1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   default:
109     llvm_unreachable("Unsupported FP Exception Behavior");
110   }
111 }
112 
113 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
114   llvm::FastMathFlags FMF;
115   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
116   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
117   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
118   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
119   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
120   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
121   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
122   Builder.setFastMathFlags(FMF);
123 }
124 
125 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
126                                                   const Expr *E)
127     : CGF(CGF) {
128   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
129 }
130 
131 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
132                                                   FPOptions FPFeatures)
133     : CGF(CGF) {
134   ConstructorHelper(FPFeatures);
135 }
136 
137 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
138   OldFPFeatures = CGF.CurFPFeatures;
139   CGF.CurFPFeatures = FPFeatures;
140 
141   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
142   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
143 
144   if (OldFPFeatures == FPFeatures)
145     return;
146 
147   FMFGuard.emplace(CGF.Builder);
148 
149   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   // Emit debug descriptor for function end.
387   if (CGDebugInfo *DI = getDebugInfo())
388     DI->EmitFunctionEnd(Builder, CurFn);
389 
390   // Reset the debug location to that of the simple 'return' expression, if any
391   // rather than that of the end of the function's scope '}'.
392   ApplyDebugLocation AL(*this, Loc);
393   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394   EmitEndEHSpec(CurCodeDecl);
395 
396   assert(EHStack.empty() &&
397          "did not remove all scopes from cleanup stack!");
398 
399   // If someone did an indirect goto, emit the indirect goto block at the end of
400   // the function.
401   if (IndirectBranch) {
402     EmitBlock(IndirectBranch->getParent());
403     Builder.ClearInsertionPoint();
404   }
405 
406   // If some of our locals escaped, insert a call to llvm.localescape in the
407   // entry block.
408   if (!EscapedLocals.empty()) {
409     // Invert the map from local to index into a simple vector. There should be
410     // no holes.
411     SmallVector<llvm::Value *, 4> EscapeArgs;
412     EscapeArgs.resize(EscapedLocals.size());
413     for (auto &Pair : EscapedLocals)
414       EscapeArgs[Pair.second] = Pair.first;
415     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416         &CGM.getModule(), llvm::Intrinsic::localescape);
417     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418   }
419 
420   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421   llvm::Instruction *Ptr = AllocaInsertPt;
422   AllocaInsertPt = nullptr;
423   Ptr->eraseFromParent();
424 
425   // PostAllocaInsertPt, if created, was lazily created when it was required,
426   // remove it now since it was just created for our own convenience.
427   if (PostAllocaInsertPt) {
428     llvm::Instruction *PostPtr = PostAllocaInsertPt;
429     PostAllocaInsertPt = nullptr;
430     PostPtr->eraseFromParent();
431   }
432 
433   // If someone took the address of a label but never did an indirect goto, we
434   // made a zero entry PHI node, which is illegal, zap it now.
435   if (IndirectBranch) {
436     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437     if (PN->getNumIncomingValues() == 0) {
438       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439       PN->eraseFromParent();
440     }
441   }
442 
443   EmitIfUsed(*this, EHResumeBlock);
444   EmitIfUsed(*this, TerminateLandingPad);
445   EmitIfUsed(*this, TerminateHandler);
446   EmitIfUsed(*this, UnreachableBlock);
447 
448   for (const auto &FuncletAndParent : TerminateFunclets)
449     EmitIfUsed(*this, FuncletAndParent.second);
450 
451   if (CGM.getCodeGenOpts().EmitDeclMetadata)
452     EmitDeclMetadata();
453 
454   for (const auto &R : DeferredReplacements) {
455     if (llvm::Value *Old = R.first) {
456       Old->replaceAllUsesWith(R.second);
457       cast<llvm::Instruction>(Old)->eraseFromParent();
458     }
459   }
460   DeferredReplacements.clear();
461 
462   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463   // PHIs if the current function is a coroutine. We don't do it for all
464   // functions as it may result in slight increase in numbers of instructions
465   // if compiled with no optimizations. We do it for coroutine as the lifetime
466   // of CleanupDestSlot alloca make correct coroutine frame building very
467   // difficult.
468   if (NormalCleanupDest.isValid() && isCoroutine()) {
469     llvm::DominatorTree DT(*CurFn);
470     llvm::PromoteMemToReg(
471         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472     NormalCleanupDest = Address::invalid();
473   }
474 
475   // Scan function arguments for vector width.
476   for (llvm::Argument &A : CurFn->args())
477     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478       LargestVectorWidth =
479           std::max((uint64_t)LargestVectorWidth,
480                    VT->getPrimitiveSizeInBits().getKnownMinSize());
481 
482   // Update vector width based on return type.
483   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484     LargestVectorWidth =
485         std::max((uint64_t)LargestVectorWidth,
486                  VT->getPrimitiveSizeInBits().getKnownMinSize());
487 
488   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
489     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
490 
491   // Add the required-vector-width attribute. This contains the max width from:
492   // 1. min-vector-width attribute used in the source program.
493   // 2. Any builtins used that have a vector width specified.
494   // 3. Values passed in and out of inline assembly.
495   // 4. Width of vector arguments and return types for this function.
496   // 5. Width of vector aguments and return types for functions called by this
497   //    function.
498   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499 
500   // Add vscale_range attribute if appropriate.
501   Optional<std::pair<unsigned, unsigned>> VScaleRange =
502       getContext().getTargetInfo().getVScaleRange(getLangOpts());
503   if (VScaleRange) {
504     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505         getLLVMContext(), VScaleRange->first, VScaleRange->second));
506   }
507 
508   // If we generated an unreachable return block, delete it now.
509   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
510     Builder.ClearInsertionPoint();
511     ReturnBlock.getBlock()->eraseFromParent();
512   }
513   if (ReturnValue.isValid()) {
514     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
515     if (RetAlloca && RetAlloca->use_empty()) {
516       RetAlloca->eraseFromParent();
517       ReturnValue = Address::invalid();
518     }
519   }
520 }
521 
522 /// ShouldInstrumentFunction - Return true if the current function should be
523 /// instrumented with __cyg_profile_func_* calls
524 bool CodeGenFunction::ShouldInstrumentFunction() {
525   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
526       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
527       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
528     return false;
529   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
530     return false;
531   return true;
532 }
533 
534 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
535   if (!CurFuncDecl)
536     return false;
537   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
538 }
539 
540 /// ShouldXRayInstrument - Return true if the current function should be
541 /// instrumented with XRay nop sleds.
542 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
543   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
544 }
545 
546 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
547 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
548 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
549   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
550          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
551           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
552               XRayInstrKind::Custom);
553 }
554 
555 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
556   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
557          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
558           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
559               XRayInstrKind::Typed);
560 }
561 
562 llvm::Constant *
563 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
564                                             llvm::Constant *Addr) {
565   // Addresses stored in prologue data can't require run-time fixups and must
566   // be PC-relative. Run-time fixups are undesirable because they necessitate
567   // writable text segments, which are unsafe. And absolute addresses are
568   // undesirable because they break PIE mode.
569 
570   // Add a layer of indirection through a private global. Taking its address
571   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
572   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
573                                       /*isConstant=*/true,
574                                       llvm::GlobalValue::PrivateLinkage, Addr);
575 
576   // Create a PC-relative address.
577   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
578   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
579   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
580   return (IntPtrTy == Int32Ty)
581              ? PCRelAsInt
582              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
583 }
584 
585 llvm::Value *
586 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
587                                           llvm::Value *EncodedAddr) {
588   // Reconstruct the address of the global.
589   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
590   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
591   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
592   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
593 
594   // Load the original pointer through the global.
595   return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
596                             "decoded_addr");
597 }
598 
599 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
600                                          llvm::Function *Fn) {
601   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
602     return;
603 
604   llvm::LLVMContext &Context = getLLVMContext();
605 
606   CGM.GenKernelArgMetadata(Fn, FD, this);
607 
608   if (!getLangOpts().OpenCL)
609     return;
610 
611   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
612     QualType HintQTy = A->getTypeHint();
613     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
614     bool IsSignedInteger =
615         HintQTy->isSignedIntegerType() ||
616         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
619             CGM.getTypes().ConvertType(A->getTypeHint()))),
620         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
621             llvm::IntegerType::get(Context, 32),
622             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
623     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
624   }
625 
626   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
627     llvm::Metadata *AttrMDArgs[] = {
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
630         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
631     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
632   }
633 
634   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
635     llvm::Metadata *AttrMDArgs[] = {
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
638         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
639     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
640   }
641 
642   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
643           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
644     llvm::Metadata *AttrMDArgs[] = {
645         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
646     Fn->setMetadata("intel_reqd_sub_group_size",
647                     llvm::MDNode::get(Context, AttrMDArgs));
648   }
649 }
650 
651 /// Determine whether the function F ends with a return stmt.
652 static bool endsWithReturn(const Decl* F) {
653   const Stmt *Body = nullptr;
654   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
655     Body = FD->getBody();
656   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
657     Body = OMD->getBody();
658 
659   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
660     auto LastStmt = CS->body_rbegin();
661     if (LastStmt != CS->body_rend())
662       return isa<ReturnStmt>(*LastStmt);
663   }
664   return false;
665 }
666 
667 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
668   if (SanOpts.has(SanitizerKind::Thread)) {
669     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
670     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
671   }
672 }
673 
674 /// Check if the return value of this function requires sanitization.
675 bool CodeGenFunction::requiresReturnValueCheck() const {
676   return requiresReturnValueNullabilityCheck() ||
677          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
678           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
679 }
680 
681 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
682   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
683   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
684       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
685       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
686     return false;
687 
688   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
689     return false;
690 
691   if (MD->getNumParams() == 2) {
692     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
693     if (!PT || !PT->isVoidPointerType() ||
694         !PT->getPointeeType().isConstQualified())
695       return false;
696   }
697 
698   return true;
699 }
700 
701 /// Return the UBSan prologue signature for \p FD if one is available.
702 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
703                                             const FunctionDecl *FD) {
704   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
705     if (!MD->isStatic())
706       return nullptr;
707   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
708 }
709 
710 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
711                                     llvm::Function *Fn,
712                                     const CGFunctionInfo &FnInfo,
713                                     const FunctionArgList &Args,
714                                     SourceLocation Loc,
715                                     SourceLocation StartLoc) {
716   assert(!CurFn &&
717          "Do not use a CodeGenFunction object for more than one function");
718 
719   const Decl *D = GD.getDecl();
720 
721   DidCallStackSave = false;
722   CurCodeDecl = D;
723   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
724   if (FD && FD->usesSEHTry())
725     CurSEHParent = FD;
726   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
727   FnRetTy = RetTy;
728   CurFn = Fn;
729   CurFnInfo = &FnInfo;
730   assert(CurFn->isDeclaration() && "Function already has body?");
731 
732   // If this function is ignored for any of the enabled sanitizers,
733   // disable the sanitizer for the function.
734   do {
735 #define SANITIZER(NAME, ID)                                                    \
736   if (SanOpts.empty())                                                         \
737     break;                                                                     \
738   if (SanOpts.has(SanitizerKind::ID))                                          \
739     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
740       SanOpts.set(SanitizerKind::ID, false);
741 
742 #include "clang/Basic/Sanitizers.def"
743 #undef SANITIZER
744   } while (false);
745 
746   if (D) {
747     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
748     bool NoSanitizeCoverage = false;
749 
750     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
751       // Apply the no_sanitize* attributes to SanOpts.
752       SanitizerMask mask = Attr->getMask();
753       SanOpts.Mask &= ~mask;
754       if (mask & SanitizerKind::Address)
755         SanOpts.set(SanitizerKind::KernelAddress, false);
756       if (mask & SanitizerKind::KernelAddress)
757         SanOpts.set(SanitizerKind::Address, false);
758       if (mask & SanitizerKind::HWAddress)
759         SanOpts.set(SanitizerKind::KernelHWAddress, false);
760       if (mask & SanitizerKind::KernelHWAddress)
761         SanOpts.set(SanitizerKind::HWAddress, false);
762 
763       // SanitizeCoverage is not handled by SanOpts.
764       if (Attr->hasCoverage())
765         NoSanitizeCoverage = true;
766     }
767 
768     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
769       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
770 
771     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
772       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
773   }
774 
775   if (ShouldSkipSanitizerInstrumentation()) {
776     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
777   } else {
778     // Apply sanitizer attributes to the function.
779     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
780       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
781     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
782                          SanitizerKind::KernelHWAddress))
783       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
784     if (SanOpts.has(SanitizerKind::MemtagStack))
785       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
786     if (SanOpts.has(SanitizerKind::Thread))
787       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
788     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
789       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
790   }
791   if (SanOpts.has(SanitizerKind::SafeStack))
792     Fn->addFnAttr(llvm::Attribute::SafeStack);
793   if (SanOpts.has(SanitizerKind::ShadowCallStack))
794     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
795 
796   // Apply fuzzing attribute to the function.
797   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
798     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
799 
800   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
801   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
802   if (SanOpts.has(SanitizerKind::Thread)) {
803     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
804       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
805       if (OMD->getMethodFamily() == OMF_dealloc ||
806           OMD->getMethodFamily() == OMF_initialize ||
807           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
808         markAsIgnoreThreadCheckingAtRuntime(Fn);
809       }
810     }
811   }
812 
813   // Ignore unrelated casts in STL allocate() since the allocator must cast
814   // from void* to T* before object initialization completes. Don't match on the
815   // namespace because not all allocators are in std::
816   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
817     if (matchesStlAllocatorFn(D, getContext()))
818       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
819   }
820 
821   // Ignore null checks in coroutine functions since the coroutines passes
822   // are not aware of how to move the extra UBSan instructions across the split
823   // coroutine boundaries.
824   if (D && SanOpts.has(SanitizerKind::Null))
825     if (FD && FD->getBody() &&
826         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
827       SanOpts.Mask &= ~SanitizerKind::Null;
828 
829   // Apply xray attributes to the function (as a string, for now)
830   bool AlwaysXRayAttr = false;
831   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
832     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
833             XRayInstrKind::FunctionEntry) ||
834         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
835             XRayInstrKind::FunctionExit)) {
836       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
837         Fn->addFnAttr("function-instrument", "xray-always");
838         AlwaysXRayAttr = true;
839       }
840       if (XRayAttr->neverXRayInstrument())
841         Fn->addFnAttr("function-instrument", "xray-never");
842       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
843         if (ShouldXRayInstrumentFunction())
844           Fn->addFnAttr("xray-log-args",
845                         llvm::utostr(LogArgs->getArgumentCount()));
846     }
847   } else {
848     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
849       Fn->addFnAttr(
850           "xray-instruction-threshold",
851           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
852   }
853 
854   if (ShouldXRayInstrumentFunction()) {
855     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
856       Fn->addFnAttr("xray-ignore-loops");
857 
858     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
859             XRayInstrKind::FunctionExit))
860       Fn->addFnAttr("xray-skip-exit");
861 
862     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
863             XRayInstrKind::FunctionEntry))
864       Fn->addFnAttr("xray-skip-entry");
865 
866     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
867     if (FuncGroups > 1) {
868       auto FuncName = llvm::makeArrayRef<uint8_t>(
869           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
870       auto Group = crc32(FuncName) % FuncGroups;
871       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
872           !AlwaysXRayAttr)
873         Fn->addFnAttr("function-instrument", "xray-never");
874     }
875   }
876 
877   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
878     if (CGM.isProfileInstrExcluded(Fn, Loc))
879       Fn->addFnAttr(llvm::Attribute::NoProfile);
880 
881   unsigned Count, Offset;
882   if (const auto *Attr =
883           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
884     Count = Attr->getCount();
885     Offset = Attr->getOffset();
886   } else {
887     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
888     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
889   }
890   if (Count && Offset <= Count) {
891     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
892     if (Offset)
893       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
894   }
895   // Instruct that functions for COFF/CodeView targets should start with a
896   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
897   // backends as they don't need it -- instructions on these architectures are
898   // always atomically patchable at runtime.
899   if (CGM.getCodeGenOpts().HotPatch &&
900       getContext().getTargetInfo().getTriple().isX86())
901     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
902 
903   // Add no-jump-tables value.
904   if (CGM.getCodeGenOpts().NoUseJumpTables)
905     Fn->addFnAttr("no-jump-tables", "true");
906 
907   // Add no-inline-line-tables value.
908   if (CGM.getCodeGenOpts().NoInlineLineTables)
909     Fn->addFnAttr("no-inline-line-tables");
910 
911   // Add profile-sample-accurate value.
912   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
913     Fn->addFnAttr("profile-sample-accurate");
914 
915   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
916     Fn->addFnAttr("use-sample-profile");
917 
918   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
919     Fn->addFnAttr("cfi-canonical-jump-table");
920 
921   if (D && D->hasAttr<NoProfileFunctionAttr>())
922     Fn->addFnAttr(llvm::Attribute::NoProfile);
923 
924   if (FD && (getLangOpts().OpenCL ||
925              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
926     // Add metadata for a kernel function.
927     EmitKernelMetadata(FD, Fn);
928   }
929 
930   // If we are checking function types, emit a function type signature as
931   // prologue data.
932   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
933     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
934       // Remove any (C++17) exception specifications, to allow calling e.g. a
935       // noexcept function through a non-noexcept pointer.
936       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
937           FD->getType(), EST_None);
938       llvm::Constant *FTRTTIConst =
939           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
940       llvm::Constant *FTRTTIConstEncoded =
941           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
942       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
943       llvm::Constant *PrologueStructConst =
944           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
945       Fn->setPrologueData(PrologueStructConst);
946     }
947   }
948 
949   // If we're checking nullability, we need to know whether we can check the
950   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
951   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
952     auto Nullability = FnRetTy->getNullability(getContext());
953     if (Nullability && *Nullability == NullabilityKind::NonNull) {
954       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
955             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
956         RetValNullabilityPrecondition =
957             llvm::ConstantInt::getTrue(getLLVMContext());
958     }
959   }
960 
961   // If we're in C++ mode and the function name is "main", it is guaranteed
962   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
963   // used within a program").
964   //
965   // OpenCL C 2.0 v2.2-11 s6.9.i:
966   //     Recursion is not supported.
967   //
968   // SYCL v1.2.1 s3.10:
969   //     kernels cannot include RTTI information, exception classes,
970   //     recursive code, virtual functions or make use of C++ libraries that
971   //     are not compiled for the device.
972   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
973              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
974              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
975     Fn->addFnAttr(llvm::Attribute::NoRecurse);
976 
977   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
978   llvm::fp::ExceptionBehavior FPExceptionBehavior =
979       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
980   Builder.setDefaultConstrainedRounding(RM);
981   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
982   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
983       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
984                RM != llvm::RoundingMode::NearestTiesToEven))) {
985     Builder.setIsFPConstrained(true);
986     Fn->addFnAttr(llvm::Attribute::StrictFP);
987   }
988 
989   // If a custom alignment is used, force realigning to this alignment on
990   // any main function which certainly will need it.
991   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
992              CGM.getCodeGenOpts().StackAlignment))
993     Fn->addFnAttr("stackrealign");
994 
995   // "main" doesn't need to zero out call-used registers.
996   if (FD && FD->isMain())
997     Fn->removeFnAttr("zero-call-used-regs");
998 
999   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1000 
1001   // Create a marker to make it easy to insert allocas into the entryblock
1002   // later.  Don't create this with the builder, because we don't want it
1003   // folded.
1004   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1005   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1006 
1007   ReturnBlock = getJumpDestInCurrentScope("return");
1008 
1009   Builder.SetInsertPoint(EntryBB);
1010 
1011   // If we're checking the return value, allocate space for a pointer to a
1012   // precise source location of the checked return statement.
1013   if (requiresReturnValueCheck()) {
1014     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1015     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1016                         ReturnLocation);
1017   }
1018 
1019   // Emit subprogram debug descriptor.
1020   if (CGDebugInfo *DI = getDebugInfo()) {
1021     // Reconstruct the type from the argument list so that implicit parameters,
1022     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1023     // convention.
1024     DI->emitFunctionStart(GD, Loc, StartLoc,
1025                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1026                           CurFuncIsThunk);
1027   }
1028 
1029   if (ShouldInstrumentFunction()) {
1030     if (CGM.getCodeGenOpts().InstrumentFunctions)
1031       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1032     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1033       CurFn->addFnAttr("instrument-function-entry-inlined",
1034                        "__cyg_profile_func_enter");
1035     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1036       CurFn->addFnAttr("instrument-function-entry-inlined",
1037                        "__cyg_profile_func_enter_bare");
1038   }
1039 
1040   // Since emitting the mcount call here impacts optimizations such as function
1041   // inlining, we just add an attribute to insert a mcount call in backend.
1042   // The attribute "counting-function" is set to mcount function name which is
1043   // architecture dependent.
1044   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1045     // Calls to fentry/mcount should not be generated if function has
1046     // the no_instrument_function attribute.
1047     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1048       if (CGM.getCodeGenOpts().CallFEntry)
1049         Fn->addFnAttr("fentry-call", "true");
1050       else {
1051         Fn->addFnAttr("instrument-function-entry-inlined",
1052                       getTarget().getMCountName());
1053       }
1054       if (CGM.getCodeGenOpts().MNopMCount) {
1055         if (!CGM.getCodeGenOpts().CallFEntry)
1056           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1057             << "-mnop-mcount" << "-mfentry";
1058         Fn->addFnAttr("mnop-mcount");
1059       }
1060 
1061       if (CGM.getCodeGenOpts().RecordMCount) {
1062         if (!CGM.getCodeGenOpts().CallFEntry)
1063           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1064             << "-mrecord-mcount" << "-mfentry";
1065         Fn->addFnAttr("mrecord-mcount");
1066       }
1067     }
1068   }
1069 
1070   if (CGM.getCodeGenOpts().PackedStack) {
1071     if (getContext().getTargetInfo().getTriple().getArch() !=
1072         llvm::Triple::systemz)
1073       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1074         << "-mpacked-stack";
1075     Fn->addFnAttr("packed-stack");
1076   }
1077 
1078   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1079       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1080     Fn->addFnAttr("warn-stack-size",
1081                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1082 
1083   if (RetTy->isVoidType()) {
1084     // Void type; nothing to return.
1085     ReturnValue = Address::invalid();
1086 
1087     // Count the implicit return.
1088     if (!endsWithReturn(D))
1089       ++NumReturnExprs;
1090   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1091     // Indirect return; emit returned value directly into sret slot.
1092     // This reduces code size, and affects correctness in C++.
1093     auto AI = CurFn->arg_begin();
1094     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1095       ++AI;
1096     ReturnValue = Address(&*AI, ConvertType(RetTy),
1097                           CurFnInfo->getReturnInfo().getIndirectAlign());
1098     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1099       ReturnValuePointer =
1100           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1101       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1102                               ReturnValue.getPointer(), Int8PtrTy),
1103                           ReturnValuePointer);
1104     }
1105   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1106              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1107     // Load the sret pointer from the argument struct and return into that.
1108     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1109     llvm::Function::arg_iterator EI = CurFn->arg_end();
1110     --EI;
1111     llvm::Value *Addr = Builder.CreateStructGEP(
1112         CurFnInfo->getArgStruct(), &*EI, Idx);
1113     llvm::Type *Ty =
1114         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1115     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1116     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1117     ReturnValue =
1118         Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1119   } else {
1120     ReturnValue = CreateIRTemp(RetTy, "retval");
1121 
1122     // Tell the epilog emitter to autorelease the result.  We do this
1123     // now so that various specialized functions can suppress it
1124     // during their IR-generation.
1125     if (getLangOpts().ObjCAutoRefCount &&
1126         !CurFnInfo->isReturnsRetained() &&
1127         RetTy->isObjCRetainableType())
1128       AutoreleaseResult = true;
1129   }
1130 
1131   EmitStartEHSpec(CurCodeDecl);
1132 
1133   PrologueCleanupDepth = EHStack.stable_begin();
1134 
1135   // Emit OpenMP specific initialization of the device functions.
1136   if (getLangOpts().OpenMP && CurCodeDecl)
1137     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1138 
1139   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1140 
1141   if (isa_and_nonnull<CXXMethodDecl>(D) &&
1142       cast<CXXMethodDecl>(D)->isInstance()) {
1143     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1144     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1145     if (MD->getParent()->isLambda() &&
1146         MD->getOverloadedOperator() == OO_Call) {
1147       // We're in a lambda; figure out the captures.
1148       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1149                                         LambdaThisCaptureField);
1150       if (LambdaThisCaptureField) {
1151         // If the lambda captures the object referred to by '*this' - either by
1152         // value or by reference, make sure CXXThisValue points to the correct
1153         // object.
1154 
1155         // Get the lvalue for the field (which is a copy of the enclosing object
1156         // or contains the address of the enclosing object).
1157         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1158         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1159           // If the enclosing object was captured by value, just use its address.
1160           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1161         } else {
1162           // Load the lvalue pointed to by the field, since '*this' was captured
1163           // by reference.
1164           CXXThisValue =
1165               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1166         }
1167       }
1168       for (auto *FD : MD->getParent()->fields()) {
1169         if (FD->hasCapturedVLAType()) {
1170           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1171                                            SourceLocation()).getScalarVal();
1172           auto VAT = FD->getCapturedVLAType();
1173           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1174         }
1175       }
1176     } else {
1177       // Not in a lambda; just use 'this' from the method.
1178       // FIXME: Should we generate a new load for each use of 'this'?  The
1179       // fast register allocator would be happier...
1180       CXXThisValue = CXXABIThisValue;
1181     }
1182 
1183     // Check the 'this' pointer once per function, if it's available.
1184     if (CXXABIThisValue) {
1185       SanitizerSet SkippedChecks;
1186       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1187       QualType ThisTy = MD->getThisType();
1188 
1189       // If this is the call operator of a lambda with no capture-default, it
1190       // may have a static invoker function, which may call this operator with
1191       // a null 'this' pointer.
1192       if (isLambdaCallOperator(MD) &&
1193           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1194         SkippedChecks.set(SanitizerKind::Null, true);
1195 
1196       EmitTypeCheck(
1197           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1198           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1199     }
1200   }
1201 
1202   // If any of the arguments have a variably modified type, make sure to
1203   // emit the type size, but only if the function is not naked. Naked functions
1204   // have no prolog to run this evaluation.
1205   if (!FD || !FD->hasAttr<NakedAttr>()) {
1206     for (const VarDecl *VD : Args) {
1207       // Dig out the type as written from ParmVarDecls; it's unclear whether
1208       // the standard (C99 6.9.1p10) requires this, but we're following the
1209       // precedent set by gcc.
1210       QualType Ty;
1211       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1212         Ty = PVD->getOriginalType();
1213       else
1214         Ty = VD->getType();
1215 
1216       if (Ty->isVariablyModifiedType())
1217         EmitVariablyModifiedType(Ty);
1218     }
1219   }
1220   // Emit a location at the end of the prologue.
1221   if (CGDebugInfo *DI = getDebugInfo())
1222     DI->EmitLocation(Builder, StartLoc);
1223   // TODO: Do we need to handle this in two places like we do with
1224   // target-features/target-cpu?
1225   if (CurFuncDecl)
1226     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1227       LargestVectorWidth = VecWidth->getVectorWidth();
1228 }
1229 
1230 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1231   incrementProfileCounter(Body);
1232   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1233     EmitCompoundStmtWithoutScope(*S);
1234   else
1235     EmitStmt(Body);
1236 
1237   // This is checked after emitting the function body so we know if there
1238   // are any permitted infinite loops.
1239   if (checkIfFunctionMustProgress())
1240     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1241 }
1242 
1243 /// When instrumenting to collect profile data, the counts for some blocks
1244 /// such as switch cases need to not include the fall-through counts, so
1245 /// emit a branch around the instrumentation code. When not instrumenting,
1246 /// this just calls EmitBlock().
1247 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1248                                                const Stmt *S) {
1249   llvm::BasicBlock *SkipCountBB = nullptr;
1250   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1251     // When instrumenting for profiling, the fallthrough to certain
1252     // statements needs to skip over the instrumentation code so that we
1253     // get an accurate count.
1254     SkipCountBB = createBasicBlock("skipcount");
1255     EmitBranch(SkipCountBB);
1256   }
1257   EmitBlock(BB);
1258   uint64_t CurrentCount = getCurrentProfileCount();
1259   incrementProfileCounter(S);
1260   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1261   if (SkipCountBB)
1262     EmitBlock(SkipCountBB);
1263 }
1264 
1265 /// Tries to mark the given function nounwind based on the
1266 /// non-existence of any throwing calls within it.  We believe this is
1267 /// lightweight enough to do at -O0.
1268 static void TryMarkNoThrow(llvm::Function *F) {
1269   // LLVM treats 'nounwind' on a function as part of the type, so we
1270   // can't do this on functions that can be overwritten.
1271   if (F->isInterposable()) return;
1272 
1273   for (llvm::BasicBlock &BB : *F)
1274     for (llvm::Instruction &I : BB)
1275       if (I.mayThrow())
1276         return;
1277 
1278   F->setDoesNotThrow();
1279 }
1280 
1281 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1282                                                FunctionArgList &Args) {
1283   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1284   QualType ResTy = FD->getReturnType();
1285 
1286   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1287   if (MD && MD->isInstance()) {
1288     if (CGM.getCXXABI().HasThisReturn(GD))
1289       ResTy = MD->getThisType();
1290     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1291       ResTy = CGM.getContext().VoidPtrTy;
1292     CGM.getCXXABI().buildThisParam(*this, Args);
1293   }
1294 
1295   // The base version of an inheriting constructor whose constructed base is a
1296   // virtual base is not passed any arguments (because it doesn't actually call
1297   // the inherited constructor).
1298   bool PassedParams = true;
1299   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1300     if (auto Inherited = CD->getInheritedConstructor())
1301       PassedParams =
1302           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1303 
1304   if (PassedParams) {
1305     for (auto *Param : FD->parameters()) {
1306       Args.push_back(Param);
1307       if (!Param->hasAttr<PassObjectSizeAttr>())
1308         continue;
1309 
1310       auto *Implicit = ImplicitParamDecl::Create(
1311           getContext(), Param->getDeclContext(), Param->getLocation(),
1312           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1313       SizeArguments[Param] = Implicit;
1314       Args.push_back(Implicit);
1315     }
1316   }
1317 
1318   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1319     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1320 
1321   return ResTy;
1322 }
1323 
1324 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1325                                    const CGFunctionInfo &FnInfo) {
1326   assert(Fn && "generating code for null Function");
1327   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1328   CurGD = GD;
1329 
1330   FunctionArgList Args;
1331   QualType ResTy = BuildFunctionArgList(GD, Args);
1332 
1333   if (FD->isInlineBuiltinDeclaration()) {
1334     // When generating code for a builtin with an inline declaration, use a
1335     // mangled name to hold the actual body, while keeping an external
1336     // definition in case the function pointer is referenced somewhere.
1337     std::string FDInlineName = (Fn->getName() + ".inline").str();
1338     llvm::Module *M = Fn->getParent();
1339     llvm::Function *Clone = M->getFunction(FDInlineName);
1340     if (!Clone) {
1341       Clone = llvm::Function::Create(Fn->getFunctionType(),
1342                                      llvm::GlobalValue::InternalLinkage,
1343                                      Fn->getAddressSpace(), FDInlineName, M);
1344       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1345     }
1346     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1347     Fn = Clone;
1348   } else {
1349     // Detect the unusual situation where an inline version is shadowed by a
1350     // non-inline version. In that case we should pick the external one
1351     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1352     // to detect that situation before we reach codegen, so do some late
1353     // replacement.
1354     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1355          PD = PD->getPreviousDecl()) {
1356       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1357         std::string FDInlineName = (Fn->getName() + ".inline").str();
1358         llvm::Module *M = Fn->getParent();
1359         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1360           Clone->replaceAllUsesWith(Fn);
1361           Clone->eraseFromParent();
1362         }
1363         break;
1364       }
1365     }
1366   }
1367 
1368   // Check if we should generate debug info for this function.
1369   if (FD->hasAttr<NoDebugAttr>()) {
1370     // Clear non-distinct debug info that was possibly attached to the function
1371     // due to an earlier declaration without the nodebug attribute
1372     Fn->setSubprogram(nullptr);
1373     // Disable debug info indefinitely for this function
1374     DebugInfo = nullptr;
1375   }
1376 
1377   // The function might not have a body if we're generating thunks for a
1378   // function declaration.
1379   SourceRange BodyRange;
1380   if (Stmt *Body = FD->getBody())
1381     BodyRange = Body->getSourceRange();
1382   else
1383     BodyRange = FD->getLocation();
1384   CurEHLocation = BodyRange.getEnd();
1385 
1386   // Use the location of the start of the function to determine where
1387   // the function definition is located. By default use the location
1388   // of the declaration as the location for the subprogram. A function
1389   // may lack a declaration in the source code if it is created by code
1390   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1391   SourceLocation Loc = FD->getLocation();
1392 
1393   // If this is a function specialization then use the pattern body
1394   // as the location for the function.
1395   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1396     if (SpecDecl->hasBody(SpecDecl))
1397       Loc = SpecDecl->getLocation();
1398 
1399   Stmt *Body = FD->getBody();
1400 
1401   if (Body) {
1402     // Coroutines always emit lifetime markers.
1403     if (isa<CoroutineBodyStmt>(Body))
1404       ShouldEmitLifetimeMarkers = true;
1405 
1406     // Initialize helper which will detect jumps which can cause invalid
1407     // lifetime markers.
1408     if (ShouldEmitLifetimeMarkers)
1409       Bypasses.Init(Body);
1410   }
1411 
1412   // Emit the standard function prologue.
1413   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1414 
1415   // Save parameters for coroutine function.
1416   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1417     llvm::append_range(FnArgs, FD->parameters());
1418 
1419   // Generate the body of the function.
1420   PGO.assignRegionCounters(GD, CurFn);
1421   if (isa<CXXDestructorDecl>(FD))
1422     EmitDestructorBody(Args);
1423   else if (isa<CXXConstructorDecl>(FD))
1424     EmitConstructorBody(Args);
1425   else if (getLangOpts().CUDA &&
1426            !getLangOpts().CUDAIsDevice &&
1427            FD->hasAttr<CUDAGlobalAttr>())
1428     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1429   else if (isa<CXXMethodDecl>(FD) &&
1430            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1431     // The lambda static invoker function is special, because it forwards or
1432     // clones the body of the function call operator (but is actually static).
1433     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1434   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1435              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1436               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1437     // Implicit copy-assignment gets the same special treatment as implicit
1438     // copy-constructors.
1439     emitImplicitAssignmentOperatorBody(Args);
1440   } else if (Body) {
1441     EmitFunctionBody(Body);
1442   } else
1443     llvm_unreachable("no definition for emitted function");
1444 
1445   // C++11 [stmt.return]p2:
1446   //   Flowing off the end of a function [...] results in undefined behavior in
1447   //   a value-returning function.
1448   // C11 6.9.1p12:
1449   //   If the '}' that terminates a function is reached, and the value of the
1450   //   function call is used by the caller, the behavior is undefined.
1451   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1452       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1453     bool ShouldEmitUnreachable =
1454         CGM.getCodeGenOpts().StrictReturn ||
1455         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1456     if (SanOpts.has(SanitizerKind::Return)) {
1457       SanitizerScope SanScope(this);
1458       llvm::Value *IsFalse = Builder.getFalse();
1459       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1460                 SanitizerHandler::MissingReturn,
1461                 EmitCheckSourceLocation(FD->getLocation()), None);
1462     } else if (ShouldEmitUnreachable) {
1463       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1464         EmitTrapCall(llvm::Intrinsic::trap);
1465     }
1466     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1467       Builder.CreateUnreachable();
1468       Builder.ClearInsertionPoint();
1469     }
1470   }
1471 
1472   // Emit the standard function epilogue.
1473   FinishFunction(BodyRange.getEnd());
1474 
1475   // If we haven't marked the function nothrow through other means, do
1476   // a quick pass now to see if we can.
1477   if (!CurFn->doesNotThrow())
1478     TryMarkNoThrow(CurFn);
1479 }
1480 
1481 /// ContainsLabel - Return true if the statement contains a label in it.  If
1482 /// this statement is not executed normally, it not containing a label means
1483 /// that we can just remove the code.
1484 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1485   // Null statement, not a label!
1486   if (!S) return false;
1487 
1488   // If this is a label, we have to emit the code, consider something like:
1489   // if (0) {  ...  foo:  bar(); }  goto foo;
1490   //
1491   // TODO: If anyone cared, we could track __label__'s, since we know that you
1492   // can't jump to one from outside their declared region.
1493   if (isa<LabelStmt>(S))
1494     return true;
1495 
1496   // If this is a case/default statement, and we haven't seen a switch, we have
1497   // to emit the code.
1498   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1499     return true;
1500 
1501   // If this is a switch statement, we want to ignore cases below it.
1502   if (isa<SwitchStmt>(S))
1503     IgnoreCaseStmts = true;
1504 
1505   // Scan subexpressions for verboten labels.
1506   for (const Stmt *SubStmt : S->children())
1507     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1508       return true;
1509 
1510   return false;
1511 }
1512 
1513 /// containsBreak - Return true if the statement contains a break out of it.
1514 /// If the statement (recursively) contains a switch or loop with a break
1515 /// inside of it, this is fine.
1516 bool CodeGenFunction::containsBreak(const Stmt *S) {
1517   // Null statement, not a label!
1518   if (!S) return false;
1519 
1520   // If this is a switch or loop that defines its own break scope, then we can
1521   // include it and anything inside of it.
1522   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1523       isa<ForStmt>(S))
1524     return false;
1525 
1526   if (isa<BreakStmt>(S))
1527     return true;
1528 
1529   // Scan subexpressions for verboten breaks.
1530   for (const Stmt *SubStmt : S->children())
1531     if (containsBreak(SubStmt))
1532       return true;
1533 
1534   return false;
1535 }
1536 
1537 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1538   if (!S) return false;
1539 
1540   // Some statement kinds add a scope and thus never add a decl to the current
1541   // scope. Note, this list is longer than the list of statements that might
1542   // have an unscoped decl nested within them, but this way is conservatively
1543   // correct even if more statement kinds are added.
1544   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1545       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1546       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1547       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1548     return false;
1549 
1550   if (isa<DeclStmt>(S))
1551     return true;
1552 
1553   for (const Stmt *SubStmt : S->children())
1554     if (mightAddDeclToScope(SubStmt))
1555       return true;
1556 
1557   return false;
1558 }
1559 
1560 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1561 /// to a constant, or if it does but contains a label, return false.  If it
1562 /// constant folds return true and set the boolean result in Result.
1563 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1564                                                    bool &ResultBool,
1565                                                    bool AllowLabels) {
1566   llvm::APSInt ResultInt;
1567   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1568     return false;
1569 
1570   ResultBool = ResultInt.getBoolValue();
1571   return true;
1572 }
1573 
1574 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1575 /// to a constant, or if it does but contains a label, return false.  If it
1576 /// constant folds return true and set the folded value.
1577 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1578                                                    llvm::APSInt &ResultInt,
1579                                                    bool AllowLabels) {
1580   // FIXME: Rename and handle conversion of other evaluatable things
1581   // to bool.
1582   Expr::EvalResult Result;
1583   if (!Cond->EvaluateAsInt(Result, getContext()))
1584     return false;  // Not foldable, not integer or not fully evaluatable.
1585 
1586   llvm::APSInt Int = Result.Val.getInt();
1587   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1588     return false;  // Contains a label.
1589 
1590   ResultInt = Int;
1591   return true;
1592 }
1593 
1594 /// Determine whether the given condition is an instrumentable condition
1595 /// (i.e. no "&&" or "||").
1596 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1597   // Bypass simplistic logical-NOT operator before determining whether the
1598   // condition contains any other logical operator.
1599   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1600     if (UnOp->getOpcode() == UO_LNot)
1601       C = UnOp->getSubExpr();
1602 
1603   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1604   return (!BOp || !BOp->isLogicalOp());
1605 }
1606 
1607 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1608 /// increments a profile counter based on the semantics of the given logical
1609 /// operator opcode.  This is used to instrument branch condition coverage for
1610 /// logical operators.
1611 void CodeGenFunction::EmitBranchToCounterBlock(
1612     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1613     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1614     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1615   // If not instrumenting, just emit a branch.
1616   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1617   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1618     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1619 
1620   llvm::BasicBlock *ThenBlock = nullptr;
1621   llvm::BasicBlock *ElseBlock = nullptr;
1622   llvm::BasicBlock *NextBlock = nullptr;
1623 
1624   // Create the block we'll use to increment the appropriate counter.
1625   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1626 
1627   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1628   // means we need to evaluate the condition and increment the counter on TRUE:
1629   //
1630   // if (Cond)
1631   //   goto CounterIncrBlock;
1632   // else
1633   //   goto FalseBlock;
1634   //
1635   // CounterIncrBlock:
1636   //   Counter++;
1637   //   goto TrueBlock;
1638 
1639   if (LOp == BO_LAnd) {
1640     ThenBlock = CounterIncrBlock;
1641     ElseBlock = FalseBlock;
1642     NextBlock = TrueBlock;
1643   }
1644 
1645   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1646   // we need to evaluate the condition and increment the counter on FALSE:
1647   //
1648   // if (Cond)
1649   //   goto TrueBlock;
1650   // else
1651   //   goto CounterIncrBlock;
1652   //
1653   // CounterIncrBlock:
1654   //   Counter++;
1655   //   goto FalseBlock;
1656 
1657   else if (LOp == BO_LOr) {
1658     ThenBlock = TrueBlock;
1659     ElseBlock = CounterIncrBlock;
1660     NextBlock = FalseBlock;
1661   } else {
1662     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1663   }
1664 
1665   // Emit Branch based on condition.
1666   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1667 
1668   // Emit the block containing the counter increment(s).
1669   EmitBlock(CounterIncrBlock);
1670 
1671   // Increment corresponding counter; if index not provided, use Cond as index.
1672   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1673 
1674   // Go to the next block.
1675   EmitBranch(NextBlock);
1676 }
1677 
1678 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1679 /// statement) to the specified blocks.  Based on the condition, this might try
1680 /// to simplify the codegen of the conditional based on the branch.
1681 /// \param LH The value of the likelihood attribute on the True branch.
1682 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1683                                            llvm::BasicBlock *TrueBlock,
1684                                            llvm::BasicBlock *FalseBlock,
1685                                            uint64_t TrueCount,
1686                                            Stmt::Likelihood LH) {
1687   Cond = Cond->IgnoreParens();
1688 
1689   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1690 
1691     // Handle X && Y in a condition.
1692     if (CondBOp->getOpcode() == BO_LAnd) {
1693       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1694       // folded if the case was simple enough.
1695       bool ConstantBool = false;
1696       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1697           ConstantBool) {
1698         // br(1 && X) -> br(X).
1699         incrementProfileCounter(CondBOp);
1700         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1701                                         FalseBlock, TrueCount, LH);
1702       }
1703 
1704       // If we have "X && 1", simplify the code to use an uncond branch.
1705       // "X && 0" would have been constant folded to 0.
1706       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1707           ConstantBool) {
1708         // br(X && 1) -> br(X).
1709         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1710                                         FalseBlock, TrueCount, LH, CondBOp);
1711       }
1712 
1713       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1714       // want to jump to the FalseBlock.
1715       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1716       // The counter tells us how often we evaluate RHS, and all of TrueCount
1717       // can be propagated to that branch.
1718       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1719 
1720       ConditionalEvaluation eval(*this);
1721       {
1722         ApplyDebugLocation DL(*this, Cond);
1723         // Propagate the likelihood attribute like __builtin_expect
1724         // __builtin_expect(X && Y, 1) -> X and Y are likely
1725         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1726         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1727                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1728         EmitBlock(LHSTrue);
1729       }
1730 
1731       incrementProfileCounter(CondBOp);
1732       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1733 
1734       // Any temporaries created here are conditional.
1735       eval.begin(*this);
1736       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1737                                FalseBlock, TrueCount, LH);
1738       eval.end(*this);
1739 
1740       return;
1741     }
1742 
1743     if (CondBOp->getOpcode() == BO_LOr) {
1744       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1745       // folded if the case was simple enough.
1746       bool ConstantBool = false;
1747       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1748           !ConstantBool) {
1749         // br(0 || X) -> br(X).
1750         incrementProfileCounter(CondBOp);
1751         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1752                                         FalseBlock, TrueCount, LH);
1753       }
1754 
1755       // If we have "X || 0", simplify the code to use an uncond branch.
1756       // "X || 1" would have been constant folded to 1.
1757       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1758           !ConstantBool) {
1759         // br(X || 0) -> br(X).
1760         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1761                                         FalseBlock, TrueCount, LH, CondBOp);
1762       }
1763 
1764       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1765       // want to jump to the TrueBlock.
1766       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1767       // We have the count for entry to the RHS and for the whole expression
1768       // being true, so we can divy up True count between the short circuit and
1769       // the RHS.
1770       uint64_t LHSCount =
1771           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1772       uint64_t RHSCount = TrueCount - LHSCount;
1773 
1774       ConditionalEvaluation eval(*this);
1775       {
1776         // Propagate the likelihood attribute like __builtin_expect
1777         // __builtin_expect(X || Y, 1) -> only Y is likely
1778         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1779         ApplyDebugLocation DL(*this, Cond);
1780         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1781                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1782         EmitBlock(LHSFalse);
1783       }
1784 
1785       incrementProfileCounter(CondBOp);
1786       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1787 
1788       // Any temporaries created here are conditional.
1789       eval.begin(*this);
1790       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1791                                RHSCount, LH);
1792 
1793       eval.end(*this);
1794 
1795       return;
1796     }
1797   }
1798 
1799   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1800     // br(!x, t, f) -> br(x, f, t)
1801     if (CondUOp->getOpcode() == UO_LNot) {
1802       // Negate the count.
1803       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1804       // The values of the enum are chosen to make this negation possible.
1805       LH = static_cast<Stmt::Likelihood>(-LH);
1806       // Negate the condition and swap the destination blocks.
1807       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1808                                   FalseCount, LH);
1809     }
1810   }
1811 
1812   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1813     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1814     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1815     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1816 
1817     // The ConditionalOperator itself has no likelihood information for its
1818     // true and false branches. This matches the behavior of __builtin_expect.
1819     ConditionalEvaluation cond(*this);
1820     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1821                          getProfileCount(CondOp), Stmt::LH_None);
1822 
1823     // When computing PGO branch weights, we only know the overall count for
1824     // the true block. This code is essentially doing tail duplication of the
1825     // naive code-gen, introducing new edges for which counts are not
1826     // available. Divide the counts proportionally between the LHS and RHS of
1827     // the conditional operator.
1828     uint64_t LHSScaledTrueCount = 0;
1829     if (TrueCount) {
1830       double LHSRatio =
1831           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1832       LHSScaledTrueCount = TrueCount * LHSRatio;
1833     }
1834 
1835     cond.begin(*this);
1836     EmitBlock(LHSBlock);
1837     incrementProfileCounter(CondOp);
1838     {
1839       ApplyDebugLocation DL(*this, Cond);
1840       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1841                            LHSScaledTrueCount, LH);
1842     }
1843     cond.end(*this);
1844 
1845     cond.begin(*this);
1846     EmitBlock(RHSBlock);
1847     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1848                          TrueCount - LHSScaledTrueCount, LH);
1849     cond.end(*this);
1850 
1851     return;
1852   }
1853 
1854   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1855     // Conditional operator handling can give us a throw expression as a
1856     // condition for a case like:
1857     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1858     // Fold this to:
1859     //   br(c, throw x, br(y, t, f))
1860     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1861     return;
1862   }
1863 
1864   // Emit the code with the fully general case.
1865   llvm::Value *CondV;
1866   {
1867     ApplyDebugLocation DL(*this, Cond);
1868     CondV = EvaluateExprAsBool(Cond);
1869   }
1870 
1871   llvm::MDNode *Weights = nullptr;
1872   llvm::MDNode *Unpredictable = nullptr;
1873 
1874   // If the branch has a condition wrapped by __builtin_unpredictable,
1875   // create metadata that specifies that the branch is unpredictable.
1876   // Don't bother if not optimizing because that metadata would not be used.
1877   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1878   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1879     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1880     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1881       llvm::MDBuilder MDHelper(getLLVMContext());
1882       Unpredictable = MDHelper.createUnpredictable();
1883     }
1884   }
1885 
1886   // If there is a Likelihood knowledge for the cond, lower it.
1887   // Note that if not optimizing this won't emit anything.
1888   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1889   if (CondV != NewCondV)
1890     CondV = NewCondV;
1891   else {
1892     // Otherwise, lower profile counts. Note that we do this even at -O0.
1893     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1894     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1895   }
1896 
1897   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1898 }
1899 
1900 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1901 /// specified stmt yet.
1902 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1903   CGM.ErrorUnsupported(S, Type);
1904 }
1905 
1906 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1907 /// variable-length array whose elements have a non-zero bit-pattern.
1908 ///
1909 /// \param baseType the inner-most element type of the array
1910 /// \param src - a char* pointing to the bit-pattern for a single
1911 /// base element of the array
1912 /// \param sizeInChars - the total size of the VLA, in chars
1913 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1914                                Address dest, Address src,
1915                                llvm::Value *sizeInChars) {
1916   CGBuilderTy &Builder = CGF.Builder;
1917 
1918   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1919   llvm::Value *baseSizeInChars
1920     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1921 
1922   Address begin =
1923     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1924   llvm::Value *end = Builder.CreateInBoundsGEP(
1925       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1926 
1927   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1928   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1929   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1930 
1931   // Make a loop over the VLA.  C99 guarantees that the VLA element
1932   // count must be nonzero.
1933   CGF.EmitBlock(loopBB);
1934 
1935   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1936   cur->addIncoming(begin.getPointer(), originBB);
1937 
1938   CharUnits curAlign =
1939     dest.getAlignment().alignmentOfArrayElement(baseSize);
1940 
1941   // memcpy the individual element bit-pattern.
1942   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1943                        /*volatile*/ false);
1944 
1945   // Go to the next element.
1946   llvm::Value *next =
1947     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1948 
1949   // Leave if that's the end of the VLA.
1950   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1951   Builder.CreateCondBr(done, contBB, loopBB);
1952   cur->addIncoming(next, loopBB);
1953 
1954   CGF.EmitBlock(contBB);
1955 }
1956 
1957 void
1958 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1959   // Ignore empty classes in C++.
1960   if (getLangOpts().CPlusPlus) {
1961     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1962       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1963         return;
1964     }
1965   }
1966 
1967   // Cast the dest ptr to the appropriate i8 pointer type.
1968   if (DestPtr.getElementType() != Int8Ty)
1969     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1970 
1971   // Get size and alignment info for this aggregate.
1972   CharUnits size = getContext().getTypeSizeInChars(Ty);
1973 
1974   llvm::Value *SizeVal;
1975   const VariableArrayType *vla;
1976 
1977   // Don't bother emitting a zero-byte memset.
1978   if (size.isZero()) {
1979     // But note that getTypeInfo returns 0 for a VLA.
1980     if (const VariableArrayType *vlaType =
1981           dyn_cast_or_null<VariableArrayType>(
1982                                           getContext().getAsArrayType(Ty))) {
1983       auto VlaSize = getVLASize(vlaType);
1984       SizeVal = VlaSize.NumElts;
1985       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1986       if (!eltSize.isOne())
1987         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1988       vla = vlaType;
1989     } else {
1990       return;
1991     }
1992   } else {
1993     SizeVal = CGM.getSize(size);
1994     vla = nullptr;
1995   }
1996 
1997   // If the type contains a pointer to data member we can't memset it to zero.
1998   // Instead, create a null constant and copy it to the destination.
1999   // TODO: there are other patterns besides zero that we can usefully memset,
2000   // like -1, which happens to be the pattern used by member-pointers.
2001   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2002     // For a VLA, emit a single element, then splat that over the VLA.
2003     if (vla) Ty = getContext().getBaseElementType(vla);
2004 
2005     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2006 
2007     llvm::GlobalVariable *NullVariable =
2008       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2009                                /*isConstant=*/true,
2010                                llvm::GlobalVariable::PrivateLinkage,
2011                                NullConstant, Twine());
2012     CharUnits NullAlign = DestPtr.getAlignment();
2013     NullVariable->setAlignment(NullAlign.getAsAlign());
2014     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2015                    Builder.getInt8Ty(), NullAlign);
2016 
2017     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2018 
2019     // Get and call the appropriate llvm.memcpy overload.
2020     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2021     return;
2022   }
2023 
2024   // Otherwise, just memset the whole thing to zero.  This is legal
2025   // because in LLVM, all default initializers (other than the ones we just
2026   // handled above) are guaranteed to have a bit pattern of all zeros.
2027   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2028 }
2029 
2030 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2031   // Make sure that there is a block for the indirect goto.
2032   if (!IndirectBranch)
2033     GetIndirectGotoBlock();
2034 
2035   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2036 
2037   // Make sure the indirect branch includes all of the address-taken blocks.
2038   IndirectBranch->addDestination(BB);
2039   return llvm::BlockAddress::get(CurFn, BB);
2040 }
2041 
2042 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2043   // If we already made the indirect branch for indirect goto, return its block.
2044   if (IndirectBranch) return IndirectBranch->getParent();
2045 
2046   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2047 
2048   // Create the PHI node that indirect gotos will add entries to.
2049   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2050                                               "indirect.goto.dest");
2051 
2052   // Create the indirect branch instruction.
2053   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2054   return IndirectBranch->getParent();
2055 }
2056 
2057 /// Computes the length of an array in elements, as well as the base
2058 /// element type and a properly-typed first element pointer.
2059 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2060                                               QualType &baseType,
2061                                               Address &addr) {
2062   const ArrayType *arrayType = origArrayType;
2063 
2064   // If it's a VLA, we have to load the stored size.  Note that
2065   // this is the size of the VLA in bytes, not its size in elements.
2066   llvm::Value *numVLAElements = nullptr;
2067   if (isa<VariableArrayType>(arrayType)) {
2068     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2069 
2070     // Walk into all VLAs.  This doesn't require changes to addr,
2071     // which has type T* where T is the first non-VLA element type.
2072     do {
2073       QualType elementType = arrayType->getElementType();
2074       arrayType = getContext().getAsArrayType(elementType);
2075 
2076       // If we only have VLA components, 'addr' requires no adjustment.
2077       if (!arrayType) {
2078         baseType = elementType;
2079         return numVLAElements;
2080       }
2081     } while (isa<VariableArrayType>(arrayType));
2082 
2083     // We get out here only if we find a constant array type
2084     // inside the VLA.
2085   }
2086 
2087   // We have some number of constant-length arrays, so addr should
2088   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2089   // down to the first element of addr.
2090   SmallVector<llvm::Value*, 8> gepIndices;
2091 
2092   // GEP down to the array type.
2093   llvm::ConstantInt *zero = Builder.getInt32(0);
2094   gepIndices.push_back(zero);
2095 
2096   uint64_t countFromCLAs = 1;
2097   QualType eltType;
2098 
2099   llvm::ArrayType *llvmArrayType =
2100     dyn_cast<llvm::ArrayType>(addr.getElementType());
2101   while (llvmArrayType) {
2102     assert(isa<ConstantArrayType>(arrayType));
2103     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2104              == llvmArrayType->getNumElements());
2105 
2106     gepIndices.push_back(zero);
2107     countFromCLAs *= llvmArrayType->getNumElements();
2108     eltType = arrayType->getElementType();
2109 
2110     llvmArrayType =
2111       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2112     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2113     assert((!llvmArrayType || arrayType) &&
2114            "LLVM and Clang types are out-of-synch");
2115   }
2116 
2117   if (arrayType) {
2118     // From this point onwards, the Clang array type has been emitted
2119     // as some other type (probably a packed struct). Compute the array
2120     // size, and just emit the 'begin' expression as a bitcast.
2121     while (arrayType) {
2122       countFromCLAs *=
2123           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2124       eltType = arrayType->getElementType();
2125       arrayType = getContext().getAsArrayType(eltType);
2126     }
2127 
2128     llvm::Type *baseType = ConvertType(eltType);
2129     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2130   } else {
2131     // Create the actual GEP.
2132     addr = Address(Builder.CreateInBoundsGEP(
2133         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2134         ConvertTypeForMem(eltType),
2135         addr.getAlignment());
2136   }
2137 
2138   baseType = eltType;
2139 
2140   llvm::Value *numElements
2141     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2142 
2143   // If we had any VLA dimensions, factor them in.
2144   if (numVLAElements)
2145     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2146 
2147   return numElements;
2148 }
2149 
2150 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2151   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2152   assert(vla && "type was not a variable array type!");
2153   return getVLASize(vla);
2154 }
2155 
2156 CodeGenFunction::VlaSizePair
2157 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2158   // The number of elements so far; always size_t.
2159   llvm::Value *numElements = nullptr;
2160 
2161   QualType elementType;
2162   do {
2163     elementType = type->getElementType();
2164     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2165     assert(vlaSize && "no size for VLA!");
2166     assert(vlaSize->getType() == SizeTy);
2167 
2168     if (!numElements) {
2169       numElements = vlaSize;
2170     } else {
2171       // It's undefined behavior if this wraps around, so mark it that way.
2172       // FIXME: Teach -fsanitize=undefined to trap this.
2173       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2174     }
2175   } while ((type = getContext().getAsVariableArrayType(elementType)));
2176 
2177   return { numElements, elementType };
2178 }
2179 
2180 CodeGenFunction::VlaSizePair
2181 CodeGenFunction::getVLAElements1D(QualType type) {
2182   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2183   assert(vla && "type was not a variable array type!");
2184   return getVLAElements1D(vla);
2185 }
2186 
2187 CodeGenFunction::VlaSizePair
2188 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2189   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2190   assert(VlaSize && "no size for VLA!");
2191   assert(VlaSize->getType() == SizeTy);
2192   return { VlaSize, Vla->getElementType() };
2193 }
2194 
2195 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2196   assert(type->isVariablyModifiedType() &&
2197          "Must pass variably modified type to EmitVLASizes!");
2198 
2199   EnsureInsertPoint();
2200 
2201   // We're going to walk down into the type and look for VLA
2202   // expressions.
2203   do {
2204     assert(type->isVariablyModifiedType());
2205 
2206     const Type *ty = type.getTypePtr();
2207     switch (ty->getTypeClass()) {
2208 
2209 #define TYPE(Class, Base)
2210 #define ABSTRACT_TYPE(Class, Base)
2211 #define NON_CANONICAL_TYPE(Class, Base)
2212 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2214 #include "clang/AST/TypeNodes.inc"
2215       llvm_unreachable("unexpected dependent type!");
2216 
2217     // These types are never variably-modified.
2218     case Type::Builtin:
2219     case Type::Complex:
2220     case Type::Vector:
2221     case Type::ExtVector:
2222     case Type::ConstantMatrix:
2223     case Type::Record:
2224     case Type::Enum:
2225     case Type::Elaborated:
2226     case Type::Using:
2227     case Type::TemplateSpecialization:
2228     case Type::ObjCTypeParam:
2229     case Type::ObjCObject:
2230     case Type::ObjCInterface:
2231     case Type::ObjCObjectPointer:
2232     case Type::BitInt:
2233       llvm_unreachable("type class is never variably-modified!");
2234 
2235     case Type::Adjusted:
2236       type = cast<AdjustedType>(ty)->getAdjustedType();
2237       break;
2238 
2239     case Type::Decayed:
2240       type = cast<DecayedType>(ty)->getPointeeType();
2241       break;
2242 
2243     case Type::Pointer:
2244       type = cast<PointerType>(ty)->getPointeeType();
2245       break;
2246 
2247     case Type::BlockPointer:
2248       type = cast<BlockPointerType>(ty)->getPointeeType();
2249       break;
2250 
2251     case Type::LValueReference:
2252     case Type::RValueReference:
2253       type = cast<ReferenceType>(ty)->getPointeeType();
2254       break;
2255 
2256     case Type::MemberPointer:
2257       type = cast<MemberPointerType>(ty)->getPointeeType();
2258       break;
2259 
2260     case Type::ConstantArray:
2261     case Type::IncompleteArray:
2262       // Losing element qualification here is fine.
2263       type = cast<ArrayType>(ty)->getElementType();
2264       break;
2265 
2266     case Type::VariableArray: {
2267       // Losing element qualification here is fine.
2268       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2269 
2270       // Unknown size indication requires no size computation.
2271       // Otherwise, evaluate and record it.
2272       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2273         // It's possible that we might have emitted this already,
2274         // e.g. with a typedef and a pointer to it.
2275         llvm::Value *&entry = VLASizeMap[sizeExpr];
2276         if (!entry) {
2277           llvm::Value *size = EmitScalarExpr(sizeExpr);
2278 
2279           // C11 6.7.6.2p5:
2280           //   If the size is an expression that is not an integer constant
2281           //   expression [...] each time it is evaluated it shall have a value
2282           //   greater than zero.
2283           if (SanOpts.has(SanitizerKind::VLABound)) {
2284             SanitizerScope SanScope(this);
2285             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2286             clang::QualType SEType = sizeExpr->getType();
2287             llvm::Value *CheckCondition =
2288                 SEType->isSignedIntegerType()
2289                     ? Builder.CreateICmpSGT(size, Zero)
2290                     : Builder.CreateICmpUGT(size, Zero);
2291             llvm::Constant *StaticArgs[] = {
2292                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2293                 EmitCheckTypeDescriptor(SEType)};
2294             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2295                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2296           }
2297 
2298           // Always zexting here would be wrong if it weren't
2299           // undefined behavior to have a negative bound.
2300           // FIXME: What about when size's type is larger than size_t?
2301           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2302         }
2303       }
2304       type = vat->getElementType();
2305       break;
2306     }
2307 
2308     case Type::FunctionProto:
2309     case Type::FunctionNoProto:
2310       type = cast<FunctionType>(ty)->getReturnType();
2311       break;
2312 
2313     case Type::Paren:
2314     case Type::TypeOf:
2315     case Type::UnaryTransform:
2316     case Type::Attributed:
2317     case Type::BTFTagAttributed:
2318     case Type::SubstTemplateTypeParm:
2319     case Type::MacroQualified:
2320       // Keep walking after single level desugaring.
2321       type = type.getSingleStepDesugaredType(getContext());
2322       break;
2323 
2324     case Type::Typedef:
2325     case Type::Decltype:
2326     case Type::Auto:
2327     case Type::DeducedTemplateSpecialization:
2328       // Stop walking: nothing to do.
2329       return;
2330 
2331     case Type::TypeOfExpr:
2332       // Stop walking: emit typeof expression.
2333       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2334       return;
2335 
2336     case Type::Atomic:
2337       type = cast<AtomicType>(ty)->getValueType();
2338       break;
2339 
2340     case Type::Pipe:
2341       type = cast<PipeType>(ty)->getElementType();
2342       break;
2343     }
2344   } while (type->isVariablyModifiedType());
2345 }
2346 
2347 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2348   if (getContext().getBuiltinVaListType()->isArrayType())
2349     return EmitPointerWithAlignment(E);
2350   return EmitLValue(E).getAddress(*this);
2351 }
2352 
2353 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2354   return EmitLValue(E).getAddress(*this);
2355 }
2356 
2357 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2358                                               const APValue &Init) {
2359   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2360   if (CGDebugInfo *Dbg = getDebugInfo())
2361     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2362       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2363 }
2364 
2365 CodeGenFunction::PeepholeProtection
2366 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2367   // At the moment, the only aggressive peephole we do in IR gen
2368   // is trunc(zext) folding, but if we add more, we can easily
2369   // extend this protection.
2370 
2371   if (!rvalue.isScalar()) return PeepholeProtection();
2372   llvm::Value *value = rvalue.getScalarVal();
2373   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2374 
2375   // Just make an extra bitcast.
2376   assert(HaveInsertPoint());
2377   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2378                                                   Builder.GetInsertBlock());
2379 
2380   PeepholeProtection protection;
2381   protection.Inst = inst;
2382   return protection;
2383 }
2384 
2385 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2386   if (!protection.Inst) return;
2387 
2388   // In theory, we could try to duplicate the peepholes now, but whatever.
2389   protection.Inst->eraseFromParent();
2390 }
2391 
2392 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2393                                               QualType Ty, SourceLocation Loc,
2394                                               SourceLocation AssumptionLoc,
2395                                               llvm::Value *Alignment,
2396                                               llvm::Value *OffsetValue) {
2397   if (Alignment->getType() != IntPtrTy)
2398     Alignment =
2399         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2400   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2401     OffsetValue =
2402         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2403   llvm::Value *TheCheck = nullptr;
2404   if (SanOpts.has(SanitizerKind::Alignment)) {
2405     llvm::Value *PtrIntValue =
2406         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2407 
2408     if (OffsetValue) {
2409       bool IsOffsetZero = false;
2410       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2411         IsOffsetZero = CI->isZero();
2412 
2413       if (!IsOffsetZero)
2414         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2415     }
2416 
2417     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2418     llvm::Value *Mask =
2419         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2420     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2421     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2422   }
2423   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2424       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2425 
2426   if (!SanOpts.has(SanitizerKind::Alignment))
2427     return;
2428   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2429                                OffsetValue, TheCheck, Assumption);
2430 }
2431 
2432 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2433                                               const Expr *E,
2434                                               SourceLocation AssumptionLoc,
2435                                               llvm::Value *Alignment,
2436                                               llvm::Value *OffsetValue) {
2437   if (auto *CE = dyn_cast<CastExpr>(E))
2438     E = CE->getSubExprAsWritten();
2439   QualType Ty = E->getType();
2440   SourceLocation Loc = E->getExprLoc();
2441 
2442   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2443                           OffsetValue);
2444 }
2445 
2446 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2447                                                  llvm::Value *AnnotatedVal,
2448                                                  StringRef AnnotationStr,
2449                                                  SourceLocation Location,
2450                                                  const AnnotateAttr *Attr) {
2451   SmallVector<llvm::Value *, 5> Args = {
2452       AnnotatedVal,
2453       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2454       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2455       CGM.EmitAnnotationLineNo(Location),
2456   };
2457   if (Attr)
2458     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2459   return Builder.CreateCall(AnnotationFn, Args);
2460 }
2461 
2462 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2463   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2464   // FIXME We create a new bitcast for every annotation because that's what
2465   // llvm-gcc was doing.
2466   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2467     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2468                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2469                        I->getAnnotation(), D->getLocation(), I);
2470 }
2471 
2472 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2473                                               Address Addr) {
2474   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2475   llvm::Value *V = Addr.getPointer();
2476   llvm::Type *VTy = V->getType();
2477   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2478   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2479   llvm::PointerType *IntrinTy =
2480       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2481   llvm::Function *F =
2482       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2483 
2484   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2485     // FIXME Always emit the cast inst so we can differentiate between
2486     // annotation on the first field of a struct and annotation on the struct
2487     // itself.
2488     if (VTy != IntrinTy)
2489       V = Builder.CreateBitCast(V, IntrinTy);
2490     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2491     V = Builder.CreateBitCast(V, VTy);
2492   }
2493 
2494   return Address(V, Addr.getElementType(), Addr.getAlignment());
2495 }
2496 
2497 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2498 
2499 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2500     : CGF(CGF) {
2501   assert(!CGF->IsSanitizerScope);
2502   CGF->IsSanitizerScope = true;
2503 }
2504 
2505 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2506   CGF->IsSanitizerScope = false;
2507 }
2508 
2509 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2510                                    const llvm::Twine &Name,
2511                                    llvm::BasicBlock *BB,
2512                                    llvm::BasicBlock::iterator InsertPt) const {
2513   LoopStack.InsertHelper(I);
2514   if (IsSanitizerScope)
2515     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2516 }
2517 
2518 void CGBuilderInserter::InsertHelper(
2519     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2520     llvm::BasicBlock::iterator InsertPt) const {
2521   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2522   if (CGF)
2523     CGF->InsertHelper(I, Name, BB, InsertPt);
2524 }
2525 
2526 // Emits an error if we don't have a valid set of target features for the
2527 // called function.
2528 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2529                                           const FunctionDecl *TargetDecl) {
2530   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2531 }
2532 
2533 // Emits an error if we don't have a valid set of target features for the
2534 // called function.
2535 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2536                                           const FunctionDecl *TargetDecl) {
2537   // Early exit if this is an indirect call.
2538   if (!TargetDecl)
2539     return;
2540 
2541   // Get the current enclosing function if it exists. If it doesn't
2542   // we can't check the target features anyhow.
2543   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2544   if (!FD)
2545     return;
2546 
2547   // Grab the required features for the call. For a builtin this is listed in
2548   // the td file with the default cpu, for an always_inline function this is any
2549   // listed cpu and any listed features.
2550   unsigned BuiltinID = TargetDecl->getBuiltinID();
2551   std::string MissingFeature;
2552   llvm::StringMap<bool> CallerFeatureMap;
2553   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2554   if (BuiltinID) {
2555     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2556     if (!Builtin::evaluateRequiredTargetFeatures(
2557         FeatureList, CallerFeatureMap)) {
2558       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2559           << TargetDecl->getDeclName()
2560           << FeatureList;
2561     }
2562   } else if (!TargetDecl->isMultiVersion() &&
2563              TargetDecl->hasAttr<TargetAttr>()) {
2564     // Get the required features for the callee.
2565 
2566     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2567     ParsedTargetAttr ParsedAttr =
2568         CGM.getContext().filterFunctionTargetAttrs(TD);
2569 
2570     SmallVector<StringRef, 1> ReqFeatures;
2571     llvm::StringMap<bool> CalleeFeatureMap;
2572     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2573 
2574     for (const auto &F : ParsedAttr.Features) {
2575       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2576         ReqFeatures.push_back(StringRef(F).substr(1));
2577     }
2578 
2579     for (const auto &F : CalleeFeatureMap) {
2580       // Only positive features are "required".
2581       if (F.getValue())
2582         ReqFeatures.push_back(F.getKey());
2583     }
2584     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2585       if (!CallerFeatureMap.lookup(Feature)) {
2586         MissingFeature = Feature.str();
2587         return false;
2588       }
2589       return true;
2590     }))
2591       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2592           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2593   }
2594 }
2595 
2596 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2597   if (!CGM.getCodeGenOpts().SanitizeStats)
2598     return;
2599 
2600   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2601   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2602   CGM.getSanStats().create(IRB, SSK);
2603 }
2604 
2605 llvm::Value *
2606 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2607   llvm::Value *Condition = nullptr;
2608 
2609   if (!RO.Conditions.Architecture.empty())
2610     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2611 
2612   if (!RO.Conditions.Features.empty()) {
2613     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2614     Condition =
2615         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2616   }
2617   return Condition;
2618 }
2619 
2620 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2621                                              llvm::Function *Resolver,
2622                                              CGBuilderTy &Builder,
2623                                              llvm::Function *FuncToReturn,
2624                                              bool SupportsIFunc) {
2625   if (SupportsIFunc) {
2626     Builder.CreateRet(FuncToReturn);
2627     return;
2628   }
2629 
2630   llvm::SmallVector<llvm::Value *, 10> Args(
2631       llvm::make_pointer_range(Resolver->args()));
2632 
2633   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2634   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2635 
2636   if (Resolver->getReturnType()->isVoidTy())
2637     Builder.CreateRetVoid();
2638   else
2639     Builder.CreateRet(Result);
2640 }
2641 
2642 void CodeGenFunction::EmitMultiVersionResolver(
2643     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2644   assert(getContext().getTargetInfo().getTriple().isX86() &&
2645          "Only implemented for x86 targets");
2646 
2647   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2648 
2649   // Main function's basic block.
2650   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2651   Builder.SetInsertPoint(CurBlock);
2652   EmitX86CpuInit();
2653 
2654   for (const MultiVersionResolverOption &RO : Options) {
2655     Builder.SetInsertPoint(CurBlock);
2656     llvm::Value *Condition = FormResolverCondition(RO);
2657 
2658     // The 'default' or 'generic' case.
2659     if (!Condition) {
2660       assert(&RO == Options.end() - 1 &&
2661              "Default or Generic case must be last");
2662       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2663                                        SupportsIFunc);
2664       return;
2665     }
2666 
2667     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2668     CGBuilderTy RetBuilder(*this, RetBlock);
2669     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2670                                      SupportsIFunc);
2671     CurBlock = createBasicBlock("resolver_else", Resolver);
2672     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2673   }
2674 
2675   // If no generic/default, emit an unreachable.
2676   Builder.SetInsertPoint(CurBlock);
2677   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2678   TrapCall->setDoesNotReturn();
2679   TrapCall->setDoesNotThrow();
2680   Builder.CreateUnreachable();
2681   Builder.ClearInsertionPoint();
2682 }
2683 
2684 // Loc - where the diagnostic will point, where in the source code this
2685 //  alignment has failed.
2686 // SecondaryLoc - if present (will be present if sufficiently different from
2687 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2688 //  It should be the location where the __attribute__((assume_aligned))
2689 //  was written e.g.
2690 void CodeGenFunction::emitAlignmentAssumptionCheck(
2691     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2692     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2693     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2694     llvm::Instruction *Assumption) {
2695   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2696          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2697              llvm::Intrinsic::getDeclaration(
2698                  Builder.GetInsertBlock()->getParent()->getParent(),
2699                  llvm::Intrinsic::assume) &&
2700          "Assumption should be a call to llvm.assume().");
2701   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2702          "Assumption should be the last instruction of the basic block, "
2703          "since the basic block is still being generated.");
2704 
2705   if (!SanOpts.has(SanitizerKind::Alignment))
2706     return;
2707 
2708   // Don't check pointers to volatile data. The behavior here is implementation-
2709   // defined.
2710   if (Ty->getPointeeType().isVolatileQualified())
2711     return;
2712 
2713   // We need to temorairly remove the assumption so we can insert the
2714   // sanitizer check before it, else the check will be dropped by optimizations.
2715   Assumption->removeFromParent();
2716 
2717   {
2718     SanitizerScope SanScope(this);
2719 
2720     if (!OffsetValue)
2721       OffsetValue = Builder.getInt1(false); // no offset.
2722 
2723     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2724                                     EmitCheckSourceLocation(SecondaryLoc),
2725                                     EmitCheckTypeDescriptor(Ty)};
2726     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2727                                   EmitCheckValue(Alignment),
2728                                   EmitCheckValue(OffsetValue)};
2729     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2730               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2731   }
2732 
2733   // We are now in the (new, empty) "cont" basic block.
2734   // Reintroduce the assumption.
2735   Builder.Insert(Assumption);
2736   // FIXME: Assumption still has it's original basic block as it's Parent.
2737 }
2738 
2739 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2740   if (CGDebugInfo *DI = getDebugInfo())
2741     return DI->SourceLocToDebugLoc(Location);
2742 
2743   return llvm::DebugLoc();
2744 }
2745 
2746 llvm::Value *
2747 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2748                                                       Stmt::Likelihood LH) {
2749   switch (LH) {
2750   case Stmt::LH_None:
2751     return Cond;
2752   case Stmt::LH_Likely:
2753   case Stmt::LH_Unlikely:
2754     // Don't generate llvm.expect on -O0 as the backend won't use it for
2755     // anything.
2756     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2757       return Cond;
2758     llvm::Type *CondTy = Cond->getType();
2759     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2760     llvm::Function *FnExpect =
2761         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2762     llvm::Value *ExpectedValueOfCond =
2763         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2764     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2765                               Cond->getName() + ".expval");
2766   }
2767   llvm_unreachable("Unknown Likelihood");
2768 }
2769 
2770 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2771                                                     unsigned NumElementsDst,
2772                                                     const llvm::Twine &Name) {
2773   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2774   unsigned NumElementsSrc = SrcTy->getNumElements();
2775   if (NumElementsSrc == NumElementsDst)
2776     return SrcVec;
2777 
2778   std::vector<int> ShuffleMask(NumElementsDst, -1);
2779   for (unsigned MaskIdx = 0;
2780        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2781     ShuffleMask[MaskIdx] = MaskIdx;
2782 
2783   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2784 }
2785