1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), CurFn(nullptr), 40 CapturedStmtInfo(nullptr), SanOpts(&CGM.getLangOpts().Sanitize), 41 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 42 SawAsmBlock(false), BlockInfo(nullptr), BlockPointer(nullptr), 43 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 44 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 45 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 46 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 47 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 48 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 49 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 50 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 51 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 52 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 53 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 54 TerminateHandler(nullptr), TrapBB(nullptr) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 77 if (getLangOpts().OpenMP) { 78 CGM.getOpenMPRuntime().FunctionFinished(*this); 79 } 80 } 81 82 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 83 CharUnits Alignment; 84 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 85 Alignment = getContext().getTypeAlignInChars(T); 86 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 87 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 88 !getContext().isAlignmentRequired(T)) 89 Alignment = CharUnits::fromQuantity(MaxAlign); 90 } 91 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 92 } 93 94 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 95 return CGM.getTypes().ConvertTypeForMem(T); 96 } 97 98 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 99 return CGM.getTypes().ConvertType(T); 100 } 101 102 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 103 type = type.getCanonicalType(); 104 while (true) { 105 switch (type->getTypeClass()) { 106 #define TYPE(name, parent) 107 #define ABSTRACT_TYPE(name, parent) 108 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 109 #define DEPENDENT_TYPE(name, parent) case Type::name: 110 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 111 #include "clang/AST/TypeNodes.def" 112 llvm_unreachable("non-canonical or dependent type in IR-generation"); 113 114 case Type::Auto: 115 llvm_unreachable("undeduced auto type in IR-generation"); 116 117 // Various scalar types. 118 case Type::Builtin: 119 case Type::Pointer: 120 case Type::BlockPointer: 121 case Type::LValueReference: 122 case Type::RValueReference: 123 case Type::MemberPointer: 124 case Type::Vector: 125 case Type::ExtVector: 126 case Type::FunctionProto: 127 case Type::FunctionNoProto: 128 case Type::Enum: 129 case Type::ObjCObjectPointer: 130 return TEK_Scalar; 131 132 // Complexes. 133 case Type::Complex: 134 return TEK_Complex; 135 136 // Arrays, records, and Objective-C objects. 137 case Type::ConstantArray: 138 case Type::IncompleteArray: 139 case Type::VariableArray: 140 case Type::Record: 141 case Type::ObjCObject: 142 case Type::ObjCInterface: 143 return TEK_Aggregate; 144 145 // We operate on atomic values according to their underlying type. 146 case Type::Atomic: 147 type = cast<AtomicType>(type)->getValueType(); 148 continue; 149 } 150 llvm_unreachable("unknown type kind!"); 151 } 152 } 153 154 void CodeGenFunction::EmitReturnBlock() { 155 // For cleanliness, we try to avoid emitting the return block for 156 // simple cases. 157 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 158 159 if (CurBB) { 160 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 161 162 // We have a valid insert point, reuse it if it is empty or there are no 163 // explicit jumps to the return block. 164 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 165 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 166 delete ReturnBlock.getBlock(); 167 } else 168 EmitBlock(ReturnBlock.getBlock()); 169 return; 170 } 171 172 // Otherwise, if the return block is the target of a single direct 173 // branch then we can just put the code in that block instead. This 174 // cleans up functions which started with a unified return block. 175 if (ReturnBlock.getBlock()->hasOneUse()) { 176 llvm::BranchInst *BI = 177 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 178 if (BI && BI->isUnconditional() && 179 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 180 // Reset insertion point, including debug location, and delete the 181 // branch. This is really subtle and only works because the next change 182 // in location will hit the caching in CGDebugInfo::EmitLocation and not 183 // override this. 184 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 185 Builder.SetInsertPoint(BI->getParent()); 186 BI->eraseFromParent(); 187 delete ReturnBlock.getBlock(); 188 return; 189 } 190 } 191 192 // FIXME: We are at an unreachable point, there is no reason to emit the block 193 // unless it has uses. However, we still need a place to put the debug 194 // region.end for now. 195 196 EmitBlock(ReturnBlock.getBlock()); 197 } 198 199 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 200 if (!BB) return; 201 if (!BB->use_empty()) 202 return CGF.CurFn->getBasicBlockList().push_back(BB); 203 delete BB; 204 } 205 206 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 207 assert(BreakContinueStack.empty() && 208 "mismatched push/pop in break/continue stack!"); 209 210 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 211 && NumSimpleReturnExprs == NumReturnExprs 212 && ReturnBlock.getBlock()->use_empty(); 213 // Usually the return expression is evaluated before the cleanup 214 // code. If the function contains only a simple return statement, 215 // such as a constant, the location before the cleanup code becomes 216 // the last useful breakpoint in the function, because the simple 217 // return expression will be evaluated after the cleanup code. To be 218 // safe, set the debug location for cleanup code to the location of 219 // the return statement. Otherwise the cleanup code should be at the 220 // end of the function's lexical scope. 221 // 222 // If there are multiple branches to the return block, the branch 223 // instructions will get the location of the return statements and 224 // all will be fine. 225 if (CGDebugInfo *DI = getDebugInfo()) { 226 if (OnlySimpleReturnStmts) 227 DI->EmitLocation(Builder, LastStopPoint); 228 else 229 DI->EmitLocation(Builder, EndLoc); 230 } 231 232 // Pop any cleanups that might have been associated with the 233 // parameters. Do this in whatever block we're currently in; it's 234 // important to do this before we enter the return block or return 235 // edges will be *really* confused. 236 bool EmitRetDbgLoc = true; 237 if (EHStack.stable_begin() != PrologueCleanupDepth) { 238 PopCleanupBlocks(PrologueCleanupDepth); 239 240 // Make sure the line table doesn't jump back into the body for 241 // the ret after it's been at EndLoc. 242 EmitRetDbgLoc = false; 243 244 if (CGDebugInfo *DI = getDebugInfo()) 245 if (OnlySimpleReturnStmts) 246 DI->EmitLocation(Builder, EndLoc); 247 } 248 249 // Emit function epilog (to return). 250 EmitReturnBlock(); 251 252 if (ShouldInstrumentFunction()) 253 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 254 255 // Emit debug descriptor for function end. 256 if (CGDebugInfo *DI = getDebugInfo()) { 257 DI->EmitFunctionEnd(Builder); 258 } 259 260 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 261 EmitEndEHSpec(CurCodeDecl); 262 263 assert(EHStack.empty() && 264 "did not remove all scopes from cleanup stack!"); 265 266 // If someone did an indirect goto, emit the indirect goto block at the end of 267 // the function. 268 if (IndirectBranch) { 269 EmitBlock(IndirectBranch->getParent()); 270 Builder.ClearInsertionPoint(); 271 } 272 273 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 274 llvm::Instruction *Ptr = AllocaInsertPt; 275 AllocaInsertPt = nullptr; 276 Ptr->eraseFromParent(); 277 278 // If someone took the address of a label but never did an indirect goto, we 279 // made a zero entry PHI node, which is illegal, zap it now. 280 if (IndirectBranch) { 281 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 282 if (PN->getNumIncomingValues() == 0) { 283 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 284 PN->eraseFromParent(); 285 } 286 } 287 288 EmitIfUsed(*this, EHResumeBlock); 289 EmitIfUsed(*this, TerminateLandingPad); 290 EmitIfUsed(*this, TerminateHandler); 291 EmitIfUsed(*this, UnreachableBlock); 292 293 if (CGM.getCodeGenOpts().EmitDeclMetadata) 294 EmitDeclMetadata(); 295 296 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 297 I = DeferredReplacements.begin(), 298 E = DeferredReplacements.end(); 299 I != E; ++I) { 300 I->first->replaceAllUsesWith(I->second); 301 I->first->eraseFromParent(); 302 } 303 } 304 305 /// ShouldInstrumentFunction - Return true if the current function should be 306 /// instrumented with __cyg_profile_func_* calls 307 bool CodeGenFunction::ShouldInstrumentFunction() { 308 if (!CGM.getCodeGenOpts().InstrumentFunctions) 309 return false; 310 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 311 return false; 312 return true; 313 } 314 315 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 316 /// instrumentation function with the current function and the call site, if 317 /// function instrumentation is enabled. 318 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 319 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 320 llvm::PointerType *PointerTy = Int8PtrTy; 321 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 322 llvm::FunctionType *FunctionTy = 323 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 324 325 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 326 llvm::CallInst *CallSite = Builder.CreateCall( 327 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 328 llvm::ConstantInt::get(Int32Ty, 0), 329 "callsite"); 330 331 llvm::Value *args[] = { 332 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 333 CallSite 334 }; 335 336 EmitNounwindRuntimeCall(F, args); 337 } 338 339 void CodeGenFunction::EmitMCountInstrumentation() { 340 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 341 342 llvm::Constant *MCountFn = 343 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 344 EmitNounwindRuntimeCall(MCountFn); 345 } 346 347 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 348 // information in the program executable. The argument information stored 349 // includes the argument name, its type, the address and access qualifiers used. 350 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 351 CodeGenModule &CGM,llvm::LLVMContext &Context, 352 SmallVector <llvm::Value*, 5> &kernelMDArgs, 353 CGBuilderTy& Builder, ASTContext &ASTCtx) { 354 // Create MDNodes that represent the kernel arg metadata. 355 // Each MDNode is a list in the form of "key", N number of values which is 356 // the same number of values as their are kernel arguments. 357 358 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 359 360 // MDNode for the kernel argument address space qualifiers. 361 SmallVector<llvm::Value*, 8> addressQuals; 362 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 363 364 // MDNode for the kernel argument access qualifiers (images only). 365 SmallVector<llvm::Value*, 8> accessQuals; 366 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 367 368 // MDNode for the kernel argument type names. 369 SmallVector<llvm::Value*, 8> argTypeNames; 370 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 371 372 // MDNode for the kernel argument base type names. 373 SmallVector<llvm::Value*, 8> argBaseTypeNames; 374 argBaseTypeNames.push_back( 375 llvm::MDString::get(Context, "kernel_arg_base_type")); 376 377 // MDNode for the kernel argument type qualifiers. 378 SmallVector<llvm::Value*, 8> argTypeQuals; 379 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 380 381 // MDNode for the kernel argument names. 382 SmallVector<llvm::Value*, 8> argNames; 383 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 384 385 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 386 const ParmVarDecl *parm = FD->getParamDecl(i); 387 QualType ty = parm->getType(); 388 std::string typeQuals; 389 390 if (ty->isPointerType()) { 391 QualType pointeeTy = ty->getPointeeType(); 392 393 // Get address qualifier. 394 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 395 pointeeTy.getAddressSpace()))); 396 397 // Get argument type name. 398 std::string typeName = 399 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 400 401 // Turn "unsigned type" to "utype" 402 std::string::size_type pos = typeName.find("unsigned"); 403 if (pointeeTy.isCanonical() && pos != std::string::npos) 404 typeName.erase(pos+1, 8); 405 406 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 407 408 std::string baseTypeName = 409 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 410 Policy) + 411 "*"; 412 413 // Turn "unsigned type" to "utype" 414 pos = baseTypeName.find("unsigned"); 415 if (pos != std::string::npos) 416 baseTypeName.erase(pos+1, 8); 417 418 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 419 420 // Get argument type qualifiers: 421 if (ty.isRestrictQualified()) 422 typeQuals = "restrict"; 423 if (pointeeTy.isConstQualified() || 424 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 425 typeQuals += typeQuals.empty() ? "const" : " const"; 426 if (pointeeTy.isVolatileQualified()) 427 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 428 } else { 429 uint32_t AddrSpc = 0; 430 if (ty->isImageType()) 431 AddrSpc = 432 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 433 434 addressQuals.push_back(Builder.getInt32(AddrSpc)); 435 436 // Get argument type name. 437 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 438 439 // Turn "unsigned type" to "utype" 440 std::string::size_type pos = typeName.find("unsigned"); 441 if (ty.isCanonical() && pos != std::string::npos) 442 typeName.erase(pos+1, 8); 443 444 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 445 446 std::string baseTypeName = 447 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 448 449 // Turn "unsigned type" to "utype" 450 pos = baseTypeName.find("unsigned"); 451 if (pos != std::string::npos) 452 baseTypeName.erase(pos+1, 8); 453 454 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 455 456 // Get argument type qualifiers: 457 if (ty.isConstQualified()) 458 typeQuals = "const"; 459 if (ty.isVolatileQualified()) 460 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 461 } 462 463 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 464 465 // Get image access qualifier: 466 if (ty->isImageType()) { 467 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 468 if (A && A->isWriteOnly()) 469 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 470 else 471 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 472 // FIXME: what about read_write? 473 } else 474 accessQuals.push_back(llvm::MDString::get(Context, "none")); 475 476 // Get argument name. 477 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 478 } 479 480 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 481 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 482 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 483 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 484 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 485 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 486 } 487 488 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 489 llvm::Function *Fn) 490 { 491 if (!FD->hasAttr<OpenCLKernelAttr>()) 492 return; 493 494 llvm::LLVMContext &Context = getLLVMContext(); 495 496 SmallVector <llvm::Value*, 5> kernelMDArgs; 497 kernelMDArgs.push_back(Fn); 498 499 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 500 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 501 Builder, getContext()); 502 503 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 504 QualType hintQTy = A->getTypeHint(); 505 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 506 bool isSignedInteger = 507 hintQTy->isSignedIntegerType() || 508 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 509 llvm::Value *attrMDArgs[] = { 510 llvm::MDString::get(Context, "vec_type_hint"), 511 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 512 llvm::ConstantInt::get( 513 llvm::IntegerType::get(Context, 32), 514 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 515 }; 516 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 517 } 518 519 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 520 llvm::Value *attrMDArgs[] = { 521 llvm::MDString::get(Context, "work_group_size_hint"), 522 Builder.getInt32(A->getXDim()), 523 Builder.getInt32(A->getYDim()), 524 Builder.getInt32(A->getZDim()) 525 }; 526 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 527 } 528 529 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 530 llvm::Value *attrMDArgs[] = { 531 llvm::MDString::get(Context, "reqd_work_group_size"), 532 Builder.getInt32(A->getXDim()), 533 Builder.getInt32(A->getYDim()), 534 Builder.getInt32(A->getZDim()) 535 }; 536 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 537 } 538 539 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 540 llvm::NamedMDNode *OpenCLKernelMetadata = 541 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 542 OpenCLKernelMetadata->addOperand(kernelMDNode); 543 } 544 545 /// Determine whether the function F ends with a return stmt. 546 static bool endsWithReturn(const Decl* F) { 547 const Stmt *Body = nullptr; 548 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 549 Body = FD->getBody(); 550 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 551 Body = OMD->getBody(); 552 553 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 554 auto LastStmt = CS->body_rbegin(); 555 if (LastStmt != CS->body_rend()) 556 return isa<ReturnStmt>(*LastStmt); 557 } 558 return false; 559 } 560 561 void CodeGenFunction::StartFunction(GlobalDecl GD, 562 QualType RetTy, 563 llvm::Function *Fn, 564 const CGFunctionInfo &FnInfo, 565 const FunctionArgList &Args, 566 SourceLocation Loc, 567 SourceLocation StartLoc) { 568 assert(!CurFn && 569 "Do not use a CodeGenFunction object for more than one function"); 570 571 const Decl *D = GD.getDecl(); 572 573 DidCallStackSave = false; 574 CurCodeDecl = D; 575 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 576 FnRetTy = RetTy; 577 CurFn = Fn; 578 CurFnInfo = &FnInfo; 579 assert(CurFn->isDeclaration() && "Function already has body?"); 580 581 if (CGM.getSanitizerBlacklist().isIn(*Fn)) 582 SanOpts = &SanitizerOptions::Disabled; 583 584 // Pass inline keyword to optimizer if it appears explicitly on any 585 // declaration. Also, in the case of -fno-inline attach NoInline 586 // attribute to all function that are not marked AlwaysInline. 587 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 588 if (!CGM.getCodeGenOpts().NoInline) { 589 for (auto RI : FD->redecls()) 590 if (RI->isInlineSpecified()) { 591 Fn->addFnAttr(llvm::Attribute::InlineHint); 592 break; 593 } 594 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 595 Fn->addFnAttr(llvm::Attribute::NoInline); 596 } 597 598 if (getLangOpts().OpenCL) { 599 // Add metadata for a kernel function. 600 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 601 EmitOpenCLKernelMetadata(FD, Fn); 602 } 603 604 // If we are checking function types, emit a function type signature as 605 // prefix data. 606 if (getLangOpts().CPlusPlus && SanOpts->Function) { 607 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 608 if (llvm::Constant *PrefixSig = 609 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 610 llvm::Constant *FTRTTIConst = 611 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 612 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 613 llvm::Constant *PrefixStructConst = 614 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 615 Fn->setPrefixData(PrefixStructConst); 616 } 617 } 618 } 619 620 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 621 622 // Create a marker to make it easy to insert allocas into the entryblock 623 // later. Don't create this with the builder, because we don't want it 624 // folded. 625 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 626 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 627 if (Builder.isNamePreserving()) 628 AllocaInsertPt->setName("allocapt"); 629 630 ReturnBlock = getJumpDestInCurrentScope("return"); 631 632 Builder.SetInsertPoint(EntryBB); 633 634 // Emit subprogram debug descriptor. 635 if (CGDebugInfo *DI = getDebugInfo()) { 636 SmallVector<QualType, 16> ArgTypes; 637 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 638 i != e; ++i) { 639 ArgTypes.push_back((*i)->getType()); 640 } 641 642 QualType FnType = 643 getContext().getFunctionType(RetTy, ArgTypes, 644 FunctionProtoType::ExtProtoInfo()); 645 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 646 } 647 648 if (ShouldInstrumentFunction()) 649 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 650 651 if (CGM.getCodeGenOpts().InstrumentForProfiling) 652 EmitMCountInstrumentation(); 653 654 if (RetTy->isVoidType()) { 655 // Void type; nothing to return. 656 ReturnValue = nullptr; 657 658 // Count the implicit return. 659 if (!endsWithReturn(D)) 660 ++NumReturnExprs; 661 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 662 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 663 // Indirect aggregate return; emit returned value directly into sret slot. 664 // This reduces code size, and affects correctness in C++. 665 auto AI = CurFn->arg_begin(); 666 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 667 ++AI; 668 ReturnValue = AI; 669 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 670 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 671 // Load the sret pointer from the argument struct and return into that. 672 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 673 llvm::Function::arg_iterator EI = CurFn->arg_end(); 674 --EI; 675 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 676 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 677 } else { 678 ReturnValue = CreateIRTemp(RetTy, "retval"); 679 680 // Tell the epilog emitter to autorelease the result. We do this 681 // now so that various specialized functions can suppress it 682 // during their IR-generation. 683 if (getLangOpts().ObjCAutoRefCount && 684 !CurFnInfo->isReturnsRetained() && 685 RetTy->isObjCRetainableType()) 686 AutoreleaseResult = true; 687 } 688 689 EmitStartEHSpec(CurCodeDecl); 690 691 PrologueCleanupDepth = EHStack.stable_begin(); 692 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 693 694 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 695 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 696 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 697 if (MD->getParent()->isLambda() && 698 MD->getOverloadedOperator() == OO_Call) { 699 // We're in a lambda; figure out the captures. 700 MD->getParent()->getCaptureFields(LambdaCaptureFields, 701 LambdaThisCaptureField); 702 if (LambdaThisCaptureField) { 703 // If this lambda captures this, load it. 704 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 705 CXXThisValue = EmitLoadOfLValue(ThisLValue, 706 SourceLocation()).getScalarVal(); 707 } 708 for (auto *FD : MD->getParent()->fields()) { 709 if (FD->hasCapturedVLAType()) { 710 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 711 SourceLocation()).getScalarVal(); 712 auto VAT = FD->getCapturedVLAType(); 713 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 714 } 715 } 716 } else { 717 // Not in a lambda; just use 'this' from the method. 718 // FIXME: Should we generate a new load for each use of 'this'? The 719 // fast register allocator would be happier... 720 CXXThisValue = CXXABIThisValue; 721 } 722 } 723 724 // If any of the arguments have a variably modified type, make sure to 725 // emit the type size. 726 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 727 i != e; ++i) { 728 const VarDecl *VD = *i; 729 730 // Dig out the type as written from ParmVarDecls; it's unclear whether 731 // the standard (C99 6.9.1p10) requires this, but we're following the 732 // precedent set by gcc. 733 QualType Ty; 734 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 735 Ty = PVD->getOriginalType(); 736 else 737 Ty = VD->getType(); 738 739 if (Ty->isVariablyModifiedType()) 740 EmitVariablyModifiedType(Ty); 741 } 742 // Emit a location at the end of the prologue. 743 if (CGDebugInfo *DI = getDebugInfo()) 744 DI->EmitLocation(Builder, StartLoc); 745 } 746 747 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 748 const Stmt *Body) { 749 RegionCounter Cnt = getPGORegionCounter(Body); 750 Cnt.beginRegion(Builder); 751 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 752 EmitCompoundStmtWithoutScope(*S); 753 else 754 EmitStmt(Body); 755 } 756 757 /// When instrumenting to collect profile data, the counts for some blocks 758 /// such as switch cases need to not include the fall-through counts, so 759 /// emit a branch around the instrumentation code. When not instrumenting, 760 /// this just calls EmitBlock(). 761 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 762 RegionCounter &Cnt) { 763 llvm::BasicBlock *SkipCountBB = nullptr; 764 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 765 // When instrumenting for profiling, the fallthrough to certain 766 // statements needs to skip over the instrumentation code so that we 767 // get an accurate count. 768 SkipCountBB = createBasicBlock("skipcount"); 769 EmitBranch(SkipCountBB); 770 } 771 EmitBlock(BB); 772 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 773 if (SkipCountBB) 774 EmitBlock(SkipCountBB); 775 } 776 777 /// Tries to mark the given function nounwind based on the 778 /// non-existence of any throwing calls within it. We believe this is 779 /// lightweight enough to do at -O0. 780 static void TryMarkNoThrow(llvm::Function *F) { 781 // LLVM treats 'nounwind' on a function as part of the type, so we 782 // can't do this on functions that can be overwritten. 783 if (F->mayBeOverridden()) return; 784 785 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 786 for (llvm::BasicBlock::iterator 787 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 788 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 789 if (!Call->doesNotThrow()) 790 return; 791 } else if (isa<llvm::ResumeInst>(&*BI)) { 792 return; 793 } 794 F->setDoesNotThrow(); 795 } 796 797 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 798 const FunctionDecl *UnsizedDealloc) { 799 // This is a weak discardable definition of the sized deallocation function. 800 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 801 802 // Call the unsized deallocation function and forward the first argument 803 // unchanged. 804 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 805 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 806 } 807 808 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 809 const CGFunctionInfo &FnInfo) { 810 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 811 812 // Check if we should generate debug info for this function. 813 if (FD->hasAttr<NoDebugAttr>()) 814 DebugInfo = nullptr; // disable debug info indefinitely for this function 815 816 FunctionArgList Args; 817 QualType ResTy = FD->getReturnType(); 818 819 CurGD = GD; 820 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 821 if (MD && MD->isInstance()) { 822 if (CGM.getCXXABI().HasThisReturn(GD)) 823 ResTy = MD->getThisType(getContext()); 824 CGM.getCXXABI().buildThisParam(*this, Args); 825 } 826 827 Args.append(FD->param_begin(), FD->param_end()); 828 829 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 830 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 831 832 SourceRange BodyRange; 833 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 834 CurEHLocation = BodyRange.getEnd(); 835 836 // Use the location of the start of the function to determine where 837 // the function definition is located. By default use the location 838 // of the declaration as the location for the subprogram. A function 839 // may lack a declaration in the source code if it is created by code 840 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 841 SourceLocation Loc = FD->getLocation(); 842 843 // If this is a function specialization then use the pattern body 844 // as the location for the function. 845 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 846 if (SpecDecl->hasBody(SpecDecl)) 847 Loc = SpecDecl->getLocation(); 848 849 // Emit the standard function prologue. 850 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 851 852 // Generate the body of the function. 853 PGO.checkGlobalDecl(GD); 854 PGO.assignRegionCounters(GD.getDecl(), CurFn); 855 if (isa<CXXDestructorDecl>(FD)) 856 EmitDestructorBody(Args); 857 else if (isa<CXXConstructorDecl>(FD)) 858 EmitConstructorBody(Args); 859 else if (getLangOpts().CUDA && 860 !CGM.getCodeGenOpts().CUDAIsDevice && 861 FD->hasAttr<CUDAGlobalAttr>()) 862 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 863 else if (isa<CXXConversionDecl>(FD) && 864 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 865 // The lambda conversion to block pointer is special; the semantics can't be 866 // expressed in the AST, so IRGen needs to special-case it. 867 EmitLambdaToBlockPointerBody(Args); 868 } else if (isa<CXXMethodDecl>(FD) && 869 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 870 // The lambda static invoker function is special, because it forwards or 871 // clones the body of the function call operator (but is actually static). 872 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 873 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 874 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 875 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 876 // Implicit copy-assignment gets the same special treatment as implicit 877 // copy-constructors. 878 emitImplicitAssignmentOperatorBody(Args); 879 } else if (Stmt *Body = FD->getBody()) { 880 EmitFunctionBody(Args, Body); 881 } else if (FunctionDecl *UnsizedDealloc = 882 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 883 // Global sized deallocation functions get an implicit weak definition if 884 // they don't have an explicit definition. 885 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 886 } else 887 llvm_unreachable("no definition for emitted function"); 888 889 // C++11 [stmt.return]p2: 890 // Flowing off the end of a function [...] results in undefined behavior in 891 // a value-returning function. 892 // C11 6.9.1p12: 893 // If the '}' that terminates a function is reached, and the value of the 894 // function call is used by the caller, the behavior is undefined. 895 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 896 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 897 if (SanOpts->Return) { 898 SanitizerScope SanScope(this); 899 EmitCheck(Builder.getFalse(), "missing_return", 900 EmitCheckSourceLocation(FD->getLocation()), 901 None, CRK_Unrecoverable); 902 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 903 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 904 Builder.CreateUnreachable(); 905 Builder.ClearInsertionPoint(); 906 } 907 908 // Emit the standard function epilogue. 909 FinishFunction(BodyRange.getEnd()); 910 911 // If we haven't marked the function nothrow through other means, do 912 // a quick pass now to see if we can. 913 if (!CurFn->doesNotThrow()) 914 TryMarkNoThrow(CurFn); 915 916 PGO.emitInstrumentationData(); 917 PGO.destroyRegionCounters(); 918 } 919 920 /// ContainsLabel - Return true if the statement contains a label in it. If 921 /// this statement is not executed normally, it not containing a label means 922 /// that we can just remove the code. 923 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 924 // Null statement, not a label! 925 if (!S) return false; 926 927 // If this is a label, we have to emit the code, consider something like: 928 // if (0) { ... foo: bar(); } goto foo; 929 // 930 // TODO: If anyone cared, we could track __label__'s, since we know that you 931 // can't jump to one from outside their declared region. 932 if (isa<LabelStmt>(S)) 933 return true; 934 935 // If this is a case/default statement, and we haven't seen a switch, we have 936 // to emit the code. 937 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 938 return true; 939 940 // If this is a switch statement, we want to ignore cases below it. 941 if (isa<SwitchStmt>(S)) 942 IgnoreCaseStmts = true; 943 944 // Scan subexpressions for verboten labels. 945 for (Stmt::const_child_range I = S->children(); I; ++I) 946 if (ContainsLabel(*I, IgnoreCaseStmts)) 947 return true; 948 949 return false; 950 } 951 952 /// containsBreak - Return true if the statement contains a break out of it. 953 /// If the statement (recursively) contains a switch or loop with a break 954 /// inside of it, this is fine. 955 bool CodeGenFunction::containsBreak(const Stmt *S) { 956 // Null statement, not a label! 957 if (!S) return false; 958 959 // If this is a switch or loop that defines its own break scope, then we can 960 // include it and anything inside of it. 961 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 962 isa<ForStmt>(S)) 963 return false; 964 965 if (isa<BreakStmt>(S)) 966 return true; 967 968 // Scan subexpressions for verboten breaks. 969 for (Stmt::const_child_range I = S->children(); I; ++I) 970 if (containsBreak(*I)) 971 return true; 972 973 return false; 974 } 975 976 977 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 978 /// to a constant, or if it does but contains a label, return false. If it 979 /// constant folds return true and set the boolean result in Result. 980 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 981 bool &ResultBool) { 982 llvm::APSInt ResultInt; 983 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 984 return false; 985 986 ResultBool = ResultInt.getBoolValue(); 987 return true; 988 } 989 990 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 991 /// to a constant, or if it does but contains a label, return false. If it 992 /// constant folds return true and set the folded value. 993 bool CodeGenFunction:: 994 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 995 // FIXME: Rename and handle conversion of other evaluatable things 996 // to bool. 997 llvm::APSInt Int; 998 if (!Cond->EvaluateAsInt(Int, getContext())) 999 return false; // Not foldable, not integer or not fully evaluatable. 1000 1001 if (CodeGenFunction::ContainsLabel(Cond)) 1002 return false; // Contains a label. 1003 1004 ResultInt = Int; 1005 return true; 1006 } 1007 1008 1009 1010 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1011 /// statement) to the specified blocks. Based on the condition, this might try 1012 /// to simplify the codegen of the conditional based on the branch. 1013 /// 1014 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1015 llvm::BasicBlock *TrueBlock, 1016 llvm::BasicBlock *FalseBlock, 1017 uint64_t TrueCount) { 1018 Cond = Cond->IgnoreParens(); 1019 1020 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1021 1022 // Handle X && Y in a condition. 1023 if (CondBOp->getOpcode() == BO_LAnd) { 1024 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1025 1026 // If we have "1 && X", simplify the code. "0 && X" would have constant 1027 // folded if the case was simple enough. 1028 bool ConstantBool = false; 1029 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1030 ConstantBool) { 1031 // br(1 && X) -> br(X). 1032 Cnt.beginRegion(Builder); 1033 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1034 TrueCount); 1035 } 1036 1037 // If we have "X && 1", simplify the code to use an uncond branch. 1038 // "X && 0" would have been constant folded to 0. 1039 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1040 ConstantBool) { 1041 // br(X && 1) -> br(X). 1042 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1043 TrueCount); 1044 } 1045 1046 // Emit the LHS as a conditional. If the LHS conditional is false, we 1047 // want to jump to the FalseBlock. 1048 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1049 // The counter tells us how often we evaluate RHS, and all of TrueCount 1050 // can be propagated to that branch. 1051 uint64_t RHSCount = Cnt.getCount(); 1052 1053 ConditionalEvaluation eval(*this); 1054 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1055 EmitBlock(LHSTrue); 1056 1057 // Any temporaries created here are conditional. 1058 Cnt.beginRegion(Builder); 1059 eval.begin(*this); 1060 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1061 eval.end(*this); 1062 1063 return; 1064 } 1065 1066 if (CondBOp->getOpcode() == BO_LOr) { 1067 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1068 1069 // If we have "0 || X", simplify the code. "1 || X" would have constant 1070 // folded if the case was simple enough. 1071 bool ConstantBool = false; 1072 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1073 !ConstantBool) { 1074 // br(0 || X) -> br(X). 1075 Cnt.beginRegion(Builder); 1076 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1077 TrueCount); 1078 } 1079 1080 // If we have "X || 0", simplify the code to use an uncond branch. 1081 // "X || 1" would have been constant folded to 1. 1082 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1083 !ConstantBool) { 1084 // br(X || 0) -> br(X). 1085 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1086 TrueCount); 1087 } 1088 1089 // Emit the LHS as a conditional. If the LHS conditional is true, we 1090 // want to jump to the TrueBlock. 1091 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1092 // We have the count for entry to the RHS and for the whole expression 1093 // being true, so we can divy up True count between the short circuit and 1094 // the RHS. 1095 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1096 uint64_t RHSCount = TrueCount - LHSCount; 1097 1098 ConditionalEvaluation eval(*this); 1099 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1100 EmitBlock(LHSFalse); 1101 1102 // Any temporaries created here are conditional. 1103 Cnt.beginRegion(Builder); 1104 eval.begin(*this); 1105 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1106 1107 eval.end(*this); 1108 1109 return; 1110 } 1111 } 1112 1113 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1114 // br(!x, t, f) -> br(x, f, t) 1115 if (CondUOp->getOpcode() == UO_LNot) { 1116 // Negate the count. 1117 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1118 // Negate the condition and swap the destination blocks. 1119 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1120 FalseCount); 1121 } 1122 } 1123 1124 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1125 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1126 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1127 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1128 1129 RegionCounter Cnt = getPGORegionCounter(CondOp); 1130 ConditionalEvaluation cond(*this); 1131 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1132 1133 // When computing PGO branch weights, we only know the overall count for 1134 // the true block. This code is essentially doing tail duplication of the 1135 // naive code-gen, introducing new edges for which counts are not 1136 // available. Divide the counts proportionally between the LHS and RHS of 1137 // the conditional operator. 1138 uint64_t LHSScaledTrueCount = 0; 1139 if (TrueCount) { 1140 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1141 LHSScaledTrueCount = TrueCount * LHSRatio; 1142 } 1143 1144 cond.begin(*this); 1145 EmitBlock(LHSBlock); 1146 Cnt.beginRegion(Builder); 1147 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1148 LHSScaledTrueCount); 1149 cond.end(*this); 1150 1151 cond.begin(*this); 1152 EmitBlock(RHSBlock); 1153 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1154 TrueCount - LHSScaledTrueCount); 1155 cond.end(*this); 1156 1157 return; 1158 } 1159 1160 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1161 // Conditional operator handling can give us a throw expression as a 1162 // condition for a case like: 1163 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1164 // Fold this to: 1165 // br(c, throw x, br(y, t, f)) 1166 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1167 return; 1168 } 1169 1170 // Create branch weights based on the number of times we get here and the 1171 // number of times the condition should be true. 1172 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1173 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1174 CurrentCount - TrueCount); 1175 1176 // Emit the code with the fully general case. 1177 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1178 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1179 } 1180 1181 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1182 /// specified stmt yet. 1183 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1184 CGM.ErrorUnsupported(S, Type); 1185 } 1186 1187 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1188 /// variable-length array whose elements have a non-zero bit-pattern. 1189 /// 1190 /// \param baseType the inner-most element type of the array 1191 /// \param src - a char* pointing to the bit-pattern for a single 1192 /// base element of the array 1193 /// \param sizeInChars - the total size of the VLA, in chars 1194 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1195 llvm::Value *dest, llvm::Value *src, 1196 llvm::Value *sizeInChars) { 1197 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1198 = CGF.getContext().getTypeInfoInChars(baseType); 1199 1200 CGBuilderTy &Builder = CGF.Builder; 1201 1202 llvm::Value *baseSizeInChars 1203 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1204 1205 llvm::Type *i8p = Builder.getInt8PtrTy(); 1206 1207 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1208 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1209 1210 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1211 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1212 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1213 1214 // Make a loop over the VLA. C99 guarantees that the VLA element 1215 // count must be nonzero. 1216 CGF.EmitBlock(loopBB); 1217 1218 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1219 cur->addIncoming(begin, originBB); 1220 1221 // memcpy the individual element bit-pattern. 1222 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1223 baseSizeAndAlign.second.getQuantity(), 1224 /*volatile*/ false); 1225 1226 // Go to the next element. 1227 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1228 1229 // Leave if that's the end of the VLA. 1230 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1231 Builder.CreateCondBr(done, contBB, loopBB); 1232 cur->addIncoming(next, loopBB); 1233 1234 CGF.EmitBlock(contBB); 1235 } 1236 1237 void 1238 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1239 // Ignore empty classes in C++. 1240 if (getLangOpts().CPlusPlus) { 1241 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1242 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1243 return; 1244 } 1245 } 1246 1247 // Cast the dest ptr to the appropriate i8 pointer type. 1248 unsigned DestAS = 1249 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1250 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1251 if (DestPtr->getType() != BP) 1252 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1253 1254 // Get size and alignment info for this aggregate. 1255 std::pair<CharUnits, CharUnits> TypeInfo = 1256 getContext().getTypeInfoInChars(Ty); 1257 CharUnits Size = TypeInfo.first; 1258 CharUnits Align = TypeInfo.second; 1259 1260 llvm::Value *SizeVal; 1261 const VariableArrayType *vla; 1262 1263 // Don't bother emitting a zero-byte memset. 1264 if (Size.isZero()) { 1265 // But note that getTypeInfo returns 0 for a VLA. 1266 if (const VariableArrayType *vlaType = 1267 dyn_cast_or_null<VariableArrayType>( 1268 getContext().getAsArrayType(Ty))) { 1269 QualType eltType; 1270 llvm::Value *numElts; 1271 std::tie(numElts, eltType) = getVLASize(vlaType); 1272 1273 SizeVal = numElts; 1274 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1275 if (!eltSize.isOne()) 1276 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1277 vla = vlaType; 1278 } else { 1279 return; 1280 } 1281 } else { 1282 SizeVal = CGM.getSize(Size); 1283 vla = nullptr; 1284 } 1285 1286 // If the type contains a pointer to data member we can't memset it to zero. 1287 // Instead, create a null constant and copy it to the destination. 1288 // TODO: there are other patterns besides zero that we can usefully memset, 1289 // like -1, which happens to be the pattern used by member-pointers. 1290 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1291 // For a VLA, emit a single element, then splat that over the VLA. 1292 if (vla) Ty = getContext().getBaseElementType(vla); 1293 1294 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1295 1296 llvm::GlobalVariable *NullVariable = 1297 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1298 /*isConstant=*/true, 1299 llvm::GlobalVariable::PrivateLinkage, 1300 NullConstant, Twine()); 1301 llvm::Value *SrcPtr = 1302 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1303 1304 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1305 1306 // Get and call the appropriate llvm.memcpy overload. 1307 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1308 return; 1309 } 1310 1311 // Otherwise, just memset the whole thing to zero. This is legal 1312 // because in LLVM, all default initializers (other than the ones we just 1313 // handled above) are guaranteed to have a bit pattern of all zeros. 1314 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1315 Align.getQuantity(), false); 1316 } 1317 1318 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1319 // Make sure that there is a block for the indirect goto. 1320 if (!IndirectBranch) 1321 GetIndirectGotoBlock(); 1322 1323 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1324 1325 // Make sure the indirect branch includes all of the address-taken blocks. 1326 IndirectBranch->addDestination(BB); 1327 return llvm::BlockAddress::get(CurFn, BB); 1328 } 1329 1330 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1331 // If we already made the indirect branch for indirect goto, return its block. 1332 if (IndirectBranch) return IndirectBranch->getParent(); 1333 1334 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1335 1336 // Create the PHI node that indirect gotos will add entries to. 1337 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1338 "indirect.goto.dest"); 1339 1340 // Create the indirect branch instruction. 1341 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1342 return IndirectBranch->getParent(); 1343 } 1344 1345 /// Computes the length of an array in elements, as well as the base 1346 /// element type and a properly-typed first element pointer. 1347 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1348 QualType &baseType, 1349 llvm::Value *&addr) { 1350 const ArrayType *arrayType = origArrayType; 1351 1352 // If it's a VLA, we have to load the stored size. Note that 1353 // this is the size of the VLA in bytes, not its size in elements. 1354 llvm::Value *numVLAElements = nullptr; 1355 if (isa<VariableArrayType>(arrayType)) { 1356 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1357 1358 // Walk into all VLAs. This doesn't require changes to addr, 1359 // which has type T* where T is the first non-VLA element type. 1360 do { 1361 QualType elementType = arrayType->getElementType(); 1362 arrayType = getContext().getAsArrayType(elementType); 1363 1364 // If we only have VLA components, 'addr' requires no adjustment. 1365 if (!arrayType) { 1366 baseType = elementType; 1367 return numVLAElements; 1368 } 1369 } while (isa<VariableArrayType>(arrayType)); 1370 1371 // We get out here only if we find a constant array type 1372 // inside the VLA. 1373 } 1374 1375 // We have some number of constant-length arrays, so addr should 1376 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1377 // down to the first element of addr. 1378 SmallVector<llvm::Value*, 8> gepIndices; 1379 1380 // GEP down to the array type. 1381 llvm::ConstantInt *zero = Builder.getInt32(0); 1382 gepIndices.push_back(zero); 1383 1384 uint64_t countFromCLAs = 1; 1385 QualType eltType; 1386 1387 llvm::ArrayType *llvmArrayType = 1388 dyn_cast<llvm::ArrayType>( 1389 cast<llvm::PointerType>(addr->getType())->getElementType()); 1390 while (llvmArrayType) { 1391 assert(isa<ConstantArrayType>(arrayType)); 1392 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1393 == llvmArrayType->getNumElements()); 1394 1395 gepIndices.push_back(zero); 1396 countFromCLAs *= llvmArrayType->getNumElements(); 1397 eltType = arrayType->getElementType(); 1398 1399 llvmArrayType = 1400 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1401 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1402 assert((!llvmArrayType || arrayType) && 1403 "LLVM and Clang types are out-of-synch"); 1404 } 1405 1406 if (arrayType) { 1407 // From this point onwards, the Clang array type has been emitted 1408 // as some other type (probably a packed struct). Compute the array 1409 // size, and just emit the 'begin' expression as a bitcast. 1410 while (arrayType) { 1411 countFromCLAs *= 1412 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1413 eltType = arrayType->getElementType(); 1414 arrayType = getContext().getAsArrayType(eltType); 1415 } 1416 1417 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1418 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1419 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1420 } else { 1421 // Create the actual GEP. 1422 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1423 } 1424 1425 baseType = eltType; 1426 1427 llvm::Value *numElements 1428 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1429 1430 // If we had any VLA dimensions, factor them in. 1431 if (numVLAElements) 1432 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1433 1434 return numElements; 1435 } 1436 1437 std::pair<llvm::Value*, QualType> 1438 CodeGenFunction::getVLASize(QualType type) { 1439 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1440 assert(vla && "type was not a variable array type!"); 1441 return getVLASize(vla); 1442 } 1443 1444 std::pair<llvm::Value*, QualType> 1445 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1446 // The number of elements so far; always size_t. 1447 llvm::Value *numElements = nullptr; 1448 1449 QualType elementType; 1450 do { 1451 elementType = type->getElementType(); 1452 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1453 assert(vlaSize && "no size for VLA!"); 1454 assert(vlaSize->getType() == SizeTy); 1455 1456 if (!numElements) { 1457 numElements = vlaSize; 1458 } else { 1459 // It's undefined behavior if this wraps around, so mark it that way. 1460 // FIXME: Teach -fsanitize=undefined to trap this. 1461 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1462 } 1463 } while ((type = getContext().getAsVariableArrayType(elementType))); 1464 1465 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1466 } 1467 1468 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1469 assert(type->isVariablyModifiedType() && 1470 "Must pass variably modified type to EmitVLASizes!"); 1471 1472 EnsureInsertPoint(); 1473 1474 // We're going to walk down into the type and look for VLA 1475 // expressions. 1476 do { 1477 assert(type->isVariablyModifiedType()); 1478 1479 const Type *ty = type.getTypePtr(); 1480 switch (ty->getTypeClass()) { 1481 1482 #define TYPE(Class, Base) 1483 #define ABSTRACT_TYPE(Class, Base) 1484 #define NON_CANONICAL_TYPE(Class, Base) 1485 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1486 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1487 #include "clang/AST/TypeNodes.def" 1488 llvm_unreachable("unexpected dependent type!"); 1489 1490 // These types are never variably-modified. 1491 case Type::Builtin: 1492 case Type::Complex: 1493 case Type::Vector: 1494 case Type::ExtVector: 1495 case Type::Record: 1496 case Type::Enum: 1497 case Type::Elaborated: 1498 case Type::TemplateSpecialization: 1499 case Type::ObjCObject: 1500 case Type::ObjCInterface: 1501 case Type::ObjCObjectPointer: 1502 llvm_unreachable("type class is never variably-modified!"); 1503 1504 case Type::Adjusted: 1505 type = cast<AdjustedType>(ty)->getAdjustedType(); 1506 break; 1507 1508 case Type::Decayed: 1509 type = cast<DecayedType>(ty)->getPointeeType(); 1510 break; 1511 1512 case Type::Pointer: 1513 type = cast<PointerType>(ty)->getPointeeType(); 1514 break; 1515 1516 case Type::BlockPointer: 1517 type = cast<BlockPointerType>(ty)->getPointeeType(); 1518 break; 1519 1520 case Type::LValueReference: 1521 case Type::RValueReference: 1522 type = cast<ReferenceType>(ty)->getPointeeType(); 1523 break; 1524 1525 case Type::MemberPointer: 1526 type = cast<MemberPointerType>(ty)->getPointeeType(); 1527 break; 1528 1529 case Type::ConstantArray: 1530 case Type::IncompleteArray: 1531 // Losing element qualification here is fine. 1532 type = cast<ArrayType>(ty)->getElementType(); 1533 break; 1534 1535 case Type::VariableArray: { 1536 // Losing element qualification here is fine. 1537 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1538 1539 // Unknown size indication requires no size computation. 1540 // Otherwise, evaluate and record it. 1541 if (const Expr *size = vat->getSizeExpr()) { 1542 // It's possible that we might have emitted this already, 1543 // e.g. with a typedef and a pointer to it. 1544 llvm::Value *&entry = VLASizeMap[size]; 1545 if (!entry) { 1546 llvm::Value *Size = EmitScalarExpr(size); 1547 1548 // C11 6.7.6.2p5: 1549 // If the size is an expression that is not an integer constant 1550 // expression [...] each time it is evaluated it shall have a value 1551 // greater than zero. 1552 if (SanOpts->VLABound && 1553 size->getType()->isSignedIntegerType()) { 1554 SanitizerScope SanScope(this); 1555 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1556 llvm::Constant *StaticArgs[] = { 1557 EmitCheckSourceLocation(size->getLocStart()), 1558 EmitCheckTypeDescriptor(size->getType()) 1559 }; 1560 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1561 "vla_bound_not_positive", StaticArgs, Size, 1562 CRK_Recoverable); 1563 } 1564 1565 // Always zexting here would be wrong if it weren't 1566 // undefined behavior to have a negative bound. 1567 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1568 } 1569 } 1570 type = vat->getElementType(); 1571 break; 1572 } 1573 1574 case Type::FunctionProto: 1575 case Type::FunctionNoProto: 1576 type = cast<FunctionType>(ty)->getReturnType(); 1577 break; 1578 1579 case Type::Paren: 1580 case Type::TypeOf: 1581 case Type::UnaryTransform: 1582 case Type::Attributed: 1583 case Type::SubstTemplateTypeParm: 1584 case Type::PackExpansion: 1585 // Keep walking after single level desugaring. 1586 type = type.getSingleStepDesugaredType(getContext()); 1587 break; 1588 1589 case Type::Typedef: 1590 case Type::Decltype: 1591 case Type::Auto: 1592 // Stop walking: nothing to do. 1593 return; 1594 1595 case Type::TypeOfExpr: 1596 // Stop walking: emit typeof expression. 1597 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1598 return; 1599 1600 case Type::Atomic: 1601 type = cast<AtomicType>(ty)->getValueType(); 1602 break; 1603 } 1604 } while (type->isVariablyModifiedType()); 1605 } 1606 1607 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1608 if (getContext().getBuiltinVaListType()->isArrayType()) 1609 return EmitScalarExpr(E); 1610 return EmitLValue(E).getAddress(); 1611 } 1612 1613 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1614 llvm::Constant *Init) { 1615 assert (Init && "Invalid DeclRefExpr initializer!"); 1616 if (CGDebugInfo *Dbg = getDebugInfo()) 1617 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1618 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1619 } 1620 1621 CodeGenFunction::PeepholeProtection 1622 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1623 // At the moment, the only aggressive peephole we do in IR gen 1624 // is trunc(zext) folding, but if we add more, we can easily 1625 // extend this protection. 1626 1627 if (!rvalue.isScalar()) return PeepholeProtection(); 1628 llvm::Value *value = rvalue.getScalarVal(); 1629 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1630 1631 // Just make an extra bitcast. 1632 assert(HaveInsertPoint()); 1633 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1634 Builder.GetInsertBlock()); 1635 1636 PeepholeProtection protection; 1637 protection.Inst = inst; 1638 return protection; 1639 } 1640 1641 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1642 if (!protection.Inst) return; 1643 1644 // In theory, we could try to duplicate the peepholes now, but whatever. 1645 protection.Inst->eraseFromParent(); 1646 } 1647 1648 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1649 llvm::Value *AnnotatedVal, 1650 StringRef AnnotationStr, 1651 SourceLocation Location) { 1652 llvm::Value *Args[4] = { 1653 AnnotatedVal, 1654 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1655 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1656 CGM.EmitAnnotationLineNo(Location) 1657 }; 1658 return Builder.CreateCall(AnnotationFn, Args); 1659 } 1660 1661 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1662 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1663 // FIXME We create a new bitcast for every annotation because that's what 1664 // llvm-gcc was doing. 1665 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1666 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1667 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1668 I->getAnnotation(), D->getLocation()); 1669 } 1670 1671 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1672 llvm::Value *V) { 1673 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1674 llvm::Type *VTy = V->getType(); 1675 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1676 CGM.Int8PtrTy); 1677 1678 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1679 // FIXME Always emit the cast inst so we can differentiate between 1680 // annotation on the first field of a struct and annotation on the struct 1681 // itself. 1682 if (VTy != CGM.Int8PtrTy) 1683 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1684 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1685 V = Builder.CreateBitCast(V, VTy); 1686 } 1687 1688 return V; 1689 } 1690 1691 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1692 1693 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1694 : CGF(CGF) { 1695 assert(!CGF->IsSanitizerScope); 1696 CGF->IsSanitizerScope = true; 1697 } 1698 1699 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1700 CGF->IsSanitizerScope = false; 1701 } 1702 1703 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1704 const llvm::Twine &Name, 1705 llvm::BasicBlock *BB, 1706 llvm::BasicBlock::iterator InsertPt) const { 1707 LoopStack.InsertHelper(I); 1708 if (IsSanitizerScope) 1709 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1710 } 1711 1712 template <bool PreserveNames> 1713 void CGBuilderInserter<PreserveNames>::InsertHelper( 1714 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1715 llvm::BasicBlock::iterator InsertPt) const { 1716 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1717 InsertPt); 1718 if (CGF) 1719 CGF->InsertHelper(I, Name, BB, InsertPt); 1720 } 1721 1722 #ifdef NDEBUG 1723 #define PreserveNames false 1724 #else 1725 #define PreserveNames true 1726 #endif 1727 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1728 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1729 llvm::BasicBlock::iterator InsertPt) const; 1730 #undef PreserveNames 1731