1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/FPEnv.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 48 /// markers. 49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 50 const LangOptions &LangOpts) { 51 if (CGOpts.DisableLifetimeMarkers) 52 return false; 53 54 // Sanitizers may use markers. 55 if (CGOpts.SanitizeAddressUseAfterScope || 56 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 57 LangOpts.Sanitize.has(SanitizerKind::Memory)) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 69 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 70 ShouldEmitLifetimeMarkers( 71 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 72 if (!suppressNewContext) 73 CGM.getCXXABI().getMangleContext().startNewFunction(); 74 75 SetFastMathFlags(CurFPFeatures); 76 SetFPModel(); 77 } 78 79 CodeGenFunction::~CodeGenFunction() { 80 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 81 82 if (getLangOpts().OpenMP && CurFn) 83 CGM.getOpenMPRuntime().functionFinished(*this); 84 85 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 86 // outlining etc) at some point. Doing it once the function codegen is done 87 // seems to be a reasonable spot. We do it here, as opposed to the deletion 88 // time of the CodeGenModule, because we have to ensure the IR has not yet 89 // been "emitted" to the outside, thus, modifications are still sensible. 90 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) 91 OMPBuilder->finalize(); 92 } 93 94 // Map the LangOption for exception behavior into 95 // the corresponding enum in the IR. 96 llvm::fp::ExceptionBehavior 97 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 98 99 switch (Kind) { 100 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 101 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 102 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 103 } 104 llvm_unreachable("Unsupported FP Exception Behavior"); 105 } 106 107 void CodeGenFunction::SetFPModel() { 108 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 109 auto fpExceptionBehavior = ToConstrainedExceptMD( 110 getLangOpts().getFPExceptionMode()); 111 112 Builder.setDefaultConstrainedRounding(RM); 113 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 114 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 115 RM != llvm::RoundingMode::NearestTiesToEven); 116 } 117 118 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 119 llvm::FastMathFlags FMF; 120 FMF.setAllowReassoc(FPFeatures.allowAssociativeMath()); 121 FMF.setNoNaNs(FPFeatures.noHonorNaNs()); 122 FMF.setNoInfs(FPFeatures.noHonorInfs()); 123 FMF.setNoSignedZeros(FPFeatures.noSignedZeros()); 124 FMF.setAllowReciprocal(FPFeatures.allowReciprocalMath()); 125 FMF.setApproxFunc(FPFeatures.allowApproximateFunctions()); 126 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 127 Builder.setFastMathFlags(FMF); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF), OldFPFeatures(CGF.CurFPFeatures) { 133 CGF.CurFPFeatures = FPFeatures; 134 135 if (OldFPFeatures == FPFeatures) 136 return; 137 138 FMFGuard.emplace(CGF.Builder); 139 140 auto NewRoundingBehavior = FPFeatures.getRoundingMode(); 141 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 142 auto NewExceptionBehavior = 143 ToConstrainedExceptMD(FPFeatures.getExceptionMode()); 144 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 145 146 CGF.SetFastMathFlags(FPFeatures); 147 148 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 149 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 150 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 151 (NewExceptionBehavior == llvm::fp::ebIgnore && 152 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 153 "FPConstrained should be enabled on entire function"); 154 155 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 156 auto OldValue = 157 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 158 auto NewValue = OldValue & Value; 159 if (OldValue != NewValue) 160 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 161 }; 162 mergeFnAttrValue("no-infs-fp-math", FPFeatures.noHonorInfs()); 163 mergeFnAttrValue("no-nans-fp-math", FPFeatures.noHonorNaNs()); 164 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.noSignedZeros()); 165 mergeFnAttrValue( 166 "unsafe-fp-math", 167 FPFeatures.allowAssociativeMath() && FPFeatures.allowReciprocalMath() && 168 FPFeatures.allowApproximateFunctions() && FPFeatures.noSignedZeros()); 169 } 170 171 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 172 CGF.CurFPFeatures = OldFPFeatures; 173 } 174 175 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 176 LValueBaseInfo BaseInfo; 177 TBAAAccessInfo TBAAInfo; 178 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 179 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 180 TBAAInfo); 181 } 182 183 /// Given a value of type T* that may not be to a complete object, 184 /// construct an l-value with the natural pointee alignment of T. 185 LValue 186 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 187 LValueBaseInfo BaseInfo; 188 TBAAAccessInfo TBAAInfo; 189 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 190 /* forPointeeType= */ true); 191 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 192 } 193 194 195 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 196 return CGM.getTypes().ConvertTypeForMem(T); 197 } 198 199 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 200 return CGM.getTypes().ConvertType(T); 201 } 202 203 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 204 type = type.getCanonicalType(); 205 while (true) { 206 switch (type->getTypeClass()) { 207 #define TYPE(name, parent) 208 #define ABSTRACT_TYPE(name, parent) 209 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 210 #define DEPENDENT_TYPE(name, parent) case Type::name: 211 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 212 #include "clang/AST/TypeNodes.inc" 213 llvm_unreachable("non-canonical or dependent type in IR-generation"); 214 215 case Type::Auto: 216 case Type::DeducedTemplateSpecialization: 217 llvm_unreachable("undeduced type in IR-generation"); 218 219 // Various scalar types. 220 case Type::Builtin: 221 case Type::Pointer: 222 case Type::BlockPointer: 223 case Type::LValueReference: 224 case Type::RValueReference: 225 case Type::MemberPointer: 226 case Type::Vector: 227 case Type::ExtVector: 228 case Type::ConstantMatrix: 229 case Type::FunctionProto: 230 case Type::FunctionNoProto: 231 case Type::Enum: 232 case Type::ObjCObjectPointer: 233 case Type::Pipe: 234 case Type::ExtInt: 235 return TEK_Scalar; 236 237 // Complexes. 238 case Type::Complex: 239 return TEK_Complex; 240 241 // Arrays, records, and Objective-C objects. 242 case Type::ConstantArray: 243 case Type::IncompleteArray: 244 case Type::VariableArray: 245 case Type::Record: 246 case Type::ObjCObject: 247 case Type::ObjCInterface: 248 return TEK_Aggregate; 249 250 // We operate on atomic values according to their underlying type. 251 case Type::Atomic: 252 type = cast<AtomicType>(type)->getValueType(); 253 continue; 254 } 255 llvm_unreachable("unknown type kind!"); 256 } 257 } 258 259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 260 // For cleanliness, we try to avoid emitting the return block for 261 // simple cases. 262 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 263 264 if (CurBB) { 265 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 266 267 // We have a valid insert point, reuse it if it is empty or there are no 268 // explicit jumps to the return block. 269 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 270 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 271 delete ReturnBlock.getBlock(); 272 ReturnBlock = JumpDest(); 273 } else 274 EmitBlock(ReturnBlock.getBlock()); 275 return llvm::DebugLoc(); 276 } 277 278 // Otherwise, if the return block is the target of a single direct 279 // branch then we can just put the code in that block instead. This 280 // cleans up functions which started with a unified return block. 281 if (ReturnBlock.getBlock()->hasOneUse()) { 282 llvm::BranchInst *BI = 283 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 284 if (BI && BI->isUnconditional() && 285 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 286 // Record/return the DebugLoc of the simple 'return' expression to be used 287 // later by the actual 'ret' instruction. 288 llvm::DebugLoc Loc = BI->getDebugLoc(); 289 Builder.SetInsertPoint(BI->getParent()); 290 BI->eraseFromParent(); 291 delete ReturnBlock.getBlock(); 292 ReturnBlock = JumpDest(); 293 return Loc; 294 } 295 } 296 297 // FIXME: We are at an unreachable point, there is no reason to emit the block 298 // unless it has uses. However, we still need a place to put the debug 299 // region.end for now. 300 301 EmitBlock(ReturnBlock.getBlock()); 302 return llvm::DebugLoc(); 303 } 304 305 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 306 if (!BB) return; 307 if (!BB->use_empty()) 308 return CGF.CurFn->getBasicBlockList().push_back(BB); 309 delete BB; 310 } 311 312 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 313 assert(BreakContinueStack.empty() && 314 "mismatched push/pop in break/continue stack!"); 315 316 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 317 && NumSimpleReturnExprs == NumReturnExprs 318 && ReturnBlock.getBlock()->use_empty(); 319 // Usually the return expression is evaluated before the cleanup 320 // code. If the function contains only a simple return statement, 321 // such as a constant, the location before the cleanup code becomes 322 // the last useful breakpoint in the function, because the simple 323 // return expression will be evaluated after the cleanup code. To be 324 // safe, set the debug location for cleanup code to the location of 325 // the return statement. Otherwise the cleanup code should be at the 326 // end of the function's lexical scope. 327 // 328 // If there are multiple branches to the return block, the branch 329 // instructions will get the location of the return statements and 330 // all will be fine. 331 if (CGDebugInfo *DI = getDebugInfo()) { 332 if (OnlySimpleReturnStmts) 333 DI->EmitLocation(Builder, LastStopPoint); 334 else 335 DI->EmitLocation(Builder, EndLoc); 336 } 337 338 // Pop any cleanups that might have been associated with the 339 // parameters. Do this in whatever block we're currently in; it's 340 // important to do this before we enter the return block or return 341 // edges will be *really* confused. 342 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 343 bool HasOnlyLifetimeMarkers = 344 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 345 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 346 if (HasCleanups) { 347 // Make sure the line table doesn't jump back into the body for 348 // the ret after it's been at EndLoc. 349 Optional<ApplyDebugLocation> AL; 350 if (CGDebugInfo *DI = getDebugInfo()) { 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 else 354 // We may not have a valid end location. Try to apply it anyway, and 355 // fall back to an artificial location if needed. 356 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 357 } 358 359 PopCleanupBlocks(PrologueCleanupDepth); 360 } 361 362 // Emit function epilog (to return). 363 llvm::DebugLoc Loc = EmitReturnBlock(); 364 365 if (ShouldInstrumentFunction()) { 366 if (CGM.getCodeGenOpts().InstrumentFunctions) 367 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 368 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 369 CurFn->addFnAttr("instrument-function-exit-inlined", 370 "__cyg_profile_func_exit"); 371 } 372 373 // Emit debug descriptor for function end. 374 if (CGDebugInfo *DI = getDebugInfo()) 375 DI->EmitFunctionEnd(Builder, CurFn); 376 377 // Reset the debug location to that of the simple 'return' expression, if any 378 // rather than that of the end of the function's scope '}'. 379 ApplyDebugLocation AL(*this, Loc); 380 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 381 EmitEndEHSpec(CurCodeDecl); 382 383 assert(EHStack.empty() && 384 "did not remove all scopes from cleanup stack!"); 385 386 // If someone did an indirect goto, emit the indirect goto block at the end of 387 // the function. 388 if (IndirectBranch) { 389 EmitBlock(IndirectBranch->getParent()); 390 Builder.ClearInsertionPoint(); 391 } 392 393 // If some of our locals escaped, insert a call to llvm.localescape in the 394 // entry block. 395 if (!EscapedLocals.empty()) { 396 // Invert the map from local to index into a simple vector. There should be 397 // no holes. 398 SmallVector<llvm::Value *, 4> EscapeArgs; 399 EscapeArgs.resize(EscapedLocals.size()); 400 for (auto &Pair : EscapedLocals) 401 EscapeArgs[Pair.second] = Pair.first; 402 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 403 &CGM.getModule(), llvm::Intrinsic::localescape); 404 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 405 } 406 407 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 408 llvm::Instruction *Ptr = AllocaInsertPt; 409 AllocaInsertPt = nullptr; 410 Ptr->eraseFromParent(); 411 412 // If someone took the address of a label but never did an indirect goto, we 413 // made a zero entry PHI node, which is illegal, zap it now. 414 if (IndirectBranch) { 415 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 416 if (PN->getNumIncomingValues() == 0) { 417 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 418 PN->eraseFromParent(); 419 } 420 } 421 422 EmitIfUsed(*this, EHResumeBlock); 423 EmitIfUsed(*this, TerminateLandingPad); 424 EmitIfUsed(*this, TerminateHandler); 425 EmitIfUsed(*this, UnreachableBlock); 426 427 for (const auto &FuncletAndParent : TerminateFunclets) 428 EmitIfUsed(*this, FuncletAndParent.second); 429 430 if (CGM.getCodeGenOpts().EmitDeclMetadata) 431 EmitDeclMetadata(); 432 433 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 434 I = DeferredReplacements.begin(), 435 E = DeferredReplacements.end(); 436 I != E; ++I) { 437 I->first->replaceAllUsesWith(I->second); 438 I->first->eraseFromParent(); 439 } 440 441 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 442 // PHIs if the current function is a coroutine. We don't do it for all 443 // functions as it may result in slight increase in numbers of instructions 444 // if compiled with no optimizations. We do it for coroutine as the lifetime 445 // of CleanupDestSlot alloca make correct coroutine frame building very 446 // difficult. 447 if (NormalCleanupDest.isValid() && isCoroutine()) { 448 llvm::DominatorTree DT(*CurFn); 449 llvm::PromoteMemToReg( 450 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 451 NormalCleanupDest = Address::invalid(); 452 } 453 454 // Scan function arguments for vector width. 455 for (llvm::Argument &A : CurFn->args()) 456 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 457 LargestVectorWidth = 458 std::max((uint64_t)LargestVectorWidth, 459 VT->getPrimitiveSizeInBits().getKnownMinSize()); 460 461 // Update vector width based on return type. 462 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 463 LargestVectorWidth = 464 std::max((uint64_t)LargestVectorWidth, 465 VT->getPrimitiveSizeInBits().getKnownMinSize()); 466 467 // Add the required-vector-width attribute. This contains the max width from: 468 // 1. min-vector-width attribute used in the source program. 469 // 2. Any builtins used that have a vector width specified. 470 // 3. Values passed in and out of inline assembly. 471 // 4. Width of vector arguments and return types for this function. 472 // 5. Width of vector aguments and return types for functions called by this 473 // function. 474 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 475 476 // If we generated an unreachable return block, delete it now. 477 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 478 Builder.ClearInsertionPoint(); 479 ReturnBlock.getBlock()->eraseFromParent(); 480 } 481 if (ReturnValue.isValid()) { 482 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 483 if (RetAlloca && RetAlloca->use_empty()) { 484 RetAlloca->eraseFromParent(); 485 ReturnValue = Address::invalid(); 486 } 487 } 488 } 489 490 /// ShouldInstrumentFunction - Return true if the current function should be 491 /// instrumented with __cyg_profile_func_* calls 492 bool CodeGenFunction::ShouldInstrumentFunction() { 493 if (!CGM.getCodeGenOpts().InstrumentFunctions && 494 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 495 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 496 return false; 497 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 498 return false; 499 return true; 500 } 501 502 /// ShouldXRayInstrument - Return true if the current function should be 503 /// instrumented with XRay nop sleds. 504 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 505 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 506 } 507 508 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 509 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 510 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 511 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 512 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 513 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 514 XRayInstrKind::Custom); 515 } 516 517 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 518 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 519 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 520 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 521 XRayInstrKind::Typed); 522 } 523 524 llvm::Constant * 525 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 526 llvm::Constant *Addr) { 527 // Addresses stored in prologue data can't require run-time fixups and must 528 // be PC-relative. Run-time fixups are undesirable because they necessitate 529 // writable text segments, which are unsafe. And absolute addresses are 530 // undesirable because they break PIE mode. 531 532 // Add a layer of indirection through a private global. Taking its address 533 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 534 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 535 /*isConstant=*/true, 536 llvm::GlobalValue::PrivateLinkage, Addr); 537 538 // Create a PC-relative address. 539 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 540 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 541 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 542 return (IntPtrTy == Int32Ty) 543 ? PCRelAsInt 544 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 545 } 546 547 llvm::Value * 548 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 549 llvm::Value *EncodedAddr) { 550 // Reconstruct the address of the global. 551 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 552 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 553 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 554 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 555 556 // Load the original pointer through the global. 557 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 558 "decoded_addr"); 559 } 560 561 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 562 llvm::Function *Fn) 563 { 564 if (!FD->hasAttr<OpenCLKernelAttr>()) 565 return; 566 567 llvm::LLVMContext &Context = getLLVMContext(); 568 569 CGM.GenOpenCLArgMetadata(Fn, FD, this); 570 571 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 572 QualType HintQTy = A->getTypeHint(); 573 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 574 bool IsSignedInteger = 575 HintQTy->isSignedIntegerType() || 576 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 577 llvm::Metadata *AttrMDArgs[] = { 578 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 579 CGM.getTypes().ConvertType(A->getTypeHint()))), 580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 581 llvm::IntegerType::get(Context, 32), 582 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 583 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 584 } 585 586 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 587 llvm::Metadata *AttrMDArgs[] = { 588 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 589 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 590 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 591 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 592 } 593 594 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 595 llvm::Metadata *AttrMDArgs[] = { 596 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 597 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 598 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 599 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 600 } 601 602 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 603 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 604 llvm::Metadata *AttrMDArgs[] = { 605 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 606 Fn->setMetadata("intel_reqd_sub_group_size", 607 llvm::MDNode::get(Context, AttrMDArgs)); 608 } 609 } 610 611 /// Determine whether the function F ends with a return stmt. 612 static bool endsWithReturn(const Decl* F) { 613 const Stmt *Body = nullptr; 614 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 615 Body = FD->getBody(); 616 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 617 Body = OMD->getBody(); 618 619 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 620 auto LastStmt = CS->body_rbegin(); 621 if (LastStmt != CS->body_rend()) 622 return isa<ReturnStmt>(*LastStmt); 623 } 624 return false; 625 } 626 627 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 628 if (SanOpts.has(SanitizerKind::Thread)) { 629 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 630 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 631 } 632 } 633 634 /// Check if the return value of this function requires sanitization. 635 bool CodeGenFunction::requiresReturnValueCheck() const { 636 return requiresReturnValueNullabilityCheck() || 637 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 638 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 639 } 640 641 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 642 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 643 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 644 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 645 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 646 return false; 647 648 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 649 return false; 650 651 if (MD->getNumParams() == 2) { 652 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 653 if (!PT || !PT->isVoidPointerType() || 654 !PT->getPointeeType().isConstQualified()) 655 return false; 656 } 657 658 return true; 659 } 660 661 /// Return the UBSan prologue signature for \p FD if one is available. 662 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 663 const FunctionDecl *FD) { 664 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 665 if (!MD->isStatic()) 666 return nullptr; 667 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 668 } 669 670 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 671 llvm::Function *Fn, 672 const CGFunctionInfo &FnInfo, 673 const FunctionArgList &Args, 674 SourceLocation Loc, 675 SourceLocation StartLoc) { 676 assert(!CurFn && 677 "Do not use a CodeGenFunction object for more than one function"); 678 679 const Decl *D = GD.getDecl(); 680 681 DidCallStackSave = false; 682 CurCodeDecl = D; 683 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 684 if (FD->usesSEHTry()) 685 CurSEHParent = FD; 686 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 687 FnRetTy = RetTy; 688 CurFn = Fn; 689 CurFnInfo = &FnInfo; 690 assert(CurFn->isDeclaration() && "Function already has body?"); 691 692 // If this function has been blacklisted for any of the enabled sanitizers, 693 // disable the sanitizer for the function. 694 do { 695 #define SANITIZER(NAME, ID) \ 696 if (SanOpts.empty()) \ 697 break; \ 698 if (SanOpts.has(SanitizerKind::ID)) \ 699 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 700 SanOpts.set(SanitizerKind::ID, false); 701 702 #include "clang/Basic/Sanitizers.def" 703 #undef SANITIZER 704 } while (0); 705 706 if (D) { 707 // Apply the no_sanitize* attributes to SanOpts. 708 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 709 SanitizerMask mask = Attr->getMask(); 710 SanOpts.Mask &= ~mask; 711 if (mask & SanitizerKind::Address) 712 SanOpts.set(SanitizerKind::KernelAddress, false); 713 if (mask & SanitizerKind::KernelAddress) 714 SanOpts.set(SanitizerKind::Address, false); 715 if (mask & SanitizerKind::HWAddress) 716 SanOpts.set(SanitizerKind::KernelHWAddress, false); 717 if (mask & SanitizerKind::KernelHWAddress) 718 SanOpts.set(SanitizerKind::HWAddress, false); 719 } 720 } 721 722 // Apply sanitizer attributes to the function. 723 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 724 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 725 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 726 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 727 if (SanOpts.has(SanitizerKind::MemTag)) 728 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 729 if (SanOpts.has(SanitizerKind::Thread)) 730 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 731 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 732 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 733 if (SanOpts.has(SanitizerKind::SafeStack)) 734 Fn->addFnAttr(llvm::Attribute::SafeStack); 735 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 736 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 737 738 // Apply fuzzing attribute to the function. 739 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 740 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 741 742 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 743 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 744 if (SanOpts.has(SanitizerKind::Thread)) { 745 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 746 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 747 if (OMD->getMethodFamily() == OMF_dealloc || 748 OMD->getMethodFamily() == OMF_initialize || 749 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 750 markAsIgnoreThreadCheckingAtRuntime(Fn); 751 } 752 } 753 } 754 755 // Ignore unrelated casts in STL allocate() since the allocator must cast 756 // from void* to T* before object initialization completes. Don't match on the 757 // namespace because not all allocators are in std:: 758 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 759 if (matchesStlAllocatorFn(D, getContext())) 760 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 761 } 762 763 // Ignore null checks in coroutine functions since the coroutines passes 764 // are not aware of how to move the extra UBSan instructions across the split 765 // coroutine boundaries. 766 if (D && SanOpts.has(SanitizerKind::Null)) 767 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 768 if (FD->getBody() && 769 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 770 SanOpts.Mask &= ~SanitizerKind::Null; 771 772 // Apply xray attributes to the function (as a string, for now) 773 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 774 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 775 XRayInstrKind::FunctionEntry) || 776 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 777 XRayInstrKind::FunctionExit)) { 778 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 779 Fn->addFnAttr("function-instrument", "xray-always"); 780 if (XRayAttr->neverXRayInstrument()) 781 Fn->addFnAttr("function-instrument", "xray-never"); 782 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 783 if (ShouldXRayInstrumentFunction()) 784 Fn->addFnAttr("xray-log-args", 785 llvm::utostr(LogArgs->getArgumentCount())); 786 } 787 } else { 788 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 789 Fn->addFnAttr( 790 "xray-instruction-threshold", 791 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 792 } 793 794 if (ShouldXRayInstrumentFunction()) { 795 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 796 Fn->addFnAttr("xray-ignore-loops"); 797 798 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 799 XRayInstrKind::FunctionExit)) 800 Fn->addFnAttr("xray-skip-exit"); 801 802 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 803 XRayInstrKind::FunctionEntry)) 804 Fn->addFnAttr("xray-skip-entry"); 805 } 806 807 unsigned Count, Offset; 808 if (const auto *Attr = 809 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 810 Count = Attr->getCount(); 811 Offset = Attr->getOffset(); 812 } else { 813 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 814 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 815 } 816 if (Count && Offset <= Count) { 817 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 818 if (Offset) 819 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 820 } 821 822 // Add no-jump-tables value. 823 Fn->addFnAttr("no-jump-tables", 824 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 825 826 // Add no-inline-line-tables value. 827 if (CGM.getCodeGenOpts().NoInlineLineTables) 828 Fn->addFnAttr("no-inline-line-tables"); 829 830 // Add profile-sample-accurate value. 831 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 832 Fn->addFnAttr("profile-sample-accurate"); 833 834 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 835 Fn->addFnAttr("use-sample-profile"); 836 837 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 838 Fn->addFnAttr("cfi-canonical-jump-table"); 839 840 if (getLangOpts().OpenCL) { 841 // Add metadata for a kernel function. 842 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 843 EmitOpenCLKernelMetadata(FD, Fn); 844 } 845 846 // If we are checking function types, emit a function type signature as 847 // prologue data. 848 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 849 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 850 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 851 // Remove any (C++17) exception specifications, to allow calling e.g. a 852 // noexcept function through a non-noexcept pointer. 853 auto ProtoTy = 854 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 855 EST_None); 856 llvm::Constant *FTRTTIConst = 857 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 858 llvm::Constant *FTRTTIConstEncoded = 859 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 860 llvm::Constant *PrologueStructElems[] = {PrologueSig, 861 FTRTTIConstEncoded}; 862 llvm::Constant *PrologueStructConst = 863 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 864 Fn->setPrologueData(PrologueStructConst); 865 } 866 } 867 } 868 869 // If we're checking nullability, we need to know whether we can check the 870 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 871 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 872 auto Nullability = FnRetTy->getNullability(getContext()); 873 if (Nullability && *Nullability == NullabilityKind::NonNull) { 874 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 875 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 876 RetValNullabilityPrecondition = 877 llvm::ConstantInt::getTrue(getLLVMContext()); 878 } 879 } 880 881 // If we're in C++ mode and the function name is "main", it is guaranteed 882 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 883 // used within a program"). 884 // 885 // OpenCL C 2.0 v2.2-11 s6.9.i: 886 // Recursion is not supported. 887 // 888 // SYCL v1.2.1 s3.10: 889 // kernels cannot include RTTI information, exception classes, 890 // recursive code, virtual functions or make use of C++ libraries that 891 // are not compiled for the device. 892 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 893 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 894 getLangOpts().SYCLIsDevice || 895 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 896 Fn->addFnAttr(llvm::Attribute::NoRecurse); 897 } 898 899 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 900 Builder.setIsFPConstrained(FD->usesFPIntrin()); 901 if (FD->usesFPIntrin()) 902 Fn->addFnAttr(llvm::Attribute::StrictFP); 903 } 904 905 // If a custom alignment is used, force realigning to this alignment on 906 // any main function which certainly will need it. 907 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 908 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 909 CGM.getCodeGenOpts().StackAlignment) 910 Fn->addFnAttr("stackrealign"); 911 912 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 913 914 // Create a marker to make it easy to insert allocas into the entryblock 915 // later. Don't create this with the builder, because we don't want it 916 // folded. 917 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 918 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 919 920 ReturnBlock = getJumpDestInCurrentScope("return"); 921 922 Builder.SetInsertPoint(EntryBB); 923 924 // If we're checking the return value, allocate space for a pointer to a 925 // precise source location of the checked return statement. 926 if (requiresReturnValueCheck()) { 927 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 928 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 929 } 930 931 // Emit subprogram debug descriptor. 932 if (CGDebugInfo *DI = getDebugInfo()) { 933 // Reconstruct the type from the argument list so that implicit parameters, 934 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 935 // convention. 936 CallingConv CC = CallingConv::CC_C; 937 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 938 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 939 CC = SrcFnTy->getCallConv(); 940 SmallVector<QualType, 16> ArgTypes; 941 for (const VarDecl *VD : Args) 942 ArgTypes.push_back(VD->getType()); 943 QualType FnType = getContext().getFunctionType( 944 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 945 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 946 Builder); 947 } 948 949 if (ShouldInstrumentFunction()) { 950 if (CGM.getCodeGenOpts().InstrumentFunctions) 951 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 952 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 953 CurFn->addFnAttr("instrument-function-entry-inlined", 954 "__cyg_profile_func_enter"); 955 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 956 CurFn->addFnAttr("instrument-function-entry-inlined", 957 "__cyg_profile_func_enter_bare"); 958 } 959 960 // Since emitting the mcount call here impacts optimizations such as function 961 // inlining, we just add an attribute to insert a mcount call in backend. 962 // The attribute "counting-function" is set to mcount function name which is 963 // architecture dependent. 964 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 965 // Calls to fentry/mcount should not be generated if function has 966 // the no_instrument_function attribute. 967 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 968 if (CGM.getCodeGenOpts().CallFEntry) 969 Fn->addFnAttr("fentry-call", "true"); 970 else { 971 Fn->addFnAttr("instrument-function-entry-inlined", 972 getTarget().getMCountName()); 973 } 974 if (CGM.getCodeGenOpts().MNopMCount) { 975 if (!CGM.getCodeGenOpts().CallFEntry) 976 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 977 << "-mnop-mcount" << "-mfentry"; 978 Fn->addFnAttr("mnop-mcount"); 979 } 980 981 if (CGM.getCodeGenOpts().RecordMCount) { 982 if (!CGM.getCodeGenOpts().CallFEntry) 983 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 984 << "-mrecord-mcount" << "-mfentry"; 985 Fn->addFnAttr("mrecord-mcount"); 986 } 987 } 988 } 989 990 if (CGM.getCodeGenOpts().PackedStack) { 991 if (getContext().getTargetInfo().getTriple().getArch() != 992 llvm::Triple::systemz) 993 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 994 << "-mpacked-stack"; 995 Fn->addFnAttr("packed-stack"); 996 } 997 998 if (RetTy->isVoidType()) { 999 // Void type; nothing to return. 1000 ReturnValue = Address::invalid(); 1001 1002 // Count the implicit return. 1003 if (!endsWithReturn(D)) 1004 ++NumReturnExprs; 1005 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1006 // Indirect return; emit returned value directly into sret slot. 1007 // This reduces code size, and affects correctness in C++. 1008 auto AI = CurFn->arg_begin(); 1009 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1010 ++AI; 1011 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1012 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1013 ReturnValuePointer = 1014 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1015 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1016 ReturnValue.getPointer(), Int8PtrTy), 1017 ReturnValuePointer); 1018 } 1019 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1020 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1021 // Load the sret pointer from the argument struct and return into that. 1022 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1023 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1024 --EI; 1025 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1026 ReturnValuePointer = Address(Addr, getPointerAlign()); 1027 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1028 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1029 } else { 1030 ReturnValue = CreateIRTemp(RetTy, "retval"); 1031 1032 // Tell the epilog emitter to autorelease the result. We do this 1033 // now so that various specialized functions can suppress it 1034 // during their IR-generation. 1035 if (getLangOpts().ObjCAutoRefCount && 1036 !CurFnInfo->isReturnsRetained() && 1037 RetTy->isObjCRetainableType()) 1038 AutoreleaseResult = true; 1039 } 1040 1041 EmitStartEHSpec(CurCodeDecl); 1042 1043 PrologueCleanupDepth = EHStack.stable_begin(); 1044 1045 // Emit OpenMP specific initialization of the device functions. 1046 if (getLangOpts().OpenMP && CurCodeDecl) 1047 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1048 1049 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1050 1051 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1052 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1053 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1054 if (MD->getParent()->isLambda() && 1055 MD->getOverloadedOperator() == OO_Call) { 1056 // We're in a lambda; figure out the captures. 1057 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1058 LambdaThisCaptureField); 1059 if (LambdaThisCaptureField) { 1060 // If the lambda captures the object referred to by '*this' - either by 1061 // value or by reference, make sure CXXThisValue points to the correct 1062 // object. 1063 1064 // Get the lvalue for the field (which is a copy of the enclosing object 1065 // or contains the address of the enclosing object). 1066 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1067 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1068 // If the enclosing object was captured by value, just use its address. 1069 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1070 } else { 1071 // Load the lvalue pointed to by the field, since '*this' was captured 1072 // by reference. 1073 CXXThisValue = 1074 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1075 } 1076 } 1077 for (auto *FD : MD->getParent()->fields()) { 1078 if (FD->hasCapturedVLAType()) { 1079 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1080 SourceLocation()).getScalarVal(); 1081 auto VAT = FD->getCapturedVLAType(); 1082 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1083 } 1084 } 1085 } else { 1086 // Not in a lambda; just use 'this' from the method. 1087 // FIXME: Should we generate a new load for each use of 'this'? The 1088 // fast register allocator would be happier... 1089 CXXThisValue = CXXABIThisValue; 1090 } 1091 1092 // Check the 'this' pointer once per function, if it's available. 1093 if (CXXABIThisValue) { 1094 SanitizerSet SkippedChecks; 1095 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1096 QualType ThisTy = MD->getThisType(); 1097 1098 // If this is the call operator of a lambda with no capture-default, it 1099 // may have a static invoker function, which may call this operator with 1100 // a null 'this' pointer. 1101 if (isLambdaCallOperator(MD) && 1102 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1103 SkippedChecks.set(SanitizerKind::Null, true); 1104 1105 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1106 : TCK_MemberCall, 1107 Loc, CXXABIThisValue, ThisTy, 1108 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1109 SkippedChecks); 1110 } 1111 } 1112 1113 // If any of the arguments have a variably modified type, make sure to 1114 // emit the type size. 1115 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1116 i != e; ++i) { 1117 const VarDecl *VD = *i; 1118 1119 // Dig out the type as written from ParmVarDecls; it's unclear whether 1120 // the standard (C99 6.9.1p10) requires this, but we're following the 1121 // precedent set by gcc. 1122 QualType Ty; 1123 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1124 Ty = PVD->getOriginalType(); 1125 else 1126 Ty = VD->getType(); 1127 1128 if (Ty->isVariablyModifiedType()) 1129 EmitVariablyModifiedType(Ty); 1130 } 1131 // Emit a location at the end of the prologue. 1132 if (CGDebugInfo *DI = getDebugInfo()) 1133 DI->EmitLocation(Builder, StartLoc); 1134 1135 // TODO: Do we need to handle this in two places like we do with 1136 // target-features/target-cpu? 1137 if (CurFuncDecl) 1138 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1139 LargestVectorWidth = VecWidth->getVectorWidth(); 1140 } 1141 1142 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1143 incrementProfileCounter(Body); 1144 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1145 EmitCompoundStmtWithoutScope(*S); 1146 else 1147 EmitStmt(Body); 1148 } 1149 1150 /// When instrumenting to collect profile data, the counts for some blocks 1151 /// such as switch cases need to not include the fall-through counts, so 1152 /// emit a branch around the instrumentation code. When not instrumenting, 1153 /// this just calls EmitBlock(). 1154 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1155 const Stmt *S) { 1156 llvm::BasicBlock *SkipCountBB = nullptr; 1157 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1158 // When instrumenting for profiling, the fallthrough to certain 1159 // statements needs to skip over the instrumentation code so that we 1160 // get an accurate count. 1161 SkipCountBB = createBasicBlock("skipcount"); 1162 EmitBranch(SkipCountBB); 1163 } 1164 EmitBlock(BB); 1165 uint64_t CurrentCount = getCurrentProfileCount(); 1166 incrementProfileCounter(S); 1167 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1168 if (SkipCountBB) 1169 EmitBlock(SkipCountBB); 1170 } 1171 1172 /// Tries to mark the given function nounwind based on the 1173 /// non-existence of any throwing calls within it. We believe this is 1174 /// lightweight enough to do at -O0. 1175 static void TryMarkNoThrow(llvm::Function *F) { 1176 // LLVM treats 'nounwind' on a function as part of the type, so we 1177 // can't do this on functions that can be overwritten. 1178 if (F->isInterposable()) return; 1179 1180 for (llvm::BasicBlock &BB : *F) 1181 for (llvm::Instruction &I : BB) 1182 if (I.mayThrow()) 1183 return; 1184 1185 F->setDoesNotThrow(); 1186 } 1187 1188 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1189 FunctionArgList &Args) { 1190 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1191 QualType ResTy = FD->getReturnType(); 1192 1193 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1194 if (MD && MD->isInstance()) { 1195 if (CGM.getCXXABI().HasThisReturn(GD)) 1196 ResTy = MD->getThisType(); 1197 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1198 ResTy = CGM.getContext().VoidPtrTy; 1199 CGM.getCXXABI().buildThisParam(*this, Args); 1200 } 1201 1202 // The base version of an inheriting constructor whose constructed base is a 1203 // virtual base is not passed any arguments (because it doesn't actually call 1204 // the inherited constructor). 1205 bool PassedParams = true; 1206 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1207 if (auto Inherited = CD->getInheritedConstructor()) 1208 PassedParams = 1209 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1210 1211 if (PassedParams) { 1212 for (auto *Param : FD->parameters()) { 1213 Args.push_back(Param); 1214 if (!Param->hasAttr<PassObjectSizeAttr>()) 1215 continue; 1216 1217 auto *Implicit = ImplicitParamDecl::Create( 1218 getContext(), Param->getDeclContext(), Param->getLocation(), 1219 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1220 SizeArguments[Param] = Implicit; 1221 Args.push_back(Implicit); 1222 } 1223 } 1224 1225 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1226 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1227 1228 return ResTy; 1229 } 1230 1231 static bool 1232 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1233 const ASTContext &Context) { 1234 QualType T = FD->getReturnType(); 1235 // Avoid the optimization for functions that return a record type with a 1236 // trivial destructor or another trivially copyable type. 1237 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1238 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1239 return !ClassDecl->hasTrivialDestructor(); 1240 } 1241 return !T.isTriviallyCopyableType(Context); 1242 } 1243 1244 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1245 const CGFunctionInfo &FnInfo) { 1246 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1247 CurGD = GD; 1248 1249 FunctionArgList Args; 1250 QualType ResTy = BuildFunctionArgList(GD, Args); 1251 1252 // Check if we should generate debug info for this function. 1253 if (FD->hasAttr<NoDebugAttr>()) 1254 DebugInfo = nullptr; // disable debug info indefinitely for this function 1255 1256 // The function might not have a body if we're generating thunks for a 1257 // function declaration. 1258 SourceRange BodyRange; 1259 if (Stmt *Body = FD->getBody()) 1260 BodyRange = Body->getSourceRange(); 1261 else 1262 BodyRange = FD->getLocation(); 1263 CurEHLocation = BodyRange.getEnd(); 1264 1265 // Use the location of the start of the function to determine where 1266 // the function definition is located. By default use the location 1267 // of the declaration as the location for the subprogram. A function 1268 // may lack a declaration in the source code if it is created by code 1269 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1270 SourceLocation Loc = FD->getLocation(); 1271 1272 // If this is a function specialization then use the pattern body 1273 // as the location for the function. 1274 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1275 if (SpecDecl->hasBody(SpecDecl)) 1276 Loc = SpecDecl->getLocation(); 1277 1278 Stmt *Body = FD->getBody(); 1279 1280 // Initialize helper which will detect jumps which can cause invalid lifetime 1281 // markers. 1282 if (Body && ShouldEmitLifetimeMarkers) 1283 Bypasses.Init(Body); 1284 1285 // Emit the standard function prologue. 1286 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1287 1288 // Generate the body of the function. 1289 PGO.assignRegionCounters(GD, CurFn); 1290 if (isa<CXXDestructorDecl>(FD)) 1291 EmitDestructorBody(Args); 1292 else if (isa<CXXConstructorDecl>(FD)) 1293 EmitConstructorBody(Args); 1294 else if (getLangOpts().CUDA && 1295 !getLangOpts().CUDAIsDevice && 1296 FD->hasAttr<CUDAGlobalAttr>()) 1297 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1298 else if (isa<CXXMethodDecl>(FD) && 1299 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1300 // The lambda static invoker function is special, because it forwards or 1301 // clones the body of the function call operator (but is actually static). 1302 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1303 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1304 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1305 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1306 // Implicit copy-assignment gets the same special treatment as implicit 1307 // copy-constructors. 1308 emitImplicitAssignmentOperatorBody(Args); 1309 } else if (Body) { 1310 EmitFunctionBody(Body); 1311 } else 1312 llvm_unreachable("no definition for emitted function"); 1313 1314 // C++11 [stmt.return]p2: 1315 // Flowing off the end of a function [...] results in undefined behavior in 1316 // a value-returning function. 1317 // C11 6.9.1p12: 1318 // If the '}' that terminates a function is reached, and the value of the 1319 // function call is used by the caller, the behavior is undefined. 1320 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1321 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1322 bool ShouldEmitUnreachable = 1323 CGM.getCodeGenOpts().StrictReturn || 1324 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1325 if (SanOpts.has(SanitizerKind::Return)) { 1326 SanitizerScope SanScope(this); 1327 llvm::Value *IsFalse = Builder.getFalse(); 1328 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1329 SanitizerHandler::MissingReturn, 1330 EmitCheckSourceLocation(FD->getLocation()), None); 1331 } else if (ShouldEmitUnreachable) { 1332 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1333 EmitTrapCall(llvm::Intrinsic::trap); 1334 } 1335 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1336 Builder.CreateUnreachable(); 1337 Builder.ClearInsertionPoint(); 1338 } 1339 } 1340 1341 // Emit the standard function epilogue. 1342 FinishFunction(BodyRange.getEnd()); 1343 1344 // If we haven't marked the function nothrow through other means, do 1345 // a quick pass now to see if we can. 1346 if (!CurFn->doesNotThrow()) 1347 TryMarkNoThrow(CurFn); 1348 } 1349 1350 /// ContainsLabel - Return true if the statement contains a label in it. If 1351 /// this statement is not executed normally, it not containing a label means 1352 /// that we can just remove the code. 1353 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1354 // Null statement, not a label! 1355 if (!S) return false; 1356 1357 // If this is a label, we have to emit the code, consider something like: 1358 // if (0) { ... foo: bar(); } goto foo; 1359 // 1360 // TODO: If anyone cared, we could track __label__'s, since we know that you 1361 // can't jump to one from outside their declared region. 1362 if (isa<LabelStmt>(S)) 1363 return true; 1364 1365 // If this is a case/default statement, and we haven't seen a switch, we have 1366 // to emit the code. 1367 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1368 return true; 1369 1370 // If this is a switch statement, we want to ignore cases below it. 1371 if (isa<SwitchStmt>(S)) 1372 IgnoreCaseStmts = true; 1373 1374 // Scan subexpressions for verboten labels. 1375 for (const Stmt *SubStmt : S->children()) 1376 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 /// containsBreak - Return true if the statement contains a break out of it. 1383 /// If the statement (recursively) contains a switch or loop with a break 1384 /// inside of it, this is fine. 1385 bool CodeGenFunction::containsBreak(const Stmt *S) { 1386 // Null statement, not a label! 1387 if (!S) return false; 1388 1389 // If this is a switch or loop that defines its own break scope, then we can 1390 // include it and anything inside of it. 1391 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1392 isa<ForStmt>(S)) 1393 return false; 1394 1395 if (isa<BreakStmt>(S)) 1396 return true; 1397 1398 // Scan subexpressions for verboten breaks. 1399 for (const Stmt *SubStmt : S->children()) 1400 if (containsBreak(SubStmt)) 1401 return true; 1402 1403 return false; 1404 } 1405 1406 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1407 if (!S) return false; 1408 1409 // Some statement kinds add a scope and thus never add a decl to the current 1410 // scope. Note, this list is longer than the list of statements that might 1411 // have an unscoped decl nested within them, but this way is conservatively 1412 // correct even if more statement kinds are added. 1413 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1414 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1415 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1416 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1417 return false; 1418 1419 if (isa<DeclStmt>(S)) 1420 return true; 1421 1422 for (const Stmt *SubStmt : S->children()) 1423 if (mightAddDeclToScope(SubStmt)) 1424 return true; 1425 1426 return false; 1427 } 1428 1429 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1430 /// to a constant, or if it does but contains a label, return false. If it 1431 /// constant folds return true and set the boolean result in Result. 1432 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1433 bool &ResultBool, 1434 bool AllowLabels) { 1435 llvm::APSInt ResultInt; 1436 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1437 return false; 1438 1439 ResultBool = ResultInt.getBoolValue(); 1440 return true; 1441 } 1442 1443 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1444 /// to a constant, or if it does but contains a label, return false. If it 1445 /// constant folds return true and set the folded value. 1446 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1447 llvm::APSInt &ResultInt, 1448 bool AllowLabels) { 1449 // FIXME: Rename and handle conversion of other evaluatable things 1450 // to bool. 1451 Expr::EvalResult Result; 1452 if (!Cond->EvaluateAsInt(Result, getContext())) 1453 return false; // Not foldable, not integer or not fully evaluatable. 1454 1455 llvm::APSInt Int = Result.Val.getInt(); 1456 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1457 return false; // Contains a label. 1458 1459 ResultInt = Int; 1460 return true; 1461 } 1462 1463 1464 1465 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1466 /// statement) to the specified blocks. Based on the condition, this might try 1467 /// to simplify the codegen of the conditional based on the branch. 1468 /// 1469 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1470 llvm::BasicBlock *TrueBlock, 1471 llvm::BasicBlock *FalseBlock, 1472 uint64_t TrueCount) { 1473 Cond = Cond->IgnoreParens(); 1474 1475 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1476 1477 // Handle X && Y in a condition. 1478 if (CondBOp->getOpcode() == BO_LAnd) { 1479 // If we have "1 && X", simplify the code. "0 && X" would have constant 1480 // folded if the case was simple enough. 1481 bool ConstantBool = false; 1482 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1483 ConstantBool) { 1484 // br(1 && X) -> br(X). 1485 incrementProfileCounter(CondBOp); 1486 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1487 TrueCount); 1488 } 1489 1490 // If we have "X && 1", simplify the code to use an uncond branch. 1491 // "X && 0" would have been constant folded to 0. 1492 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1493 ConstantBool) { 1494 // br(X && 1) -> br(X). 1495 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1496 TrueCount); 1497 } 1498 1499 // Emit the LHS as a conditional. If the LHS conditional is false, we 1500 // want to jump to the FalseBlock. 1501 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1502 // The counter tells us how often we evaluate RHS, and all of TrueCount 1503 // can be propagated to that branch. 1504 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1505 1506 ConditionalEvaluation eval(*this); 1507 { 1508 ApplyDebugLocation DL(*this, Cond); 1509 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1510 EmitBlock(LHSTrue); 1511 } 1512 1513 incrementProfileCounter(CondBOp); 1514 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1515 1516 // Any temporaries created here are conditional. 1517 eval.begin(*this); 1518 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1519 eval.end(*this); 1520 1521 return; 1522 } 1523 1524 if (CondBOp->getOpcode() == BO_LOr) { 1525 // If we have "0 || X", simplify the code. "1 || X" would have constant 1526 // folded if the case was simple enough. 1527 bool ConstantBool = false; 1528 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1529 !ConstantBool) { 1530 // br(0 || X) -> br(X). 1531 incrementProfileCounter(CondBOp); 1532 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1533 TrueCount); 1534 } 1535 1536 // If we have "X || 0", simplify the code to use an uncond branch. 1537 // "X || 1" would have been constant folded to 1. 1538 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1539 !ConstantBool) { 1540 // br(X || 0) -> br(X). 1541 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1542 TrueCount); 1543 } 1544 1545 // Emit the LHS as a conditional. If the LHS conditional is true, we 1546 // want to jump to the TrueBlock. 1547 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1548 // We have the count for entry to the RHS and for the whole expression 1549 // being true, so we can divy up True count between the short circuit and 1550 // the RHS. 1551 uint64_t LHSCount = 1552 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1553 uint64_t RHSCount = TrueCount - LHSCount; 1554 1555 ConditionalEvaluation eval(*this); 1556 { 1557 ApplyDebugLocation DL(*this, Cond); 1558 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1559 EmitBlock(LHSFalse); 1560 } 1561 1562 incrementProfileCounter(CondBOp); 1563 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1564 1565 // Any temporaries created here are conditional. 1566 eval.begin(*this); 1567 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1568 1569 eval.end(*this); 1570 1571 return; 1572 } 1573 } 1574 1575 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1576 // br(!x, t, f) -> br(x, f, t) 1577 if (CondUOp->getOpcode() == UO_LNot) { 1578 // Negate the count. 1579 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1580 // Negate the condition and swap the destination blocks. 1581 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1582 FalseCount); 1583 } 1584 } 1585 1586 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1587 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1588 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1589 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1590 1591 ConditionalEvaluation cond(*this); 1592 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1593 getProfileCount(CondOp)); 1594 1595 // When computing PGO branch weights, we only know the overall count for 1596 // the true block. This code is essentially doing tail duplication of the 1597 // naive code-gen, introducing new edges for which counts are not 1598 // available. Divide the counts proportionally between the LHS and RHS of 1599 // the conditional operator. 1600 uint64_t LHSScaledTrueCount = 0; 1601 if (TrueCount) { 1602 double LHSRatio = 1603 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1604 LHSScaledTrueCount = TrueCount * LHSRatio; 1605 } 1606 1607 cond.begin(*this); 1608 EmitBlock(LHSBlock); 1609 incrementProfileCounter(CondOp); 1610 { 1611 ApplyDebugLocation DL(*this, Cond); 1612 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1613 LHSScaledTrueCount); 1614 } 1615 cond.end(*this); 1616 1617 cond.begin(*this); 1618 EmitBlock(RHSBlock); 1619 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1620 TrueCount - LHSScaledTrueCount); 1621 cond.end(*this); 1622 1623 return; 1624 } 1625 1626 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1627 // Conditional operator handling can give us a throw expression as a 1628 // condition for a case like: 1629 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1630 // Fold this to: 1631 // br(c, throw x, br(y, t, f)) 1632 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1633 return; 1634 } 1635 1636 // If the branch has a condition wrapped by __builtin_unpredictable, 1637 // create metadata that specifies that the branch is unpredictable. 1638 // Don't bother if not optimizing because that metadata would not be used. 1639 llvm::MDNode *Unpredictable = nullptr; 1640 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1641 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1642 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1643 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1644 llvm::MDBuilder MDHelper(getLLVMContext()); 1645 Unpredictable = MDHelper.createUnpredictable(); 1646 } 1647 } 1648 1649 // Create branch weights based on the number of times we get here and the 1650 // number of times the condition should be true. 1651 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1652 llvm::MDNode *Weights = 1653 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1654 1655 // Emit the code with the fully general case. 1656 llvm::Value *CondV; 1657 { 1658 ApplyDebugLocation DL(*this, Cond); 1659 CondV = EvaluateExprAsBool(Cond); 1660 } 1661 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1662 } 1663 1664 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1665 /// specified stmt yet. 1666 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1667 CGM.ErrorUnsupported(S, Type); 1668 } 1669 1670 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1671 /// variable-length array whose elements have a non-zero bit-pattern. 1672 /// 1673 /// \param baseType the inner-most element type of the array 1674 /// \param src - a char* pointing to the bit-pattern for a single 1675 /// base element of the array 1676 /// \param sizeInChars - the total size of the VLA, in chars 1677 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1678 Address dest, Address src, 1679 llvm::Value *sizeInChars) { 1680 CGBuilderTy &Builder = CGF.Builder; 1681 1682 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1683 llvm::Value *baseSizeInChars 1684 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1685 1686 Address begin = 1687 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1688 llvm::Value *end = 1689 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1690 1691 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1692 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1693 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1694 1695 // Make a loop over the VLA. C99 guarantees that the VLA element 1696 // count must be nonzero. 1697 CGF.EmitBlock(loopBB); 1698 1699 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1700 cur->addIncoming(begin.getPointer(), originBB); 1701 1702 CharUnits curAlign = 1703 dest.getAlignment().alignmentOfArrayElement(baseSize); 1704 1705 // memcpy the individual element bit-pattern. 1706 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1707 /*volatile*/ false); 1708 1709 // Go to the next element. 1710 llvm::Value *next = 1711 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1712 1713 // Leave if that's the end of the VLA. 1714 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1715 Builder.CreateCondBr(done, contBB, loopBB); 1716 cur->addIncoming(next, loopBB); 1717 1718 CGF.EmitBlock(contBB); 1719 } 1720 1721 void 1722 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1723 // Ignore empty classes in C++. 1724 if (getLangOpts().CPlusPlus) { 1725 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1726 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1727 return; 1728 } 1729 } 1730 1731 // Cast the dest ptr to the appropriate i8 pointer type. 1732 if (DestPtr.getElementType() != Int8Ty) 1733 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1734 1735 // Get size and alignment info for this aggregate. 1736 CharUnits size = getContext().getTypeSizeInChars(Ty); 1737 1738 llvm::Value *SizeVal; 1739 const VariableArrayType *vla; 1740 1741 // Don't bother emitting a zero-byte memset. 1742 if (size.isZero()) { 1743 // But note that getTypeInfo returns 0 for a VLA. 1744 if (const VariableArrayType *vlaType = 1745 dyn_cast_or_null<VariableArrayType>( 1746 getContext().getAsArrayType(Ty))) { 1747 auto VlaSize = getVLASize(vlaType); 1748 SizeVal = VlaSize.NumElts; 1749 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1750 if (!eltSize.isOne()) 1751 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1752 vla = vlaType; 1753 } else { 1754 return; 1755 } 1756 } else { 1757 SizeVal = CGM.getSize(size); 1758 vla = nullptr; 1759 } 1760 1761 // If the type contains a pointer to data member we can't memset it to zero. 1762 // Instead, create a null constant and copy it to the destination. 1763 // TODO: there are other patterns besides zero that we can usefully memset, 1764 // like -1, which happens to be the pattern used by member-pointers. 1765 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1766 // For a VLA, emit a single element, then splat that over the VLA. 1767 if (vla) Ty = getContext().getBaseElementType(vla); 1768 1769 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1770 1771 llvm::GlobalVariable *NullVariable = 1772 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1773 /*isConstant=*/true, 1774 llvm::GlobalVariable::PrivateLinkage, 1775 NullConstant, Twine()); 1776 CharUnits NullAlign = DestPtr.getAlignment(); 1777 NullVariable->setAlignment(NullAlign.getAsAlign()); 1778 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1779 NullAlign); 1780 1781 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1782 1783 // Get and call the appropriate llvm.memcpy overload. 1784 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1785 return; 1786 } 1787 1788 // Otherwise, just memset the whole thing to zero. This is legal 1789 // because in LLVM, all default initializers (other than the ones we just 1790 // handled above) are guaranteed to have a bit pattern of all zeros. 1791 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1792 } 1793 1794 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1795 // Make sure that there is a block for the indirect goto. 1796 if (!IndirectBranch) 1797 GetIndirectGotoBlock(); 1798 1799 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1800 1801 // Make sure the indirect branch includes all of the address-taken blocks. 1802 IndirectBranch->addDestination(BB); 1803 return llvm::BlockAddress::get(CurFn, BB); 1804 } 1805 1806 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1807 // If we already made the indirect branch for indirect goto, return its block. 1808 if (IndirectBranch) return IndirectBranch->getParent(); 1809 1810 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1811 1812 // Create the PHI node that indirect gotos will add entries to. 1813 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1814 "indirect.goto.dest"); 1815 1816 // Create the indirect branch instruction. 1817 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1818 return IndirectBranch->getParent(); 1819 } 1820 1821 /// Computes the length of an array in elements, as well as the base 1822 /// element type and a properly-typed first element pointer. 1823 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1824 QualType &baseType, 1825 Address &addr) { 1826 const ArrayType *arrayType = origArrayType; 1827 1828 // If it's a VLA, we have to load the stored size. Note that 1829 // this is the size of the VLA in bytes, not its size in elements. 1830 llvm::Value *numVLAElements = nullptr; 1831 if (isa<VariableArrayType>(arrayType)) { 1832 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1833 1834 // Walk into all VLAs. This doesn't require changes to addr, 1835 // which has type T* where T is the first non-VLA element type. 1836 do { 1837 QualType elementType = arrayType->getElementType(); 1838 arrayType = getContext().getAsArrayType(elementType); 1839 1840 // If we only have VLA components, 'addr' requires no adjustment. 1841 if (!arrayType) { 1842 baseType = elementType; 1843 return numVLAElements; 1844 } 1845 } while (isa<VariableArrayType>(arrayType)); 1846 1847 // We get out here only if we find a constant array type 1848 // inside the VLA. 1849 } 1850 1851 // We have some number of constant-length arrays, so addr should 1852 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1853 // down to the first element of addr. 1854 SmallVector<llvm::Value*, 8> gepIndices; 1855 1856 // GEP down to the array type. 1857 llvm::ConstantInt *zero = Builder.getInt32(0); 1858 gepIndices.push_back(zero); 1859 1860 uint64_t countFromCLAs = 1; 1861 QualType eltType; 1862 1863 llvm::ArrayType *llvmArrayType = 1864 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1865 while (llvmArrayType) { 1866 assert(isa<ConstantArrayType>(arrayType)); 1867 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1868 == llvmArrayType->getNumElements()); 1869 1870 gepIndices.push_back(zero); 1871 countFromCLAs *= llvmArrayType->getNumElements(); 1872 eltType = arrayType->getElementType(); 1873 1874 llvmArrayType = 1875 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1876 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1877 assert((!llvmArrayType || arrayType) && 1878 "LLVM and Clang types are out-of-synch"); 1879 } 1880 1881 if (arrayType) { 1882 // From this point onwards, the Clang array type has been emitted 1883 // as some other type (probably a packed struct). Compute the array 1884 // size, and just emit the 'begin' expression as a bitcast. 1885 while (arrayType) { 1886 countFromCLAs *= 1887 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1888 eltType = arrayType->getElementType(); 1889 arrayType = getContext().getAsArrayType(eltType); 1890 } 1891 1892 llvm::Type *baseType = ConvertType(eltType); 1893 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1894 } else { 1895 // Create the actual GEP. 1896 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1897 gepIndices, "array.begin"), 1898 addr.getAlignment()); 1899 } 1900 1901 baseType = eltType; 1902 1903 llvm::Value *numElements 1904 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1905 1906 // If we had any VLA dimensions, factor them in. 1907 if (numVLAElements) 1908 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1909 1910 return numElements; 1911 } 1912 1913 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1914 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1915 assert(vla && "type was not a variable array type!"); 1916 return getVLASize(vla); 1917 } 1918 1919 CodeGenFunction::VlaSizePair 1920 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1921 // The number of elements so far; always size_t. 1922 llvm::Value *numElements = nullptr; 1923 1924 QualType elementType; 1925 do { 1926 elementType = type->getElementType(); 1927 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1928 assert(vlaSize && "no size for VLA!"); 1929 assert(vlaSize->getType() == SizeTy); 1930 1931 if (!numElements) { 1932 numElements = vlaSize; 1933 } else { 1934 // It's undefined behavior if this wraps around, so mark it that way. 1935 // FIXME: Teach -fsanitize=undefined to trap this. 1936 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1937 } 1938 } while ((type = getContext().getAsVariableArrayType(elementType))); 1939 1940 return { numElements, elementType }; 1941 } 1942 1943 CodeGenFunction::VlaSizePair 1944 CodeGenFunction::getVLAElements1D(QualType type) { 1945 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1946 assert(vla && "type was not a variable array type!"); 1947 return getVLAElements1D(vla); 1948 } 1949 1950 CodeGenFunction::VlaSizePair 1951 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1952 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1953 assert(VlaSize && "no size for VLA!"); 1954 assert(VlaSize->getType() == SizeTy); 1955 return { VlaSize, Vla->getElementType() }; 1956 } 1957 1958 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1959 assert(type->isVariablyModifiedType() && 1960 "Must pass variably modified type to EmitVLASizes!"); 1961 1962 EnsureInsertPoint(); 1963 1964 // We're going to walk down into the type and look for VLA 1965 // expressions. 1966 do { 1967 assert(type->isVariablyModifiedType()); 1968 1969 const Type *ty = type.getTypePtr(); 1970 switch (ty->getTypeClass()) { 1971 1972 #define TYPE(Class, Base) 1973 #define ABSTRACT_TYPE(Class, Base) 1974 #define NON_CANONICAL_TYPE(Class, Base) 1975 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1976 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1977 #include "clang/AST/TypeNodes.inc" 1978 llvm_unreachable("unexpected dependent type!"); 1979 1980 // These types are never variably-modified. 1981 case Type::Builtin: 1982 case Type::Complex: 1983 case Type::Vector: 1984 case Type::ExtVector: 1985 case Type::ConstantMatrix: 1986 case Type::Record: 1987 case Type::Enum: 1988 case Type::Elaborated: 1989 case Type::TemplateSpecialization: 1990 case Type::ObjCTypeParam: 1991 case Type::ObjCObject: 1992 case Type::ObjCInterface: 1993 case Type::ObjCObjectPointer: 1994 case Type::ExtInt: 1995 llvm_unreachable("type class is never variably-modified!"); 1996 1997 case Type::Adjusted: 1998 type = cast<AdjustedType>(ty)->getAdjustedType(); 1999 break; 2000 2001 case Type::Decayed: 2002 type = cast<DecayedType>(ty)->getPointeeType(); 2003 break; 2004 2005 case Type::Pointer: 2006 type = cast<PointerType>(ty)->getPointeeType(); 2007 break; 2008 2009 case Type::BlockPointer: 2010 type = cast<BlockPointerType>(ty)->getPointeeType(); 2011 break; 2012 2013 case Type::LValueReference: 2014 case Type::RValueReference: 2015 type = cast<ReferenceType>(ty)->getPointeeType(); 2016 break; 2017 2018 case Type::MemberPointer: 2019 type = cast<MemberPointerType>(ty)->getPointeeType(); 2020 break; 2021 2022 case Type::ConstantArray: 2023 case Type::IncompleteArray: 2024 // Losing element qualification here is fine. 2025 type = cast<ArrayType>(ty)->getElementType(); 2026 break; 2027 2028 case Type::VariableArray: { 2029 // Losing element qualification here is fine. 2030 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2031 2032 // Unknown size indication requires no size computation. 2033 // Otherwise, evaluate and record it. 2034 if (const Expr *size = vat->getSizeExpr()) { 2035 // It's possible that we might have emitted this already, 2036 // e.g. with a typedef and a pointer to it. 2037 llvm::Value *&entry = VLASizeMap[size]; 2038 if (!entry) { 2039 llvm::Value *Size = EmitScalarExpr(size); 2040 2041 // C11 6.7.6.2p5: 2042 // If the size is an expression that is not an integer constant 2043 // expression [...] each time it is evaluated it shall have a value 2044 // greater than zero. 2045 if (SanOpts.has(SanitizerKind::VLABound) && 2046 size->getType()->isSignedIntegerType()) { 2047 SanitizerScope SanScope(this); 2048 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2049 llvm::Constant *StaticArgs[] = { 2050 EmitCheckSourceLocation(size->getBeginLoc()), 2051 EmitCheckTypeDescriptor(size->getType())}; 2052 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2053 SanitizerKind::VLABound), 2054 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2055 } 2056 2057 // Always zexting here would be wrong if it weren't 2058 // undefined behavior to have a negative bound. 2059 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2060 } 2061 } 2062 type = vat->getElementType(); 2063 break; 2064 } 2065 2066 case Type::FunctionProto: 2067 case Type::FunctionNoProto: 2068 type = cast<FunctionType>(ty)->getReturnType(); 2069 break; 2070 2071 case Type::Paren: 2072 case Type::TypeOf: 2073 case Type::UnaryTransform: 2074 case Type::Attributed: 2075 case Type::SubstTemplateTypeParm: 2076 case Type::PackExpansion: 2077 case Type::MacroQualified: 2078 // Keep walking after single level desugaring. 2079 type = type.getSingleStepDesugaredType(getContext()); 2080 break; 2081 2082 case Type::Typedef: 2083 case Type::Decltype: 2084 case Type::Auto: 2085 case Type::DeducedTemplateSpecialization: 2086 // Stop walking: nothing to do. 2087 return; 2088 2089 case Type::TypeOfExpr: 2090 // Stop walking: emit typeof expression. 2091 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2092 return; 2093 2094 case Type::Atomic: 2095 type = cast<AtomicType>(ty)->getValueType(); 2096 break; 2097 2098 case Type::Pipe: 2099 type = cast<PipeType>(ty)->getElementType(); 2100 break; 2101 } 2102 } while (type->isVariablyModifiedType()); 2103 } 2104 2105 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2106 if (getContext().getBuiltinVaListType()->isArrayType()) 2107 return EmitPointerWithAlignment(E); 2108 return EmitLValue(E).getAddress(*this); 2109 } 2110 2111 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2112 return EmitLValue(E).getAddress(*this); 2113 } 2114 2115 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2116 const APValue &Init) { 2117 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2118 if (CGDebugInfo *Dbg = getDebugInfo()) 2119 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2120 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2121 } 2122 2123 CodeGenFunction::PeepholeProtection 2124 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2125 // At the moment, the only aggressive peephole we do in IR gen 2126 // is trunc(zext) folding, but if we add more, we can easily 2127 // extend this protection. 2128 2129 if (!rvalue.isScalar()) return PeepholeProtection(); 2130 llvm::Value *value = rvalue.getScalarVal(); 2131 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2132 2133 // Just make an extra bitcast. 2134 assert(HaveInsertPoint()); 2135 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2136 Builder.GetInsertBlock()); 2137 2138 PeepholeProtection protection; 2139 protection.Inst = inst; 2140 return protection; 2141 } 2142 2143 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2144 if (!protection.Inst) return; 2145 2146 // In theory, we could try to duplicate the peepholes now, but whatever. 2147 protection.Inst->eraseFromParent(); 2148 } 2149 2150 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2151 QualType Ty, SourceLocation Loc, 2152 SourceLocation AssumptionLoc, 2153 llvm::Value *Alignment, 2154 llvm::Value *OffsetValue) { 2155 llvm::Value *TheCheck; 2156 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2157 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2158 if (SanOpts.has(SanitizerKind::Alignment)) { 2159 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2160 OffsetValue, TheCheck, Assumption); 2161 } 2162 } 2163 2164 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2165 const Expr *E, 2166 SourceLocation AssumptionLoc, 2167 llvm::Value *Alignment, 2168 llvm::Value *OffsetValue) { 2169 if (auto *CE = dyn_cast<CastExpr>(E)) 2170 E = CE->getSubExprAsWritten(); 2171 QualType Ty = E->getType(); 2172 SourceLocation Loc = E->getExprLoc(); 2173 2174 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2175 OffsetValue); 2176 } 2177 2178 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2179 llvm::Value *AnnotatedVal, 2180 StringRef AnnotationStr, 2181 SourceLocation Location) { 2182 llvm::Value *Args[4] = { 2183 AnnotatedVal, 2184 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2185 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2186 CGM.EmitAnnotationLineNo(Location) 2187 }; 2188 return Builder.CreateCall(AnnotationFn, Args); 2189 } 2190 2191 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2192 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2193 // FIXME We create a new bitcast for every annotation because that's what 2194 // llvm-gcc was doing. 2195 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2196 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2197 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2198 I->getAnnotation(), D->getLocation()); 2199 } 2200 2201 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2202 Address Addr) { 2203 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2204 llvm::Value *V = Addr.getPointer(); 2205 llvm::Type *VTy = V->getType(); 2206 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2207 CGM.Int8PtrTy); 2208 2209 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2210 // FIXME Always emit the cast inst so we can differentiate between 2211 // annotation on the first field of a struct and annotation on the struct 2212 // itself. 2213 if (VTy != CGM.Int8PtrTy) 2214 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2215 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2216 V = Builder.CreateBitCast(V, VTy); 2217 } 2218 2219 return Address(V, Addr.getAlignment()); 2220 } 2221 2222 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2223 2224 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2225 : CGF(CGF) { 2226 assert(!CGF->IsSanitizerScope); 2227 CGF->IsSanitizerScope = true; 2228 } 2229 2230 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2231 CGF->IsSanitizerScope = false; 2232 } 2233 2234 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2235 const llvm::Twine &Name, 2236 llvm::BasicBlock *BB, 2237 llvm::BasicBlock::iterator InsertPt) const { 2238 LoopStack.InsertHelper(I); 2239 if (IsSanitizerScope) 2240 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2241 } 2242 2243 void CGBuilderInserter::InsertHelper( 2244 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2245 llvm::BasicBlock::iterator InsertPt) const { 2246 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2247 if (CGF) 2248 CGF->InsertHelper(I, Name, BB, InsertPt); 2249 } 2250 2251 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2252 CodeGenModule &CGM, const FunctionDecl *FD, 2253 std::string &FirstMissing) { 2254 // If there aren't any required features listed then go ahead and return. 2255 if (ReqFeatures.empty()) 2256 return false; 2257 2258 // Now build up the set of caller features and verify that all the required 2259 // features are there. 2260 llvm::StringMap<bool> CallerFeatureMap; 2261 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2262 2263 // If we have at least one of the features in the feature list return 2264 // true, otherwise return false. 2265 return std::all_of( 2266 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2267 SmallVector<StringRef, 1> OrFeatures; 2268 Feature.split(OrFeatures, '|'); 2269 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2270 if (!CallerFeatureMap.lookup(Feature)) { 2271 FirstMissing = Feature.str(); 2272 return false; 2273 } 2274 return true; 2275 }); 2276 }); 2277 } 2278 2279 // Emits an error if we don't have a valid set of target features for the 2280 // called function. 2281 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2282 const FunctionDecl *TargetDecl) { 2283 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2284 } 2285 2286 // Emits an error if we don't have a valid set of target features for the 2287 // called function. 2288 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2289 const FunctionDecl *TargetDecl) { 2290 // Early exit if this is an indirect call. 2291 if (!TargetDecl) 2292 return; 2293 2294 // Get the current enclosing function if it exists. If it doesn't 2295 // we can't check the target features anyhow. 2296 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2297 if (!FD) 2298 return; 2299 2300 // Grab the required features for the call. For a builtin this is listed in 2301 // the td file with the default cpu, for an always_inline function this is any 2302 // listed cpu and any listed features. 2303 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2304 std::string MissingFeature; 2305 if (BuiltinID) { 2306 SmallVector<StringRef, 1> ReqFeatures; 2307 const char *FeatureList = 2308 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2309 // Return if the builtin doesn't have any required features. 2310 if (!FeatureList || StringRef(FeatureList) == "") 2311 return; 2312 StringRef(FeatureList).split(ReqFeatures, ','); 2313 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2314 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2315 << TargetDecl->getDeclName() 2316 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2317 2318 } else if (!TargetDecl->isMultiVersion() && 2319 TargetDecl->hasAttr<TargetAttr>()) { 2320 // Get the required features for the callee. 2321 2322 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2323 ParsedTargetAttr ParsedAttr = 2324 CGM.getContext().filterFunctionTargetAttrs(TD); 2325 2326 SmallVector<StringRef, 1> ReqFeatures; 2327 llvm::StringMap<bool> CalleeFeatureMap; 2328 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2329 2330 for (const auto &F : ParsedAttr.Features) { 2331 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2332 ReqFeatures.push_back(StringRef(F).substr(1)); 2333 } 2334 2335 for (const auto &F : CalleeFeatureMap) { 2336 // Only positive features are "required". 2337 if (F.getValue()) 2338 ReqFeatures.push_back(F.getKey()); 2339 } 2340 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2341 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2342 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2343 } 2344 } 2345 2346 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2347 if (!CGM.getCodeGenOpts().SanitizeStats) 2348 return; 2349 2350 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2351 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2352 CGM.getSanStats().create(IRB, SSK); 2353 } 2354 2355 llvm::Value * 2356 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2357 llvm::Value *Condition = nullptr; 2358 2359 if (!RO.Conditions.Architecture.empty()) 2360 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2361 2362 if (!RO.Conditions.Features.empty()) { 2363 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2364 Condition = 2365 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2366 } 2367 return Condition; 2368 } 2369 2370 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2371 llvm::Function *Resolver, 2372 CGBuilderTy &Builder, 2373 llvm::Function *FuncToReturn, 2374 bool SupportsIFunc) { 2375 if (SupportsIFunc) { 2376 Builder.CreateRet(FuncToReturn); 2377 return; 2378 } 2379 2380 llvm::SmallVector<llvm::Value *, 10> Args; 2381 llvm::for_each(Resolver->args(), 2382 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2383 2384 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2385 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2386 2387 if (Resolver->getReturnType()->isVoidTy()) 2388 Builder.CreateRetVoid(); 2389 else 2390 Builder.CreateRet(Result); 2391 } 2392 2393 void CodeGenFunction::EmitMultiVersionResolver( 2394 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2395 assert(getContext().getTargetInfo().getTriple().isX86() && 2396 "Only implemented for x86 targets"); 2397 2398 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2399 2400 // Main function's basic block. 2401 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2402 Builder.SetInsertPoint(CurBlock); 2403 EmitX86CpuInit(); 2404 2405 for (const MultiVersionResolverOption &RO : Options) { 2406 Builder.SetInsertPoint(CurBlock); 2407 llvm::Value *Condition = FormResolverCondition(RO); 2408 2409 // The 'default' or 'generic' case. 2410 if (!Condition) { 2411 assert(&RO == Options.end() - 1 && 2412 "Default or Generic case must be last"); 2413 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2414 SupportsIFunc); 2415 return; 2416 } 2417 2418 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2419 CGBuilderTy RetBuilder(*this, RetBlock); 2420 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2421 SupportsIFunc); 2422 CurBlock = createBasicBlock("resolver_else", Resolver); 2423 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2424 } 2425 2426 // If no generic/default, emit an unreachable. 2427 Builder.SetInsertPoint(CurBlock); 2428 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2429 TrapCall->setDoesNotReturn(); 2430 TrapCall->setDoesNotThrow(); 2431 Builder.CreateUnreachable(); 2432 Builder.ClearInsertionPoint(); 2433 } 2434 2435 // Loc - where the diagnostic will point, where in the source code this 2436 // alignment has failed. 2437 // SecondaryLoc - if present (will be present if sufficiently different from 2438 // Loc), the diagnostic will additionally point a "Note:" to this location. 2439 // It should be the location where the __attribute__((assume_aligned)) 2440 // was written e.g. 2441 void CodeGenFunction::emitAlignmentAssumptionCheck( 2442 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2443 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2444 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2445 llvm::Instruction *Assumption) { 2446 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2447 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2448 llvm::Intrinsic::getDeclaration( 2449 Builder.GetInsertBlock()->getParent()->getParent(), 2450 llvm::Intrinsic::assume) && 2451 "Assumption should be a call to llvm.assume()."); 2452 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2453 "Assumption should be the last instruction of the basic block, " 2454 "since the basic block is still being generated."); 2455 2456 if (!SanOpts.has(SanitizerKind::Alignment)) 2457 return; 2458 2459 // Don't check pointers to volatile data. The behavior here is implementation- 2460 // defined. 2461 if (Ty->getPointeeType().isVolatileQualified()) 2462 return; 2463 2464 // We need to temorairly remove the assumption so we can insert the 2465 // sanitizer check before it, else the check will be dropped by optimizations. 2466 Assumption->removeFromParent(); 2467 2468 { 2469 SanitizerScope SanScope(this); 2470 2471 if (!OffsetValue) 2472 OffsetValue = Builder.getInt1(0); // no offset. 2473 2474 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2475 EmitCheckSourceLocation(SecondaryLoc), 2476 EmitCheckTypeDescriptor(Ty)}; 2477 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2478 EmitCheckValue(Alignment), 2479 EmitCheckValue(OffsetValue)}; 2480 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2481 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2482 } 2483 2484 // We are now in the (new, empty) "cont" basic block. 2485 // Reintroduce the assumption. 2486 Builder.Insert(Assumption); 2487 // FIXME: Assumption still has it's original basic block as it's Parent. 2488 } 2489 2490 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2491 if (CGDebugInfo *DI = getDebugInfo()) 2492 return DI->SourceLocToDebugLoc(Location); 2493 2494 return llvm::DebugLoc(); 2495 } 2496