1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/OpenCL.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Operator.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
36     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
37       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
38       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
39                                CGM.getSanOpts().Alignment |
40                                CGM.getSanOpts().ObjectSize |
41                                CGM.getSanOpts().Vptr),
42       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
43       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
44       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
45       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
46       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
47       SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
48       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
49       CXXThisValue(0), CXXDefaultInitExprThis(0),
50       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52       TerminateHandler(0), TrapBB(0) {
53   if (!suppressNewContext)
54     CGM.getCXXABI().getMangleContext().startNewFunction();
55 
56   llvm::FastMathFlags FMF;
57   if (CGM.getLangOpts().FastMath)
58     FMF.setUnsafeAlgebra();
59   if (CGM.getLangOpts().FiniteMathOnly) {
60     FMF.setNoNaNs();
61     FMF.setNoInfs();
62   }
63   Builder.SetFastMathFlags(FMF);
64 }
65 
66 CodeGenFunction::~CodeGenFunction() {
67   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68 
69   // If there are any unclaimed block infos, go ahead and destroy them
70   // now.  This can happen if IR-gen gets clever and skips evaluating
71   // something.
72   if (FirstBlockInfo)
73     destroyBlockInfos(FirstBlockInfo);
74 }
75 
76 
77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78   return CGM.getTypes().ConvertTypeForMem(T);
79 }
80 
81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82   return CGM.getTypes().ConvertType(T);
83 }
84 
85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86   type = type.getCanonicalType();
87   while (true) {
88     switch (type->getTypeClass()) {
89 #define TYPE(name, parent)
90 #define ABSTRACT_TYPE(name, parent)
91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
92 #define DEPENDENT_TYPE(name, parent) case Type::name:
93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94 #include "clang/AST/TypeNodes.def"
95       llvm_unreachable("non-canonical or dependent type in IR-generation");
96 
97     case Type::Auto:
98       llvm_unreachable("undeduced auto type in IR-generation");
99 
100     // Various scalar types.
101     case Type::Builtin:
102     case Type::Pointer:
103     case Type::BlockPointer:
104     case Type::LValueReference:
105     case Type::RValueReference:
106     case Type::MemberPointer:
107     case Type::Vector:
108     case Type::ExtVector:
109     case Type::FunctionProto:
110     case Type::FunctionNoProto:
111     case Type::Enum:
112     case Type::ObjCObjectPointer:
113       return TEK_Scalar;
114 
115     // Complexes.
116     case Type::Complex:
117       return TEK_Complex;
118 
119     // Arrays, records, and Objective-C objects.
120     case Type::ConstantArray:
121     case Type::IncompleteArray:
122     case Type::VariableArray:
123     case Type::Record:
124     case Type::ObjCObject:
125     case Type::ObjCInterface:
126       return TEK_Aggregate;
127 
128     // We operate on atomic values according to their underlying type.
129     case Type::Atomic:
130       type = cast<AtomicType>(type)->getValueType();
131       continue;
132     }
133     llvm_unreachable("unknown type kind!");
134   }
135 }
136 
137 void CodeGenFunction::EmitReturnBlock() {
138   // For cleanliness, we try to avoid emitting the return block for
139   // simple cases.
140   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141 
142   if (CurBB) {
143     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144 
145     // We have a valid insert point, reuse it if it is empty or there are no
146     // explicit jumps to the return block.
147     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149       delete ReturnBlock.getBlock();
150     } else
151       EmitBlock(ReturnBlock.getBlock());
152     return;
153   }
154 
155   // Otherwise, if the return block is the target of a single direct
156   // branch then we can just put the code in that block instead. This
157   // cleans up functions which started with a unified return block.
158   if (ReturnBlock.getBlock()->hasOneUse()) {
159     llvm::BranchInst *BI =
160       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161     if (BI && BI->isUnconditional() &&
162         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163       // Reset insertion point, including debug location, and delete the
164       // branch.  This is really subtle and only works because the next change
165       // in location will hit the caching in CGDebugInfo::EmitLocation and not
166       // override this.
167       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168       Builder.SetInsertPoint(BI->getParent());
169       BI->eraseFromParent();
170       delete ReturnBlock.getBlock();
171       return;
172     }
173   }
174 
175   // FIXME: We are at an unreachable point, there is no reason to emit the block
176   // unless it has uses. However, we still need a place to put the debug
177   // region.end for now.
178 
179   EmitBlock(ReturnBlock.getBlock());
180 }
181 
182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183   if (!BB) return;
184   if (!BB->use_empty())
185     return CGF.CurFn->getBasicBlockList().push_back(BB);
186   delete BB;
187 }
188 
189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190   assert(BreakContinueStack.empty() &&
191          "mismatched push/pop in break/continue stack!");
192 
193   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194     && NumSimpleReturnExprs == NumReturnExprs
195     && ReturnBlock.getBlock()->use_empty();
196   // Usually the return expression is evaluated before the cleanup
197   // code.  If the function contains only a simple return statement,
198   // such as a constant, the location before the cleanup code becomes
199   // the last useful breakpoint in the function, because the simple
200   // return expression will be evaluated after the cleanup code. To be
201   // safe, set the debug location for cleanup code to the location of
202   // the return statement.  Otherwise the cleanup code should be at the
203   // end of the function's lexical scope.
204   //
205   // If there are multiple branches to the return block, the branch
206   // instructions will get the location of the return statements and
207   // all will be fine.
208   if (CGDebugInfo *DI = getDebugInfo()) {
209     if (OnlySimpleReturnStmts)
210       DI->EmitLocation(Builder, LastStopPoint.first,
211                        false, LastStopPoint.second);
212     else
213       DI->EmitLocation(Builder, EndLoc, false, LastStopPoint.second);
214   }
215 
216   // Pop any cleanups that might have been associated with the
217   // parameters.  Do this in whatever block we're currently in; it's
218   // important to do this before we enter the return block or return
219   // edges will be *really* confused.
220   bool EmitRetDbgLoc = true;
221   if (EHStack.stable_begin() != PrologueCleanupDepth) {
222     PopCleanupBlocks(PrologueCleanupDepth);
223 
224     // Make sure the line table doesn't jump back into the body for
225     // the ret after it's been at EndLoc.
226     EmitRetDbgLoc = false;
227 
228     if (CGDebugInfo *DI = getDebugInfo())
229       if (OnlySimpleReturnStmts)
230         DI->EmitLocation(Builder, EndLoc, false, LastStopPoint.second);
231   }
232 
233   // Emit function epilog (to return).
234   EmitReturnBlock();
235 
236   if (ShouldInstrumentFunction())
237     EmitFunctionInstrumentation("__cyg_profile_func_exit");
238 
239   // Emit debug descriptor for function end.
240   if (CGDebugInfo *DI = getDebugInfo()) {
241     DI->EmitFunctionEnd(Builder);
242   }
243 
244   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
245   EmitEndEHSpec(CurCodeDecl);
246 
247   assert(EHStack.empty() &&
248          "did not remove all scopes from cleanup stack!");
249 
250   // If someone did an indirect goto, emit the indirect goto block at the end of
251   // the function.
252   if (IndirectBranch) {
253     EmitBlock(IndirectBranch->getParent());
254     Builder.ClearInsertionPoint();
255   }
256 
257   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
258   llvm::Instruction *Ptr = AllocaInsertPt;
259   AllocaInsertPt = 0;
260   Ptr->eraseFromParent();
261 
262   // If someone took the address of a label but never did an indirect goto, we
263   // made a zero entry PHI node, which is illegal, zap it now.
264   if (IndirectBranch) {
265     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
266     if (PN->getNumIncomingValues() == 0) {
267       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
268       PN->eraseFromParent();
269     }
270   }
271 
272   EmitIfUsed(*this, EHResumeBlock);
273   EmitIfUsed(*this, TerminateLandingPad);
274   EmitIfUsed(*this, TerminateHandler);
275   EmitIfUsed(*this, UnreachableBlock);
276 
277   if (CGM.getCodeGenOpts().EmitDeclMetadata)
278     EmitDeclMetadata();
279 }
280 
281 /// ShouldInstrumentFunction - Return true if the current function should be
282 /// instrumented with __cyg_profile_func_* calls
283 bool CodeGenFunction::ShouldInstrumentFunction() {
284   if (!CGM.getCodeGenOpts().InstrumentFunctions)
285     return false;
286   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
287     return false;
288   return true;
289 }
290 
291 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
292 /// instrumentation function with the current function and the call site, if
293 /// function instrumentation is enabled.
294 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
295   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
296   llvm::PointerType *PointerTy = Int8PtrTy;
297   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
298   llvm::FunctionType *FunctionTy =
299     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
300 
301   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
302   llvm::CallInst *CallSite = Builder.CreateCall(
303     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
304     llvm::ConstantInt::get(Int32Ty, 0),
305     "callsite");
306 
307   llvm::Value *args[] = {
308     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
309     CallSite
310   };
311 
312   EmitNounwindRuntimeCall(F, args);
313 }
314 
315 void CodeGenFunction::EmitMCountInstrumentation() {
316   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
317 
318   llvm::Constant *MCountFn =
319     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
320   EmitNounwindRuntimeCall(MCountFn);
321 }
322 
323 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
324 // information in the program executable. The argument information stored
325 // includes the argument name, its type, the address and access qualifiers used.
326 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
327                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
328                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
329                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
330   // Create MDNodes that represent the kernel arg metadata.
331   // Each MDNode is a list in the form of "key", N number of values which is
332   // the same number of values as their are kernel arguments.
333 
334   // MDNode for the kernel argument address space qualifiers.
335   SmallVector<llvm::Value*, 8> addressQuals;
336   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
337 
338   // MDNode for the kernel argument access qualifiers (images only).
339   SmallVector<llvm::Value*, 8> accessQuals;
340   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
341 
342   // MDNode for the kernel argument type names.
343   SmallVector<llvm::Value*, 8> argTypeNames;
344   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
345 
346   // MDNode for the kernel argument type qualifiers.
347   SmallVector<llvm::Value*, 8> argTypeQuals;
348   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
349 
350   // MDNode for the kernel argument names.
351   SmallVector<llvm::Value*, 8> argNames;
352   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
353 
354   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
355     const ParmVarDecl *parm = FD->getParamDecl(i);
356     QualType ty = parm->getType();
357     std::string typeQuals;
358 
359     if (ty->isPointerType()) {
360       QualType pointeeTy = ty->getPointeeType();
361 
362       // Get address qualifier.
363       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
364         pointeeTy.getAddressSpace())));
365 
366       // Get argument type name.
367       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
368 
369       // Turn "unsigned type" to "utype"
370       std::string::size_type pos = typeName.find("unsigned");
371       if (pos != std::string::npos)
372         typeName.erase(pos+1, 8);
373 
374       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
375 
376       // Get argument type qualifiers:
377       if (ty.isRestrictQualified())
378         typeQuals = "restrict";
379       if (pointeeTy.isConstQualified() ||
380           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
381         typeQuals += typeQuals.empty() ? "const" : " const";
382       if (pointeeTy.isVolatileQualified())
383         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
384     } else {
385       addressQuals.push_back(Builder.getInt32(0));
386 
387       // Get argument type name.
388       std::string typeName = ty.getUnqualifiedType().getAsString();
389 
390       // Turn "unsigned type" to "utype"
391       std::string::size_type pos = typeName.find("unsigned");
392       if (pos != std::string::npos)
393         typeName.erase(pos+1, 8);
394 
395       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
396 
397       // Get argument type qualifiers:
398       if (ty.isConstQualified())
399         typeQuals = "const";
400       if (ty.isVolatileQualified())
401         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
402     }
403 
404     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
405 
406     // Get image access qualifier:
407     if (ty->isImageType()) {
408       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
409       if (A && A->getAccess() == CLIA_write_only)
410         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
411       else
412         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
413     } else
414       accessQuals.push_back(llvm::MDString::get(Context, "none"));
415 
416     // Get argument name.
417     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
418   }
419 
420   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
421   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
422   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
423   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
424   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
425 }
426 
427 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
428                                                llvm::Function *Fn)
429 {
430   if (!FD->hasAttr<OpenCLKernelAttr>())
431     return;
432 
433   llvm::LLVMContext &Context = getLLVMContext();
434 
435   SmallVector <llvm::Value*, 5> kernelMDArgs;
436   kernelMDArgs.push_back(Fn);
437 
438   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
439     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
440                          Builder, getContext());
441 
442   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
443     QualType hintQTy = A->getTypeHint();
444     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
445     bool isSignedInteger =
446         hintQTy->isSignedIntegerType() ||
447         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
448     llvm::Value *attrMDArgs[] = {
449       llvm::MDString::get(Context, "vec_type_hint"),
450       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
451       llvm::ConstantInt::get(
452           llvm::IntegerType::get(Context, 32),
453           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
454     };
455     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
456   }
457 
458   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
459     llvm::Value *attrMDArgs[] = {
460       llvm::MDString::get(Context, "work_group_size_hint"),
461       Builder.getInt32(A->getXDim()),
462       Builder.getInt32(A->getYDim()),
463       Builder.getInt32(A->getZDim())
464     };
465     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
466   }
467 
468   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
469     llvm::Value *attrMDArgs[] = {
470       llvm::MDString::get(Context, "reqd_work_group_size"),
471       Builder.getInt32(A->getXDim()),
472       Builder.getInt32(A->getYDim()),
473       Builder.getInt32(A->getZDim())
474     };
475     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
476   }
477 
478   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
479   llvm::NamedMDNode *OpenCLKernelMetadata =
480     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
481   OpenCLKernelMetadata->addOperand(kernelMDNode);
482 }
483 
484 void CodeGenFunction::StartFunction(GlobalDecl GD,
485                                     QualType RetTy,
486                                     llvm::Function *Fn,
487                                     const CGFunctionInfo &FnInfo,
488                                     const FunctionArgList &Args,
489                                     SourceLocation StartLoc) {
490   const Decl *D = GD.getDecl();
491 
492   DidCallStackSave = false;
493   CurCodeDecl = D;
494   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
495   FnRetTy = RetTy;
496   CurFn = Fn;
497   CurFnInfo = &FnInfo;
498   assert(CurFn->isDeclaration() && "Function already has body?");
499 
500   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
501     SanOpts = &SanitizerOptions::Disabled;
502     SanitizePerformTypeCheck = false;
503   }
504 
505   // Pass inline keyword to optimizer if it appears explicitly on any
506   // declaration.
507   if (!CGM.getCodeGenOpts().NoInline)
508     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
509       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
510              RE = FD->redecls_end(); RI != RE; ++RI)
511         if (RI->isInlineSpecified()) {
512           Fn->addFnAttr(llvm::Attribute::InlineHint);
513           break;
514         }
515 
516   if (getLangOpts().OpenCL) {
517     // Add metadata for a kernel function.
518     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
519       EmitOpenCLKernelMetadata(FD, Fn);
520   }
521 
522   // If we are checking function types, emit a function type signature as
523   // prefix data.
524   if (getLangOpts().CPlusPlus && SanOpts->Function) {
525     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
526       if (llvm::Constant *PrefixSig =
527               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
528         llvm::Constant *FTRTTIConst =
529             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
530         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
531         llvm::Constant *PrefixStructConst =
532             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
533         Fn->setPrefixData(PrefixStructConst);
534       }
535     }
536   }
537 
538   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
539 
540   // Create a marker to make it easy to insert allocas into the entryblock
541   // later.  Don't create this with the builder, because we don't want it
542   // folded.
543   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
544   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
545   if (Builder.isNamePreserving())
546     AllocaInsertPt->setName("allocapt");
547 
548   ReturnBlock = getJumpDestInCurrentScope("return");
549 
550   Builder.SetInsertPoint(EntryBB);
551 
552   // Emit subprogram debug descriptor.
553   if (CGDebugInfo *DI = getDebugInfo()) {
554     SmallVector<QualType, 16> ArgTypes;
555     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
556 	 i != e; ++i) {
557       ArgTypes.push_back((*i)->getType());
558     }
559 
560     QualType FnType =
561       getContext().getFunctionType(RetTy, ArgTypes,
562                                    FunctionProtoType::ExtProtoInfo());
563 
564     DI->setLocation(StartLoc);
565     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
566   }
567 
568   if (ShouldInstrumentFunction())
569     EmitFunctionInstrumentation("__cyg_profile_func_enter");
570 
571   if (CGM.getCodeGenOpts().InstrumentForProfiling)
572     EmitMCountInstrumentation();
573 
574   if (RetTy->isVoidType()) {
575     // Void type; nothing to return.
576     ReturnValue = 0;
577   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
578              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
579     // Indirect aggregate return; emit returned value directly into sret slot.
580     // This reduces code size, and affects correctness in C++.
581     ReturnValue = CurFn->arg_begin();
582   } else {
583     ReturnValue = CreateIRTemp(RetTy, "retval");
584 
585     // Tell the epilog emitter to autorelease the result.  We do this
586     // now so that various specialized functions can suppress it
587     // during their IR-generation.
588     if (getLangOpts().ObjCAutoRefCount &&
589         !CurFnInfo->isReturnsRetained() &&
590         RetTy->isObjCRetainableType())
591       AutoreleaseResult = true;
592   }
593 
594   EmitStartEHSpec(CurCodeDecl);
595 
596   PrologueCleanupDepth = EHStack.stable_begin();
597   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
598 
599   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
600     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
601     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
602     if (MD->getParent()->isLambda() &&
603         MD->getOverloadedOperator() == OO_Call) {
604       // We're in a lambda; figure out the captures.
605       MD->getParent()->getCaptureFields(LambdaCaptureFields,
606                                         LambdaThisCaptureField);
607       if (LambdaThisCaptureField) {
608         // If this lambda captures this, load it.
609         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
610         CXXThisValue = EmitLoadOfLValue(ThisLValue,
611                                         SourceLocation()).getScalarVal();
612       }
613     } else {
614       // Not in a lambda; just use 'this' from the method.
615       // FIXME: Should we generate a new load for each use of 'this'?  The
616       // fast register allocator would be happier...
617       CXXThisValue = CXXABIThisValue;
618     }
619   }
620 
621   // If any of the arguments have a variably modified type, make sure to
622   // emit the type size.
623   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
624        i != e; ++i) {
625     const VarDecl *VD = *i;
626 
627     // Dig out the type as written from ParmVarDecls; it's unclear whether
628     // the standard (C99 6.9.1p10) requires this, but we're following the
629     // precedent set by gcc.
630     QualType Ty;
631     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
632       Ty = PVD->getOriginalType();
633     else
634       Ty = VD->getType();
635 
636     if (Ty->isVariablyModifiedType())
637       EmitVariablyModifiedType(Ty);
638   }
639   // Emit a location at the end of the prologue.
640   if (CGDebugInfo *DI = getDebugInfo())
641     DI->EmitLocation(Builder, StartLoc);
642 }
643 
644 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
645                                        const Stmt *Body) {
646   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
647     EmitCompoundStmtWithoutScope(*S);
648   else
649     EmitStmt(Body);
650 }
651 
652 /// Tries to mark the given function nounwind based on the
653 /// non-existence of any throwing calls within it.  We believe this is
654 /// lightweight enough to do at -O0.
655 static void TryMarkNoThrow(llvm::Function *F) {
656   // LLVM treats 'nounwind' on a function as part of the type, so we
657   // can't do this on functions that can be overwritten.
658   if (F->mayBeOverridden()) return;
659 
660   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
661     for (llvm::BasicBlock::iterator
662            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
663       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
664         if (!Call->doesNotThrow())
665           return;
666       } else if (isa<llvm::ResumeInst>(&*BI)) {
667         return;
668       }
669   F->setDoesNotThrow();
670 }
671 
672 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
673                                           const FunctionDecl *UnsizedDealloc) {
674   // This is a weak discardable definition of the sized deallocation function.
675   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
676 
677   // Call the unsized deallocation function and forward the first argument
678   // unchanged.
679   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
680   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
681 }
682 
683 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
684                                    const CGFunctionInfo &FnInfo) {
685   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
686 
687   // Check if we should generate debug info for this function.
688   if (FD->hasAttr<NoDebugAttr>())
689     DebugInfo = NULL; // disable debug info indefinitely for this function
690 
691   FunctionArgList Args;
692   QualType ResTy = FD->getResultType();
693 
694   CurGD = GD;
695   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
696   if (MD && MD->isInstance()) {
697     if (CGM.getCXXABI().HasThisReturn(GD))
698       ResTy = MD->getThisType(getContext());
699     CGM.getCXXABI().buildThisParam(*this, Args);
700   }
701 
702   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
703     Args.push_back(FD->getParamDecl(i));
704 
705   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
706     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
707 
708   SourceRange BodyRange;
709   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
710   CurEHLocation = BodyRange.getEnd();
711 
712   // Emit the standard function prologue.
713   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
714 
715   // Generate the body of the function.
716   if (isa<CXXDestructorDecl>(FD))
717     EmitDestructorBody(Args);
718   else if (isa<CXXConstructorDecl>(FD))
719     EmitConstructorBody(Args);
720   else if (getLangOpts().CUDA &&
721            !CGM.getCodeGenOpts().CUDAIsDevice &&
722            FD->hasAttr<CUDAGlobalAttr>())
723     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
724   else if (isa<CXXConversionDecl>(FD) &&
725            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
726     // The lambda conversion to block pointer is special; the semantics can't be
727     // expressed in the AST, so IRGen needs to special-case it.
728     EmitLambdaToBlockPointerBody(Args);
729   } else if (isa<CXXMethodDecl>(FD) &&
730              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
731     // The lambda static invoker function is special, because it forwards or
732     // clones the body of the function call operator (but is actually static).
733     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
734   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
735              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
736               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
737     // Implicit copy-assignment gets the same special treatment as implicit
738     // copy-constructors.
739     emitImplicitAssignmentOperatorBody(Args);
740   } else if (Stmt *Body = FD->getBody()) {
741     EmitFunctionBody(Args, Body);
742   } else if (FunctionDecl *UnsizedDealloc =
743                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
744     // Global sized deallocation functions get an implicit weak definition if
745     // they don't have an explicit definition.
746     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
747   } else
748     llvm_unreachable("no definition for emitted function");
749 
750   // C++11 [stmt.return]p2:
751   //   Flowing off the end of a function [...] results in undefined behavior in
752   //   a value-returning function.
753   // C11 6.9.1p12:
754   //   If the '}' that terminates a function is reached, and the value of the
755   //   function call is used by the caller, the behavior is undefined.
756   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
757       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
758     if (SanOpts->Return)
759       EmitCheck(Builder.getFalse(), "missing_return",
760                 EmitCheckSourceLocation(FD->getLocation()),
761                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
762     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
763       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
764     Builder.CreateUnreachable();
765     Builder.ClearInsertionPoint();
766   }
767 
768   // Emit the standard function epilogue.
769   FinishFunction(BodyRange.getEnd());
770 
771   // If we haven't marked the function nothrow through other means, do
772   // a quick pass now to see if we can.
773   if (!CurFn->doesNotThrow())
774     TryMarkNoThrow(CurFn);
775 }
776 
777 /// ContainsLabel - Return true if the statement contains a label in it.  If
778 /// this statement is not executed normally, it not containing a label means
779 /// that we can just remove the code.
780 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
781   // Null statement, not a label!
782   if (S == 0) return false;
783 
784   // If this is a label, we have to emit the code, consider something like:
785   // if (0) {  ...  foo:  bar(); }  goto foo;
786   //
787   // TODO: If anyone cared, we could track __label__'s, since we know that you
788   // can't jump to one from outside their declared region.
789   if (isa<LabelStmt>(S))
790     return true;
791 
792   // If this is a case/default statement, and we haven't seen a switch, we have
793   // to emit the code.
794   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
795     return true;
796 
797   // If this is a switch statement, we want to ignore cases below it.
798   if (isa<SwitchStmt>(S))
799     IgnoreCaseStmts = true;
800 
801   // Scan subexpressions for verboten labels.
802   for (Stmt::const_child_range I = S->children(); I; ++I)
803     if (ContainsLabel(*I, IgnoreCaseStmts))
804       return true;
805 
806   return false;
807 }
808 
809 /// containsBreak - Return true if the statement contains a break out of it.
810 /// If the statement (recursively) contains a switch or loop with a break
811 /// inside of it, this is fine.
812 bool CodeGenFunction::containsBreak(const Stmt *S) {
813   // Null statement, not a label!
814   if (S == 0) return false;
815 
816   // If this is a switch or loop that defines its own break scope, then we can
817   // include it and anything inside of it.
818   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
819       isa<ForStmt>(S))
820     return false;
821 
822   if (isa<BreakStmt>(S))
823     return true;
824 
825   // Scan subexpressions for verboten breaks.
826   for (Stmt::const_child_range I = S->children(); I; ++I)
827     if (containsBreak(*I))
828       return true;
829 
830   return false;
831 }
832 
833 
834 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
835 /// to a constant, or if it does but contains a label, return false.  If it
836 /// constant folds return true and set the boolean result in Result.
837 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
838                                                    bool &ResultBool) {
839   llvm::APSInt ResultInt;
840   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
841     return false;
842 
843   ResultBool = ResultInt.getBoolValue();
844   return true;
845 }
846 
847 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
848 /// to a constant, or if it does but contains a label, return false.  If it
849 /// constant folds return true and set the folded value.
850 bool CodeGenFunction::
851 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
852   // FIXME: Rename and handle conversion of other evaluatable things
853   // to bool.
854   llvm::APSInt Int;
855   if (!Cond->EvaluateAsInt(Int, getContext()))
856     return false;  // Not foldable, not integer or not fully evaluatable.
857 
858   if (CodeGenFunction::ContainsLabel(Cond))
859     return false;  // Contains a label.
860 
861   ResultInt = Int;
862   return true;
863 }
864 
865 
866 
867 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
868 /// statement) to the specified blocks.  Based on the condition, this might try
869 /// to simplify the codegen of the conditional based on the branch.
870 ///
871 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
872                                            llvm::BasicBlock *TrueBlock,
873                                            llvm::BasicBlock *FalseBlock) {
874   Cond = Cond->IgnoreParens();
875 
876   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
877     // Handle X && Y in a condition.
878     if (CondBOp->getOpcode() == BO_LAnd) {
879       // If we have "1 && X", simplify the code.  "0 && X" would have constant
880       // folded if the case was simple enough.
881       bool ConstantBool = false;
882       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
883           ConstantBool) {
884         // br(1 && X) -> br(X).
885         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
886       }
887 
888       // If we have "X && 1", simplify the code to use an uncond branch.
889       // "X && 0" would have been constant folded to 0.
890       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
891           ConstantBool) {
892         // br(X && 1) -> br(X).
893         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
894       }
895 
896       // Emit the LHS as a conditional.  If the LHS conditional is false, we
897       // want to jump to the FalseBlock.
898       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
899 
900       ConditionalEvaluation eval(*this);
901       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
902       EmitBlock(LHSTrue);
903 
904       // Any temporaries created here are conditional.
905       eval.begin(*this);
906       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
907       eval.end(*this);
908 
909       return;
910     }
911 
912     if (CondBOp->getOpcode() == BO_LOr) {
913       // If we have "0 || X", simplify the code.  "1 || X" would have constant
914       // folded if the case was simple enough.
915       bool ConstantBool = false;
916       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
917           !ConstantBool) {
918         // br(0 || X) -> br(X).
919         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
920       }
921 
922       // If we have "X || 0", simplify the code to use an uncond branch.
923       // "X || 1" would have been constant folded to 1.
924       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
925           !ConstantBool) {
926         // br(X || 0) -> br(X).
927         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
928       }
929 
930       // Emit the LHS as a conditional.  If the LHS conditional is true, we
931       // want to jump to the TrueBlock.
932       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
933 
934       ConditionalEvaluation eval(*this);
935       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
936       EmitBlock(LHSFalse);
937 
938       // Any temporaries created here are conditional.
939       eval.begin(*this);
940       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
941       eval.end(*this);
942 
943       return;
944     }
945   }
946 
947   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
948     // br(!x, t, f) -> br(x, f, t)
949     if (CondUOp->getOpcode() == UO_LNot)
950       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
951   }
952 
953   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
954     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
955     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
956     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
957 
958     ConditionalEvaluation cond(*this);
959     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
960 
961     cond.begin(*this);
962     EmitBlock(LHSBlock);
963     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
964     cond.end(*this);
965 
966     cond.begin(*this);
967     EmitBlock(RHSBlock);
968     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
969     cond.end(*this);
970 
971     return;
972   }
973 
974   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
975     // Conditional operator handling can give us a throw expression as a
976     // condition for a case like:
977     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
978     // Fold this to:
979     //   br(c, throw x, br(y, t, f))
980     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
981     return;
982   }
983 
984   // Emit the code with the fully general case.
985   llvm::Value *CondV = EvaluateExprAsBool(Cond);
986   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
987 }
988 
989 /// ErrorUnsupported - Print out an error that codegen doesn't support the
990 /// specified stmt yet.
991 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
992   CGM.ErrorUnsupported(S, Type);
993 }
994 
995 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
996 /// variable-length array whose elements have a non-zero bit-pattern.
997 ///
998 /// \param baseType the inner-most element type of the array
999 /// \param src - a char* pointing to the bit-pattern for a single
1000 /// base element of the array
1001 /// \param sizeInChars - the total size of the VLA, in chars
1002 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1003                                llvm::Value *dest, llvm::Value *src,
1004                                llvm::Value *sizeInChars) {
1005   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1006     = CGF.getContext().getTypeInfoInChars(baseType);
1007 
1008   CGBuilderTy &Builder = CGF.Builder;
1009 
1010   llvm::Value *baseSizeInChars
1011     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1012 
1013   llvm::Type *i8p = Builder.getInt8PtrTy();
1014 
1015   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1016   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1017 
1018   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1019   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1020   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1021 
1022   // Make a loop over the VLA.  C99 guarantees that the VLA element
1023   // count must be nonzero.
1024   CGF.EmitBlock(loopBB);
1025 
1026   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1027   cur->addIncoming(begin, originBB);
1028 
1029   // memcpy the individual element bit-pattern.
1030   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1031                        baseSizeAndAlign.second.getQuantity(),
1032                        /*volatile*/ false);
1033 
1034   // Go to the next element.
1035   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1036 
1037   // Leave if that's the end of the VLA.
1038   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1039   Builder.CreateCondBr(done, contBB, loopBB);
1040   cur->addIncoming(next, loopBB);
1041 
1042   CGF.EmitBlock(contBB);
1043 }
1044 
1045 void
1046 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1047   // Ignore empty classes in C++.
1048   if (getLangOpts().CPlusPlus) {
1049     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1050       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1051         return;
1052     }
1053   }
1054 
1055   // Cast the dest ptr to the appropriate i8 pointer type.
1056   unsigned DestAS =
1057     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1058   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1059   if (DestPtr->getType() != BP)
1060     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1061 
1062   // Get size and alignment info for this aggregate.
1063   std::pair<CharUnits, CharUnits> TypeInfo =
1064     getContext().getTypeInfoInChars(Ty);
1065   CharUnits Size = TypeInfo.first;
1066   CharUnits Align = TypeInfo.second;
1067 
1068   llvm::Value *SizeVal;
1069   const VariableArrayType *vla;
1070 
1071   // Don't bother emitting a zero-byte memset.
1072   if (Size.isZero()) {
1073     // But note that getTypeInfo returns 0 for a VLA.
1074     if (const VariableArrayType *vlaType =
1075           dyn_cast_or_null<VariableArrayType>(
1076                                           getContext().getAsArrayType(Ty))) {
1077       QualType eltType;
1078       llvm::Value *numElts;
1079       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1080 
1081       SizeVal = numElts;
1082       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1083       if (!eltSize.isOne())
1084         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1085       vla = vlaType;
1086     } else {
1087       return;
1088     }
1089   } else {
1090     SizeVal = CGM.getSize(Size);
1091     vla = 0;
1092   }
1093 
1094   // If the type contains a pointer to data member we can't memset it to zero.
1095   // Instead, create a null constant and copy it to the destination.
1096   // TODO: there are other patterns besides zero that we can usefully memset,
1097   // like -1, which happens to be the pattern used by member-pointers.
1098   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1099     // For a VLA, emit a single element, then splat that over the VLA.
1100     if (vla) Ty = getContext().getBaseElementType(vla);
1101 
1102     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1103 
1104     llvm::GlobalVariable *NullVariable =
1105       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1106                                /*isConstant=*/true,
1107                                llvm::GlobalVariable::PrivateLinkage,
1108                                NullConstant, Twine());
1109     llvm::Value *SrcPtr =
1110       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1111 
1112     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1113 
1114     // Get and call the appropriate llvm.memcpy overload.
1115     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1116     return;
1117   }
1118 
1119   // Otherwise, just memset the whole thing to zero.  This is legal
1120   // because in LLVM, all default initializers (other than the ones we just
1121   // handled above) are guaranteed to have a bit pattern of all zeros.
1122   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1123                        Align.getQuantity(), false);
1124 }
1125 
1126 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1127   // Make sure that there is a block for the indirect goto.
1128   if (IndirectBranch == 0)
1129     GetIndirectGotoBlock();
1130 
1131   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1132 
1133   // Make sure the indirect branch includes all of the address-taken blocks.
1134   IndirectBranch->addDestination(BB);
1135   return llvm::BlockAddress::get(CurFn, BB);
1136 }
1137 
1138 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1139   // If we already made the indirect branch for indirect goto, return its block.
1140   if (IndirectBranch) return IndirectBranch->getParent();
1141 
1142   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1143 
1144   // Create the PHI node that indirect gotos will add entries to.
1145   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1146                                               "indirect.goto.dest");
1147 
1148   // Create the indirect branch instruction.
1149   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1150   return IndirectBranch->getParent();
1151 }
1152 
1153 /// Computes the length of an array in elements, as well as the base
1154 /// element type and a properly-typed first element pointer.
1155 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1156                                               QualType &baseType,
1157                                               llvm::Value *&addr) {
1158   const ArrayType *arrayType = origArrayType;
1159 
1160   // If it's a VLA, we have to load the stored size.  Note that
1161   // this is the size of the VLA in bytes, not its size in elements.
1162   llvm::Value *numVLAElements = 0;
1163   if (isa<VariableArrayType>(arrayType)) {
1164     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1165 
1166     // Walk into all VLAs.  This doesn't require changes to addr,
1167     // which has type T* where T is the first non-VLA element type.
1168     do {
1169       QualType elementType = arrayType->getElementType();
1170       arrayType = getContext().getAsArrayType(elementType);
1171 
1172       // If we only have VLA components, 'addr' requires no adjustment.
1173       if (!arrayType) {
1174         baseType = elementType;
1175         return numVLAElements;
1176       }
1177     } while (isa<VariableArrayType>(arrayType));
1178 
1179     // We get out here only if we find a constant array type
1180     // inside the VLA.
1181   }
1182 
1183   // We have some number of constant-length arrays, so addr should
1184   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1185   // down to the first element of addr.
1186   SmallVector<llvm::Value*, 8> gepIndices;
1187 
1188   // GEP down to the array type.
1189   llvm::ConstantInt *zero = Builder.getInt32(0);
1190   gepIndices.push_back(zero);
1191 
1192   uint64_t countFromCLAs = 1;
1193   QualType eltType;
1194 
1195   llvm::ArrayType *llvmArrayType =
1196     dyn_cast<llvm::ArrayType>(
1197       cast<llvm::PointerType>(addr->getType())->getElementType());
1198   while (llvmArrayType) {
1199     assert(isa<ConstantArrayType>(arrayType));
1200     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1201              == llvmArrayType->getNumElements());
1202 
1203     gepIndices.push_back(zero);
1204     countFromCLAs *= llvmArrayType->getNumElements();
1205     eltType = arrayType->getElementType();
1206 
1207     llvmArrayType =
1208       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1209     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1210     assert((!llvmArrayType || arrayType) &&
1211            "LLVM and Clang types are out-of-synch");
1212   }
1213 
1214   if (arrayType) {
1215     // From this point onwards, the Clang array type has been emitted
1216     // as some other type (probably a packed struct). Compute the array
1217     // size, and just emit the 'begin' expression as a bitcast.
1218     while (arrayType) {
1219       countFromCLAs *=
1220           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1221       eltType = arrayType->getElementType();
1222       arrayType = getContext().getAsArrayType(eltType);
1223     }
1224 
1225     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1226     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1227     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1228   } else {
1229     // Create the actual GEP.
1230     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1231   }
1232 
1233   baseType = eltType;
1234 
1235   llvm::Value *numElements
1236     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1237 
1238   // If we had any VLA dimensions, factor them in.
1239   if (numVLAElements)
1240     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1241 
1242   return numElements;
1243 }
1244 
1245 std::pair<llvm::Value*, QualType>
1246 CodeGenFunction::getVLASize(QualType type) {
1247   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1248   assert(vla && "type was not a variable array type!");
1249   return getVLASize(vla);
1250 }
1251 
1252 std::pair<llvm::Value*, QualType>
1253 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1254   // The number of elements so far; always size_t.
1255   llvm::Value *numElements = 0;
1256 
1257   QualType elementType;
1258   do {
1259     elementType = type->getElementType();
1260     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1261     assert(vlaSize && "no size for VLA!");
1262     assert(vlaSize->getType() == SizeTy);
1263 
1264     if (!numElements) {
1265       numElements = vlaSize;
1266     } else {
1267       // It's undefined behavior if this wraps around, so mark it that way.
1268       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1269       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1270     }
1271   } while ((type = getContext().getAsVariableArrayType(elementType)));
1272 
1273   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1274 }
1275 
1276 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1277   assert(type->isVariablyModifiedType() &&
1278          "Must pass variably modified type to EmitVLASizes!");
1279 
1280   EnsureInsertPoint();
1281 
1282   // We're going to walk down into the type and look for VLA
1283   // expressions.
1284   do {
1285     assert(type->isVariablyModifiedType());
1286 
1287     const Type *ty = type.getTypePtr();
1288     switch (ty->getTypeClass()) {
1289 
1290 #define TYPE(Class, Base)
1291 #define ABSTRACT_TYPE(Class, Base)
1292 #define NON_CANONICAL_TYPE(Class, Base)
1293 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1294 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1295 #include "clang/AST/TypeNodes.def"
1296       llvm_unreachable("unexpected dependent type!");
1297 
1298     // These types are never variably-modified.
1299     case Type::Builtin:
1300     case Type::Complex:
1301     case Type::Vector:
1302     case Type::ExtVector:
1303     case Type::Record:
1304     case Type::Enum:
1305     case Type::Elaborated:
1306     case Type::TemplateSpecialization:
1307     case Type::ObjCObject:
1308     case Type::ObjCInterface:
1309     case Type::ObjCObjectPointer:
1310       llvm_unreachable("type class is never variably-modified!");
1311 
1312     case Type::Adjusted:
1313       type = cast<AdjustedType>(ty)->getAdjustedType();
1314       break;
1315 
1316     case Type::Decayed:
1317       type = cast<DecayedType>(ty)->getPointeeType();
1318       break;
1319 
1320     case Type::Pointer:
1321       type = cast<PointerType>(ty)->getPointeeType();
1322       break;
1323 
1324     case Type::BlockPointer:
1325       type = cast<BlockPointerType>(ty)->getPointeeType();
1326       break;
1327 
1328     case Type::LValueReference:
1329     case Type::RValueReference:
1330       type = cast<ReferenceType>(ty)->getPointeeType();
1331       break;
1332 
1333     case Type::MemberPointer:
1334       type = cast<MemberPointerType>(ty)->getPointeeType();
1335       break;
1336 
1337     case Type::ConstantArray:
1338     case Type::IncompleteArray:
1339       // Losing element qualification here is fine.
1340       type = cast<ArrayType>(ty)->getElementType();
1341       break;
1342 
1343     case Type::VariableArray: {
1344       // Losing element qualification here is fine.
1345       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1346 
1347       // Unknown size indication requires no size computation.
1348       // Otherwise, evaluate and record it.
1349       if (const Expr *size = vat->getSizeExpr()) {
1350         // It's possible that we might have emitted this already,
1351         // e.g. with a typedef and a pointer to it.
1352         llvm::Value *&entry = VLASizeMap[size];
1353         if (!entry) {
1354           llvm::Value *Size = EmitScalarExpr(size);
1355 
1356           // C11 6.7.6.2p5:
1357           //   If the size is an expression that is not an integer constant
1358           //   expression [...] each time it is evaluated it shall have a value
1359           //   greater than zero.
1360           if (SanOpts->VLABound &&
1361               size->getType()->isSignedIntegerType()) {
1362             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1363             llvm::Constant *StaticArgs[] = {
1364               EmitCheckSourceLocation(size->getLocStart()),
1365               EmitCheckTypeDescriptor(size->getType())
1366             };
1367             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1368                       "vla_bound_not_positive", StaticArgs, Size,
1369                       CRK_Recoverable);
1370           }
1371 
1372           // Always zexting here would be wrong if it weren't
1373           // undefined behavior to have a negative bound.
1374           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1375         }
1376       }
1377       type = vat->getElementType();
1378       break;
1379     }
1380 
1381     case Type::FunctionProto:
1382     case Type::FunctionNoProto:
1383       type = cast<FunctionType>(ty)->getResultType();
1384       break;
1385 
1386     case Type::Paren:
1387     case Type::TypeOf:
1388     case Type::UnaryTransform:
1389     case Type::Attributed:
1390     case Type::SubstTemplateTypeParm:
1391     case Type::PackExpansion:
1392       // Keep walking after single level desugaring.
1393       type = type.getSingleStepDesugaredType(getContext());
1394       break;
1395 
1396     case Type::Typedef:
1397     case Type::Decltype:
1398     case Type::Auto:
1399       // Stop walking: nothing to do.
1400       return;
1401 
1402     case Type::TypeOfExpr:
1403       // Stop walking: emit typeof expression.
1404       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1405       return;
1406 
1407     case Type::Atomic:
1408       type = cast<AtomicType>(ty)->getValueType();
1409       break;
1410     }
1411   } while (type->isVariablyModifiedType());
1412 }
1413 
1414 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1415   if (getContext().getBuiltinVaListType()->isArrayType())
1416     return EmitScalarExpr(E);
1417   return EmitLValue(E).getAddress();
1418 }
1419 
1420 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1421                                               llvm::Constant *Init) {
1422   assert (Init && "Invalid DeclRefExpr initializer!");
1423   if (CGDebugInfo *Dbg = getDebugInfo())
1424     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1425       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1426 }
1427 
1428 CodeGenFunction::PeepholeProtection
1429 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1430   // At the moment, the only aggressive peephole we do in IR gen
1431   // is trunc(zext) folding, but if we add more, we can easily
1432   // extend this protection.
1433 
1434   if (!rvalue.isScalar()) return PeepholeProtection();
1435   llvm::Value *value = rvalue.getScalarVal();
1436   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1437 
1438   // Just make an extra bitcast.
1439   assert(HaveInsertPoint());
1440   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1441                                                   Builder.GetInsertBlock());
1442 
1443   PeepholeProtection protection;
1444   protection.Inst = inst;
1445   return protection;
1446 }
1447 
1448 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1449   if (!protection.Inst) return;
1450 
1451   // In theory, we could try to duplicate the peepholes now, but whatever.
1452   protection.Inst->eraseFromParent();
1453 }
1454 
1455 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1456                                                  llvm::Value *AnnotatedVal,
1457                                                  StringRef AnnotationStr,
1458                                                  SourceLocation Location) {
1459   llvm::Value *Args[4] = {
1460     AnnotatedVal,
1461     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1462     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1463     CGM.EmitAnnotationLineNo(Location)
1464   };
1465   return Builder.CreateCall(AnnotationFn, Args);
1466 }
1467 
1468 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1469   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1470   // FIXME We create a new bitcast for every annotation because that's what
1471   // llvm-gcc was doing.
1472   for (specific_attr_iterator<AnnotateAttr>
1473        ai = D->specific_attr_begin<AnnotateAttr>(),
1474        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1475     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1476                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1477                        (*ai)->getAnnotation(), D->getLocation());
1478 }
1479 
1480 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1481                                                    llvm::Value *V) {
1482   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1483   llvm::Type *VTy = V->getType();
1484   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1485                                     CGM.Int8PtrTy);
1486 
1487   for (specific_attr_iterator<AnnotateAttr>
1488        ai = D->specific_attr_begin<AnnotateAttr>(),
1489        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1490     // FIXME Always emit the cast inst so we can differentiate between
1491     // annotation on the first field of a struct and annotation on the struct
1492     // itself.
1493     if (VTy != CGM.Int8PtrTy)
1494       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1495     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1496     V = Builder.CreateBitCast(V, VTy);
1497   }
1498 
1499   return V;
1500 }
1501 
1502 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1503