to "utype" 679 pos = baseTypeName.find("unsigned"); 680 if (pos != std::string::npos) 681 baseTypeName.erase(pos+1, 8); 682 683 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 684 685 if (isPipe) 686 typeQuals = "pipe"; 687 } 688 689 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 690 691 // Get image and pipe access qualifier: 692 if (ty->isImageType()|| ty->isPipeType()) { 693 const Decl *PDecl = parm; 694 if (auto *TD = dyn_cast<TypedefType>(ty)) 695 PDecl = TD->getDecl(); 696 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 697 if (A && A->isWriteOnly()) 698 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 699 else if (A && A->isReadWrite()) 700 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 701 else 702 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 703 } else 704 accessQuals.push_back(llvm::MDString::get(Context, "none")); 705 706 // Get argument name. 707 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 708 } 709 710 Fn->setMetadata("kernel_arg_addr_space", 711 llvm::MDNode::get(Context, addressQuals)); 712 Fn->setMetadata("kernel_arg_access_qual", 713 llvm::MDNode::get(Context, accessQuals)); 714 Fn->setMetadata("kernel_arg_type", 715 llvm::MDNode::get(Context, argTypeNames)); 716 Fn->setMetadata("kernel_arg_base_type", 717 llvm::MDNode::get(Context, argBaseTypeNames)); 718 Fn->setMetadata("kernel_arg_type_qual", 719 llvm::MDNode::get(Context, argTypeQuals)); 720 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 721 Fn->setMetadata("kernel_arg_name", 722 llvm::MDNode::get(Context, argNames)); 723 } 724 725 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 726 llvm::Function *Fn) 727 { 728 if (!FD->hasAttr<OpenCLKernelAttr>()) 729 return; 730 731 llvm::LLVMContext &Context = getLLVMContext(); 732 733 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 734 735 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 736 QualType HintQTy = A->getTypeHint(); 737 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 738 bool IsSignedInteger = 739 HintQTy->isSignedIntegerType() || 740 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 741 llvm::Metadata *AttrMDArgs[] = { 742 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 743 CGM.getTypes().ConvertType(A->getTypeHint()))), 744 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 745 llvm::IntegerType::get(Context, 32), 746 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 747 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 748 } 749 750 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 751 llvm::Metadata *AttrMDArgs[] = { 752 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 753 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 754 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 755 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 756 } 757 758 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 759 llvm::Metadata *AttrMDArgs[] = { 760 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 761 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 762 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 763 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 764 } 765 766 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 767 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 768 llvm::Metadata *AttrMDArgs[] = { 769 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 770 Fn->setMetadata("intel_reqd_sub_group_size", 771 llvm::MDNode::get(Context, AttrMDArgs)); 772 } 773 } 774 775 /// Determine whether the function F ends with a return stmt. 776 static bool endsWithReturn(const Decl* F) { 777 const Stmt *Body = nullptr; 778 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 779 Body = FD->getBody(); 780 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 781 Body = OMD->getBody(); 782 783 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 784 auto LastStmt = CS->body_rbegin(); 785 if (LastStmt != CS->body_rend()) 786 return isa<ReturnStmt>(*LastStmt); 787 } 788 return false; 789 } 790 791 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 792 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 793 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 794 } 795 796 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 797 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 798 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 799 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 800 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 801 return false; 802 803 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 804 return false; 805 806 if (MD->getNumParams() == 2) { 807 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 808 if (!PT || !PT->isVoidPointerType() || 809 !PT->getPointeeType().isConstQualified()) 810 return false; 811 } 812 813 return true; 814 } 815 816 /// Return the UBSan prologue signature for \p FD if one is available. 817 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 818 const FunctionDecl *FD) { 819 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 820 if (!MD->isStatic()) 821 return nullptr; 822 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 823 } 824 825 void CodeGenFunction::StartFunction(GlobalDecl GD, 826 QualType RetTy, 827 llvm::Function *Fn, 828 const CGFunctionInfo &FnInfo, 829 const FunctionArgList &Args, 830 SourceLocation Loc, 831 SourceLocation StartLoc) { 832 assert(!CurFn && 833 "Do not use a CodeGenFunction object for more than one function"); 834 835 const Decl *D = GD.getDecl(); 836 837 DidCallStackSave = false; 838 CurCodeDecl = D; 839 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 840 if (FD->usesSEHTry()) 841 CurSEHParent = FD; 842 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 843 FnRetTy = RetTy; 844 CurFn = Fn; 845 CurFnInfo = &FnInfo; 846 assert(CurFn->isDeclaration() && "Function already has body?"); 847 848 // If this function has been blacklisted for any of the enabled sanitizers, 849 // disable the sanitizer for the function. 850 do { 851 #define SANITIZER(NAME, ID) \ 852 if (SanOpts.empty()) \ 853 break; \ 854 if (SanOpts.has(SanitizerKind::ID)) \ 855 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 856 SanOpts.set(SanitizerKind::ID, false); 857 858 #include "clang/Basic/Sanitizers.def" 859 #undef SANITIZER 860 } while (0); 861 862 if (D) { 863 // Apply the no_sanitize* attributes to SanOpts. 864 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 865 SanitizerMask mask = Attr->getMask(); 866 SanOpts.Mask &= ~mask; 867 if (mask & SanitizerKind::Address) 868 SanOpts.set(SanitizerKind::KernelAddress, false); 869 if (mask & SanitizerKind::KernelAddress) 870 SanOpts.set(SanitizerKind::Address, false); 871 if (mask & SanitizerKind::HWAddress) 872 SanOpts.set(SanitizerKind::KernelHWAddress, false); 873 if (mask & SanitizerKind::KernelHWAddress) 874 SanOpts.set(SanitizerKind::HWAddress, false); 875 } 876 } 877 878 // Apply sanitizer attributes to the function. 879 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 880 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 881 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 882 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 883 if (SanOpts.has(SanitizerKind::Thread)) 884 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 885 if (SanOpts.has(SanitizerKind::Memory)) 886 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 887 if (SanOpts.has(SanitizerKind::SafeStack)) 888 Fn->addFnAttr(llvm::Attribute::SafeStack); 889 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 890 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 891 892 // Apply fuzzing attribute to the function. 893 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 894 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 895 896 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 897 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 898 if (SanOpts.has(SanitizerKind::Thread)) { 899 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 900 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 901 if (OMD->getMethodFamily() == OMF_dealloc || 902 OMD->getMethodFamily() == OMF_initialize || 903 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 904 markAsIgnoreThreadCheckingAtRuntime(Fn); 905 } 906 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 907 IdentifierInfo *II = FD->getIdentifier(); 908 if (II && II->isStr("__destroy_helper_block_")) 909 markAsIgnoreThreadCheckingAtRuntime(Fn); 910 } 911 } 912 913 // Ignore unrelated casts in STL allocate() since the allocator must cast 914 // from void* to T* before object initialization completes. Don't match on the 915 // namespace because not all allocators are in std:: 916 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 917 if (matchesStlAllocatorFn(D, getContext())) 918 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 919 } 920 921 // Apply xray attributes to the function (as a string, for now) 922 bool InstrumentXray = ShouldXRayInstrumentFunction() && 923 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 924 XRayInstrKind::Function); 925 if (D && InstrumentXray) { 926 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 927 if (XRayAttr->alwaysXRayInstrument()) 928 Fn->addFnAttr("function-instrument", "xray-always"); 929 if (XRayAttr->neverXRayInstrument()) 930 Fn->addFnAttr("function-instrument", "xray-never"); 931 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 932 Fn->addFnAttr("xray-log-args", 933 llvm::utostr(LogArgs->getArgumentCount())); 934 } 935 } else { 936 if (!CGM.imbueXRayAttrs(Fn, Loc)) 937 Fn->addFnAttr( 938 "xray-instruction-threshold", 939 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 940 } 941 } 942 943 // Add no-jump-tables value. 944 Fn->addFnAttr("no-jump-tables", 945 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 946 947 // Add profile-sample-accurate value. 948 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 949 Fn->addFnAttr("profile-sample-accurate"); 950 951 if (getLangOpts().OpenCL) { 952 // Add metadata for a kernel function. 953 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 954 EmitOpenCLKernelMetadata(FD, Fn); 955 } 956 957 // If we are checking function types, emit a function type signature as 958 // prologue data. 959 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 960 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 961 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 962 // Remove any (C++17) exception specifications, to allow calling e.g. a 963 // noexcept function through a non-noexcept pointer. 964 auto ProtoTy = 965 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 966 EST_None); 967 llvm::Constant *FTRTTIConst = 968 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 969 llvm::Constant *FTRTTIConstEncoded = 970 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 971 llvm::Constant *PrologueStructElems[] = {PrologueSig, 972 FTRTTIConstEncoded}; 973 llvm::Constant *PrologueStructConst = 974 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 975 Fn->setPrologueData(PrologueStructConst); 976 } 977 } 978 } 979 980 // If we're checking nullability, we need to know whether we can check the 981 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 982 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 983 auto Nullability = FnRetTy->getNullability(getContext()); 984 if (Nullability && *Nullability == NullabilityKind::NonNull) { 985 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 986 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 987 RetValNullabilityPrecondition = 988 llvm::ConstantInt::getTrue(getLLVMContext()); 989 } 990 } 991 992 // If we're in C++ mode and the function name is "main", it is guaranteed 993 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 994 // used within a program"). 995 if (getLangOpts().CPlusPlus) 996 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 997 if (FD->isMain()) 998 Fn->addFnAttr(llvm::Attribute::NoRecurse); 999 1000 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1001 1002 // Create a marker to make it easy to insert allocas into the entryblock 1003 // later. Don't create this with the builder, because we don't want it 1004 // folded. 1005 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1006 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1007 1008 ReturnBlock = getJumpDestInCurrentScope("return"); 1009 1010 Builder.SetInsertPoint(EntryBB); 1011 1012 // If we're checking the return value, allocate space for a pointer to a 1013 // precise source location of the checked return statement. 1014 if (requiresReturnValueCheck()) { 1015 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1016 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1017 } 1018 1019 // Emit subprogram debug descriptor. 1020 if (CGDebugInfo *DI = getDebugInfo()) { 1021 // Reconstruct the type from the argument list so that implicit parameters, 1022 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1023 // convention. 1024 CallingConv CC = CallingConv::CC_C; 1025 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1026 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1027 CC = SrcFnTy->getCallConv(); 1028 SmallVector<QualType, 16> ArgTypes; 1029 for (const VarDecl *VD : Args) 1030 ArgTypes.push_back(VD->getType()); 1031 QualType FnType = getContext().getFunctionType( 1032 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1033 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 1034 Builder); 1035 } 1036 1037 if (ShouldInstrumentFunction()) { 1038 if (CGM.getCodeGenOpts().InstrumentFunctions) 1039 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1040 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1041 CurFn->addFnAttr("instrument-function-entry-inlined", 1042 "__cyg_profile_func_enter"); 1043 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1044 CurFn->addFnAttr("instrument-function-entry-inlined", 1045 "__cyg_profile_func_enter_bare"); 1046 } 1047 1048 // Since emitting the mcount call here impacts optimizations such as function 1049 // inlining, we just add an attribute to insert a mcount call in backend. 1050 // The attribute "counting-function" is set to mcount function name which is 1051 // architecture dependent. 1052 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1053 // Calls to fentry/mcount should not be generated if function has 1054 // the no_instrument_function attribute. 1055 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1056 if (CGM.getCodeGenOpts().CallFEntry) 1057 Fn->addFnAttr("fentry-call", "true"); 1058 else { 1059 Fn->addFnAttr("instrument-function-entry-inlined", 1060 getTarget().getMCountName()); 1061 } 1062 } 1063 } 1064 1065 if (RetTy->isVoidType()) { 1066 // Void type; nothing to return. 1067 ReturnValue = Address::invalid(); 1068 1069 // Count the implicit return. 1070 if (!endsWithReturn(D)) 1071 ++NumReturnExprs; 1072 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1073 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1074 // Indirect aggregate return; emit returned value directly into sret slot. 1075 // This reduces code size, and affects correctness in C++. 1076 auto AI = CurFn->arg_begin(); 1077 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1078 ++AI; 1079 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1080 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1081 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1082 // Load the sret pointer from the argument struct and return into that. 1083 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1084 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1085 --EI; 1086 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1087 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1088 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1089 } else { 1090 ReturnValue = CreateIRTemp(RetTy, "retval"); 1091 1092 // Tell the epilog emitter to autorelease the result. We do this 1093 // now so that various specialized functions can suppress it 1094 // during their IR-generation. 1095 if (getLangOpts().ObjCAutoRefCount && 1096 !CurFnInfo->isReturnsRetained() && 1097 RetTy->isObjCRetainableType()) 1098 AutoreleaseResult = true; 1099 } 1100 1101 EmitStartEHSpec(CurCodeDecl); 1102 1103 PrologueCleanupDepth = EHStack.stable_begin(); 1104 1105 // Emit OpenMP specific initialization of the device functions. 1106 if (getLangOpts().OpenMP && CurCodeDecl) 1107 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1108 1109 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1110 1111 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1112 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1113 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1114 if (MD->getParent()->isLambda() && 1115 MD->getOverloadedOperator() == OO_Call) { 1116 // We're in a lambda; figure out the captures. 1117 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1118 LambdaThisCaptureField); 1119 if (LambdaThisCaptureField) { 1120 // If the lambda captures the object referred to by '*this' - either by 1121 // value or by reference, make sure CXXThisValue points to the correct 1122 // object. 1123 1124 // Get the lvalue for the field (which is a copy of the enclosing object 1125 // or contains the address of the enclosing object). 1126 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1127 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1128 // If the enclosing object was captured by value, just use its address. 1129 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1130 } else { 1131 // Load the lvalue pointed to by the field, since '*this' was captured 1132 // by reference. 1133 CXXThisValue = 1134 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1135 } 1136 } 1137 for (auto *FD : MD->getParent()->fields()) { 1138 if (FD->hasCapturedVLAType()) { 1139 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1140 SourceLocation()).getScalarVal(); 1141 auto VAT = FD->getCapturedVLAType(); 1142 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1143 } 1144 } 1145 } else { 1146 // Not in a lambda; just use 'this' from the method. 1147 // FIXME: Should we generate a new load for each use of 'this'? The 1148 // fast register allocator would be happier... 1149 CXXThisValue = CXXABIThisValue; 1150 } 1151 1152 // Check the 'this' pointer once per function, if it's available. 1153 if (CXXABIThisValue) { 1154 SanitizerSet SkippedChecks; 1155 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1156 QualType ThisTy = MD->getThisType(getContext()); 1157 1158 // If this is the call operator of a lambda with no capture-default, it 1159 // may have a static invoker function, which may call this operator with 1160 // a null 'this' pointer. 1161 if (isLambdaCallOperator(MD) && 1162 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1163 SkippedChecks.set(SanitizerKind::Null, true); 1164 1165 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1166 : TCK_MemberCall, 1167 Loc, CXXABIThisValue, ThisTy, 1168 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1169 SkippedChecks); 1170 } 1171 } 1172 1173 // If any of the arguments have a variably modified type, make sure to 1174 // emit the type size. 1175 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1176 i != e; ++i) { 1177 const VarDecl *VD = *i; 1178 1179 // Dig out the type as written from ParmVarDecls; it's unclear whether 1180 // the standard (C99 6.9.1p10) requires this, but we're following the 1181 // precedent set by gcc. 1182 QualType Ty; 1183 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1184 Ty = PVD->getOriginalType(); 1185 else 1186 Ty = VD->getType(); 1187 1188 if (Ty->isVariablyModifiedType()) 1189 EmitVariablyModifiedType(Ty); 1190 } 1191 // Emit a location at the end of the prologue. 1192 if (CGDebugInfo *DI = getDebugInfo()) 1193 DI->EmitLocation(Builder, StartLoc); 1194 1195 // TODO: Do we need to handle this in two places like we do with 1196 // target-features/target-cpu? 1197 if (CurFuncDecl) 1198 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1199 LargestVectorWidth = VecWidth->getVectorWidth(); 1200 } 1201 1202 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1203 const Stmt *Body) { 1204 incrementProfileCounter(Body); 1205 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1206 EmitCompoundStmtWithoutScope(*S); 1207 else 1208 EmitStmt(Body); 1209 } 1210 1211 /// When instrumenting to collect profile data, the counts for some blocks 1212 /// such as switch cases need to not include the fall-through counts, so 1213 /// emit a branch around the instrumentation code. When not instrumenting, 1214 /// this just calls EmitBlock(). 1215 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1216 const Stmt *S) { 1217 llvm::BasicBlock *SkipCountBB = nullptr; 1218 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1219 // When instrumenting for profiling, the fallthrough to certain 1220 // statements needs to skip over the instrumentation code so that we 1221 // get an accurate count. 1222 SkipCountBB = createBasicBlock("skipcount"); 1223 EmitBranch(SkipCountBB); 1224 } 1225 EmitBlock(BB); 1226 uint64_t CurrentCount = getCurrentProfileCount(); 1227 incrementProfileCounter(S); 1228 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1229 if (SkipCountBB) 1230 EmitBlock(SkipCountBB); 1231 } 1232 1233 /// Tries to mark the given function nounwind based on the 1234 /// non-existence of any throwing calls within it. We believe this is 1235 /// lightweight enough to do at -O0. 1236 static void TryMarkNoThrow(llvm::Function *F) { 1237 // LLVM treats 'nounwind' on a function as part of the type, so we 1238 // can't do this on functions that can be overwritten. 1239 if (F->isInterposable()) return; 1240 1241 for (llvm::BasicBlock &BB : *F) 1242 for (llvm::Instruction &I : BB) 1243 if (I.mayThrow()) 1244 return; 1245 1246 F->setDoesNotThrow(); 1247 } 1248 1249 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1250 FunctionArgList &Args) { 1251 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1252 QualType ResTy = FD->getReturnType(); 1253 1254 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1255 if (MD && MD->isInstance()) { 1256 if (CGM.getCXXABI().HasThisReturn(GD)) 1257 ResTy = MD->getThisType(getContext()); 1258 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1259 ResTy = CGM.getContext().VoidPtrTy; 1260 CGM.getCXXABI().buildThisParam(*this, Args); 1261 } 1262 1263 // The base version of an inheriting constructor whose constructed base is a 1264 // virtual base is not passed any arguments (because it doesn't actually call 1265 // the inherited constructor). 1266 bool PassedParams = true; 1267 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1268 if (auto Inherited = CD->getInheritedConstructor()) 1269 PassedParams = 1270 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1271 1272 if (PassedParams) { 1273 for (auto *Param : FD->parameters()) { 1274 Args.push_back(Param); 1275 if (!Param->hasAttr<PassObjectSizeAttr>()) 1276 continue; 1277 1278 auto *Implicit = ImplicitParamDecl::Create( 1279 getContext(), Param->getDeclContext(), Param->getLocation(), 1280 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1281 SizeArguments[Param] = Implicit; 1282 Args.push_back(Implicit); 1283 } 1284 } 1285 1286 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1287 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1288 1289 return ResTy; 1290 } 1291 1292 static bool 1293 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1294 const ASTContext &Context) { 1295 QualType T = FD->getReturnType(); 1296 // Avoid the optimization for functions that return a record type with a 1297 // trivial destructor or another trivially copyable type. 1298 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1299 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1300 return !ClassDecl->hasTrivialDestructor(); 1301 } 1302 return !T.isTriviallyCopyableType(Context); 1303 } 1304 1305 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1306 const CGFunctionInfo &FnInfo) { 1307 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1308 CurGD = GD; 1309 1310 FunctionArgList Args; 1311 QualType ResTy = BuildFunctionArgList(GD, Args); 1312 1313 // Check if we should generate debug info for this function. 1314 if (FD->hasAttr<NoDebugAttr>()) 1315 DebugInfo = nullptr; // disable debug info indefinitely for this function 1316 1317 // The function might not have a body if we're generating thunks for a 1318 // function declaration. 1319 SourceRange BodyRange; 1320 if (Stmt *Body = FD->getBody()) 1321 BodyRange = Body->getSourceRange(); 1322 else 1323 BodyRange = FD->getLocation(); 1324 CurEHLocation = BodyRange.getEnd(); 1325 1326 // Use the location of the start of the function to determine where 1327 // the function definition is located. By default use the location 1328 // of the declaration as the location for the subprogram. A function 1329 // may lack a declaration in the source code if it is created by code 1330 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1331 SourceLocation Loc = FD->getLocation(); 1332 1333 // If this is a function specialization then use the pattern body 1334 // as the location for the function. 1335 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1336 if (SpecDecl->hasBody(SpecDecl)) 1337 Loc = SpecDecl->getLocation(); 1338 1339 Stmt *Body = FD->getBody(); 1340 1341 // Initialize helper which will detect jumps which can cause invalid lifetime 1342 // markers. 1343 if (Body && ShouldEmitLifetimeMarkers) 1344 Bypasses.Init(Body); 1345 1346 // Emit the standard function prologue. 1347 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1348 1349 // Generate the body of the function. 1350 PGO.assignRegionCounters(GD, CurFn); 1351 if (isa<CXXDestructorDecl>(FD)) 1352 EmitDestructorBody(Args); 1353 else if (isa<CXXConstructorDecl>(FD)) 1354 EmitConstructorBody(Args); 1355 else if (getLangOpts().CUDA && 1356 !getLangOpts().CUDAIsDevice && 1357 FD->hasAttr<CUDAGlobalAttr>()) 1358 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1359 else if (isa<CXXMethodDecl>(FD) && 1360 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1361 // The lambda static invoker function is special, because it forwards or 1362 // clones the body of the function call operator (but is actually static). 1363 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1364 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1365 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1366 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1367 // Implicit copy-assignment gets the same special treatment as implicit 1368 // copy-constructors. 1369 emitImplicitAssignmentOperatorBody(Args); 1370 } else if (Body) { 1371 EmitFunctionBody(Args, Body); 1372 } else 1373 llvm_unreachable("no definition for emitted function"); 1374 1375 // C++11 [stmt.return]p2: 1376 // Flowing off the end of a function [...] results in undefined behavior in 1377 // a value-returning function. 1378 // C11 6.9.1p12: 1379 // If the '}' that terminates a function is reached, and the value of the 1380 // function call is used by the caller, the behavior is undefined. 1381 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1382 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1383 bool ShouldEmitUnreachable = 1384 CGM.getCodeGenOpts().StrictReturn || 1385 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1386 if (SanOpts.has(SanitizerKind::Return)) { 1387 SanitizerScope SanScope(this); 1388 llvm::Value *IsFalse = Builder.getFalse(); 1389 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1390 SanitizerHandler::MissingReturn, 1391 EmitCheckSourceLocation(FD->getLocation()), None); 1392 } else if (ShouldEmitUnreachable) { 1393 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1394 EmitTrapCall(llvm::Intrinsic::trap); 1395 } 1396 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1397 Builder.CreateUnreachable(); 1398 Builder.ClearInsertionPoint(); 1399 } 1400 } 1401 1402 // Emit the standard function epilogue. 1403 FinishFunction(BodyRange.getEnd()); 1404 1405 // If we haven't marked the function nothrow through other means, do 1406 // a quick pass now to see if we can. 1407 if (!CurFn->doesNotThrow()) 1408 TryMarkNoThrow(CurFn); 1409 } 1410 1411 /// ContainsLabel - Return true if the statement contains a label in it. If 1412 /// this statement is not executed normally, it not containing a label means 1413 /// that we can just remove the code. 1414 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1415 // Null statement, not a label! 1416 if (!S) return false; 1417 1418 // If this is a label, we have to emit the code, consider something like: 1419 // if (0) { ... foo: bar(); } goto foo; 1420 // 1421 // TODO: If anyone cared, we could track __label__'s, since we know that you 1422 // can't jump to one from outside their declared region. 1423 if (isa<LabelStmt>(S)) 1424 return true; 1425 1426 // If this is a case/default statement, and we haven't seen a switch, we have 1427 // to emit the code. 1428 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1429 return true; 1430 1431 // If this is a switch statement, we want to ignore cases below it. 1432 if (isa<SwitchStmt>(S)) 1433 IgnoreCaseStmts = true; 1434 1435 // Scan subexpressions for verboten labels. 1436 for (const Stmt *SubStmt : S->children()) 1437 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 /// containsBreak - Return true if the statement contains a break out of it. 1444 /// If the statement (recursively) contains a switch or loop with a break 1445 /// inside of it, this is fine. 1446 bool CodeGenFunction::containsBreak(const Stmt *S) { 1447 // Null statement, not a label! 1448 if (!S) return false; 1449 1450 // If this is a switch or loop that defines its own break scope, then we can 1451 // include it and anything inside of it. 1452 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1453 isa<ForStmt>(S)) 1454 return false; 1455 1456 if (isa<BreakStmt>(S)) 1457 return true; 1458 1459 // Scan subexpressions for verboten breaks. 1460 for (const Stmt *SubStmt : S->children()) 1461 if (containsBreak(SubStmt)) 1462 return true; 1463 1464 return false; 1465 } 1466 1467 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1468 if (!S) return false; 1469 1470 // Some statement kinds add a scope and thus never add a decl to the current 1471 // scope. Note, this list is longer than the list of statements that might 1472 // have an unscoped decl nested within them, but this way is conservatively 1473 // correct even if more statement kinds are added. 1474 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1475 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1476 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1477 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1478 return false; 1479 1480 if (isa<DeclStmt>(S)) 1481 return true; 1482 1483 for (const Stmt *SubStmt : S->children()) 1484 if (mightAddDeclToScope(SubStmt)) 1485 return true; 1486 1487 return false; 1488 } 1489 1490 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1491 /// to a constant, or if it does but contains a label, return false. If it 1492 /// constant folds return true and set the boolean result in Result. 1493 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1494 bool &ResultBool, 1495 bool AllowLabels) { 1496 llvm::APSInt ResultInt; 1497 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1498 return false; 1499 1500 ResultBool = ResultInt.getBoolValue(); 1501 return true; 1502 } 1503 1504 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1505 /// to a constant, or if it does but contains a label, return false. If it 1506 /// constant folds return true and set the folded value. 1507 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1508 llvm::APSInt &ResultInt, 1509 bool AllowLabels) { 1510 // FIXME: Rename and handle conversion of other evaluatable things 1511 // to bool. 1512 llvm::APSInt Int; 1513 if (!Cond->EvaluateAsInt(Int, getContext())) 1514 return false; // Not foldable, not integer or not fully evaluatable. 1515 1516 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1517 return false; // Contains a label. 1518 1519 ResultInt = Int; 1520 return true; 1521 } 1522 1523 1524 1525 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1526 /// statement) to the specified blocks. Based on the condition, this might try 1527 /// to simplify the codegen of the conditional based on the branch. 1528 /// 1529 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1530 llvm::BasicBlock *TrueBlock, 1531 llvm::BasicBlock *FalseBlock, 1532 uint64_t TrueCount) { 1533 Cond = Cond->IgnoreParens(); 1534 1535 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1536 1537 // Handle X && Y in a condition. 1538 if (CondBOp->getOpcode() == BO_LAnd) { 1539 // If we have "1 && X", simplify the code. "0 && X" would have constant 1540 // folded if the case was simple enough. 1541 bool ConstantBool = false; 1542 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1543 ConstantBool) { 1544 // br(1 && X) -> br(X). 1545 incrementProfileCounter(CondBOp); 1546 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1547 TrueCount); 1548 } 1549 1550 // If we have "X && 1", simplify the code to use an uncond branch. 1551 // "X && 0" would have been constant folded to 0. 1552 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1553 ConstantBool) { 1554 // br(X && 1) -> br(X). 1555 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1556 TrueCount); 1557 } 1558 1559 // Emit the LHS as a conditional. If the LHS conditional is false, we 1560 // want to jump to the FalseBlock. 1561 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1562 // The counter tells us how often we evaluate RHS, and all of TrueCount 1563 // can be propagated to that branch. 1564 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1565 1566 ConditionalEvaluation eval(*this); 1567 { 1568 ApplyDebugLocation DL(*this, Cond); 1569 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1570 EmitBlock(LHSTrue); 1571 } 1572 1573 incrementProfileCounter(CondBOp); 1574 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1575 1576 // Any temporaries created here are conditional. 1577 eval.begin(*this); 1578 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1579 eval.end(*this); 1580 1581 return; 1582 } 1583 1584 if (CondBOp->getOpcode() == BO_LOr) { 1585 // If we have "0 || X", simplify the code. "1 || X" would have constant 1586 // folded if the case was simple enough. 1587 bool ConstantBool = false; 1588 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1589 !ConstantBool) { 1590 // br(0 || X) -> br(X). 1591 incrementProfileCounter(CondBOp); 1592 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1593 TrueCount); 1594 } 1595 1596 // If we have "X || 0", simplify the code to use an uncond branch. 1597 // "X || 1" would have been constant folded to 1. 1598 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1599 !ConstantBool) { 1600 // br(X || 0) -> br(X). 1601 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1602 TrueCount); 1603 } 1604 1605 // Emit the LHS as a conditional. If the LHS conditional is true, we 1606 // want to jump to the TrueBlock. 1607 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1608 // We have the count for entry to the RHS and for the whole expression 1609 // being true, so we can divy up True count between the short circuit and 1610 // the RHS. 1611 uint64_t LHSCount = 1612 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1613 uint64_t RHSCount = TrueCount - LHSCount; 1614 1615 ConditionalEvaluation eval(*this); 1616 { 1617 ApplyDebugLocation DL(*this, Cond); 1618 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1619 EmitBlock(LHSFalse); 1620 } 1621 1622 incrementProfileCounter(CondBOp); 1623 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1624 1625 // Any temporaries created here are conditional. 1626 eval.begin(*this); 1627 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1628 1629 eval.end(*this); 1630 1631 return; 1632 } 1633 } 1634 1635 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1636 // br(!x, t, f) -> br(x, f, t) 1637 if (CondUOp->getOpcode() == UO_LNot) { 1638 // Negate the count. 1639 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1640 // Negate the condition and swap the destination blocks. 1641 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1642 FalseCount); 1643 } 1644 } 1645 1646 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1647 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1648 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1649 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1650 1651 ConditionalEvaluation cond(*this); 1652 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1653 getProfileCount(CondOp)); 1654 1655 // When computing PGO branch weights, we only know the overall count for 1656 // the true block. This code is essentially doing tail duplication of the 1657 // naive code-gen, introducing new edges for which counts are not 1658 // available. Divide the counts proportionally between the LHS and RHS of 1659 // the conditional operator. 1660 uint64_t LHSScaledTrueCount = 0; 1661 if (TrueCount) { 1662 double LHSRatio = 1663 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1664 LHSScaledTrueCount = TrueCount * LHSRatio; 1665 } 1666 1667 cond.begin(*this); 1668 EmitBlock(LHSBlock); 1669 incrementProfileCounter(CondOp); 1670 { 1671 ApplyDebugLocation DL(*this, Cond); 1672 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1673 LHSScaledTrueCount); 1674 } 1675 cond.end(*this); 1676 1677 cond.begin(*this); 1678 EmitBlock(RHSBlock); 1679 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1680 TrueCount - LHSScaledTrueCount); 1681 cond.end(*this); 1682 1683 return; 1684 } 1685 1686 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1687 // Conditional operator handling can give us a throw expression as a 1688 // condition for a case like: 1689 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1690 // Fold this to: 1691 // br(c, throw x, br(y, t, f)) 1692 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1693 return; 1694 } 1695 1696 // If the branch has a condition wrapped by __builtin_unpredictable, 1697 // create metadata that specifies that the branch is unpredictable. 1698 // Don't bother if not optimizing because that metadata would not be used. 1699 llvm::MDNode *Unpredictable = nullptr; 1700 auto *Call = dyn_cast<CallExpr>(Cond); 1701 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1702 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1703 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1704 llvm::MDBuilder MDHelper(getLLVMContext()); 1705 Unpredictable = MDHelper.createUnpredictable(); 1706 } 1707 } 1708 1709 // Create branch weights based on the number of times we get here and the 1710 // number of times the condition should be true. 1711 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1712 llvm::MDNode *Weights = 1713 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1714 1715 // Emit the code with the fully general case. 1716 llvm::Value *CondV; 1717 { 1718 ApplyDebugLocation DL(*this, Cond); 1719 CondV = EvaluateExprAsBool(Cond); 1720 } 1721 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1722 } 1723 1724 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1725 /// specified stmt yet. 1726 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1727 CGM.ErrorUnsupported(S, Type); 1728 } 1729 1730 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1731 /// variable-length array whose elements have a non-zero bit-pattern. 1732 /// 1733 /// \param baseType the inner-most element type of the array 1734 /// \param src - a char* pointing to the bit-pattern for a single 1735 /// base element of the array 1736 /// \param sizeInChars - the total size of the VLA, in chars 1737 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1738 Address dest, Address src, 1739 llvm::Value *sizeInChars) { 1740 CGBuilderTy &Builder = CGF.Builder; 1741 1742 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1743 llvm::Value *baseSizeInChars 1744 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1745 1746 Address begin = 1747 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1748 llvm::Value *end = 1749 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1750 1751 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1752 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1753 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1754 1755 // Make a loop over the VLA. C99 guarantees that the VLA element 1756 // count must be nonzero. 1757 CGF.EmitBlock(loopBB); 1758 1759 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1760 cur->addIncoming(begin.getPointer(), originBB); 1761 1762 CharUnits curAlign = 1763 dest.getAlignment().alignmentOfArrayElement(baseSize); 1764 1765 // memcpy the individual element bit-pattern. 1766 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1767 /*volatile*/ false); 1768 1769 // Go to the next element. 1770 llvm::Value *next = 1771 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1772 1773 // Leave if that's the end of the VLA. 1774 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1775 Builder.CreateCondBr(done, contBB, loopBB); 1776 cur->addIncoming(next, loopBB); 1777 1778 CGF.EmitBlock(contBB); 1779 } 1780 1781 void 1782 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1783 // Ignore empty classes in C++. 1784 if (getLangOpts().CPlusPlus) { 1785 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1786 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1787 return; 1788 } 1789 } 1790 1791 // Cast the dest ptr to the appropriate i8 pointer type. 1792 if (DestPtr.getElementType() != Int8Ty) 1793 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1794 1795 // Get size and alignment info for this aggregate. 1796 CharUnits size = getContext().getTypeSizeInChars(Ty); 1797 1798 llvm::Value *SizeVal; 1799 const VariableArrayType *vla; 1800 1801 // Don't bother emitting a zero-byte memset. 1802 if (size.isZero()) { 1803 // But note that getTypeInfo returns 0 for a VLA. 1804 if (const VariableArrayType *vlaType = 1805 dyn_cast_or_null<VariableArrayType>( 1806 getContext().getAsArrayType(Ty))) { 1807 auto VlaSize = getVLASize(vlaType); 1808 SizeVal = VlaSize.NumElts; 1809 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1810 if (!eltSize.isOne()) 1811 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1812 vla = vlaType; 1813 } else { 1814 return; 1815 } 1816 } else { 1817 SizeVal = CGM.getSize(size); 1818 vla = nullptr; 1819 } 1820 1821 // If the type contains a pointer to data member we can't memset it to zero. 1822 // Instead, create a null constant and copy it to the destination. 1823 // TODO: there are other patterns besides zero that we can usefully memset, 1824 // like -1, which happens to be the pattern used by member-pointers. 1825 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1826 // For a VLA, emit a single element, then splat that over the VLA. 1827 if (vla) Ty = getContext().getBaseElementType(vla); 1828 1829 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1830 1831 llvm::GlobalVariable *NullVariable = 1832 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1833 /*isConstant=*/true, 1834 llvm::GlobalVariable::PrivateLinkage, 1835 NullConstant, Twine()); 1836 CharUnits NullAlign = DestPtr.getAlignment(); 1837 NullVariable->setAlignment(NullAlign.getQuantity()); 1838 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1839 NullAlign); 1840 1841 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1842 1843 // Get and call the appropriate llvm.memcpy overload. 1844 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1845 return; 1846 } 1847 1848 // Otherwise, just memset the whole thing to zero. This is legal 1849 // because in LLVM, all default initializers (other than the ones we just 1850 // handled above) are guaranteed to have a bit pattern of all zeros. 1851 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1852 } 1853 1854 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1855 // Make sure that there is a block for the indirect goto. 1856 if (!IndirectBranch) 1857 GetIndirectGotoBlock(); 1858 1859 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1860 1861 // Make sure the indirect branch includes all of the address-taken blocks. 1862 IndirectBranch->addDestination(BB); 1863 return llvm::BlockAddress::get(CurFn, BB); 1864 } 1865 1866 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1867 // If we already made the indirect branch for indirect goto, return its block. 1868 if (IndirectBranch) return IndirectBranch->getParent(); 1869 1870 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1871 1872 // Create the PHI node that indirect gotos will add entries to. 1873 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1874 "indirect.goto.dest"); 1875 1876 // Create the indirect branch instruction. 1877 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1878 return IndirectBranch->getParent(); 1879 } 1880 1881 /// Computes the length of an array in elements, as well as the base 1882 /// element type and a properly-typed first element pointer. 1883 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1884 QualType &baseType, 1885 Address &addr) { 1886 const ArrayType *arrayType = origArrayType; 1887 1888 // If it's a VLA, we have to load the stored size. Note that 1889 // this is the size of the VLA in bytes, not its size in elements. 1890 llvm::Value *numVLAElements = nullptr; 1891 if (isa<VariableArrayType>(arrayType)) { 1892 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1893 1894 // Walk into all VLAs. This doesn't require changes to addr, 1895 // which has type T* where T is the first non-VLA element type. 1896 do { 1897 QualType elementType = arrayType->getElementType(); 1898 arrayType = getContext().getAsArrayType(elementType); 1899 1900 // If we only have VLA components, 'addr' requires no adjustment. 1901 if (!arrayType) { 1902 baseType = elementType; 1903 return numVLAElements; 1904 } 1905 } while (isa<VariableArrayType>(arrayType)); 1906 1907 // We get out here only if we find a constant array type 1908 // inside the VLA. 1909 } 1910 1911 // We have some number of constant-length arrays, so addr should 1912 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1913 // down to the first element of addr. 1914 SmallVector<llvm::Value*, 8> gepIndices; 1915 1916 // GEP down to the array type. 1917 llvm::ConstantInt *zero = Builder.getInt32(0); 1918 gepIndices.push_back(zero); 1919 1920 uint64_t countFromCLAs = 1; 1921 QualType eltType; 1922 1923 llvm::ArrayType *llvmArrayType = 1924 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1925 while (llvmArrayType) { 1926 assert(isa<ConstantArrayType>(arrayType)); 1927 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1928 == llvmArrayType->getNumElements()); 1929 1930 gepIndices.push_back(zero); 1931 countFromCLAs *= llvmArrayType->getNumElements(); 1932 eltType = arrayType->getElementType(); 1933 1934 llvmArrayType = 1935 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1936 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1937 assert((!llvmArrayType || arrayType) && 1938 "LLVM and Clang types are out-of-synch"); 1939 } 1940 1941 if (arrayType) { 1942 // From this point onwards, the Clang array type has been emitted 1943 // as some other type (probably a packed struct). Compute the array 1944 // size, and just emit the 'begin' expression as a bitcast. 1945 while (arrayType) { 1946 countFromCLAs *= 1947 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1948 eltType = arrayType->getElementType(); 1949 arrayType = getContext().getAsArrayType(eltType); 1950 } 1951 1952 llvm::Type *baseType = ConvertType(eltType); 1953 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1954 } else { 1955 // Create the actual GEP. 1956 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1957 gepIndices, "array.begin"), 1958 addr.getAlignment()); 1959 } 1960 1961 baseType = eltType; 1962 1963 llvm::Value *numElements 1964 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1965 1966 // If we had any VLA dimensions, factor them in. 1967 if (numVLAElements) 1968 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1969 1970 return numElements; 1971 } 1972 1973 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1974 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1975 assert(vla && "type was not a variable array type!"); 1976 return getVLASize(vla); 1977 } 1978 1979 CodeGenFunction::VlaSizePair 1980 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1981 // The number of elements so far; always size_t. 1982 llvm::Value *numElements = nullptr; 1983 1984 QualType elementType; 1985 do { 1986 elementType = type->getElementType(); 1987 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1988 assert(vlaSize && "no size for VLA!"); 1989 assert(vlaSize->getType() == SizeTy); 1990 1991 if (!numElements) { 1992 numElements = vlaSize; 1993 } else { 1994 // It's undefined behavior if this wraps around, so mark it that way. 1995 // FIXME: Teach -fsanitize=undefined to trap this. 1996 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1997 } 1998 } while ((type = getContext().getAsVariableArrayType(elementType))); 1999 2000 return { numElements, elementType }; 2001 } 2002 2003 CodeGenFunction::VlaSizePair 2004 CodeGenFunction::getVLAElements1D(QualType type) { 2005 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2006 assert(vla && "type was not a variable array type!"); 2007 return getVLAElements1D(vla); 2008 } 2009 2010 CodeGenFunction::VlaSizePair 2011 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2012 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2013 assert(VlaSize && "no size for VLA!"); 2014 assert(VlaSize->getType() == SizeTy); 2015 return { VlaSize, Vla->getElementType() }; 2016 } 2017 2018 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2019 assert(type->isVariablyModifiedType() && 2020 "Must pass variably modified type to EmitVLASizes!"); 2021 2022 EnsureInsertPoint(); 2023 2024 // We're going to walk down into the type and look for VLA 2025 // expressions. 2026 do { 2027 assert(type->isVariablyModifiedType()); 2028 2029 const Type *ty = type.getTypePtr(); 2030 switch (ty->getTypeClass()) { 2031 2032 #define TYPE(Class, Base) 2033 #define ABSTRACT_TYPE(Class, Base) 2034 #define NON_CANONICAL_TYPE(Class, Base) 2035 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2036 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2037 #include "clang/AST/TypeNodes.def" 2038 llvm_unreachable("unexpected dependent type!"); 2039 2040 // These types are never variably-modified. 2041 case Type::Builtin: 2042 case Type::Complex: 2043 case Type::Vector: 2044 case Type::ExtVector: 2045 case Type::Record: 2046 case Type::Enum: 2047 case Type::Elaborated: 2048 case Type::TemplateSpecialization: 2049 case Type::ObjCTypeParam: 2050 case Type::ObjCObject: 2051 case Type::ObjCInterface: 2052 case Type::ObjCObjectPointer: 2053 llvm_unreachable("type class is never variably-modified!"); 2054 2055 case Type::Adjusted: 2056 type = cast<AdjustedType>(ty)->getAdjustedType(); 2057 break; 2058 2059 case Type::Decayed: 2060 type = cast<DecayedType>(ty)->getPointeeType(); 2061 break; 2062 2063 case Type::Pointer: 2064 type = cast<PointerType>(ty)->getPointeeType(); 2065 break; 2066 2067 case Type::BlockPointer: 2068 type = cast<BlockPointerType>(ty)->getPointeeType(); 2069 break; 2070 2071 case Type::LValueReference: 2072 case Type::RValueReference: 2073 type = cast<ReferenceType>(ty)->getPointeeType(); 2074 break; 2075 2076 case Type::MemberPointer: 2077 type = cast<MemberPointerType>(ty)->getPointeeType(); 2078 break; 2079 2080 case Type::ConstantArray: 2081 case Type::IncompleteArray: 2082 // Losing element qualification here is fine. 2083 type = cast<ArrayType>(ty)->getElementType(); 2084 break; 2085 2086 case Type::VariableArray: { 2087 // Losing element qualification here is fine. 2088 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2089 2090 // Unknown size indication requires no size computation. 2091 // Otherwise, evaluate and record it. 2092 if (const Expr *size = vat->getSizeExpr()) { 2093 // It's possible that we might have emitted this already, 2094 // e.g. with a typedef and a pointer to it. 2095 llvm::Value *&entry = VLASizeMap[size]; 2096 if (!entry) { 2097 llvm::Value *Size = EmitScalarExpr(size); 2098 2099 // C11 6.7.6.2p5: 2100 // If the size is an expression that is not an integer constant 2101 // expression [...] each time it is evaluated it shall have a value 2102 // greater than zero. 2103 if (SanOpts.has(SanitizerKind::VLABound) && 2104 size->getType()->isSignedIntegerType()) { 2105 SanitizerScope SanScope(this); 2106 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2107 llvm::Constant *StaticArgs[] = { 2108 EmitCheckSourceLocation(size->getLocStart()), 2109 EmitCheckTypeDescriptor(size->getType()) 2110 }; 2111 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2112 SanitizerKind::VLABound), 2113 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2114 } 2115 2116 // Always zexting here would be wrong if it weren't 2117 // undefined behavior to have a negative bound. 2118 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2119 } 2120 } 2121 type = vat->getElementType(); 2122 break; 2123 } 2124 2125 case Type::FunctionProto: 2126 case Type::FunctionNoProto: 2127 type = cast<FunctionType>(ty)->getReturnType(); 2128 break; 2129 2130 case Type::Paren: 2131 case Type::TypeOf: 2132 case Type::UnaryTransform: 2133 case Type::Attributed: 2134 case Type::SubstTemplateTypeParm: 2135 case Type::PackExpansion: 2136 // Keep walking after single level desugaring. 2137 type = type.getSingleStepDesugaredType(getContext()); 2138 break; 2139 2140 case Type::Typedef: 2141 case Type::Decltype: 2142 case Type::Auto: 2143 case Type::DeducedTemplateSpecialization: 2144 // Stop walking: nothing to do. 2145 return; 2146 2147 case Type::TypeOfExpr: 2148 // Stop walking: emit typeof expression. 2149 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2150 return; 2151 2152 case Type::Atomic: 2153 type = cast<AtomicType>(ty)->getValueType(); 2154 break; 2155 2156 case Type::Pipe: 2157 type = cast<PipeType>(ty)->getElementType(); 2158 break; 2159 } 2160 } while (type->isVariablyModifiedType()); 2161 } 2162 2163 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2164 if (getContext().getBuiltinVaListType()->isArrayType()) 2165 return EmitPointerWithAlignment(E); 2166 return EmitLValue(E).getAddress(); 2167 } 2168 2169 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2170 return EmitLValue(E).getAddress(); 2171 } 2172 2173 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2174 const APValue &Init) { 2175 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2176 if (CGDebugInfo *Dbg = getDebugInfo()) 2177 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2178 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2179 } 2180 2181 CodeGenFunction::PeepholeProtection 2182 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2183 // At the moment, the only aggressive peephole we do in IR gen 2184 // is trunc(zext) folding, but if we add more, we can easily 2185 // extend this protection. 2186 2187 if (!rvalue.isScalar()) return PeepholeProtection(); 2188 llvm::Value *value = rvalue.getScalarVal(); 2189 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2190 2191 // Just make an extra bitcast. 2192 assert(HaveInsertPoint()); 2193 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2194 Builder.GetInsertBlock()); 2195 2196 PeepholeProtection protection; 2197 protection.Inst = inst; 2198 return protection; 2199 } 2200 2201 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2202 if (!protection.Inst) return; 2203 2204 // In theory, we could try to duplicate the peepholes now, but whatever. 2205 protection.Inst->eraseFromParent(); 2206 } 2207 2208 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2209 llvm::Value *AnnotatedVal, 2210 StringRef AnnotationStr, 2211 SourceLocation Location) { 2212 llvm::Value *Args[4] = { 2213 AnnotatedVal, 2214 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2215 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2216 CGM.EmitAnnotationLineNo(Location) 2217 }; 2218 return Builder.CreateCall(AnnotationFn, Args); 2219 } 2220 2221 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2222 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2223 // FIXME We create a new bitcast for every annotation because that's what 2224 // llvm-gcc was doing. 2225 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2226 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2227 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2228 I->getAnnotation(), D->getLocation()); 2229 } 2230 2231 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2232 Address Addr) { 2233 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2234 llvm::Value *V = Addr.getPointer(); 2235 llvm::Type *VTy = V->getType(); 2236 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2237 CGM.Int8PtrTy); 2238 2239 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2240 // FIXME Always emit the cast inst so we can differentiate between 2241 // annotation on the first field of a struct and annotation on the struct 2242 // itself. 2243 if (VTy != CGM.Int8PtrTy) 2244 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2245 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2246 V = Builder.CreateBitCast(V, VTy); 2247 } 2248 2249 return Address(V, Addr.getAlignment()); 2250 } 2251 2252 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2253 2254 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2255 : CGF(CGF) { 2256 assert(!CGF->IsSanitizerScope); 2257 CGF->IsSanitizerScope = true; 2258 } 2259 2260 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2261 CGF->IsSanitizerScope = false; 2262 } 2263 2264 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2265 const llvm::Twine &Name, 2266 llvm::BasicBlock *BB, 2267 llvm::BasicBlock::iterator InsertPt) const { 2268 LoopStack.InsertHelper(I); 2269 if (IsSanitizerScope) 2270 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2271 } 2272 2273 void CGBuilderInserter::InsertHelper( 2274 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2275 llvm::BasicBlock::iterator InsertPt) const { 2276 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2277 if (CGF) 2278 CGF->InsertHelper(I, Name, BB, InsertPt); 2279 } 2280 2281 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2282 CodeGenModule &CGM, const FunctionDecl *FD, 2283 std::string &FirstMissing) { 2284 // If there aren't any required features listed then go ahead and return. 2285 if (ReqFeatures.empty()) 2286 return false; 2287 2288 // Now build up the set of caller features and verify that all the required 2289 // features are there. 2290 llvm::StringMap<bool> CallerFeatureMap; 2291 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2292 2293 // If we have at least one of the features in the feature list return 2294 // true, otherwise return false. 2295 return std::all_of( 2296 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2297 SmallVector<StringRef, 1> OrFeatures; 2298 Feature.split(OrFeatures, '|'); 2299 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2300 [&](StringRef Feature) { 2301 if (!CallerFeatureMap.lookup(Feature)) { 2302 FirstMissing = Feature.str(); 2303 return false; 2304 } 2305 return true; 2306 }); 2307 }); 2308 } 2309 2310 // Emits an error if we don't have a valid set of target features for the 2311 // called function. 2312 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2313 const FunctionDecl *TargetDecl) { 2314 // Early exit if this is an indirect call. 2315 if (!TargetDecl) 2316 return; 2317 2318 // Get the current enclosing function if it exists. If it doesn't 2319 // we can't check the target features anyhow. 2320 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2321 if (!FD) 2322 return; 2323 2324 // Grab the required features for the call. For a builtin this is listed in 2325 // the td file with the default cpu, for an always_inline function this is any 2326 // listed cpu and any listed features. 2327 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2328 std::string MissingFeature; 2329 if (BuiltinID) { 2330 SmallVector<StringRef, 1> ReqFeatures; 2331 const char *FeatureList = 2332 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2333 // Return if the builtin doesn't have any required features. 2334 if (!FeatureList || StringRef(FeatureList) == "") 2335 return; 2336 StringRef(FeatureList).split(ReqFeatures, ','); 2337 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2338 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2339 << TargetDecl->getDeclName() 2340 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2341 2342 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2343 // Get the required features for the callee. 2344 2345 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2346 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2347 2348 SmallVector<StringRef, 1> ReqFeatures; 2349 llvm::StringMap<bool> CalleeFeatureMap; 2350 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2351 2352 for (const auto &F : ParsedAttr.Features) { 2353 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2354 ReqFeatures.push_back(StringRef(F).substr(1)); 2355 } 2356 2357 for (const auto &F : CalleeFeatureMap) { 2358 // Only positive features are "required". 2359 if (F.getValue()) 2360 ReqFeatures.push_back(F.getKey()); 2361 } 2362 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2363 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2364 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2365 } 2366 } 2367 2368 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2369 if (!CGM.getCodeGenOpts().SanitizeStats) 2370 return; 2371 2372 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2373 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2374 CGM.getSanStats().create(IRB, SSK); 2375 } 2376 2377 llvm::Value * 2378 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2379 llvm::Value *TrueCondition = nullptr; 2380 if (!RO.ParsedAttribute.Architecture.empty()) 2381 TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture); 2382 2383 if (!RO.ParsedAttribute.Features.empty()) { 2384 SmallVector<StringRef, 8> FeatureList; 2385 llvm::for_each(RO.ParsedAttribute.Features, 2386 [&FeatureList](const std::string &Feature) { 2387 FeatureList.push_back(StringRef{Feature}.substr(1)); 2388 }); 2389 llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList); 2390 TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp) 2391 : FeatureCmp; 2392 } 2393 return TrueCondition; 2394 } 2395 2396 void CodeGenFunction::EmitMultiVersionResolver( 2397 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2398 assert((getContext().getTargetInfo().getTriple().getArch() == 2399 llvm::Triple::x86 || 2400 getContext().getTargetInfo().getTriple().getArch() == 2401 llvm::Triple::x86_64) && 2402 "Only implemented for x86 targets"); 2403 2404 // Main function's basic block. 2405 llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver); 2406 Builder.SetInsertPoint(CurBlock); 2407 EmitX86CpuInit(); 2408 2409 llvm::Function *DefaultFunc = nullptr; 2410 for (const MultiVersionResolverOption &RO : Options) { 2411 Builder.SetInsertPoint(CurBlock); 2412 llvm::Value *TrueCondition = FormResolverCondition(RO); 2413 2414 if (!TrueCondition) { 2415 DefaultFunc = RO.Function; 2416 } else { 2417 llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver); 2418 llvm::IRBuilder<> RetBuilder(RetBlock); 2419 RetBuilder.CreateRet(RO.Function); 2420 CurBlock = createBasicBlock("ro_else", Resolver); 2421 Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock); 2422 } 2423 } 2424 2425 assert(DefaultFunc && "No default version?"); 2426 // Emit return from the 'else-ist' block. 2427 Builder.SetInsertPoint(CurBlock); 2428 Builder.CreateRet(DefaultFunc); 2429 } 2430 2431 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2432 if (CGDebugInfo *DI = getDebugInfo()) 2433 return DI->SourceLocToDebugLoc(Location); 2434 2435 return llvm::DebugLoc(); 2436 } 2437