1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/FPEnv.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
47 /// markers.
48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
49                                       const LangOptions &LangOpts) {
50   if (CGOpts.DisableLifetimeMarkers)
51     return false;
52 
53   // Sanitizers may use markers.
54   if (CGOpts.SanitizeAddressUseAfterScope ||
55       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
56       LangOpts.Sanitize.has(SanitizerKind::Memory))
57     return true;
58 
59   // For now, only in optimized builds.
60   return CGOpts.OptimizationLevel != 0;
61 }
62 
63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66               CGBuilderInserterTy(this)),
67       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70   if (!suppressNewContext)
71     CGM.getCXXABI().getMangleContext().startNewFunction();
72 
73   llvm::FastMathFlags FMF;
74   if (CGM.getLangOpts().FastMath)
75     FMF.setFast();
76   if (CGM.getLangOpts().FiniteMathOnly) {
77     FMF.setNoNaNs();
78     FMF.setNoInfs();
79   }
80   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81     FMF.setNoNaNs();
82   }
83   if (CGM.getCodeGenOpts().NoSignedZeros) {
84     FMF.setNoSignedZeros();
85   }
86   if (CGM.getCodeGenOpts().ReciprocalMath) {
87     FMF.setAllowReciprocal();
88   }
89   if (CGM.getCodeGenOpts().Reassociate) {
90     FMF.setAllowReassoc();
91   }
92   Builder.setFastMathFlags(FMF);
93   SetFPModel();
94 }
95 
96 CodeGenFunction::~CodeGenFunction() {
97   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
98 
99   // If there are any unclaimed block infos, go ahead and destroy them
100   // now.  This can happen if IR-gen gets clever and skips evaluating
101   // something.
102   if (FirstBlockInfo)
103     destroyBlockInfos(FirstBlockInfo);
104 
105   if (getLangOpts().OpenMP && CurFn)
106     CGM.getOpenMPRuntime().functionFinished(*this);
107 }
108 
109 // Map the LangOption for rounding mode into
110 // the corresponding enum in the IR.
111 static llvm::fp::RoundingMode ToConstrainedRoundingMD(
112   LangOptions::FPRoundingModeKind Kind) {
113 
114   switch (Kind) {
115   case LangOptions::FPR_ToNearest:  return llvm::fp::rmToNearest;
116   case LangOptions::FPR_Downward:   return llvm::fp::rmDownward;
117   case LangOptions::FPR_Upward:     return llvm::fp::rmUpward;
118   case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero;
119   case LangOptions::FPR_Dynamic:    return llvm::fp::rmDynamic;
120   }
121   llvm_unreachable("Unsupported FP RoundingMode");
122 }
123 
124 // Map the LangOption for exception behavior into
125 // the corresponding enum in the IR.
126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
127   LangOptions::FPExceptionModeKind Kind) {
128 
129   switch (Kind) {
130   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
131   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
132   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
133   }
134   llvm_unreachable("Unsupported FP Exception Behavior");
135 }
136 
137 void CodeGenFunction::SetFPModel() {
138   auto fpRoundingMode = ToConstrainedRoundingMD(
139                           getLangOpts().getFPRoundingMode());
140   auto fpExceptionBehavior = ToConstrainedExceptMD(
141                                getLangOpts().getFPExceptionMode());
142 
143   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
144       fpRoundingMode == llvm::fp::rmToNearest)
145     // Constrained intrinsics are not used.
146     ;
147   else {
148     Builder.setIsFPConstrained(true);
149     Builder.setDefaultConstrainedRounding(fpRoundingMode);
150     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
151   }
152 }
153 
154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
155                                                     LValueBaseInfo *BaseInfo,
156                                                     TBAAAccessInfo *TBAAInfo) {
157   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
158                                  /* forPointeeType= */ true);
159 }
160 
161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
162                                                    LValueBaseInfo *BaseInfo,
163                                                    TBAAAccessInfo *TBAAInfo,
164                                                    bool forPointeeType) {
165   if (TBAAInfo)
166     *TBAAInfo = CGM.getTBAAAccessInfo(T);
167 
168   // Honor alignment typedef attributes even on incomplete types.
169   // We also honor them straight for C++ class types, even as pointees;
170   // there's an expressivity gap here.
171   if (auto TT = T->getAs<TypedefType>()) {
172     if (auto Align = TT->getDecl()->getMaxAlignment()) {
173       if (BaseInfo)
174         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
175       return getContext().toCharUnitsFromBits(Align);
176     }
177   }
178 
179   if (BaseInfo)
180     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
181 
182   CharUnits Alignment;
183   if (T->isIncompleteType()) {
184     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
185   } else {
186     // For C++ class pointees, we don't know whether we're pointing at a
187     // base or a complete object, so we generally need to use the
188     // non-virtual alignment.
189     const CXXRecordDecl *RD;
190     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
191       Alignment = CGM.getClassPointerAlignment(RD);
192     } else {
193       Alignment = getContext().getTypeAlignInChars(T);
194       if (T.getQualifiers().hasUnaligned())
195         Alignment = CharUnits::One();
196     }
197 
198     // Cap to the global maximum type alignment unless the alignment
199     // was somehow explicit on the type.
200     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
201       if (Alignment.getQuantity() > MaxAlign &&
202           !getContext().isAlignmentRequired(T))
203         Alignment = CharUnits::fromQuantity(MaxAlign);
204     }
205   }
206   return Alignment;
207 }
208 
209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
210   LValueBaseInfo BaseInfo;
211   TBAAAccessInfo TBAAInfo;
212   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
213   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
214                           TBAAInfo);
215 }
216 
217 /// Given a value of type T* that may not be to a complete object,
218 /// construct an l-value with the natural pointee alignment of T.
219 LValue
220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
221   LValueBaseInfo BaseInfo;
222   TBAAAccessInfo TBAAInfo;
223   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
224                                             /* forPointeeType= */ true);
225   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
226 }
227 
228 
229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
230   return CGM.getTypes().ConvertTypeForMem(T);
231 }
232 
233 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
234   return CGM.getTypes().ConvertType(T);
235 }
236 
237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
238   type = type.getCanonicalType();
239   while (true) {
240     switch (type->getTypeClass()) {
241 #define TYPE(name, parent)
242 #define ABSTRACT_TYPE(name, parent)
243 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
244 #define DEPENDENT_TYPE(name, parent) case Type::name:
245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
246 #include "clang/AST/TypeNodes.inc"
247       llvm_unreachable("non-canonical or dependent type in IR-generation");
248 
249     case Type::Auto:
250     case Type::DeducedTemplateSpecialization:
251       llvm_unreachable("undeduced type in IR-generation");
252 
253     // Various scalar types.
254     case Type::Builtin:
255     case Type::Pointer:
256     case Type::BlockPointer:
257     case Type::LValueReference:
258     case Type::RValueReference:
259     case Type::MemberPointer:
260     case Type::Vector:
261     case Type::ExtVector:
262     case Type::FunctionProto:
263     case Type::FunctionNoProto:
264     case Type::Enum:
265     case Type::ObjCObjectPointer:
266     case Type::Pipe:
267       return TEK_Scalar;
268 
269     // Complexes.
270     case Type::Complex:
271       return TEK_Complex;
272 
273     // Arrays, records, and Objective-C objects.
274     case Type::ConstantArray:
275     case Type::IncompleteArray:
276     case Type::VariableArray:
277     case Type::Record:
278     case Type::ObjCObject:
279     case Type::ObjCInterface:
280       return TEK_Aggregate;
281 
282     // We operate on atomic values according to their underlying type.
283     case Type::Atomic:
284       type = cast<AtomicType>(type)->getValueType();
285       continue;
286     }
287     llvm_unreachable("unknown type kind!");
288   }
289 }
290 
291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
292   // For cleanliness, we try to avoid emitting the return block for
293   // simple cases.
294   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
295 
296   if (CurBB) {
297     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
298 
299     // We have a valid insert point, reuse it if it is empty or there are no
300     // explicit jumps to the return block.
301     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
302       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
303       delete ReturnBlock.getBlock();
304       ReturnBlock = JumpDest();
305     } else
306       EmitBlock(ReturnBlock.getBlock());
307     return llvm::DebugLoc();
308   }
309 
310   // Otherwise, if the return block is the target of a single direct
311   // branch then we can just put the code in that block instead. This
312   // cleans up functions which started with a unified return block.
313   if (ReturnBlock.getBlock()->hasOneUse()) {
314     llvm::BranchInst *BI =
315       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
316     if (BI && BI->isUnconditional() &&
317         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
318       // Record/return the DebugLoc of the simple 'return' expression to be used
319       // later by the actual 'ret' instruction.
320       llvm::DebugLoc Loc = BI->getDebugLoc();
321       Builder.SetInsertPoint(BI->getParent());
322       BI->eraseFromParent();
323       delete ReturnBlock.getBlock();
324       ReturnBlock = JumpDest();
325       return Loc;
326     }
327   }
328 
329   // FIXME: We are at an unreachable point, there is no reason to emit the block
330   // unless it has uses. However, we still need a place to put the debug
331   // region.end for now.
332 
333   EmitBlock(ReturnBlock.getBlock());
334   return llvm::DebugLoc();
335 }
336 
337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
338   if (!BB) return;
339   if (!BB->use_empty())
340     return CGF.CurFn->getBasicBlockList().push_back(BB);
341   delete BB;
342 }
343 
344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
345   assert(BreakContinueStack.empty() &&
346          "mismatched push/pop in break/continue stack!");
347 
348   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
349     && NumSimpleReturnExprs == NumReturnExprs
350     && ReturnBlock.getBlock()->use_empty();
351   // Usually the return expression is evaluated before the cleanup
352   // code.  If the function contains only a simple return statement,
353   // such as a constant, the location before the cleanup code becomes
354   // the last useful breakpoint in the function, because the simple
355   // return expression will be evaluated after the cleanup code. To be
356   // safe, set the debug location for cleanup code to the location of
357   // the return statement.  Otherwise the cleanup code should be at the
358   // end of the function's lexical scope.
359   //
360   // If there are multiple branches to the return block, the branch
361   // instructions will get the location of the return statements and
362   // all will be fine.
363   if (CGDebugInfo *DI = getDebugInfo()) {
364     if (OnlySimpleReturnStmts)
365       DI->EmitLocation(Builder, LastStopPoint);
366     else
367       DI->EmitLocation(Builder, EndLoc);
368   }
369 
370   // Pop any cleanups that might have been associated with the
371   // parameters.  Do this in whatever block we're currently in; it's
372   // important to do this before we enter the return block or return
373   // edges will be *really* confused.
374   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
375   bool HasOnlyLifetimeMarkers =
376       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
377   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
378   if (HasCleanups) {
379     // Make sure the line table doesn't jump back into the body for
380     // the ret after it's been at EndLoc.
381     Optional<ApplyDebugLocation> AL;
382     if (CGDebugInfo *DI = getDebugInfo()) {
383       if (OnlySimpleReturnStmts)
384         DI->EmitLocation(Builder, EndLoc);
385       else
386         // We may not have a valid end location. Try to apply it anyway, and
387         // fall back to an artificial location if needed.
388         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
389     }
390 
391     PopCleanupBlocks(PrologueCleanupDepth);
392   }
393 
394   // Emit function epilog (to return).
395   llvm::DebugLoc Loc = EmitReturnBlock();
396 
397   if (ShouldInstrumentFunction()) {
398     if (CGM.getCodeGenOpts().InstrumentFunctions)
399       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
400     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
401       CurFn->addFnAttr("instrument-function-exit-inlined",
402                        "__cyg_profile_func_exit");
403   }
404 
405   // Emit debug descriptor for function end.
406   if (CGDebugInfo *DI = getDebugInfo())
407     DI->EmitFunctionEnd(Builder, CurFn);
408 
409   // Reset the debug location to that of the simple 'return' expression, if any
410   // rather than that of the end of the function's scope '}'.
411   ApplyDebugLocation AL(*this, Loc);
412   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
413   EmitEndEHSpec(CurCodeDecl);
414 
415   assert(EHStack.empty() &&
416          "did not remove all scopes from cleanup stack!");
417 
418   // If someone did an indirect goto, emit the indirect goto block at the end of
419   // the function.
420   if (IndirectBranch) {
421     EmitBlock(IndirectBranch->getParent());
422     Builder.ClearInsertionPoint();
423   }
424 
425   // If some of our locals escaped, insert a call to llvm.localescape in the
426   // entry block.
427   if (!EscapedLocals.empty()) {
428     // Invert the map from local to index into a simple vector. There should be
429     // no holes.
430     SmallVector<llvm::Value *, 4> EscapeArgs;
431     EscapeArgs.resize(EscapedLocals.size());
432     for (auto &Pair : EscapedLocals)
433       EscapeArgs[Pair.second] = Pair.first;
434     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
435         &CGM.getModule(), llvm::Intrinsic::localescape);
436     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
437   }
438 
439   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
440   llvm::Instruction *Ptr = AllocaInsertPt;
441   AllocaInsertPt = nullptr;
442   Ptr->eraseFromParent();
443 
444   // If someone took the address of a label but never did an indirect goto, we
445   // made a zero entry PHI node, which is illegal, zap it now.
446   if (IndirectBranch) {
447     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
448     if (PN->getNumIncomingValues() == 0) {
449       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
450       PN->eraseFromParent();
451     }
452   }
453 
454   EmitIfUsed(*this, EHResumeBlock);
455   EmitIfUsed(*this, TerminateLandingPad);
456   EmitIfUsed(*this, TerminateHandler);
457   EmitIfUsed(*this, UnreachableBlock);
458 
459   for (const auto &FuncletAndParent : TerminateFunclets)
460     EmitIfUsed(*this, FuncletAndParent.second);
461 
462   if (CGM.getCodeGenOpts().EmitDeclMetadata)
463     EmitDeclMetadata();
464 
465   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
466            I = DeferredReplacements.begin(),
467            E = DeferredReplacements.end();
468        I != E; ++I) {
469     I->first->replaceAllUsesWith(I->second);
470     I->first->eraseFromParent();
471   }
472 
473   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
474   // PHIs if the current function is a coroutine. We don't do it for all
475   // functions as it may result in slight increase in numbers of instructions
476   // if compiled with no optimizations. We do it for coroutine as the lifetime
477   // of CleanupDestSlot alloca make correct coroutine frame building very
478   // difficult.
479   if (NormalCleanupDest.isValid() && isCoroutine()) {
480     llvm::DominatorTree DT(*CurFn);
481     llvm::PromoteMemToReg(
482         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
483     NormalCleanupDest = Address::invalid();
484   }
485 
486   // Scan function arguments for vector width.
487   for (llvm::Argument &A : CurFn->args())
488     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
489       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
490                                    VT->getPrimitiveSizeInBits().getFixedSize());
491 
492   // Update vector width based on return type.
493   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
494     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
495                                   VT->getPrimitiveSizeInBits().getFixedSize());
496 
497   // Add the required-vector-width attribute. This contains the max width from:
498   // 1. min-vector-width attribute used in the source program.
499   // 2. Any builtins used that have a vector width specified.
500   // 3. Values passed in and out of inline assembly.
501   // 4. Width of vector arguments and return types for this function.
502   // 5. Width of vector aguments and return types for functions called by this
503   //    function.
504   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 /// ShouldXRayInstrument - Return true if the current function should be
533 /// instrumented with XRay nop sleds.
534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536 }
537 
538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Custom);
545 }
546 
547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551               XRayInstrKind::Typed);
552 }
553 
554 llvm::Constant *
555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                             llvm::Constant *Addr) {
557   // Addresses stored in prologue data can't require run-time fixups and must
558   // be PC-relative. Run-time fixups are undesirable because they necessitate
559   // writable text segments, which are unsafe. And absolute addresses are
560   // undesirable because they break PIE mode.
561 
562   // Add a layer of indirection through a private global. Taking its address
563   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                       /*isConstant=*/true,
566                                       llvm::GlobalValue::PrivateLinkage, Addr);
567 
568   // Create a PC-relative address.
569   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572   return (IntPtrTy == Int32Ty)
573              ? PCRelAsInt
574              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575 }
576 
577 llvm::Value *
578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                           llvm::Value *EncodedAddr) {
580   // Reconstruct the address of the global.
581   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585 
586   // Load the original pointer through the global.
587   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                             "decoded_addr");
589 }
590 
591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                llvm::Function *Fn)
593 {
594   if (!FD->hasAttr<OpenCLKernelAttr>())
595     return;
596 
597   llvm::LLVMContext &Context = getLLVMContext();
598 
599   CGM.GenOpenCLArgMetadata(Fn, FD, this);
600 
601   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602     QualType HintQTy = A->getTypeHint();
603     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604     bool IsSignedInteger =
605         HintQTy->isSignedIntegerType() ||
606         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607     llvm::Metadata *AttrMDArgs[] = {
608         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609             CGM.getTypes().ConvertType(A->getTypeHint()))),
610         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611             llvm::IntegerType::get(Context, 32),
612             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625     llvm::Metadata *AttrMDArgs[] = {
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 
632   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636     Fn->setMetadata("intel_reqd_sub_group_size",
637                     llvm::MDNode::get(Context, AttrMDArgs));
638   }
639 }
640 
641 /// Determine whether the function F ends with a return stmt.
642 static bool endsWithReturn(const Decl* F) {
643   const Stmt *Body = nullptr;
644   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645     Body = FD->getBody();
646   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647     Body = OMD->getBody();
648 
649   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650     auto LastStmt = CS->body_rbegin();
651     if (LastStmt != CS->body_rend())
652       return isa<ReturnStmt>(*LastStmt);
653   }
654   return false;
655 }
656 
657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658   if (SanOpts.has(SanitizerKind::Thread)) {
659     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661   }
662 }
663 
664 /// Check if the return value of this function requires sanitization.
665 bool CodeGenFunction::requiresReturnValueCheck() const {
666   return requiresReturnValueNullabilityCheck() ||
667          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669 }
670 
671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676     return false;
677 
678   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679     return false;
680 
681   if (MD->getNumParams() == 2) {
682     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683     if (!PT || !PT->isVoidPointerType() ||
684         !PT->getPointeeType().isConstQualified())
685       return false;
686   }
687 
688   return true;
689 }
690 
691 /// Return the UBSan prologue signature for \p FD if one is available.
692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                             const FunctionDecl *FD) {
694   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695     if (!MD->isStatic())
696       return nullptr;
697   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698 }
699 
700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                     llvm::Function *Fn,
702                                     const CGFunctionInfo &FnInfo,
703                                     const FunctionArgList &Args,
704                                     SourceLocation Loc,
705                                     SourceLocation StartLoc) {
706   assert(!CurFn &&
707          "Do not use a CodeGenFunction object for more than one function");
708 
709   const Decl *D = GD.getDecl();
710 
711   DidCallStackSave = false;
712   CurCodeDecl = D;
713   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
714     if (FD->usesSEHTry())
715       CurSEHParent = FD;
716   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717   FnRetTy = RetTy;
718   CurFn = Fn;
719   CurFnInfo = &FnInfo;
720   assert(CurFn->isDeclaration() && "Function already has body?");
721 
722   // If this function has been blacklisted for any of the enabled sanitizers,
723   // disable the sanitizer for the function.
724   do {
725 #define SANITIZER(NAME, ID)                                                    \
726   if (SanOpts.empty())                                                         \
727     break;                                                                     \
728   if (SanOpts.has(SanitizerKind::ID))                                          \
729     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
730       SanOpts.set(SanitizerKind::ID, false);
731 
732 #include "clang/Basic/Sanitizers.def"
733 #undef SANITIZER
734   } while (0);
735 
736   if (D) {
737     // Apply the no_sanitize* attributes to SanOpts.
738     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739       SanitizerMask mask = Attr->getMask();
740       SanOpts.Mask &= ~mask;
741       if (mask & SanitizerKind::Address)
742         SanOpts.set(SanitizerKind::KernelAddress, false);
743       if (mask & SanitizerKind::KernelAddress)
744         SanOpts.set(SanitizerKind::Address, false);
745       if (mask & SanitizerKind::HWAddress)
746         SanOpts.set(SanitizerKind::KernelHWAddress, false);
747       if (mask & SanitizerKind::KernelHWAddress)
748         SanOpts.set(SanitizerKind::HWAddress, false);
749     }
750   }
751 
752   // Apply sanitizer attributes to the function.
753   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
754     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
755   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
756     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
757   if (SanOpts.has(SanitizerKind::MemTag))
758     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
759   if (SanOpts.has(SanitizerKind::Thread))
760     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
761   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
762     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
763   if (SanOpts.has(SanitizerKind::SafeStack))
764     Fn->addFnAttr(llvm::Attribute::SafeStack);
765   if (SanOpts.has(SanitizerKind::ShadowCallStack))
766     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
767 
768   // Apply fuzzing attribute to the function.
769   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
770     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
771 
772   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
773   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
774   if (SanOpts.has(SanitizerKind::Thread)) {
775     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
776       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
777       if (OMD->getMethodFamily() == OMF_dealloc ||
778           OMD->getMethodFamily() == OMF_initialize ||
779           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
780         markAsIgnoreThreadCheckingAtRuntime(Fn);
781       }
782     }
783   }
784 
785   // Ignore unrelated casts in STL allocate() since the allocator must cast
786   // from void* to T* before object initialization completes. Don't match on the
787   // namespace because not all allocators are in std::
788   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
789     if (matchesStlAllocatorFn(D, getContext()))
790       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
791   }
792 
793   // Ignore null checks in coroutine functions since the coroutines passes
794   // are not aware of how to move the extra UBSan instructions across the split
795   // coroutine boundaries.
796   if (D && SanOpts.has(SanitizerKind::Null))
797     if (const auto *FD = dyn_cast<FunctionDecl>(D))
798       if (FD->getBody() &&
799           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
800         SanOpts.Mask &= ~SanitizerKind::Null;
801 
802   if (D) {
803     // Apply xray attributes to the function (as a string, for now)
804     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
805       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
806               XRayInstrKind::FunctionEntry) ||
807           CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
808               XRayInstrKind::FunctionExit)) {
809         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
810           Fn->addFnAttr("function-instrument", "xray-always");
811         if (XRayAttr->neverXRayInstrument())
812           Fn->addFnAttr("function-instrument", "xray-never");
813         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
814           if (ShouldXRayInstrumentFunction())
815             Fn->addFnAttr("xray-log-args",
816                           llvm::utostr(LogArgs->getArgumentCount()));
817         if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
818                 XRayInstrKind::FunctionExit)) {
819           Fn->addFnAttr("xray-skip-exit");
820         }
821         if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
822                 XRayInstrKind::FunctionEntry)) {
823           Fn->addFnAttr("xray-skip-entry");
824         }
825       }
826     } else {
827       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
828         Fn->addFnAttr(
829             "xray-instruction-threshold",
830             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
831       if (CGM.getCodeGenOpts().XRayIgnoreLoops) {
832         Fn->addFnAttr("xray-ignore-loops");
833       }
834     }
835 
836     unsigned Count, Offset;
837     if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) {
838       Count = Attr->getCount();
839       Offset = Attr->getOffset();
840     } else {
841       Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
842       Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
843     }
844     if (Count && Offset <= Count) {
845       Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
846       if (Offset)
847         Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
848     }
849   }
850 
851   // Add no-jump-tables value.
852   Fn->addFnAttr("no-jump-tables",
853                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
854 
855   // Add no-inline-line-tables value.
856   if (CGM.getCodeGenOpts().NoInlineLineTables)
857     Fn->addFnAttr("no-inline-line-tables");
858 
859   // Add profile-sample-accurate value.
860   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
861     Fn->addFnAttr("profile-sample-accurate");
862 
863   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
864     Fn->addFnAttr("cfi-canonical-jump-table");
865 
866   if (getLangOpts().OpenCL) {
867     // Add metadata for a kernel function.
868     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
869       EmitOpenCLKernelMetadata(FD, Fn);
870   }
871 
872   // If we are checking function types, emit a function type signature as
873   // prologue data.
874   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
875     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
876       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
877         // Remove any (C++17) exception specifications, to allow calling e.g. a
878         // noexcept function through a non-noexcept pointer.
879         auto ProtoTy =
880           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
881                                                         EST_None);
882         llvm::Constant *FTRTTIConst =
883             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
884         llvm::Constant *FTRTTIConstEncoded =
885             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
886         llvm::Constant *PrologueStructElems[] = {PrologueSig,
887                                                  FTRTTIConstEncoded};
888         llvm::Constant *PrologueStructConst =
889             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
890         Fn->setPrologueData(PrologueStructConst);
891       }
892     }
893   }
894 
895   // If we're checking nullability, we need to know whether we can check the
896   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
897   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
898     auto Nullability = FnRetTy->getNullability(getContext());
899     if (Nullability && *Nullability == NullabilityKind::NonNull) {
900       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
901             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
902         RetValNullabilityPrecondition =
903             llvm::ConstantInt::getTrue(getLLVMContext());
904     }
905   }
906 
907   // If we're in C++ mode and the function name is "main", it is guaranteed
908   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
909   // used within a program").
910   if (getLangOpts().CPlusPlus)
911     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
912       if (FD->isMain())
913         Fn->addFnAttr(llvm::Attribute::NoRecurse);
914 
915   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
916     if (FD->usesFPIntrin())
917       Fn->addFnAttr(llvm::Attribute::StrictFP);
918 
919   // If a custom alignment is used, force realigning to this alignment on
920   // any main function which certainly will need it.
921   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
922     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
923         CGM.getCodeGenOpts().StackAlignment)
924       Fn->addFnAttr("stackrealign");
925 
926   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
927 
928   // Create a marker to make it easy to insert allocas into the entryblock
929   // later.  Don't create this with the builder, because we don't want it
930   // folded.
931   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
932   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
933 
934   ReturnBlock = getJumpDestInCurrentScope("return");
935 
936   Builder.SetInsertPoint(EntryBB);
937 
938   // If we're checking the return value, allocate space for a pointer to a
939   // precise source location of the checked return statement.
940   if (requiresReturnValueCheck()) {
941     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
942     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
943   }
944 
945   // Emit subprogram debug descriptor.
946   if (CGDebugInfo *DI = getDebugInfo()) {
947     // Reconstruct the type from the argument list so that implicit parameters,
948     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
949     // convention.
950     CallingConv CC = CallingConv::CC_C;
951     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
952       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
953         CC = SrcFnTy->getCallConv();
954     SmallVector<QualType, 16> ArgTypes;
955     for (const VarDecl *VD : Args)
956       ArgTypes.push_back(VD->getType());
957     QualType FnType = getContext().getFunctionType(
958         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
959     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
960                           Builder);
961   }
962 
963   if (ShouldInstrumentFunction()) {
964     if (CGM.getCodeGenOpts().InstrumentFunctions)
965       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
966     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
967       CurFn->addFnAttr("instrument-function-entry-inlined",
968                        "__cyg_profile_func_enter");
969     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
970       CurFn->addFnAttr("instrument-function-entry-inlined",
971                        "__cyg_profile_func_enter_bare");
972   }
973 
974   // Since emitting the mcount call here impacts optimizations such as function
975   // inlining, we just add an attribute to insert a mcount call in backend.
976   // The attribute "counting-function" is set to mcount function name which is
977   // architecture dependent.
978   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
979     // Calls to fentry/mcount should not be generated if function has
980     // the no_instrument_function attribute.
981     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
982       if (CGM.getCodeGenOpts().CallFEntry)
983         Fn->addFnAttr("fentry-call", "true");
984       else {
985         Fn->addFnAttr("instrument-function-entry-inlined",
986                       getTarget().getMCountName());
987       }
988       if (CGM.getCodeGenOpts().MNopMCount) {
989         if (!CGM.getCodeGenOpts().CallFEntry)
990           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
991             << "-mnop-mcount" << "-mfentry";
992         Fn->addFnAttr("mnop-mcount");
993       }
994 
995       if (CGM.getCodeGenOpts().RecordMCount) {
996         if (!CGM.getCodeGenOpts().CallFEntry)
997           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
998             << "-mrecord-mcount" << "-mfentry";
999         Fn->addFnAttr("mrecord-mcount");
1000       }
1001     }
1002   }
1003 
1004   if (CGM.getCodeGenOpts().PackedStack) {
1005     if (getContext().getTargetInfo().getTriple().getArch() !=
1006         llvm::Triple::systemz)
1007       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1008         << "-mpacked-stack";
1009     Fn->addFnAttr("packed-stack");
1010   }
1011 
1012   if (RetTy->isVoidType()) {
1013     // Void type; nothing to return.
1014     ReturnValue = Address::invalid();
1015 
1016     // Count the implicit return.
1017     if (!endsWithReturn(D))
1018       ++NumReturnExprs;
1019   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1020     // Indirect return; emit returned value directly into sret slot.
1021     // This reduces code size, and affects correctness in C++.
1022     auto AI = CurFn->arg_begin();
1023     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1024       ++AI;
1025     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1026     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1027       ReturnValuePointer =
1028           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1029       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1030                               ReturnValue.getPointer(), Int8PtrTy),
1031                           ReturnValuePointer);
1032     }
1033   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1034              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1035     // Load the sret pointer from the argument struct and return into that.
1036     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1037     llvm::Function::arg_iterator EI = CurFn->arg_end();
1038     --EI;
1039     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1040     ReturnValuePointer = Address(Addr, getPointerAlign());
1041     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1042     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1043   } else {
1044     ReturnValue = CreateIRTemp(RetTy, "retval");
1045 
1046     // Tell the epilog emitter to autorelease the result.  We do this
1047     // now so that various specialized functions can suppress it
1048     // during their IR-generation.
1049     if (getLangOpts().ObjCAutoRefCount &&
1050         !CurFnInfo->isReturnsRetained() &&
1051         RetTy->isObjCRetainableType())
1052       AutoreleaseResult = true;
1053   }
1054 
1055   EmitStartEHSpec(CurCodeDecl);
1056 
1057   PrologueCleanupDepth = EHStack.stable_begin();
1058 
1059   // Emit OpenMP specific initialization of the device functions.
1060   if (getLangOpts().OpenMP && CurCodeDecl)
1061     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1062 
1063   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1064 
1065   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1066     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1067     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1068     if (MD->getParent()->isLambda() &&
1069         MD->getOverloadedOperator() == OO_Call) {
1070       // We're in a lambda; figure out the captures.
1071       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1072                                         LambdaThisCaptureField);
1073       if (LambdaThisCaptureField) {
1074         // If the lambda captures the object referred to by '*this' - either by
1075         // value or by reference, make sure CXXThisValue points to the correct
1076         // object.
1077 
1078         // Get the lvalue for the field (which is a copy of the enclosing object
1079         // or contains the address of the enclosing object).
1080         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1081         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1082           // If the enclosing object was captured by value, just use its address.
1083           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1084         } else {
1085           // Load the lvalue pointed to by the field, since '*this' was captured
1086           // by reference.
1087           CXXThisValue =
1088               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1089         }
1090       }
1091       for (auto *FD : MD->getParent()->fields()) {
1092         if (FD->hasCapturedVLAType()) {
1093           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1094                                            SourceLocation()).getScalarVal();
1095           auto VAT = FD->getCapturedVLAType();
1096           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1097         }
1098       }
1099     } else {
1100       // Not in a lambda; just use 'this' from the method.
1101       // FIXME: Should we generate a new load for each use of 'this'?  The
1102       // fast register allocator would be happier...
1103       CXXThisValue = CXXABIThisValue;
1104     }
1105 
1106     // Check the 'this' pointer once per function, if it's available.
1107     if (CXXABIThisValue) {
1108       SanitizerSet SkippedChecks;
1109       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1110       QualType ThisTy = MD->getThisType();
1111 
1112       // If this is the call operator of a lambda with no capture-default, it
1113       // may have a static invoker function, which may call this operator with
1114       // a null 'this' pointer.
1115       if (isLambdaCallOperator(MD) &&
1116           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1117         SkippedChecks.set(SanitizerKind::Null, true);
1118 
1119       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1120                                                 : TCK_MemberCall,
1121                     Loc, CXXABIThisValue, ThisTy,
1122                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1123                     SkippedChecks);
1124     }
1125   }
1126 
1127   // If any of the arguments have a variably modified type, make sure to
1128   // emit the type size.
1129   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1130        i != e; ++i) {
1131     const VarDecl *VD = *i;
1132 
1133     // Dig out the type as written from ParmVarDecls; it's unclear whether
1134     // the standard (C99 6.9.1p10) requires this, but we're following the
1135     // precedent set by gcc.
1136     QualType Ty;
1137     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1138       Ty = PVD->getOriginalType();
1139     else
1140       Ty = VD->getType();
1141 
1142     if (Ty->isVariablyModifiedType())
1143       EmitVariablyModifiedType(Ty);
1144   }
1145   // Emit a location at the end of the prologue.
1146   if (CGDebugInfo *DI = getDebugInfo())
1147     DI->EmitLocation(Builder, StartLoc);
1148 
1149   // TODO: Do we need to handle this in two places like we do with
1150   // target-features/target-cpu?
1151   if (CurFuncDecl)
1152     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1153       LargestVectorWidth = VecWidth->getVectorWidth();
1154 }
1155 
1156 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1157   incrementProfileCounter(Body);
1158   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1159     EmitCompoundStmtWithoutScope(*S);
1160   else
1161     EmitStmt(Body);
1162 }
1163 
1164 /// When instrumenting to collect profile data, the counts for some blocks
1165 /// such as switch cases need to not include the fall-through counts, so
1166 /// emit a branch around the instrumentation code. When not instrumenting,
1167 /// this just calls EmitBlock().
1168 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1169                                                const Stmt *S) {
1170   llvm::BasicBlock *SkipCountBB = nullptr;
1171   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1172     // When instrumenting for profiling, the fallthrough to certain
1173     // statements needs to skip over the instrumentation code so that we
1174     // get an accurate count.
1175     SkipCountBB = createBasicBlock("skipcount");
1176     EmitBranch(SkipCountBB);
1177   }
1178   EmitBlock(BB);
1179   uint64_t CurrentCount = getCurrentProfileCount();
1180   incrementProfileCounter(S);
1181   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1182   if (SkipCountBB)
1183     EmitBlock(SkipCountBB);
1184 }
1185 
1186 /// Tries to mark the given function nounwind based on the
1187 /// non-existence of any throwing calls within it.  We believe this is
1188 /// lightweight enough to do at -O0.
1189 static void TryMarkNoThrow(llvm::Function *F) {
1190   // LLVM treats 'nounwind' on a function as part of the type, so we
1191   // can't do this on functions that can be overwritten.
1192   if (F->isInterposable()) return;
1193 
1194   for (llvm::BasicBlock &BB : *F)
1195     for (llvm::Instruction &I : BB)
1196       if (I.mayThrow())
1197         return;
1198 
1199   F->setDoesNotThrow();
1200 }
1201 
1202 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1203                                                FunctionArgList &Args) {
1204   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1205   QualType ResTy = FD->getReturnType();
1206 
1207   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1208   if (MD && MD->isInstance()) {
1209     if (CGM.getCXXABI().HasThisReturn(GD))
1210       ResTy = MD->getThisType();
1211     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1212       ResTy = CGM.getContext().VoidPtrTy;
1213     CGM.getCXXABI().buildThisParam(*this, Args);
1214   }
1215 
1216   // The base version of an inheriting constructor whose constructed base is a
1217   // virtual base is not passed any arguments (because it doesn't actually call
1218   // the inherited constructor).
1219   bool PassedParams = true;
1220   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1221     if (auto Inherited = CD->getInheritedConstructor())
1222       PassedParams =
1223           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1224 
1225   if (PassedParams) {
1226     for (auto *Param : FD->parameters()) {
1227       Args.push_back(Param);
1228       if (!Param->hasAttr<PassObjectSizeAttr>())
1229         continue;
1230 
1231       auto *Implicit = ImplicitParamDecl::Create(
1232           getContext(), Param->getDeclContext(), Param->getLocation(),
1233           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1234       SizeArguments[Param] = Implicit;
1235       Args.push_back(Implicit);
1236     }
1237   }
1238 
1239   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1240     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1241 
1242   return ResTy;
1243 }
1244 
1245 static bool
1246 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1247                                              const ASTContext &Context) {
1248   QualType T = FD->getReturnType();
1249   // Avoid the optimization for functions that return a record type with a
1250   // trivial destructor or another trivially copyable type.
1251   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1252     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1253       return !ClassDecl->hasTrivialDestructor();
1254   }
1255   return !T.isTriviallyCopyableType(Context);
1256 }
1257 
1258 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1259                                    const CGFunctionInfo &FnInfo) {
1260   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1261   CurGD = GD;
1262 
1263   FunctionArgList Args;
1264   QualType ResTy = BuildFunctionArgList(GD, Args);
1265 
1266   // Check if we should generate debug info for this function.
1267   if (FD->hasAttr<NoDebugAttr>())
1268     DebugInfo = nullptr; // disable debug info indefinitely for this function
1269 
1270   // The function might not have a body if we're generating thunks for a
1271   // function declaration.
1272   SourceRange BodyRange;
1273   if (Stmt *Body = FD->getBody())
1274     BodyRange = Body->getSourceRange();
1275   else
1276     BodyRange = FD->getLocation();
1277   CurEHLocation = BodyRange.getEnd();
1278 
1279   // Use the location of the start of the function to determine where
1280   // the function definition is located. By default use the location
1281   // of the declaration as the location for the subprogram. A function
1282   // may lack a declaration in the source code if it is created by code
1283   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1284   SourceLocation Loc = FD->getLocation();
1285 
1286   // If this is a function specialization then use the pattern body
1287   // as the location for the function.
1288   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1289     if (SpecDecl->hasBody(SpecDecl))
1290       Loc = SpecDecl->getLocation();
1291 
1292   Stmt *Body = FD->getBody();
1293 
1294   // Initialize helper which will detect jumps which can cause invalid lifetime
1295   // markers.
1296   if (Body && ShouldEmitLifetimeMarkers)
1297     Bypasses.Init(Body);
1298 
1299   // Emit the standard function prologue.
1300   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1301 
1302   // Generate the body of the function.
1303   PGO.assignRegionCounters(GD, CurFn);
1304   if (isa<CXXDestructorDecl>(FD))
1305     EmitDestructorBody(Args);
1306   else if (isa<CXXConstructorDecl>(FD))
1307     EmitConstructorBody(Args);
1308   else if (getLangOpts().CUDA &&
1309            !getLangOpts().CUDAIsDevice &&
1310            FD->hasAttr<CUDAGlobalAttr>())
1311     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1312   else if (isa<CXXMethodDecl>(FD) &&
1313            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1314     // The lambda static invoker function is special, because it forwards or
1315     // clones the body of the function call operator (but is actually static).
1316     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1317   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1318              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1319               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1320     // Implicit copy-assignment gets the same special treatment as implicit
1321     // copy-constructors.
1322     emitImplicitAssignmentOperatorBody(Args);
1323   } else if (Body) {
1324     EmitFunctionBody(Body);
1325   } else
1326     llvm_unreachable("no definition for emitted function");
1327 
1328   // C++11 [stmt.return]p2:
1329   //   Flowing off the end of a function [...] results in undefined behavior in
1330   //   a value-returning function.
1331   // C11 6.9.1p12:
1332   //   If the '}' that terminates a function is reached, and the value of the
1333   //   function call is used by the caller, the behavior is undefined.
1334   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1335       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1336     bool ShouldEmitUnreachable =
1337         CGM.getCodeGenOpts().StrictReturn ||
1338         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1339     if (SanOpts.has(SanitizerKind::Return)) {
1340       SanitizerScope SanScope(this);
1341       llvm::Value *IsFalse = Builder.getFalse();
1342       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1343                 SanitizerHandler::MissingReturn,
1344                 EmitCheckSourceLocation(FD->getLocation()), None);
1345     } else if (ShouldEmitUnreachable) {
1346       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1347         EmitTrapCall(llvm::Intrinsic::trap);
1348     }
1349     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1350       Builder.CreateUnreachable();
1351       Builder.ClearInsertionPoint();
1352     }
1353   }
1354 
1355   // Emit the standard function epilogue.
1356   FinishFunction(BodyRange.getEnd());
1357 
1358   // If we haven't marked the function nothrow through other means, do
1359   // a quick pass now to see if we can.
1360   if (!CurFn->doesNotThrow())
1361     TryMarkNoThrow(CurFn);
1362 }
1363 
1364 /// ContainsLabel - Return true if the statement contains a label in it.  If
1365 /// this statement is not executed normally, it not containing a label means
1366 /// that we can just remove the code.
1367 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1368   // Null statement, not a label!
1369   if (!S) return false;
1370 
1371   // If this is a label, we have to emit the code, consider something like:
1372   // if (0) {  ...  foo:  bar(); }  goto foo;
1373   //
1374   // TODO: If anyone cared, we could track __label__'s, since we know that you
1375   // can't jump to one from outside their declared region.
1376   if (isa<LabelStmt>(S))
1377     return true;
1378 
1379   // If this is a case/default statement, and we haven't seen a switch, we have
1380   // to emit the code.
1381   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1382     return true;
1383 
1384   // If this is a switch statement, we want to ignore cases below it.
1385   if (isa<SwitchStmt>(S))
1386     IgnoreCaseStmts = true;
1387 
1388   // Scan subexpressions for verboten labels.
1389   for (const Stmt *SubStmt : S->children())
1390     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1391       return true;
1392 
1393   return false;
1394 }
1395 
1396 /// containsBreak - Return true if the statement contains a break out of it.
1397 /// If the statement (recursively) contains a switch or loop with a break
1398 /// inside of it, this is fine.
1399 bool CodeGenFunction::containsBreak(const Stmt *S) {
1400   // Null statement, not a label!
1401   if (!S) return false;
1402 
1403   // If this is a switch or loop that defines its own break scope, then we can
1404   // include it and anything inside of it.
1405   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1406       isa<ForStmt>(S))
1407     return false;
1408 
1409   if (isa<BreakStmt>(S))
1410     return true;
1411 
1412   // Scan subexpressions for verboten breaks.
1413   for (const Stmt *SubStmt : S->children())
1414     if (containsBreak(SubStmt))
1415       return true;
1416 
1417   return false;
1418 }
1419 
1420 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1421   if (!S) return false;
1422 
1423   // Some statement kinds add a scope and thus never add a decl to the current
1424   // scope. Note, this list is longer than the list of statements that might
1425   // have an unscoped decl nested within them, but this way is conservatively
1426   // correct even if more statement kinds are added.
1427   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1428       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1429       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1430       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1431     return false;
1432 
1433   if (isa<DeclStmt>(S))
1434     return true;
1435 
1436   for (const Stmt *SubStmt : S->children())
1437     if (mightAddDeclToScope(SubStmt))
1438       return true;
1439 
1440   return false;
1441 }
1442 
1443 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1444 /// to a constant, or if it does but contains a label, return false.  If it
1445 /// constant folds return true and set the boolean result in Result.
1446 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1447                                                    bool &ResultBool,
1448                                                    bool AllowLabels) {
1449   llvm::APSInt ResultInt;
1450   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1451     return false;
1452 
1453   ResultBool = ResultInt.getBoolValue();
1454   return true;
1455 }
1456 
1457 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1458 /// to a constant, or if it does but contains a label, return false.  If it
1459 /// constant folds return true and set the folded value.
1460 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1461                                                    llvm::APSInt &ResultInt,
1462                                                    bool AllowLabels) {
1463   // FIXME: Rename and handle conversion of other evaluatable things
1464   // to bool.
1465   Expr::EvalResult Result;
1466   if (!Cond->EvaluateAsInt(Result, getContext()))
1467     return false;  // Not foldable, not integer or not fully evaluatable.
1468 
1469   llvm::APSInt Int = Result.Val.getInt();
1470   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1471     return false;  // Contains a label.
1472 
1473   ResultInt = Int;
1474   return true;
1475 }
1476 
1477 
1478 
1479 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1480 /// statement) to the specified blocks.  Based on the condition, this might try
1481 /// to simplify the codegen of the conditional based on the branch.
1482 ///
1483 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1484                                            llvm::BasicBlock *TrueBlock,
1485                                            llvm::BasicBlock *FalseBlock,
1486                                            uint64_t TrueCount) {
1487   Cond = Cond->IgnoreParens();
1488 
1489   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1490 
1491     // Handle X && Y in a condition.
1492     if (CondBOp->getOpcode() == BO_LAnd) {
1493       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1494       // folded if the case was simple enough.
1495       bool ConstantBool = false;
1496       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1497           ConstantBool) {
1498         // br(1 && X) -> br(X).
1499         incrementProfileCounter(CondBOp);
1500         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1501                                     TrueCount);
1502       }
1503 
1504       // If we have "X && 1", simplify the code to use an uncond branch.
1505       // "X && 0" would have been constant folded to 0.
1506       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1507           ConstantBool) {
1508         // br(X && 1) -> br(X).
1509         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1510                                     TrueCount);
1511       }
1512 
1513       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1514       // want to jump to the FalseBlock.
1515       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1516       // The counter tells us how often we evaluate RHS, and all of TrueCount
1517       // can be propagated to that branch.
1518       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1519 
1520       ConditionalEvaluation eval(*this);
1521       {
1522         ApplyDebugLocation DL(*this, Cond);
1523         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1524         EmitBlock(LHSTrue);
1525       }
1526 
1527       incrementProfileCounter(CondBOp);
1528       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1529 
1530       // Any temporaries created here are conditional.
1531       eval.begin(*this);
1532       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1533       eval.end(*this);
1534 
1535       return;
1536     }
1537 
1538     if (CondBOp->getOpcode() == BO_LOr) {
1539       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1540       // folded if the case was simple enough.
1541       bool ConstantBool = false;
1542       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1543           !ConstantBool) {
1544         // br(0 || X) -> br(X).
1545         incrementProfileCounter(CondBOp);
1546         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1547                                     TrueCount);
1548       }
1549 
1550       // If we have "X || 0", simplify the code to use an uncond branch.
1551       // "X || 1" would have been constant folded to 1.
1552       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1553           !ConstantBool) {
1554         // br(X || 0) -> br(X).
1555         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1556                                     TrueCount);
1557       }
1558 
1559       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1560       // want to jump to the TrueBlock.
1561       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1562       // We have the count for entry to the RHS and for the whole expression
1563       // being true, so we can divy up True count between the short circuit and
1564       // the RHS.
1565       uint64_t LHSCount =
1566           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1567       uint64_t RHSCount = TrueCount - LHSCount;
1568 
1569       ConditionalEvaluation eval(*this);
1570       {
1571         ApplyDebugLocation DL(*this, Cond);
1572         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1573         EmitBlock(LHSFalse);
1574       }
1575 
1576       incrementProfileCounter(CondBOp);
1577       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1578 
1579       // Any temporaries created here are conditional.
1580       eval.begin(*this);
1581       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1582 
1583       eval.end(*this);
1584 
1585       return;
1586     }
1587   }
1588 
1589   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1590     // br(!x, t, f) -> br(x, f, t)
1591     if (CondUOp->getOpcode() == UO_LNot) {
1592       // Negate the count.
1593       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1594       // Negate the condition and swap the destination blocks.
1595       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1596                                   FalseCount);
1597     }
1598   }
1599 
1600   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1601     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1602     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1603     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1604 
1605     ConditionalEvaluation cond(*this);
1606     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1607                          getProfileCount(CondOp));
1608 
1609     // When computing PGO branch weights, we only know the overall count for
1610     // the true block. This code is essentially doing tail duplication of the
1611     // naive code-gen, introducing new edges for which counts are not
1612     // available. Divide the counts proportionally between the LHS and RHS of
1613     // the conditional operator.
1614     uint64_t LHSScaledTrueCount = 0;
1615     if (TrueCount) {
1616       double LHSRatio =
1617           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1618       LHSScaledTrueCount = TrueCount * LHSRatio;
1619     }
1620 
1621     cond.begin(*this);
1622     EmitBlock(LHSBlock);
1623     incrementProfileCounter(CondOp);
1624     {
1625       ApplyDebugLocation DL(*this, Cond);
1626       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1627                            LHSScaledTrueCount);
1628     }
1629     cond.end(*this);
1630 
1631     cond.begin(*this);
1632     EmitBlock(RHSBlock);
1633     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1634                          TrueCount - LHSScaledTrueCount);
1635     cond.end(*this);
1636 
1637     return;
1638   }
1639 
1640   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1641     // Conditional operator handling can give us a throw expression as a
1642     // condition for a case like:
1643     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1644     // Fold this to:
1645     //   br(c, throw x, br(y, t, f))
1646     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1647     return;
1648   }
1649 
1650   // If the branch has a condition wrapped by __builtin_unpredictable,
1651   // create metadata that specifies that the branch is unpredictable.
1652   // Don't bother if not optimizing because that metadata would not be used.
1653   llvm::MDNode *Unpredictable = nullptr;
1654   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1655   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1656     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1657     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1658       llvm::MDBuilder MDHelper(getLLVMContext());
1659       Unpredictable = MDHelper.createUnpredictable();
1660     }
1661   }
1662 
1663   // Create branch weights based on the number of times we get here and the
1664   // number of times the condition should be true.
1665   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1666   llvm::MDNode *Weights =
1667       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1668 
1669   // Emit the code with the fully general case.
1670   llvm::Value *CondV;
1671   {
1672     ApplyDebugLocation DL(*this, Cond);
1673     CondV = EvaluateExprAsBool(Cond);
1674   }
1675   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1676 }
1677 
1678 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1679 /// specified stmt yet.
1680 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1681   CGM.ErrorUnsupported(S, Type);
1682 }
1683 
1684 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1685 /// variable-length array whose elements have a non-zero bit-pattern.
1686 ///
1687 /// \param baseType the inner-most element type of the array
1688 /// \param src - a char* pointing to the bit-pattern for a single
1689 /// base element of the array
1690 /// \param sizeInChars - the total size of the VLA, in chars
1691 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1692                                Address dest, Address src,
1693                                llvm::Value *sizeInChars) {
1694   CGBuilderTy &Builder = CGF.Builder;
1695 
1696   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1697   llvm::Value *baseSizeInChars
1698     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1699 
1700   Address begin =
1701     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1702   llvm::Value *end =
1703     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1704 
1705   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1706   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1707   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1708 
1709   // Make a loop over the VLA.  C99 guarantees that the VLA element
1710   // count must be nonzero.
1711   CGF.EmitBlock(loopBB);
1712 
1713   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1714   cur->addIncoming(begin.getPointer(), originBB);
1715 
1716   CharUnits curAlign =
1717     dest.getAlignment().alignmentOfArrayElement(baseSize);
1718 
1719   // memcpy the individual element bit-pattern.
1720   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1721                        /*volatile*/ false);
1722 
1723   // Go to the next element.
1724   llvm::Value *next =
1725     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1726 
1727   // Leave if that's the end of the VLA.
1728   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1729   Builder.CreateCondBr(done, contBB, loopBB);
1730   cur->addIncoming(next, loopBB);
1731 
1732   CGF.EmitBlock(contBB);
1733 }
1734 
1735 void
1736 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1737   // Ignore empty classes in C++.
1738   if (getLangOpts().CPlusPlus) {
1739     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1740       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1741         return;
1742     }
1743   }
1744 
1745   // Cast the dest ptr to the appropriate i8 pointer type.
1746   if (DestPtr.getElementType() != Int8Ty)
1747     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1748 
1749   // Get size and alignment info for this aggregate.
1750   CharUnits size = getContext().getTypeSizeInChars(Ty);
1751 
1752   llvm::Value *SizeVal;
1753   const VariableArrayType *vla;
1754 
1755   // Don't bother emitting a zero-byte memset.
1756   if (size.isZero()) {
1757     // But note that getTypeInfo returns 0 for a VLA.
1758     if (const VariableArrayType *vlaType =
1759           dyn_cast_or_null<VariableArrayType>(
1760                                           getContext().getAsArrayType(Ty))) {
1761       auto VlaSize = getVLASize(vlaType);
1762       SizeVal = VlaSize.NumElts;
1763       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1764       if (!eltSize.isOne())
1765         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1766       vla = vlaType;
1767     } else {
1768       return;
1769     }
1770   } else {
1771     SizeVal = CGM.getSize(size);
1772     vla = nullptr;
1773   }
1774 
1775   // If the type contains a pointer to data member we can't memset it to zero.
1776   // Instead, create a null constant and copy it to the destination.
1777   // TODO: there are other patterns besides zero that we can usefully memset,
1778   // like -1, which happens to be the pattern used by member-pointers.
1779   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1780     // For a VLA, emit a single element, then splat that over the VLA.
1781     if (vla) Ty = getContext().getBaseElementType(vla);
1782 
1783     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1784 
1785     llvm::GlobalVariable *NullVariable =
1786       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1787                                /*isConstant=*/true,
1788                                llvm::GlobalVariable::PrivateLinkage,
1789                                NullConstant, Twine());
1790     CharUnits NullAlign = DestPtr.getAlignment();
1791     NullVariable->setAlignment(NullAlign.getAsAlign());
1792     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1793                    NullAlign);
1794 
1795     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1796 
1797     // Get and call the appropriate llvm.memcpy overload.
1798     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1799     return;
1800   }
1801 
1802   // Otherwise, just memset the whole thing to zero.  This is legal
1803   // because in LLVM, all default initializers (other than the ones we just
1804   // handled above) are guaranteed to have a bit pattern of all zeros.
1805   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1806 }
1807 
1808 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1809   // Make sure that there is a block for the indirect goto.
1810   if (!IndirectBranch)
1811     GetIndirectGotoBlock();
1812 
1813   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1814 
1815   // Make sure the indirect branch includes all of the address-taken blocks.
1816   IndirectBranch->addDestination(BB);
1817   return llvm::BlockAddress::get(CurFn, BB);
1818 }
1819 
1820 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1821   // If we already made the indirect branch for indirect goto, return its block.
1822   if (IndirectBranch) return IndirectBranch->getParent();
1823 
1824   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1825 
1826   // Create the PHI node that indirect gotos will add entries to.
1827   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1828                                               "indirect.goto.dest");
1829 
1830   // Create the indirect branch instruction.
1831   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1832   return IndirectBranch->getParent();
1833 }
1834 
1835 /// Computes the length of an array in elements, as well as the base
1836 /// element type and a properly-typed first element pointer.
1837 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1838                                               QualType &baseType,
1839                                               Address &addr) {
1840   const ArrayType *arrayType = origArrayType;
1841 
1842   // If it's a VLA, we have to load the stored size.  Note that
1843   // this is the size of the VLA in bytes, not its size in elements.
1844   llvm::Value *numVLAElements = nullptr;
1845   if (isa<VariableArrayType>(arrayType)) {
1846     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1847 
1848     // Walk into all VLAs.  This doesn't require changes to addr,
1849     // which has type T* where T is the first non-VLA element type.
1850     do {
1851       QualType elementType = arrayType->getElementType();
1852       arrayType = getContext().getAsArrayType(elementType);
1853 
1854       // If we only have VLA components, 'addr' requires no adjustment.
1855       if (!arrayType) {
1856         baseType = elementType;
1857         return numVLAElements;
1858       }
1859     } while (isa<VariableArrayType>(arrayType));
1860 
1861     // We get out here only if we find a constant array type
1862     // inside the VLA.
1863   }
1864 
1865   // We have some number of constant-length arrays, so addr should
1866   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1867   // down to the first element of addr.
1868   SmallVector<llvm::Value*, 8> gepIndices;
1869 
1870   // GEP down to the array type.
1871   llvm::ConstantInt *zero = Builder.getInt32(0);
1872   gepIndices.push_back(zero);
1873 
1874   uint64_t countFromCLAs = 1;
1875   QualType eltType;
1876 
1877   llvm::ArrayType *llvmArrayType =
1878     dyn_cast<llvm::ArrayType>(addr.getElementType());
1879   while (llvmArrayType) {
1880     assert(isa<ConstantArrayType>(arrayType));
1881     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1882              == llvmArrayType->getNumElements());
1883 
1884     gepIndices.push_back(zero);
1885     countFromCLAs *= llvmArrayType->getNumElements();
1886     eltType = arrayType->getElementType();
1887 
1888     llvmArrayType =
1889       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1890     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1891     assert((!llvmArrayType || arrayType) &&
1892            "LLVM and Clang types are out-of-synch");
1893   }
1894 
1895   if (arrayType) {
1896     // From this point onwards, the Clang array type has been emitted
1897     // as some other type (probably a packed struct). Compute the array
1898     // size, and just emit the 'begin' expression as a bitcast.
1899     while (arrayType) {
1900       countFromCLAs *=
1901           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1902       eltType = arrayType->getElementType();
1903       arrayType = getContext().getAsArrayType(eltType);
1904     }
1905 
1906     llvm::Type *baseType = ConvertType(eltType);
1907     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1908   } else {
1909     // Create the actual GEP.
1910     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1911                                              gepIndices, "array.begin"),
1912                    addr.getAlignment());
1913   }
1914 
1915   baseType = eltType;
1916 
1917   llvm::Value *numElements
1918     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1919 
1920   // If we had any VLA dimensions, factor them in.
1921   if (numVLAElements)
1922     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1923 
1924   return numElements;
1925 }
1926 
1927 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1928   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1929   assert(vla && "type was not a variable array type!");
1930   return getVLASize(vla);
1931 }
1932 
1933 CodeGenFunction::VlaSizePair
1934 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1935   // The number of elements so far; always size_t.
1936   llvm::Value *numElements = nullptr;
1937 
1938   QualType elementType;
1939   do {
1940     elementType = type->getElementType();
1941     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1942     assert(vlaSize && "no size for VLA!");
1943     assert(vlaSize->getType() == SizeTy);
1944 
1945     if (!numElements) {
1946       numElements = vlaSize;
1947     } else {
1948       // It's undefined behavior if this wraps around, so mark it that way.
1949       // FIXME: Teach -fsanitize=undefined to trap this.
1950       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1951     }
1952   } while ((type = getContext().getAsVariableArrayType(elementType)));
1953 
1954   return { numElements, elementType };
1955 }
1956 
1957 CodeGenFunction::VlaSizePair
1958 CodeGenFunction::getVLAElements1D(QualType type) {
1959   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1960   assert(vla && "type was not a variable array type!");
1961   return getVLAElements1D(vla);
1962 }
1963 
1964 CodeGenFunction::VlaSizePair
1965 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1966   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1967   assert(VlaSize && "no size for VLA!");
1968   assert(VlaSize->getType() == SizeTy);
1969   return { VlaSize, Vla->getElementType() };
1970 }
1971 
1972 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1973   assert(type->isVariablyModifiedType() &&
1974          "Must pass variably modified type to EmitVLASizes!");
1975 
1976   EnsureInsertPoint();
1977 
1978   // We're going to walk down into the type and look for VLA
1979   // expressions.
1980   do {
1981     assert(type->isVariablyModifiedType());
1982 
1983     const Type *ty = type.getTypePtr();
1984     switch (ty->getTypeClass()) {
1985 
1986 #define TYPE(Class, Base)
1987 #define ABSTRACT_TYPE(Class, Base)
1988 #define NON_CANONICAL_TYPE(Class, Base)
1989 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1990 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1991 #include "clang/AST/TypeNodes.inc"
1992       llvm_unreachable("unexpected dependent type!");
1993 
1994     // These types are never variably-modified.
1995     case Type::Builtin:
1996     case Type::Complex:
1997     case Type::Vector:
1998     case Type::ExtVector:
1999     case Type::Record:
2000     case Type::Enum:
2001     case Type::Elaborated:
2002     case Type::TemplateSpecialization:
2003     case Type::ObjCTypeParam:
2004     case Type::ObjCObject:
2005     case Type::ObjCInterface:
2006     case Type::ObjCObjectPointer:
2007       llvm_unreachable("type class is never variably-modified!");
2008 
2009     case Type::Adjusted:
2010       type = cast<AdjustedType>(ty)->getAdjustedType();
2011       break;
2012 
2013     case Type::Decayed:
2014       type = cast<DecayedType>(ty)->getPointeeType();
2015       break;
2016 
2017     case Type::Pointer:
2018       type = cast<PointerType>(ty)->getPointeeType();
2019       break;
2020 
2021     case Type::BlockPointer:
2022       type = cast<BlockPointerType>(ty)->getPointeeType();
2023       break;
2024 
2025     case Type::LValueReference:
2026     case Type::RValueReference:
2027       type = cast<ReferenceType>(ty)->getPointeeType();
2028       break;
2029 
2030     case Type::MemberPointer:
2031       type = cast<MemberPointerType>(ty)->getPointeeType();
2032       break;
2033 
2034     case Type::ConstantArray:
2035     case Type::IncompleteArray:
2036       // Losing element qualification here is fine.
2037       type = cast<ArrayType>(ty)->getElementType();
2038       break;
2039 
2040     case Type::VariableArray: {
2041       // Losing element qualification here is fine.
2042       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2043 
2044       // Unknown size indication requires no size computation.
2045       // Otherwise, evaluate and record it.
2046       if (const Expr *size = vat->getSizeExpr()) {
2047         // It's possible that we might have emitted this already,
2048         // e.g. with a typedef and a pointer to it.
2049         llvm::Value *&entry = VLASizeMap[size];
2050         if (!entry) {
2051           llvm::Value *Size = EmitScalarExpr(size);
2052 
2053           // C11 6.7.6.2p5:
2054           //   If the size is an expression that is not an integer constant
2055           //   expression [...] each time it is evaluated it shall have a value
2056           //   greater than zero.
2057           if (SanOpts.has(SanitizerKind::VLABound) &&
2058               size->getType()->isSignedIntegerType()) {
2059             SanitizerScope SanScope(this);
2060             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2061             llvm::Constant *StaticArgs[] = {
2062                 EmitCheckSourceLocation(size->getBeginLoc()),
2063                 EmitCheckTypeDescriptor(size->getType())};
2064             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2065                                      SanitizerKind::VLABound),
2066                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2067           }
2068 
2069           // Always zexting here would be wrong if it weren't
2070           // undefined behavior to have a negative bound.
2071           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2072         }
2073       }
2074       type = vat->getElementType();
2075       break;
2076     }
2077 
2078     case Type::FunctionProto:
2079     case Type::FunctionNoProto:
2080       type = cast<FunctionType>(ty)->getReturnType();
2081       break;
2082 
2083     case Type::Paren:
2084     case Type::TypeOf:
2085     case Type::UnaryTransform:
2086     case Type::Attributed:
2087     case Type::SubstTemplateTypeParm:
2088     case Type::PackExpansion:
2089     case Type::MacroQualified:
2090       // Keep walking after single level desugaring.
2091       type = type.getSingleStepDesugaredType(getContext());
2092       break;
2093 
2094     case Type::Typedef:
2095     case Type::Decltype:
2096     case Type::Auto:
2097     case Type::DeducedTemplateSpecialization:
2098       // Stop walking: nothing to do.
2099       return;
2100 
2101     case Type::TypeOfExpr:
2102       // Stop walking: emit typeof expression.
2103       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2104       return;
2105 
2106     case Type::Atomic:
2107       type = cast<AtomicType>(ty)->getValueType();
2108       break;
2109 
2110     case Type::Pipe:
2111       type = cast<PipeType>(ty)->getElementType();
2112       break;
2113     }
2114   } while (type->isVariablyModifiedType());
2115 }
2116 
2117 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2118   if (getContext().getBuiltinVaListType()->isArrayType())
2119     return EmitPointerWithAlignment(E);
2120   return EmitLValue(E).getAddress(*this);
2121 }
2122 
2123 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2124   return EmitLValue(E).getAddress(*this);
2125 }
2126 
2127 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2128                                               const APValue &Init) {
2129   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2130   if (CGDebugInfo *Dbg = getDebugInfo())
2131     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2132       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2133 }
2134 
2135 CodeGenFunction::PeepholeProtection
2136 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2137   // At the moment, the only aggressive peephole we do in IR gen
2138   // is trunc(zext) folding, but if we add more, we can easily
2139   // extend this protection.
2140 
2141   if (!rvalue.isScalar()) return PeepholeProtection();
2142   llvm::Value *value = rvalue.getScalarVal();
2143   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2144 
2145   // Just make an extra bitcast.
2146   assert(HaveInsertPoint());
2147   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2148                                                   Builder.GetInsertBlock());
2149 
2150   PeepholeProtection protection;
2151   protection.Inst = inst;
2152   return protection;
2153 }
2154 
2155 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2156   if (!protection.Inst) return;
2157 
2158   // In theory, we could try to duplicate the peepholes now, but whatever.
2159   protection.Inst->eraseFromParent();
2160 }
2161 
2162 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2163                                               QualType Ty, SourceLocation Loc,
2164                                               SourceLocation AssumptionLoc,
2165                                               llvm::Value *Alignment,
2166                                               llvm::Value *OffsetValue) {
2167   llvm::Value *TheCheck;
2168   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2169       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2170   if (SanOpts.has(SanitizerKind::Alignment)) {
2171     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2172                                  OffsetValue, TheCheck, Assumption);
2173   }
2174 }
2175 
2176 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2177                                               const Expr *E,
2178                                               SourceLocation AssumptionLoc,
2179                                               llvm::Value *Alignment,
2180                                               llvm::Value *OffsetValue) {
2181   if (auto *CE = dyn_cast<CastExpr>(E))
2182     E = CE->getSubExprAsWritten();
2183   QualType Ty = E->getType();
2184   SourceLocation Loc = E->getExprLoc();
2185 
2186   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2187                           OffsetValue);
2188 }
2189 
2190 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2191                                                  llvm::Value *AnnotatedVal,
2192                                                  StringRef AnnotationStr,
2193                                                  SourceLocation Location) {
2194   llvm::Value *Args[4] = {
2195     AnnotatedVal,
2196     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2197     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2198     CGM.EmitAnnotationLineNo(Location)
2199   };
2200   return Builder.CreateCall(AnnotationFn, Args);
2201 }
2202 
2203 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2204   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2205   // FIXME We create a new bitcast for every annotation because that's what
2206   // llvm-gcc was doing.
2207   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2208     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2209                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2210                        I->getAnnotation(), D->getLocation());
2211 }
2212 
2213 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2214                                               Address Addr) {
2215   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2216   llvm::Value *V = Addr.getPointer();
2217   llvm::Type *VTy = V->getType();
2218   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2219                                     CGM.Int8PtrTy);
2220 
2221   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2222     // FIXME Always emit the cast inst so we can differentiate between
2223     // annotation on the first field of a struct and annotation on the struct
2224     // itself.
2225     if (VTy != CGM.Int8PtrTy)
2226       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2227     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2228     V = Builder.CreateBitCast(V, VTy);
2229   }
2230 
2231   return Address(V, Addr.getAlignment());
2232 }
2233 
2234 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2235 
2236 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2237     : CGF(CGF) {
2238   assert(!CGF->IsSanitizerScope);
2239   CGF->IsSanitizerScope = true;
2240 }
2241 
2242 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2243   CGF->IsSanitizerScope = false;
2244 }
2245 
2246 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2247                                    const llvm::Twine &Name,
2248                                    llvm::BasicBlock *BB,
2249                                    llvm::BasicBlock::iterator InsertPt) const {
2250   LoopStack.InsertHelper(I);
2251   if (IsSanitizerScope)
2252     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2253 }
2254 
2255 void CGBuilderInserter::InsertHelper(
2256     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2257     llvm::BasicBlock::iterator InsertPt) const {
2258   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2259   if (CGF)
2260     CGF->InsertHelper(I, Name, BB, InsertPt);
2261 }
2262 
2263 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2264                                 CodeGenModule &CGM, const FunctionDecl *FD,
2265                                 std::string &FirstMissing) {
2266   // If there aren't any required features listed then go ahead and return.
2267   if (ReqFeatures.empty())
2268     return false;
2269 
2270   // Now build up the set of caller features and verify that all the required
2271   // features are there.
2272   llvm::StringMap<bool> CallerFeatureMap;
2273   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2274 
2275   // If we have at least one of the features in the feature list return
2276   // true, otherwise return false.
2277   return std::all_of(
2278       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2279         SmallVector<StringRef, 1> OrFeatures;
2280         Feature.split(OrFeatures, '|');
2281         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2282           if (!CallerFeatureMap.lookup(Feature)) {
2283             FirstMissing = Feature.str();
2284             return false;
2285           }
2286           return true;
2287         });
2288       });
2289 }
2290 
2291 // Emits an error if we don't have a valid set of target features for the
2292 // called function.
2293 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2294                                           const FunctionDecl *TargetDecl) {
2295   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2296 }
2297 
2298 // Emits an error if we don't have a valid set of target features for the
2299 // called function.
2300 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2301                                           const FunctionDecl *TargetDecl) {
2302   // Early exit if this is an indirect call.
2303   if (!TargetDecl)
2304     return;
2305 
2306   // Get the current enclosing function if it exists. If it doesn't
2307   // we can't check the target features anyhow.
2308   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2309   if (!FD)
2310     return;
2311 
2312   // Grab the required features for the call. For a builtin this is listed in
2313   // the td file with the default cpu, for an always_inline function this is any
2314   // listed cpu and any listed features.
2315   unsigned BuiltinID = TargetDecl->getBuiltinID();
2316   std::string MissingFeature;
2317   if (BuiltinID) {
2318     SmallVector<StringRef, 1> ReqFeatures;
2319     const char *FeatureList =
2320         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2321     // Return if the builtin doesn't have any required features.
2322     if (!FeatureList || StringRef(FeatureList) == "")
2323       return;
2324     StringRef(FeatureList).split(ReqFeatures, ',');
2325     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2326       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2327           << TargetDecl->getDeclName()
2328           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2329 
2330   } else if (!TargetDecl->isMultiVersion() &&
2331              TargetDecl->hasAttr<TargetAttr>()) {
2332     // Get the required features for the callee.
2333 
2334     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2335     ParsedTargetAttr ParsedAttr =
2336         CGM.getContext().filterFunctionTargetAttrs(TD);
2337 
2338     SmallVector<StringRef, 1> ReqFeatures;
2339     llvm::StringMap<bool> CalleeFeatureMap;
2340     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap,
2341                                            GlobalDecl(TargetDecl));
2342 
2343     for (const auto &F : ParsedAttr.Features) {
2344       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2345         ReqFeatures.push_back(StringRef(F).substr(1));
2346     }
2347 
2348     for (const auto &F : CalleeFeatureMap) {
2349       // Only positive features are "required".
2350       if (F.getValue())
2351         ReqFeatures.push_back(F.getKey());
2352     }
2353     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2354       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2355           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2356   }
2357 }
2358 
2359 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2360   if (!CGM.getCodeGenOpts().SanitizeStats)
2361     return;
2362 
2363   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2364   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2365   CGM.getSanStats().create(IRB, SSK);
2366 }
2367 
2368 llvm::Value *
2369 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2370   llvm::Value *Condition = nullptr;
2371 
2372   if (!RO.Conditions.Architecture.empty())
2373     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2374 
2375   if (!RO.Conditions.Features.empty()) {
2376     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2377     Condition =
2378         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2379   }
2380   return Condition;
2381 }
2382 
2383 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2384                                              llvm::Function *Resolver,
2385                                              CGBuilderTy &Builder,
2386                                              llvm::Function *FuncToReturn,
2387                                              bool SupportsIFunc) {
2388   if (SupportsIFunc) {
2389     Builder.CreateRet(FuncToReturn);
2390     return;
2391   }
2392 
2393   llvm::SmallVector<llvm::Value *, 10> Args;
2394   llvm::for_each(Resolver->args(),
2395                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2396 
2397   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2398   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2399 
2400   if (Resolver->getReturnType()->isVoidTy())
2401     Builder.CreateRetVoid();
2402   else
2403     Builder.CreateRet(Result);
2404 }
2405 
2406 void CodeGenFunction::EmitMultiVersionResolver(
2407     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2408   assert(getContext().getTargetInfo().getTriple().isX86() &&
2409          "Only implemented for x86 targets");
2410 
2411   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2412 
2413   // Main function's basic block.
2414   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2415   Builder.SetInsertPoint(CurBlock);
2416   EmitX86CpuInit();
2417 
2418   for (const MultiVersionResolverOption &RO : Options) {
2419     Builder.SetInsertPoint(CurBlock);
2420     llvm::Value *Condition = FormResolverCondition(RO);
2421 
2422     // The 'default' or 'generic' case.
2423     if (!Condition) {
2424       assert(&RO == Options.end() - 1 &&
2425              "Default or Generic case must be last");
2426       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2427                                        SupportsIFunc);
2428       return;
2429     }
2430 
2431     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2432     CGBuilderTy RetBuilder(*this, RetBlock);
2433     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2434                                      SupportsIFunc);
2435     CurBlock = createBasicBlock("resolver_else", Resolver);
2436     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2437   }
2438 
2439   // If no generic/default, emit an unreachable.
2440   Builder.SetInsertPoint(CurBlock);
2441   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2442   TrapCall->setDoesNotReturn();
2443   TrapCall->setDoesNotThrow();
2444   Builder.CreateUnreachable();
2445   Builder.ClearInsertionPoint();
2446 }
2447 
2448 // Loc - where the diagnostic will point, where in the source code this
2449 //  alignment has failed.
2450 // SecondaryLoc - if present (will be present if sufficiently different from
2451 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2452 //  It should be the location where the __attribute__((assume_aligned))
2453 //  was written e.g.
2454 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2455     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2456     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2457     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2458     llvm::Instruction *Assumption) {
2459   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2460          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2461              llvm::Intrinsic::getDeclaration(
2462                  Builder.GetInsertBlock()->getParent()->getParent(),
2463                  llvm::Intrinsic::assume) &&
2464          "Assumption should be a call to llvm.assume().");
2465   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2466          "Assumption should be the last instruction of the basic block, "
2467          "since the basic block is still being generated.");
2468 
2469   if (!SanOpts.has(SanitizerKind::Alignment))
2470     return;
2471 
2472   // Don't check pointers to volatile data. The behavior here is implementation-
2473   // defined.
2474   if (Ty->getPointeeType().isVolatileQualified())
2475     return;
2476 
2477   // We need to temorairly remove the assumption so we can insert the
2478   // sanitizer check before it, else the check will be dropped by optimizations.
2479   Assumption->removeFromParent();
2480 
2481   {
2482     SanitizerScope SanScope(this);
2483 
2484     if (!OffsetValue)
2485       OffsetValue = Builder.getInt1(0); // no offset.
2486 
2487     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2488                                     EmitCheckSourceLocation(SecondaryLoc),
2489                                     EmitCheckTypeDescriptor(Ty)};
2490     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2491                                   EmitCheckValue(Alignment),
2492                                   EmitCheckValue(OffsetValue)};
2493     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2494               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2495   }
2496 
2497   // We are now in the (new, empty) "cont" basic block.
2498   // Reintroduce the assumption.
2499   Builder.Insert(Assumption);
2500   // FIXME: Assumption still has it's original basic block as it's Parent.
2501 }
2502 
2503 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2504   if (CGDebugInfo *DI = getDebugInfo())
2505     return DI->SourceLocToDebugLoc(Location);
2506 
2507   return llvm::DebugLoc();
2508 }
2509