1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/FPEnv.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 47 /// markers. 48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 49 const LangOptions &LangOpts) { 50 if (CGOpts.DisableLifetimeMarkers) 51 return false; 52 53 // Sanitizers may use markers. 54 if (CGOpts.SanitizeAddressUseAfterScope || 55 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 56 LangOpts.Sanitize.has(SanitizerKind::Memory)) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 SetFPModel(); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 // Map the LangOption for rounding mode into 110 // the corresponding enum in the IR. 111 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 112 LangOptions::FPRoundingModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 116 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 117 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 118 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 119 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 120 } 121 llvm_unreachable("Unsupported FP RoundingMode"); 122 } 123 124 // Map the LangOption for exception behavior into 125 // the corresponding enum in the IR. 126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 127 LangOptions::FPExceptionModeKind Kind) { 128 129 switch (Kind) { 130 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 131 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 132 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 133 } 134 llvm_unreachable("Unsupported FP Exception Behavior"); 135 } 136 137 void CodeGenFunction::SetFPModel() { 138 auto fpRoundingMode = ToConstrainedRoundingMD( 139 getLangOpts().getFPRoundingMode()); 140 auto fpExceptionBehavior = ToConstrainedExceptMD( 141 getLangOpts().getFPExceptionMode()); 142 143 if (fpExceptionBehavior == llvm::fp::ebIgnore && 144 fpRoundingMode == llvm::fp::rmToNearest) 145 // Constrained intrinsics are not used. 146 ; 147 else { 148 Builder.setIsFPConstrained(true); 149 Builder.setDefaultConstrainedRounding(fpRoundingMode); 150 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 151 } 152 } 153 154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 158 /* forPointeeType= */ true); 159 } 160 161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 162 LValueBaseInfo *BaseInfo, 163 TBAAAccessInfo *TBAAInfo, 164 bool forPointeeType) { 165 if (TBAAInfo) 166 *TBAAInfo = CGM.getTBAAAccessInfo(T); 167 168 // Honor alignment typedef attributes even on incomplete types. 169 // We also honor them straight for C++ class types, even as pointees; 170 // there's an expressivity gap here. 171 if (auto TT = T->getAs<TypedefType>()) { 172 if (auto Align = TT->getDecl()->getMaxAlignment()) { 173 if (BaseInfo) 174 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 175 return getContext().toCharUnitsFromBits(Align); 176 } 177 } 178 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 181 182 CharUnits Alignment; 183 if (T->isIncompleteType()) { 184 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 185 } else { 186 // For C++ class pointees, we don't know whether we're pointing at a 187 // base or a complete object, so we generally need to use the 188 // non-virtual alignment. 189 const CXXRecordDecl *RD; 190 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 191 Alignment = CGM.getClassPointerAlignment(RD); 192 } else { 193 Alignment = getContext().getTypeAlignInChars(T); 194 if (T.getQualifiers().hasUnaligned()) 195 Alignment = CharUnits::One(); 196 } 197 198 // Cap to the global maximum type alignment unless the alignment 199 // was somehow explicit on the type. 200 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 201 if (Alignment.getQuantity() > MaxAlign && 202 !getContext().isAlignmentRequired(T)) 203 Alignment = CharUnits::fromQuantity(MaxAlign); 204 } 205 } 206 return Alignment; 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 213 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 214 TBAAInfo); 215 } 216 217 /// Given a value of type T* that may not be to a complete object, 218 /// construct an l-value with the natural pointee alignment of T. 219 LValue 220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 221 LValueBaseInfo BaseInfo; 222 TBAAAccessInfo TBAAInfo; 223 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 224 /* forPointeeType= */ true); 225 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 226 } 227 228 229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 230 return CGM.getTypes().ConvertTypeForMem(T); 231 } 232 233 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 234 return CGM.getTypes().ConvertType(T); 235 } 236 237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 238 type = type.getCanonicalType(); 239 while (true) { 240 switch (type->getTypeClass()) { 241 #define TYPE(name, parent) 242 #define ABSTRACT_TYPE(name, parent) 243 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 244 #define DEPENDENT_TYPE(name, parent) case Type::name: 245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 246 #include "clang/AST/TypeNodes.inc" 247 llvm_unreachable("non-canonical or dependent type in IR-generation"); 248 249 case Type::Auto: 250 case Type::DeducedTemplateSpecialization: 251 llvm_unreachable("undeduced type in IR-generation"); 252 253 // Various scalar types. 254 case Type::Builtin: 255 case Type::Pointer: 256 case Type::BlockPointer: 257 case Type::LValueReference: 258 case Type::RValueReference: 259 case Type::MemberPointer: 260 case Type::Vector: 261 case Type::ExtVector: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 return TEK_Scalar; 268 269 // Complexes. 270 case Type::Complex: 271 return TEK_Complex; 272 273 // Arrays, records, and Objective-C objects. 274 case Type::ConstantArray: 275 case Type::IncompleteArray: 276 case Type::VariableArray: 277 case Type::Record: 278 case Type::ObjCObject: 279 case Type::ObjCInterface: 280 return TEK_Aggregate; 281 282 // We operate on atomic values according to their underlying type. 283 case Type::Atomic: 284 type = cast<AtomicType>(type)->getValueType(); 285 continue; 286 } 287 llvm_unreachable("unknown type kind!"); 288 } 289 } 290 291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 292 // For cleanliness, we try to avoid emitting the return block for 293 // simple cases. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (CurBB) { 297 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 298 299 // We have a valid insert point, reuse it if it is empty or there are no 300 // explicit jumps to the return block. 301 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 302 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 } else 306 EmitBlock(ReturnBlock.getBlock()); 307 return llvm::DebugLoc(); 308 } 309 310 // Otherwise, if the return block is the target of a single direct 311 // branch then we can just put the code in that block instead. This 312 // cleans up functions which started with a unified return block. 313 if (ReturnBlock.getBlock()->hasOneUse()) { 314 llvm::BranchInst *BI = 315 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 316 if (BI && BI->isUnconditional() && 317 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 318 // Record/return the DebugLoc of the simple 'return' expression to be used 319 // later by the actual 'ret' instruction. 320 llvm::DebugLoc Loc = BI->getDebugLoc(); 321 Builder.SetInsertPoint(BI->getParent()); 322 BI->eraseFromParent(); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 return Loc; 326 } 327 } 328 329 // FIXME: We are at an unreachable point, there is no reason to emit the block 330 // unless it has uses. However, we still need a place to put the debug 331 // region.end for now. 332 333 EmitBlock(ReturnBlock.getBlock()); 334 return llvm::DebugLoc(); 335 } 336 337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 338 if (!BB) return; 339 if (!BB->use_empty()) 340 return CGF.CurFn->getBasicBlockList().push_back(BB); 341 delete BB; 342 } 343 344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 345 assert(BreakContinueStack.empty() && 346 "mismatched push/pop in break/continue stack!"); 347 348 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 349 && NumSimpleReturnExprs == NumReturnExprs 350 && ReturnBlock.getBlock()->use_empty(); 351 // Usually the return expression is evaluated before the cleanup 352 // code. If the function contains only a simple return statement, 353 // such as a constant, the location before the cleanup code becomes 354 // the last useful breakpoint in the function, because the simple 355 // return expression will be evaluated after the cleanup code. To be 356 // safe, set the debug location for cleanup code to the location of 357 // the return statement. Otherwise the cleanup code should be at the 358 // end of the function's lexical scope. 359 // 360 // If there are multiple branches to the return block, the branch 361 // instructions will get the location of the return statements and 362 // all will be fine. 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, LastStopPoint); 366 else 367 DI->EmitLocation(Builder, EndLoc); 368 } 369 370 // Pop any cleanups that might have been associated with the 371 // parameters. Do this in whatever block we're currently in; it's 372 // important to do this before we enter the return block or return 373 // edges will be *really* confused. 374 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 375 bool HasOnlyLifetimeMarkers = 376 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 377 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 378 if (HasCleanups) { 379 // Make sure the line table doesn't jump back into the body for 380 // the ret after it's been at EndLoc. 381 Optional<ApplyDebugLocation> AL; 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, EndLoc); 385 else 386 // We may not have a valid end location. Try to apply it anyway, and 387 // fall back to an artificial location if needed. 388 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 389 } 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function has been blacklisted for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 if (D) { 803 // Apply xray attributes to the function (as a string, for now) 804 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::FunctionEntry) || 807 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 808 XRayInstrKind::FunctionExit)) { 809 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 810 Fn->addFnAttr("function-instrument", "xray-always"); 811 if (XRayAttr->neverXRayInstrument()) 812 Fn->addFnAttr("function-instrument", "xray-never"); 813 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 814 if (ShouldXRayInstrumentFunction()) 815 Fn->addFnAttr("xray-log-args", 816 llvm::utostr(LogArgs->getArgumentCount())); 817 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 818 XRayInstrKind::FunctionExit)) { 819 Fn->addFnAttr("xray-skip-exit"); 820 } 821 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 822 XRayInstrKind::FunctionEntry)) { 823 Fn->addFnAttr("xray-skip-entry"); 824 } 825 } 826 } else { 827 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 828 Fn->addFnAttr( 829 "xray-instruction-threshold", 830 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 831 if (CGM.getCodeGenOpts().XRayIgnoreLoops) { 832 Fn->addFnAttr("xray-ignore-loops"); 833 } 834 } 835 836 unsigned Count, Offset; 837 if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) { 838 Count = Attr->getCount(); 839 Offset = Attr->getOffset(); 840 } else { 841 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 842 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 843 } 844 if (Count && Offset <= Count) { 845 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 846 if (Offset) 847 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 848 } 849 } 850 851 // Add no-jump-tables value. 852 Fn->addFnAttr("no-jump-tables", 853 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 854 855 // Add no-inline-line-tables value. 856 if (CGM.getCodeGenOpts().NoInlineLineTables) 857 Fn->addFnAttr("no-inline-line-tables"); 858 859 // Add profile-sample-accurate value. 860 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 861 Fn->addFnAttr("profile-sample-accurate"); 862 863 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 864 Fn->addFnAttr("cfi-canonical-jump-table"); 865 866 if (getLangOpts().OpenCL) { 867 // Add metadata for a kernel function. 868 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 869 EmitOpenCLKernelMetadata(FD, Fn); 870 } 871 872 // If we are checking function types, emit a function type signature as 873 // prologue data. 874 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 875 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 876 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 877 // Remove any (C++17) exception specifications, to allow calling e.g. a 878 // noexcept function through a non-noexcept pointer. 879 auto ProtoTy = 880 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 881 EST_None); 882 llvm::Constant *FTRTTIConst = 883 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 884 llvm::Constant *FTRTTIConstEncoded = 885 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 886 llvm::Constant *PrologueStructElems[] = {PrologueSig, 887 FTRTTIConstEncoded}; 888 llvm::Constant *PrologueStructConst = 889 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 890 Fn->setPrologueData(PrologueStructConst); 891 } 892 } 893 } 894 895 // If we're checking nullability, we need to know whether we can check the 896 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 897 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 898 auto Nullability = FnRetTy->getNullability(getContext()); 899 if (Nullability && *Nullability == NullabilityKind::NonNull) { 900 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 901 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 902 RetValNullabilityPrecondition = 903 llvm::ConstantInt::getTrue(getLLVMContext()); 904 } 905 } 906 907 // If we're in C++ mode and the function name is "main", it is guaranteed 908 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 909 // used within a program"). 910 if (getLangOpts().CPlusPlus) 911 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 912 if (FD->isMain()) 913 Fn->addFnAttr(llvm::Attribute::NoRecurse); 914 915 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 916 if (FD->usesFPIntrin()) 917 Fn->addFnAttr(llvm::Attribute::StrictFP); 918 919 // If a custom alignment is used, force realigning to this alignment on 920 // any main function which certainly will need it. 921 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 922 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 923 CGM.getCodeGenOpts().StackAlignment) 924 Fn->addFnAttr("stackrealign"); 925 926 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 927 928 // Create a marker to make it easy to insert allocas into the entryblock 929 // later. Don't create this with the builder, because we don't want it 930 // folded. 931 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 932 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 933 934 ReturnBlock = getJumpDestInCurrentScope("return"); 935 936 Builder.SetInsertPoint(EntryBB); 937 938 // If we're checking the return value, allocate space for a pointer to a 939 // precise source location of the checked return statement. 940 if (requiresReturnValueCheck()) { 941 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 942 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 943 } 944 945 // Emit subprogram debug descriptor. 946 if (CGDebugInfo *DI = getDebugInfo()) { 947 // Reconstruct the type from the argument list so that implicit parameters, 948 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 949 // convention. 950 CallingConv CC = CallingConv::CC_C; 951 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 952 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 953 CC = SrcFnTy->getCallConv(); 954 SmallVector<QualType, 16> ArgTypes; 955 for (const VarDecl *VD : Args) 956 ArgTypes.push_back(VD->getType()); 957 QualType FnType = getContext().getFunctionType( 958 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 959 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 960 Builder); 961 } 962 963 if (ShouldInstrumentFunction()) { 964 if (CGM.getCodeGenOpts().InstrumentFunctions) 965 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 966 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 967 CurFn->addFnAttr("instrument-function-entry-inlined", 968 "__cyg_profile_func_enter"); 969 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 970 CurFn->addFnAttr("instrument-function-entry-inlined", 971 "__cyg_profile_func_enter_bare"); 972 } 973 974 // Since emitting the mcount call here impacts optimizations such as function 975 // inlining, we just add an attribute to insert a mcount call in backend. 976 // The attribute "counting-function" is set to mcount function name which is 977 // architecture dependent. 978 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 979 // Calls to fentry/mcount should not be generated if function has 980 // the no_instrument_function attribute. 981 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 982 if (CGM.getCodeGenOpts().CallFEntry) 983 Fn->addFnAttr("fentry-call", "true"); 984 else { 985 Fn->addFnAttr("instrument-function-entry-inlined", 986 getTarget().getMCountName()); 987 } 988 if (CGM.getCodeGenOpts().MNopMCount) { 989 if (!CGM.getCodeGenOpts().CallFEntry) 990 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 991 << "-mnop-mcount" << "-mfentry"; 992 Fn->addFnAttr("mnop-mcount"); 993 } 994 995 if (CGM.getCodeGenOpts().RecordMCount) { 996 if (!CGM.getCodeGenOpts().CallFEntry) 997 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 998 << "-mrecord-mcount" << "-mfentry"; 999 Fn->addFnAttr("mrecord-mcount"); 1000 } 1001 } 1002 } 1003 1004 if (CGM.getCodeGenOpts().PackedStack) { 1005 if (getContext().getTargetInfo().getTriple().getArch() != 1006 llvm::Triple::systemz) 1007 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1008 << "-mpacked-stack"; 1009 Fn->addFnAttr("packed-stack"); 1010 } 1011 1012 if (RetTy->isVoidType()) { 1013 // Void type; nothing to return. 1014 ReturnValue = Address::invalid(); 1015 1016 // Count the implicit return. 1017 if (!endsWithReturn(D)) 1018 ++NumReturnExprs; 1019 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1020 // Indirect return; emit returned value directly into sret slot. 1021 // This reduces code size, and affects correctness in C++. 1022 auto AI = CurFn->arg_begin(); 1023 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1024 ++AI; 1025 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1026 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1027 ReturnValuePointer = 1028 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1029 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1030 ReturnValue.getPointer(), Int8PtrTy), 1031 ReturnValuePointer); 1032 } 1033 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1034 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1035 // Load the sret pointer from the argument struct and return into that. 1036 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1037 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1038 --EI; 1039 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1040 ReturnValuePointer = Address(Addr, getPointerAlign()); 1041 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1042 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1043 } else { 1044 ReturnValue = CreateIRTemp(RetTy, "retval"); 1045 1046 // Tell the epilog emitter to autorelease the result. We do this 1047 // now so that various specialized functions can suppress it 1048 // during their IR-generation. 1049 if (getLangOpts().ObjCAutoRefCount && 1050 !CurFnInfo->isReturnsRetained() && 1051 RetTy->isObjCRetainableType()) 1052 AutoreleaseResult = true; 1053 } 1054 1055 EmitStartEHSpec(CurCodeDecl); 1056 1057 PrologueCleanupDepth = EHStack.stable_begin(); 1058 1059 // Emit OpenMP specific initialization of the device functions. 1060 if (getLangOpts().OpenMP && CurCodeDecl) 1061 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1062 1063 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1064 1065 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1066 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1067 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1068 if (MD->getParent()->isLambda() && 1069 MD->getOverloadedOperator() == OO_Call) { 1070 // We're in a lambda; figure out the captures. 1071 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1072 LambdaThisCaptureField); 1073 if (LambdaThisCaptureField) { 1074 // If the lambda captures the object referred to by '*this' - either by 1075 // value or by reference, make sure CXXThisValue points to the correct 1076 // object. 1077 1078 // Get the lvalue for the field (which is a copy of the enclosing object 1079 // or contains the address of the enclosing object). 1080 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1081 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1082 // If the enclosing object was captured by value, just use its address. 1083 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1084 } else { 1085 // Load the lvalue pointed to by the field, since '*this' was captured 1086 // by reference. 1087 CXXThisValue = 1088 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1089 } 1090 } 1091 for (auto *FD : MD->getParent()->fields()) { 1092 if (FD->hasCapturedVLAType()) { 1093 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1094 SourceLocation()).getScalarVal(); 1095 auto VAT = FD->getCapturedVLAType(); 1096 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1097 } 1098 } 1099 } else { 1100 // Not in a lambda; just use 'this' from the method. 1101 // FIXME: Should we generate a new load for each use of 'this'? The 1102 // fast register allocator would be happier... 1103 CXXThisValue = CXXABIThisValue; 1104 } 1105 1106 // Check the 'this' pointer once per function, if it's available. 1107 if (CXXABIThisValue) { 1108 SanitizerSet SkippedChecks; 1109 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1110 QualType ThisTy = MD->getThisType(); 1111 1112 // If this is the call operator of a lambda with no capture-default, it 1113 // may have a static invoker function, which may call this operator with 1114 // a null 'this' pointer. 1115 if (isLambdaCallOperator(MD) && 1116 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1117 SkippedChecks.set(SanitizerKind::Null, true); 1118 1119 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1120 : TCK_MemberCall, 1121 Loc, CXXABIThisValue, ThisTy, 1122 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1123 SkippedChecks); 1124 } 1125 } 1126 1127 // If any of the arguments have a variably modified type, make sure to 1128 // emit the type size. 1129 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1130 i != e; ++i) { 1131 const VarDecl *VD = *i; 1132 1133 // Dig out the type as written from ParmVarDecls; it's unclear whether 1134 // the standard (C99 6.9.1p10) requires this, but we're following the 1135 // precedent set by gcc. 1136 QualType Ty; 1137 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1138 Ty = PVD->getOriginalType(); 1139 else 1140 Ty = VD->getType(); 1141 1142 if (Ty->isVariablyModifiedType()) 1143 EmitVariablyModifiedType(Ty); 1144 } 1145 // Emit a location at the end of the prologue. 1146 if (CGDebugInfo *DI = getDebugInfo()) 1147 DI->EmitLocation(Builder, StartLoc); 1148 1149 // TODO: Do we need to handle this in two places like we do with 1150 // target-features/target-cpu? 1151 if (CurFuncDecl) 1152 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1153 LargestVectorWidth = VecWidth->getVectorWidth(); 1154 } 1155 1156 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1157 incrementProfileCounter(Body); 1158 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1159 EmitCompoundStmtWithoutScope(*S); 1160 else 1161 EmitStmt(Body); 1162 } 1163 1164 /// When instrumenting to collect profile data, the counts for some blocks 1165 /// such as switch cases need to not include the fall-through counts, so 1166 /// emit a branch around the instrumentation code. When not instrumenting, 1167 /// this just calls EmitBlock(). 1168 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1169 const Stmt *S) { 1170 llvm::BasicBlock *SkipCountBB = nullptr; 1171 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1172 // When instrumenting for profiling, the fallthrough to certain 1173 // statements needs to skip over the instrumentation code so that we 1174 // get an accurate count. 1175 SkipCountBB = createBasicBlock("skipcount"); 1176 EmitBranch(SkipCountBB); 1177 } 1178 EmitBlock(BB); 1179 uint64_t CurrentCount = getCurrentProfileCount(); 1180 incrementProfileCounter(S); 1181 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1182 if (SkipCountBB) 1183 EmitBlock(SkipCountBB); 1184 } 1185 1186 /// Tries to mark the given function nounwind based on the 1187 /// non-existence of any throwing calls within it. We believe this is 1188 /// lightweight enough to do at -O0. 1189 static void TryMarkNoThrow(llvm::Function *F) { 1190 // LLVM treats 'nounwind' on a function as part of the type, so we 1191 // can't do this on functions that can be overwritten. 1192 if (F->isInterposable()) return; 1193 1194 for (llvm::BasicBlock &BB : *F) 1195 for (llvm::Instruction &I : BB) 1196 if (I.mayThrow()) 1197 return; 1198 1199 F->setDoesNotThrow(); 1200 } 1201 1202 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1203 FunctionArgList &Args) { 1204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1205 QualType ResTy = FD->getReturnType(); 1206 1207 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1208 if (MD && MD->isInstance()) { 1209 if (CGM.getCXXABI().HasThisReturn(GD)) 1210 ResTy = MD->getThisType(); 1211 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1212 ResTy = CGM.getContext().VoidPtrTy; 1213 CGM.getCXXABI().buildThisParam(*this, Args); 1214 } 1215 1216 // The base version of an inheriting constructor whose constructed base is a 1217 // virtual base is not passed any arguments (because it doesn't actually call 1218 // the inherited constructor). 1219 bool PassedParams = true; 1220 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1221 if (auto Inherited = CD->getInheritedConstructor()) 1222 PassedParams = 1223 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1224 1225 if (PassedParams) { 1226 for (auto *Param : FD->parameters()) { 1227 Args.push_back(Param); 1228 if (!Param->hasAttr<PassObjectSizeAttr>()) 1229 continue; 1230 1231 auto *Implicit = ImplicitParamDecl::Create( 1232 getContext(), Param->getDeclContext(), Param->getLocation(), 1233 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1234 SizeArguments[Param] = Implicit; 1235 Args.push_back(Implicit); 1236 } 1237 } 1238 1239 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1240 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1241 1242 return ResTy; 1243 } 1244 1245 static bool 1246 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1247 const ASTContext &Context) { 1248 QualType T = FD->getReturnType(); 1249 // Avoid the optimization for functions that return a record type with a 1250 // trivial destructor or another trivially copyable type. 1251 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1252 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1253 return !ClassDecl->hasTrivialDestructor(); 1254 } 1255 return !T.isTriviallyCopyableType(Context); 1256 } 1257 1258 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1259 const CGFunctionInfo &FnInfo) { 1260 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1261 CurGD = GD; 1262 1263 FunctionArgList Args; 1264 QualType ResTy = BuildFunctionArgList(GD, Args); 1265 1266 // Check if we should generate debug info for this function. 1267 if (FD->hasAttr<NoDebugAttr>()) 1268 DebugInfo = nullptr; // disable debug info indefinitely for this function 1269 1270 // The function might not have a body if we're generating thunks for a 1271 // function declaration. 1272 SourceRange BodyRange; 1273 if (Stmt *Body = FD->getBody()) 1274 BodyRange = Body->getSourceRange(); 1275 else 1276 BodyRange = FD->getLocation(); 1277 CurEHLocation = BodyRange.getEnd(); 1278 1279 // Use the location of the start of the function to determine where 1280 // the function definition is located. By default use the location 1281 // of the declaration as the location for the subprogram. A function 1282 // may lack a declaration in the source code if it is created by code 1283 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1284 SourceLocation Loc = FD->getLocation(); 1285 1286 // If this is a function specialization then use the pattern body 1287 // as the location for the function. 1288 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1289 if (SpecDecl->hasBody(SpecDecl)) 1290 Loc = SpecDecl->getLocation(); 1291 1292 Stmt *Body = FD->getBody(); 1293 1294 // Initialize helper which will detect jumps which can cause invalid lifetime 1295 // markers. 1296 if (Body && ShouldEmitLifetimeMarkers) 1297 Bypasses.Init(Body); 1298 1299 // Emit the standard function prologue. 1300 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1301 1302 // Generate the body of the function. 1303 PGO.assignRegionCounters(GD, CurFn); 1304 if (isa<CXXDestructorDecl>(FD)) 1305 EmitDestructorBody(Args); 1306 else if (isa<CXXConstructorDecl>(FD)) 1307 EmitConstructorBody(Args); 1308 else if (getLangOpts().CUDA && 1309 !getLangOpts().CUDAIsDevice && 1310 FD->hasAttr<CUDAGlobalAttr>()) 1311 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1312 else if (isa<CXXMethodDecl>(FD) && 1313 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1314 // The lambda static invoker function is special, because it forwards or 1315 // clones the body of the function call operator (but is actually static). 1316 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1317 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1318 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1319 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1320 // Implicit copy-assignment gets the same special treatment as implicit 1321 // copy-constructors. 1322 emitImplicitAssignmentOperatorBody(Args); 1323 } else if (Body) { 1324 EmitFunctionBody(Body); 1325 } else 1326 llvm_unreachable("no definition for emitted function"); 1327 1328 // C++11 [stmt.return]p2: 1329 // Flowing off the end of a function [...] results in undefined behavior in 1330 // a value-returning function. 1331 // C11 6.9.1p12: 1332 // If the '}' that terminates a function is reached, and the value of the 1333 // function call is used by the caller, the behavior is undefined. 1334 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1335 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1336 bool ShouldEmitUnreachable = 1337 CGM.getCodeGenOpts().StrictReturn || 1338 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1339 if (SanOpts.has(SanitizerKind::Return)) { 1340 SanitizerScope SanScope(this); 1341 llvm::Value *IsFalse = Builder.getFalse(); 1342 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1343 SanitizerHandler::MissingReturn, 1344 EmitCheckSourceLocation(FD->getLocation()), None); 1345 } else if (ShouldEmitUnreachable) { 1346 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1347 EmitTrapCall(llvm::Intrinsic::trap); 1348 } 1349 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1350 Builder.CreateUnreachable(); 1351 Builder.ClearInsertionPoint(); 1352 } 1353 } 1354 1355 // Emit the standard function epilogue. 1356 FinishFunction(BodyRange.getEnd()); 1357 1358 // If we haven't marked the function nothrow through other means, do 1359 // a quick pass now to see if we can. 1360 if (!CurFn->doesNotThrow()) 1361 TryMarkNoThrow(CurFn); 1362 } 1363 1364 /// ContainsLabel - Return true if the statement contains a label in it. If 1365 /// this statement is not executed normally, it not containing a label means 1366 /// that we can just remove the code. 1367 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1368 // Null statement, not a label! 1369 if (!S) return false; 1370 1371 // If this is a label, we have to emit the code, consider something like: 1372 // if (0) { ... foo: bar(); } goto foo; 1373 // 1374 // TODO: If anyone cared, we could track __label__'s, since we know that you 1375 // can't jump to one from outside their declared region. 1376 if (isa<LabelStmt>(S)) 1377 return true; 1378 1379 // If this is a case/default statement, and we haven't seen a switch, we have 1380 // to emit the code. 1381 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1382 return true; 1383 1384 // If this is a switch statement, we want to ignore cases below it. 1385 if (isa<SwitchStmt>(S)) 1386 IgnoreCaseStmts = true; 1387 1388 // Scan subexpressions for verboten labels. 1389 for (const Stmt *SubStmt : S->children()) 1390 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 /// containsBreak - Return true if the statement contains a break out of it. 1397 /// If the statement (recursively) contains a switch or loop with a break 1398 /// inside of it, this is fine. 1399 bool CodeGenFunction::containsBreak(const Stmt *S) { 1400 // Null statement, not a label! 1401 if (!S) return false; 1402 1403 // If this is a switch or loop that defines its own break scope, then we can 1404 // include it and anything inside of it. 1405 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1406 isa<ForStmt>(S)) 1407 return false; 1408 1409 if (isa<BreakStmt>(S)) 1410 return true; 1411 1412 // Scan subexpressions for verboten breaks. 1413 for (const Stmt *SubStmt : S->children()) 1414 if (containsBreak(SubStmt)) 1415 return true; 1416 1417 return false; 1418 } 1419 1420 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1421 if (!S) return false; 1422 1423 // Some statement kinds add a scope and thus never add a decl to the current 1424 // scope. Note, this list is longer than the list of statements that might 1425 // have an unscoped decl nested within them, but this way is conservatively 1426 // correct even if more statement kinds are added. 1427 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1428 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1429 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1430 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1431 return false; 1432 1433 if (isa<DeclStmt>(S)) 1434 return true; 1435 1436 for (const Stmt *SubStmt : S->children()) 1437 if (mightAddDeclToScope(SubStmt)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1444 /// to a constant, or if it does but contains a label, return false. If it 1445 /// constant folds return true and set the boolean result in Result. 1446 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1447 bool &ResultBool, 1448 bool AllowLabels) { 1449 llvm::APSInt ResultInt; 1450 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1451 return false; 1452 1453 ResultBool = ResultInt.getBoolValue(); 1454 return true; 1455 } 1456 1457 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1458 /// to a constant, or if it does but contains a label, return false. If it 1459 /// constant folds return true and set the folded value. 1460 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1461 llvm::APSInt &ResultInt, 1462 bool AllowLabels) { 1463 // FIXME: Rename and handle conversion of other evaluatable things 1464 // to bool. 1465 Expr::EvalResult Result; 1466 if (!Cond->EvaluateAsInt(Result, getContext())) 1467 return false; // Not foldable, not integer or not fully evaluatable. 1468 1469 llvm::APSInt Int = Result.Val.getInt(); 1470 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1471 return false; // Contains a label. 1472 1473 ResultInt = Int; 1474 return true; 1475 } 1476 1477 1478 1479 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1480 /// statement) to the specified blocks. Based on the condition, this might try 1481 /// to simplify the codegen of the conditional based on the branch. 1482 /// 1483 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1484 llvm::BasicBlock *TrueBlock, 1485 llvm::BasicBlock *FalseBlock, 1486 uint64_t TrueCount) { 1487 Cond = Cond->IgnoreParens(); 1488 1489 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1490 1491 // Handle X && Y in a condition. 1492 if (CondBOp->getOpcode() == BO_LAnd) { 1493 // If we have "1 && X", simplify the code. "0 && X" would have constant 1494 // folded if the case was simple enough. 1495 bool ConstantBool = false; 1496 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1497 ConstantBool) { 1498 // br(1 && X) -> br(X). 1499 incrementProfileCounter(CondBOp); 1500 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1501 TrueCount); 1502 } 1503 1504 // If we have "X && 1", simplify the code to use an uncond branch. 1505 // "X && 0" would have been constant folded to 0. 1506 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1507 ConstantBool) { 1508 // br(X && 1) -> br(X). 1509 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1510 TrueCount); 1511 } 1512 1513 // Emit the LHS as a conditional. If the LHS conditional is false, we 1514 // want to jump to the FalseBlock. 1515 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1516 // The counter tells us how often we evaluate RHS, and all of TrueCount 1517 // can be propagated to that branch. 1518 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1519 1520 ConditionalEvaluation eval(*this); 1521 { 1522 ApplyDebugLocation DL(*this, Cond); 1523 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1524 EmitBlock(LHSTrue); 1525 } 1526 1527 incrementProfileCounter(CondBOp); 1528 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1529 1530 // Any temporaries created here are conditional. 1531 eval.begin(*this); 1532 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1533 eval.end(*this); 1534 1535 return; 1536 } 1537 1538 if (CondBOp->getOpcode() == BO_LOr) { 1539 // If we have "0 || X", simplify the code. "1 || X" would have constant 1540 // folded if the case was simple enough. 1541 bool ConstantBool = false; 1542 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1543 !ConstantBool) { 1544 // br(0 || X) -> br(X). 1545 incrementProfileCounter(CondBOp); 1546 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1547 TrueCount); 1548 } 1549 1550 // If we have "X || 0", simplify the code to use an uncond branch. 1551 // "X || 1" would have been constant folded to 1. 1552 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1553 !ConstantBool) { 1554 // br(X || 0) -> br(X). 1555 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1556 TrueCount); 1557 } 1558 1559 // Emit the LHS as a conditional. If the LHS conditional is true, we 1560 // want to jump to the TrueBlock. 1561 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1562 // We have the count for entry to the RHS and for the whole expression 1563 // being true, so we can divy up True count between the short circuit and 1564 // the RHS. 1565 uint64_t LHSCount = 1566 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1567 uint64_t RHSCount = TrueCount - LHSCount; 1568 1569 ConditionalEvaluation eval(*this); 1570 { 1571 ApplyDebugLocation DL(*this, Cond); 1572 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1573 EmitBlock(LHSFalse); 1574 } 1575 1576 incrementProfileCounter(CondBOp); 1577 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1578 1579 // Any temporaries created here are conditional. 1580 eval.begin(*this); 1581 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1582 1583 eval.end(*this); 1584 1585 return; 1586 } 1587 } 1588 1589 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1590 // br(!x, t, f) -> br(x, f, t) 1591 if (CondUOp->getOpcode() == UO_LNot) { 1592 // Negate the count. 1593 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1594 // Negate the condition and swap the destination blocks. 1595 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1596 FalseCount); 1597 } 1598 } 1599 1600 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1601 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1602 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1603 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1604 1605 ConditionalEvaluation cond(*this); 1606 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1607 getProfileCount(CondOp)); 1608 1609 // When computing PGO branch weights, we only know the overall count for 1610 // the true block. This code is essentially doing tail duplication of the 1611 // naive code-gen, introducing new edges for which counts are not 1612 // available. Divide the counts proportionally between the LHS and RHS of 1613 // the conditional operator. 1614 uint64_t LHSScaledTrueCount = 0; 1615 if (TrueCount) { 1616 double LHSRatio = 1617 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1618 LHSScaledTrueCount = TrueCount * LHSRatio; 1619 } 1620 1621 cond.begin(*this); 1622 EmitBlock(LHSBlock); 1623 incrementProfileCounter(CondOp); 1624 { 1625 ApplyDebugLocation DL(*this, Cond); 1626 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1627 LHSScaledTrueCount); 1628 } 1629 cond.end(*this); 1630 1631 cond.begin(*this); 1632 EmitBlock(RHSBlock); 1633 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1634 TrueCount - LHSScaledTrueCount); 1635 cond.end(*this); 1636 1637 return; 1638 } 1639 1640 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1641 // Conditional operator handling can give us a throw expression as a 1642 // condition for a case like: 1643 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1644 // Fold this to: 1645 // br(c, throw x, br(y, t, f)) 1646 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1647 return; 1648 } 1649 1650 // If the branch has a condition wrapped by __builtin_unpredictable, 1651 // create metadata that specifies that the branch is unpredictable. 1652 // Don't bother if not optimizing because that metadata would not be used. 1653 llvm::MDNode *Unpredictable = nullptr; 1654 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1655 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1656 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1657 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1658 llvm::MDBuilder MDHelper(getLLVMContext()); 1659 Unpredictable = MDHelper.createUnpredictable(); 1660 } 1661 } 1662 1663 // Create branch weights based on the number of times we get here and the 1664 // number of times the condition should be true. 1665 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1666 llvm::MDNode *Weights = 1667 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1668 1669 // Emit the code with the fully general case. 1670 llvm::Value *CondV; 1671 { 1672 ApplyDebugLocation DL(*this, Cond); 1673 CondV = EvaluateExprAsBool(Cond); 1674 } 1675 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1676 } 1677 1678 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1679 /// specified stmt yet. 1680 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1681 CGM.ErrorUnsupported(S, Type); 1682 } 1683 1684 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1685 /// variable-length array whose elements have a non-zero bit-pattern. 1686 /// 1687 /// \param baseType the inner-most element type of the array 1688 /// \param src - a char* pointing to the bit-pattern for a single 1689 /// base element of the array 1690 /// \param sizeInChars - the total size of the VLA, in chars 1691 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1692 Address dest, Address src, 1693 llvm::Value *sizeInChars) { 1694 CGBuilderTy &Builder = CGF.Builder; 1695 1696 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1697 llvm::Value *baseSizeInChars 1698 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1699 1700 Address begin = 1701 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1702 llvm::Value *end = 1703 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1704 1705 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1706 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1707 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1708 1709 // Make a loop over the VLA. C99 guarantees that the VLA element 1710 // count must be nonzero. 1711 CGF.EmitBlock(loopBB); 1712 1713 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1714 cur->addIncoming(begin.getPointer(), originBB); 1715 1716 CharUnits curAlign = 1717 dest.getAlignment().alignmentOfArrayElement(baseSize); 1718 1719 // memcpy the individual element bit-pattern. 1720 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1721 /*volatile*/ false); 1722 1723 // Go to the next element. 1724 llvm::Value *next = 1725 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1726 1727 // Leave if that's the end of the VLA. 1728 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1729 Builder.CreateCondBr(done, contBB, loopBB); 1730 cur->addIncoming(next, loopBB); 1731 1732 CGF.EmitBlock(contBB); 1733 } 1734 1735 void 1736 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1737 // Ignore empty classes in C++. 1738 if (getLangOpts().CPlusPlus) { 1739 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1740 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1741 return; 1742 } 1743 } 1744 1745 // Cast the dest ptr to the appropriate i8 pointer type. 1746 if (DestPtr.getElementType() != Int8Ty) 1747 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1748 1749 // Get size and alignment info for this aggregate. 1750 CharUnits size = getContext().getTypeSizeInChars(Ty); 1751 1752 llvm::Value *SizeVal; 1753 const VariableArrayType *vla; 1754 1755 // Don't bother emitting a zero-byte memset. 1756 if (size.isZero()) { 1757 // But note that getTypeInfo returns 0 for a VLA. 1758 if (const VariableArrayType *vlaType = 1759 dyn_cast_or_null<VariableArrayType>( 1760 getContext().getAsArrayType(Ty))) { 1761 auto VlaSize = getVLASize(vlaType); 1762 SizeVal = VlaSize.NumElts; 1763 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1764 if (!eltSize.isOne()) 1765 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1766 vla = vlaType; 1767 } else { 1768 return; 1769 } 1770 } else { 1771 SizeVal = CGM.getSize(size); 1772 vla = nullptr; 1773 } 1774 1775 // If the type contains a pointer to data member we can't memset it to zero. 1776 // Instead, create a null constant and copy it to the destination. 1777 // TODO: there are other patterns besides zero that we can usefully memset, 1778 // like -1, which happens to be the pattern used by member-pointers. 1779 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1780 // For a VLA, emit a single element, then splat that over the VLA. 1781 if (vla) Ty = getContext().getBaseElementType(vla); 1782 1783 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1784 1785 llvm::GlobalVariable *NullVariable = 1786 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1787 /*isConstant=*/true, 1788 llvm::GlobalVariable::PrivateLinkage, 1789 NullConstant, Twine()); 1790 CharUnits NullAlign = DestPtr.getAlignment(); 1791 NullVariable->setAlignment(NullAlign.getAsAlign()); 1792 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1793 NullAlign); 1794 1795 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1796 1797 // Get and call the appropriate llvm.memcpy overload. 1798 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1799 return; 1800 } 1801 1802 // Otherwise, just memset the whole thing to zero. This is legal 1803 // because in LLVM, all default initializers (other than the ones we just 1804 // handled above) are guaranteed to have a bit pattern of all zeros. 1805 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1806 } 1807 1808 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1809 // Make sure that there is a block for the indirect goto. 1810 if (!IndirectBranch) 1811 GetIndirectGotoBlock(); 1812 1813 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1814 1815 // Make sure the indirect branch includes all of the address-taken blocks. 1816 IndirectBranch->addDestination(BB); 1817 return llvm::BlockAddress::get(CurFn, BB); 1818 } 1819 1820 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1821 // If we already made the indirect branch for indirect goto, return its block. 1822 if (IndirectBranch) return IndirectBranch->getParent(); 1823 1824 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1825 1826 // Create the PHI node that indirect gotos will add entries to. 1827 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1828 "indirect.goto.dest"); 1829 1830 // Create the indirect branch instruction. 1831 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1832 return IndirectBranch->getParent(); 1833 } 1834 1835 /// Computes the length of an array in elements, as well as the base 1836 /// element type and a properly-typed first element pointer. 1837 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1838 QualType &baseType, 1839 Address &addr) { 1840 const ArrayType *arrayType = origArrayType; 1841 1842 // If it's a VLA, we have to load the stored size. Note that 1843 // this is the size of the VLA in bytes, not its size in elements. 1844 llvm::Value *numVLAElements = nullptr; 1845 if (isa<VariableArrayType>(arrayType)) { 1846 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1847 1848 // Walk into all VLAs. This doesn't require changes to addr, 1849 // which has type T* where T is the first non-VLA element type. 1850 do { 1851 QualType elementType = arrayType->getElementType(); 1852 arrayType = getContext().getAsArrayType(elementType); 1853 1854 // If we only have VLA components, 'addr' requires no adjustment. 1855 if (!arrayType) { 1856 baseType = elementType; 1857 return numVLAElements; 1858 } 1859 } while (isa<VariableArrayType>(arrayType)); 1860 1861 // We get out here only if we find a constant array type 1862 // inside the VLA. 1863 } 1864 1865 // We have some number of constant-length arrays, so addr should 1866 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1867 // down to the first element of addr. 1868 SmallVector<llvm::Value*, 8> gepIndices; 1869 1870 // GEP down to the array type. 1871 llvm::ConstantInt *zero = Builder.getInt32(0); 1872 gepIndices.push_back(zero); 1873 1874 uint64_t countFromCLAs = 1; 1875 QualType eltType; 1876 1877 llvm::ArrayType *llvmArrayType = 1878 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1879 while (llvmArrayType) { 1880 assert(isa<ConstantArrayType>(arrayType)); 1881 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1882 == llvmArrayType->getNumElements()); 1883 1884 gepIndices.push_back(zero); 1885 countFromCLAs *= llvmArrayType->getNumElements(); 1886 eltType = arrayType->getElementType(); 1887 1888 llvmArrayType = 1889 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1890 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1891 assert((!llvmArrayType || arrayType) && 1892 "LLVM and Clang types are out-of-synch"); 1893 } 1894 1895 if (arrayType) { 1896 // From this point onwards, the Clang array type has been emitted 1897 // as some other type (probably a packed struct). Compute the array 1898 // size, and just emit the 'begin' expression as a bitcast. 1899 while (arrayType) { 1900 countFromCLAs *= 1901 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1902 eltType = arrayType->getElementType(); 1903 arrayType = getContext().getAsArrayType(eltType); 1904 } 1905 1906 llvm::Type *baseType = ConvertType(eltType); 1907 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1908 } else { 1909 // Create the actual GEP. 1910 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1911 gepIndices, "array.begin"), 1912 addr.getAlignment()); 1913 } 1914 1915 baseType = eltType; 1916 1917 llvm::Value *numElements 1918 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1919 1920 // If we had any VLA dimensions, factor them in. 1921 if (numVLAElements) 1922 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1923 1924 return numElements; 1925 } 1926 1927 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1928 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1929 assert(vla && "type was not a variable array type!"); 1930 return getVLASize(vla); 1931 } 1932 1933 CodeGenFunction::VlaSizePair 1934 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1935 // The number of elements so far; always size_t. 1936 llvm::Value *numElements = nullptr; 1937 1938 QualType elementType; 1939 do { 1940 elementType = type->getElementType(); 1941 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1942 assert(vlaSize && "no size for VLA!"); 1943 assert(vlaSize->getType() == SizeTy); 1944 1945 if (!numElements) { 1946 numElements = vlaSize; 1947 } else { 1948 // It's undefined behavior if this wraps around, so mark it that way. 1949 // FIXME: Teach -fsanitize=undefined to trap this. 1950 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1951 } 1952 } while ((type = getContext().getAsVariableArrayType(elementType))); 1953 1954 return { numElements, elementType }; 1955 } 1956 1957 CodeGenFunction::VlaSizePair 1958 CodeGenFunction::getVLAElements1D(QualType type) { 1959 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1960 assert(vla && "type was not a variable array type!"); 1961 return getVLAElements1D(vla); 1962 } 1963 1964 CodeGenFunction::VlaSizePair 1965 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1966 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1967 assert(VlaSize && "no size for VLA!"); 1968 assert(VlaSize->getType() == SizeTy); 1969 return { VlaSize, Vla->getElementType() }; 1970 } 1971 1972 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1973 assert(type->isVariablyModifiedType() && 1974 "Must pass variably modified type to EmitVLASizes!"); 1975 1976 EnsureInsertPoint(); 1977 1978 // We're going to walk down into the type and look for VLA 1979 // expressions. 1980 do { 1981 assert(type->isVariablyModifiedType()); 1982 1983 const Type *ty = type.getTypePtr(); 1984 switch (ty->getTypeClass()) { 1985 1986 #define TYPE(Class, Base) 1987 #define ABSTRACT_TYPE(Class, Base) 1988 #define NON_CANONICAL_TYPE(Class, Base) 1989 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1990 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1991 #include "clang/AST/TypeNodes.inc" 1992 llvm_unreachable("unexpected dependent type!"); 1993 1994 // These types are never variably-modified. 1995 case Type::Builtin: 1996 case Type::Complex: 1997 case Type::Vector: 1998 case Type::ExtVector: 1999 case Type::Record: 2000 case Type::Enum: 2001 case Type::Elaborated: 2002 case Type::TemplateSpecialization: 2003 case Type::ObjCTypeParam: 2004 case Type::ObjCObject: 2005 case Type::ObjCInterface: 2006 case Type::ObjCObjectPointer: 2007 llvm_unreachable("type class is never variably-modified!"); 2008 2009 case Type::Adjusted: 2010 type = cast<AdjustedType>(ty)->getAdjustedType(); 2011 break; 2012 2013 case Type::Decayed: 2014 type = cast<DecayedType>(ty)->getPointeeType(); 2015 break; 2016 2017 case Type::Pointer: 2018 type = cast<PointerType>(ty)->getPointeeType(); 2019 break; 2020 2021 case Type::BlockPointer: 2022 type = cast<BlockPointerType>(ty)->getPointeeType(); 2023 break; 2024 2025 case Type::LValueReference: 2026 case Type::RValueReference: 2027 type = cast<ReferenceType>(ty)->getPointeeType(); 2028 break; 2029 2030 case Type::MemberPointer: 2031 type = cast<MemberPointerType>(ty)->getPointeeType(); 2032 break; 2033 2034 case Type::ConstantArray: 2035 case Type::IncompleteArray: 2036 // Losing element qualification here is fine. 2037 type = cast<ArrayType>(ty)->getElementType(); 2038 break; 2039 2040 case Type::VariableArray: { 2041 // Losing element qualification here is fine. 2042 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2043 2044 // Unknown size indication requires no size computation. 2045 // Otherwise, evaluate and record it. 2046 if (const Expr *size = vat->getSizeExpr()) { 2047 // It's possible that we might have emitted this already, 2048 // e.g. with a typedef and a pointer to it. 2049 llvm::Value *&entry = VLASizeMap[size]; 2050 if (!entry) { 2051 llvm::Value *Size = EmitScalarExpr(size); 2052 2053 // C11 6.7.6.2p5: 2054 // If the size is an expression that is not an integer constant 2055 // expression [...] each time it is evaluated it shall have a value 2056 // greater than zero. 2057 if (SanOpts.has(SanitizerKind::VLABound) && 2058 size->getType()->isSignedIntegerType()) { 2059 SanitizerScope SanScope(this); 2060 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2061 llvm::Constant *StaticArgs[] = { 2062 EmitCheckSourceLocation(size->getBeginLoc()), 2063 EmitCheckTypeDescriptor(size->getType())}; 2064 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2065 SanitizerKind::VLABound), 2066 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2067 } 2068 2069 // Always zexting here would be wrong if it weren't 2070 // undefined behavior to have a negative bound. 2071 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2072 } 2073 } 2074 type = vat->getElementType(); 2075 break; 2076 } 2077 2078 case Type::FunctionProto: 2079 case Type::FunctionNoProto: 2080 type = cast<FunctionType>(ty)->getReturnType(); 2081 break; 2082 2083 case Type::Paren: 2084 case Type::TypeOf: 2085 case Type::UnaryTransform: 2086 case Type::Attributed: 2087 case Type::SubstTemplateTypeParm: 2088 case Type::PackExpansion: 2089 case Type::MacroQualified: 2090 // Keep walking after single level desugaring. 2091 type = type.getSingleStepDesugaredType(getContext()); 2092 break; 2093 2094 case Type::Typedef: 2095 case Type::Decltype: 2096 case Type::Auto: 2097 case Type::DeducedTemplateSpecialization: 2098 // Stop walking: nothing to do. 2099 return; 2100 2101 case Type::TypeOfExpr: 2102 // Stop walking: emit typeof expression. 2103 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2104 return; 2105 2106 case Type::Atomic: 2107 type = cast<AtomicType>(ty)->getValueType(); 2108 break; 2109 2110 case Type::Pipe: 2111 type = cast<PipeType>(ty)->getElementType(); 2112 break; 2113 } 2114 } while (type->isVariablyModifiedType()); 2115 } 2116 2117 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2118 if (getContext().getBuiltinVaListType()->isArrayType()) 2119 return EmitPointerWithAlignment(E); 2120 return EmitLValue(E).getAddress(*this); 2121 } 2122 2123 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2124 return EmitLValue(E).getAddress(*this); 2125 } 2126 2127 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2128 const APValue &Init) { 2129 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2130 if (CGDebugInfo *Dbg = getDebugInfo()) 2131 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2132 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2133 } 2134 2135 CodeGenFunction::PeepholeProtection 2136 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2137 // At the moment, the only aggressive peephole we do in IR gen 2138 // is trunc(zext) folding, but if we add more, we can easily 2139 // extend this protection. 2140 2141 if (!rvalue.isScalar()) return PeepholeProtection(); 2142 llvm::Value *value = rvalue.getScalarVal(); 2143 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2144 2145 // Just make an extra bitcast. 2146 assert(HaveInsertPoint()); 2147 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2148 Builder.GetInsertBlock()); 2149 2150 PeepholeProtection protection; 2151 protection.Inst = inst; 2152 return protection; 2153 } 2154 2155 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2156 if (!protection.Inst) return; 2157 2158 // In theory, we could try to duplicate the peepholes now, but whatever. 2159 protection.Inst->eraseFromParent(); 2160 } 2161 2162 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2163 QualType Ty, SourceLocation Loc, 2164 SourceLocation AssumptionLoc, 2165 llvm::Value *Alignment, 2166 llvm::Value *OffsetValue) { 2167 llvm::Value *TheCheck; 2168 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2169 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2170 if (SanOpts.has(SanitizerKind::Alignment)) { 2171 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2172 OffsetValue, TheCheck, Assumption); 2173 } 2174 } 2175 2176 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2177 const Expr *E, 2178 SourceLocation AssumptionLoc, 2179 llvm::Value *Alignment, 2180 llvm::Value *OffsetValue) { 2181 if (auto *CE = dyn_cast<CastExpr>(E)) 2182 E = CE->getSubExprAsWritten(); 2183 QualType Ty = E->getType(); 2184 SourceLocation Loc = E->getExprLoc(); 2185 2186 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2187 OffsetValue); 2188 } 2189 2190 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2191 llvm::Value *AnnotatedVal, 2192 StringRef AnnotationStr, 2193 SourceLocation Location) { 2194 llvm::Value *Args[4] = { 2195 AnnotatedVal, 2196 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2197 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2198 CGM.EmitAnnotationLineNo(Location) 2199 }; 2200 return Builder.CreateCall(AnnotationFn, Args); 2201 } 2202 2203 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2204 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2205 // FIXME We create a new bitcast for every annotation because that's what 2206 // llvm-gcc was doing. 2207 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2208 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2209 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2210 I->getAnnotation(), D->getLocation()); 2211 } 2212 2213 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2214 Address Addr) { 2215 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2216 llvm::Value *V = Addr.getPointer(); 2217 llvm::Type *VTy = V->getType(); 2218 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2219 CGM.Int8PtrTy); 2220 2221 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2222 // FIXME Always emit the cast inst so we can differentiate between 2223 // annotation on the first field of a struct and annotation on the struct 2224 // itself. 2225 if (VTy != CGM.Int8PtrTy) 2226 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2227 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2228 V = Builder.CreateBitCast(V, VTy); 2229 } 2230 2231 return Address(V, Addr.getAlignment()); 2232 } 2233 2234 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2235 2236 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2237 : CGF(CGF) { 2238 assert(!CGF->IsSanitizerScope); 2239 CGF->IsSanitizerScope = true; 2240 } 2241 2242 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2243 CGF->IsSanitizerScope = false; 2244 } 2245 2246 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2247 const llvm::Twine &Name, 2248 llvm::BasicBlock *BB, 2249 llvm::BasicBlock::iterator InsertPt) const { 2250 LoopStack.InsertHelper(I); 2251 if (IsSanitizerScope) 2252 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2253 } 2254 2255 void CGBuilderInserter::InsertHelper( 2256 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2257 llvm::BasicBlock::iterator InsertPt) const { 2258 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2259 if (CGF) 2260 CGF->InsertHelper(I, Name, BB, InsertPt); 2261 } 2262 2263 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2264 CodeGenModule &CGM, const FunctionDecl *FD, 2265 std::string &FirstMissing) { 2266 // If there aren't any required features listed then go ahead and return. 2267 if (ReqFeatures.empty()) 2268 return false; 2269 2270 // Now build up the set of caller features and verify that all the required 2271 // features are there. 2272 llvm::StringMap<bool> CallerFeatureMap; 2273 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2274 2275 // If we have at least one of the features in the feature list return 2276 // true, otherwise return false. 2277 return std::all_of( 2278 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2279 SmallVector<StringRef, 1> OrFeatures; 2280 Feature.split(OrFeatures, '|'); 2281 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2282 if (!CallerFeatureMap.lookup(Feature)) { 2283 FirstMissing = Feature.str(); 2284 return false; 2285 } 2286 return true; 2287 }); 2288 }); 2289 } 2290 2291 // Emits an error if we don't have a valid set of target features for the 2292 // called function. 2293 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2294 const FunctionDecl *TargetDecl) { 2295 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2296 } 2297 2298 // Emits an error if we don't have a valid set of target features for the 2299 // called function. 2300 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2301 const FunctionDecl *TargetDecl) { 2302 // Early exit if this is an indirect call. 2303 if (!TargetDecl) 2304 return; 2305 2306 // Get the current enclosing function if it exists. If it doesn't 2307 // we can't check the target features anyhow. 2308 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2309 if (!FD) 2310 return; 2311 2312 // Grab the required features for the call. For a builtin this is listed in 2313 // the td file with the default cpu, for an always_inline function this is any 2314 // listed cpu and any listed features. 2315 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2316 std::string MissingFeature; 2317 if (BuiltinID) { 2318 SmallVector<StringRef, 1> ReqFeatures; 2319 const char *FeatureList = 2320 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2321 // Return if the builtin doesn't have any required features. 2322 if (!FeatureList || StringRef(FeatureList) == "") 2323 return; 2324 StringRef(FeatureList).split(ReqFeatures, ','); 2325 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2326 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2327 << TargetDecl->getDeclName() 2328 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2329 2330 } else if (!TargetDecl->isMultiVersion() && 2331 TargetDecl->hasAttr<TargetAttr>()) { 2332 // Get the required features for the callee. 2333 2334 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2335 ParsedTargetAttr ParsedAttr = 2336 CGM.getContext().filterFunctionTargetAttrs(TD); 2337 2338 SmallVector<StringRef, 1> ReqFeatures; 2339 llvm::StringMap<bool> CalleeFeatureMap; 2340 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, 2341 GlobalDecl(TargetDecl)); 2342 2343 for (const auto &F : ParsedAttr.Features) { 2344 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2345 ReqFeatures.push_back(StringRef(F).substr(1)); 2346 } 2347 2348 for (const auto &F : CalleeFeatureMap) { 2349 // Only positive features are "required". 2350 if (F.getValue()) 2351 ReqFeatures.push_back(F.getKey()); 2352 } 2353 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2354 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2355 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2356 } 2357 } 2358 2359 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2360 if (!CGM.getCodeGenOpts().SanitizeStats) 2361 return; 2362 2363 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2364 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2365 CGM.getSanStats().create(IRB, SSK); 2366 } 2367 2368 llvm::Value * 2369 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2370 llvm::Value *Condition = nullptr; 2371 2372 if (!RO.Conditions.Architecture.empty()) 2373 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2374 2375 if (!RO.Conditions.Features.empty()) { 2376 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2377 Condition = 2378 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2379 } 2380 return Condition; 2381 } 2382 2383 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2384 llvm::Function *Resolver, 2385 CGBuilderTy &Builder, 2386 llvm::Function *FuncToReturn, 2387 bool SupportsIFunc) { 2388 if (SupportsIFunc) { 2389 Builder.CreateRet(FuncToReturn); 2390 return; 2391 } 2392 2393 llvm::SmallVector<llvm::Value *, 10> Args; 2394 llvm::for_each(Resolver->args(), 2395 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2396 2397 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2398 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2399 2400 if (Resolver->getReturnType()->isVoidTy()) 2401 Builder.CreateRetVoid(); 2402 else 2403 Builder.CreateRet(Result); 2404 } 2405 2406 void CodeGenFunction::EmitMultiVersionResolver( 2407 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2408 assert(getContext().getTargetInfo().getTriple().isX86() && 2409 "Only implemented for x86 targets"); 2410 2411 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2412 2413 // Main function's basic block. 2414 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2415 Builder.SetInsertPoint(CurBlock); 2416 EmitX86CpuInit(); 2417 2418 for (const MultiVersionResolverOption &RO : Options) { 2419 Builder.SetInsertPoint(CurBlock); 2420 llvm::Value *Condition = FormResolverCondition(RO); 2421 2422 // The 'default' or 'generic' case. 2423 if (!Condition) { 2424 assert(&RO == Options.end() - 1 && 2425 "Default or Generic case must be last"); 2426 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2427 SupportsIFunc); 2428 return; 2429 } 2430 2431 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2432 CGBuilderTy RetBuilder(*this, RetBlock); 2433 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2434 SupportsIFunc); 2435 CurBlock = createBasicBlock("resolver_else", Resolver); 2436 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2437 } 2438 2439 // If no generic/default, emit an unreachable. 2440 Builder.SetInsertPoint(CurBlock); 2441 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2442 TrapCall->setDoesNotReturn(); 2443 TrapCall->setDoesNotThrow(); 2444 Builder.CreateUnreachable(); 2445 Builder.ClearInsertionPoint(); 2446 } 2447 2448 // Loc - where the diagnostic will point, where in the source code this 2449 // alignment has failed. 2450 // SecondaryLoc - if present (will be present if sufficiently different from 2451 // Loc), the diagnostic will additionally point a "Note:" to this location. 2452 // It should be the location where the __attribute__((assume_aligned)) 2453 // was written e.g. 2454 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2455 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2456 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2457 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2458 llvm::Instruction *Assumption) { 2459 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2460 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2461 llvm::Intrinsic::getDeclaration( 2462 Builder.GetInsertBlock()->getParent()->getParent(), 2463 llvm::Intrinsic::assume) && 2464 "Assumption should be a call to llvm.assume()."); 2465 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2466 "Assumption should be the last instruction of the basic block, " 2467 "since the basic block is still being generated."); 2468 2469 if (!SanOpts.has(SanitizerKind::Alignment)) 2470 return; 2471 2472 // Don't check pointers to volatile data. The behavior here is implementation- 2473 // defined. 2474 if (Ty->getPointeeType().isVolatileQualified()) 2475 return; 2476 2477 // We need to temorairly remove the assumption so we can insert the 2478 // sanitizer check before it, else the check will be dropped by optimizations. 2479 Assumption->removeFromParent(); 2480 2481 { 2482 SanitizerScope SanScope(this); 2483 2484 if (!OffsetValue) 2485 OffsetValue = Builder.getInt1(0); // no offset. 2486 2487 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2488 EmitCheckSourceLocation(SecondaryLoc), 2489 EmitCheckTypeDescriptor(Ty)}; 2490 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2491 EmitCheckValue(Alignment), 2492 EmitCheckValue(OffsetValue)}; 2493 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2494 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2495 } 2496 2497 // We are now in the (new, empty) "cont" basic block. 2498 // Reintroduce the assumption. 2499 Builder.Insert(Assumption); 2500 // FIXME: Assumption still has it's original basic block as it's Parent. 2501 } 2502 2503 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2504 if (CGDebugInfo *DI = getDebugInfo()) 2505 return DI->SourceLocToDebugLoc(Location); 2506 2507 return llvm::DebugLoc(); 2508 } 2509