1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/OpenCL.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 48 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 49 CXXThisValue(0), CXXDefaultInitExprThis(0), 50 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 51 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 52 TerminateHandler(0), TrapBB(0) { 53 if (!suppressNewContext) 54 CGM.getCXXABI().getMangleContext().startNewFunction(); 55 56 llvm::FastMathFlags FMF; 57 if (CGM.getLangOpts().FastMath) 58 FMF.setUnsafeAlgebra(); 59 if (CGM.getLangOpts().FiniteMathOnly) { 60 FMF.setNoNaNs(); 61 FMF.setNoInfs(); 62 } 63 Builder.SetFastMathFlags(FMF); 64 } 65 66 CodeGenFunction::~CodeGenFunction() { 67 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 68 69 // If there are any unclaimed block infos, go ahead and destroy them 70 // now. This can happen if IR-gen gets clever and skips evaluating 71 // something. 72 if (FirstBlockInfo) 73 destroyBlockInfos(FirstBlockInfo); 74 } 75 76 77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 78 return CGM.getTypes().ConvertTypeForMem(T); 79 } 80 81 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 82 return CGM.getTypes().ConvertType(T); 83 } 84 85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 86 type = type.getCanonicalType(); 87 while (true) { 88 switch (type->getTypeClass()) { 89 #define TYPE(name, parent) 90 #define ABSTRACT_TYPE(name, parent) 91 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 92 #define DEPENDENT_TYPE(name, parent) case Type::name: 93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 94 #include "clang/AST/TypeNodes.def" 95 llvm_unreachable("non-canonical or dependent type in IR-generation"); 96 97 case Type::Auto: 98 llvm_unreachable("undeduced auto type in IR-generation"); 99 100 // Various scalar types. 101 case Type::Builtin: 102 case Type::Pointer: 103 case Type::BlockPointer: 104 case Type::LValueReference: 105 case Type::RValueReference: 106 case Type::MemberPointer: 107 case Type::Vector: 108 case Type::ExtVector: 109 case Type::FunctionProto: 110 case Type::FunctionNoProto: 111 case Type::Enum: 112 case Type::ObjCObjectPointer: 113 return TEK_Scalar; 114 115 // Complexes. 116 case Type::Complex: 117 return TEK_Complex; 118 119 // Arrays, records, and Objective-C objects. 120 case Type::ConstantArray: 121 case Type::IncompleteArray: 122 case Type::VariableArray: 123 case Type::Record: 124 case Type::ObjCObject: 125 case Type::ObjCInterface: 126 return TEK_Aggregate; 127 128 // We operate on atomic values according to their underlying type. 129 case Type::Atomic: 130 type = cast<AtomicType>(type)->getValueType(); 131 continue; 132 } 133 llvm_unreachable("unknown type kind!"); 134 } 135 } 136 137 void CodeGenFunction::EmitReturnBlock() { 138 // For cleanliness, we try to avoid emitting the return block for 139 // simple cases. 140 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 141 142 if (CurBB) { 143 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 144 145 // We have a valid insert point, reuse it if it is empty or there are no 146 // explicit jumps to the return block. 147 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 148 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 149 delete ReturnBlock.getBlock(); 150 } else 151 EmitBlock(ReturnBlock.getBlock()); 152 return; 153 } 154 155 // Otherwise, if the return block is the target of a single direct 156 // branch then we can just put the code in that block instead. This 157 // cleans up functions which started with a unified return block. 158 if (ReturnBlock.getBlock()->hasOneUse()) { 159 llvm::BranchInst *BI = 160 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 161 if (BI && BI->isUnconditional() && 162 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 163 // Reset insertion point, including debug location, and delete the 164 // branch. This is really subtle and only works because the next change 165 // in location will hit the caching in CGDebugInfo::EmitLocation and not 166 // override this. 167 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 168 Builder.SetInsertPoint(BI->getParent()); 169 BI->eraseFromParent(); 170 delete ReturnBlock.getBlock(); 171 return; 172 } 173 } 174 175 // FIXME: We are at an unreachable point, there is no reason to emit the block 176 // unless it has uses. However, we still need a place to put the debug 177 // region.end for now. 178 179 EmitBlock(ReturnBlock.getBlock()); 180 } 181 182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 183 if (!BB) return; 184 if (!BB->use_empty()) 185 return CGF.CurFn->getBasicBlockList().push_back(BB); 186 delete BB; 187 } 188 189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 190 assert(BreakContinueStack.empty() && 191 "mismatched push/pop in break/continue stack!"); 192 193 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 194 && NumSimpleReturnExprs == NumReturnExprs 195 && ReturnBlock.getBlock()->use_empty(); 196 // Usually the return expression is evaluated before the cleanup 197 // code. If the function contains only a simple return statement, 198 // such as a constant, the location before the cleanup code becomes 199 // the last useful breakpoint in the function, because the simple 200 // return expression will be evaluated after the cleanup code. To be 201 // safe, set the debug location for cleanup code to the location of 202 // the return statement. Otherwise the cleanup code should be at the 203 // end of the function's lexical scope. 204 // 205 // If there are multiple branches to the return block, the branch 206 // instructions will get the location of the return statements and 207 // all will be fine. 208 if (CGDebugInfo *DI = getDebugInfo()) { 209 if (OnlySimpleReturnStmts) 210 DI->EmitLocation(Builder, LastStopPoint); 211 else 212 DI->EmitLocation(Builder, EndLoc); 213 } 214 215 // Pop any cleanups that might have been associated with the 216 // parameters. Do this in whatever block we're currently in; it's 217 // important to do this before we enter the return block or return 218 // edges will be *really* confused. 219 bool EmitRetDbgLoc = true; 220 if (EHStack.stable_begin() != PrologueCleanupDepth) { 221 PopCleanupBlocks(PrologueCleanupDepth); 222 223 // Make sure the line table doesn't jump back into the body for 224 // the ret after it's been at EndLoc. 225 EmitRetDbgLoc = false; 226 227 if (CGDebugInfo *DI = getDebugInfo()) 228 if (OnlySimpleReturnStmts) 229 DI->EmitLocation(Builder, EndLoc); 230 } 231 232 // Emit function epilog (to return). 233 EmitReturnBlock(); 234 235 if (ShouldInstrumentFunction()) 236 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 237 238 // Emit debug descriptor for function end. 239 if (CGDebugInfo *DI = getDebugInfo()) { 240 DI->EmitFunctionEnd(Builder); 241 } 242 243 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 244 EmitEndEHSpec(CurCodeDecl); 245 246 assert(EHStack.empty() && 247 "did not remove all scopes from cleanup stack!"); 248 249 // If someone did an indirect goto, emit the indirect goto block at the end of 250 // the function. 251 if (IndirectBranch) { 252 EmitBlock(IndirectBranch->getParent()); 253 Builder.ClearInsertionPoint(); 254 } 255 256 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 257 llvm::Instruction *Ptr = AllocaInsertPt; 258 AllocaInsertPt = 0; 259 Ptr->eraseFromParent(); 260 261 // If someone took the address of a label but never did an indirect goto, we 262 // made a zero entry PHI node, which is illegal, zap it now. 263 if (IndirectBranch) { 264 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 265 if (PN->getNumIncomingValues() == 0) { 266 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 267 PN->eraseFromParent(); 268 } 269 } 270 271 EmitIfUsed(*this, EHResumeBlock); 272 EmitIfUsed(*this, TerminateLandingPad); 273 EmitIfUsed(*this, TerminateHandler); 274 EmitIfUsed(*this, UnreachableBlock); 275 276 if (CGM.getCodeGenOpts().EmitDeclMetadata) 277 EmitDeclMetadata(); 278 } 279 280 /// ShouldInstrumentFunction - Return true if the current function should be 281 /// instrumented with __cyg_profile_func_* calls 282 bool CodeGenFunction::ShouldInstrumentFunction() { 283 if (!CGM.getCodeGenOpts().InstrumentFunctions) 284 return false; 285 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 286 return false; 287 return true; 288 } 289 290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 291 /// instrumentation function with the current function and the call site, if 292 /// function instrumentation is enabled. 293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 294 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 295 llvm::PointerType *PointerTy = Int8PtrTy; 296 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 297 llvm::FunctionType *FunctionTy = 298 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 299 300 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 301 llvm::CallInst *CallSite = Builder.CreateCall( 302 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 303 llvm::ConstantInt::get(Int32Ty, 0), 304 "callsite"); 305 306 llvm::Value *args[] = { 307 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 308 CallSite 309 }; 310 311 EmitNounwindRuntimeCall(F, args); 312 } 313 314 void CodeGenFunction::EmitMCountInstrumentation() { 315 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 316 317 llvm::Constant *MCountFn = 318 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 319 EmitNounwindRuntimeCall(MCountFn); 320 } 321 322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 323 // information in the program executable. The argument information stored 324 // includes the argument name, its type, the address and access qualifiers used. 325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 326 CodeGenModule &CGM,llvm::LLVMContext &Context, 327 SmallVector <llvm::Value*, 5> &kernelMDArgs, 328 CGBuilderTy& Builder, ASTContext &ASTCtx) { 329 // Create MDNodes that represent the kernel arg metadata. 330 // Each MDNode is a list in the form of "key", N number of values which is 331 // the same number of values as their are kernel arguments. 332 333 // MDNode for the kernel argument address space qualifiers. 334 SmallVector<llvm::Value*, 8> addressQuals; 335 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 336 337 // MDNode for the kernel argument access qualifiers (images only). 338 SmallVector<llvm::Value*, 8> accessQuals; 339 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 340 341 // MDNode for the kernel argument type names. 342 SmallVector<llvm::Value*, 8> argTypeNames; 343 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 344 345 // MDNode for the kernel argument type qualifiers. 346 SmallVector<llvm::Value*, 8> argTypeQuals; 347 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 348 349 // MDNode for the kernel argument names. 350 SmallVector<llvm::Value*, 8> argNames; 351 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 352 353 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 354 const ParmVarDecl *parm = FD->getParamDecl(i); 355 QualType ty = parm->getType(); 356 std::string typeQuals; 357 358 if (ty->isPointerType()) { 359 QualType pointeeTy = ty->getPointeeType(); 360 361 // Get address qualifier. 362 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 363 pointeeTy.getAddressSpace()))); 364 365 // Get argument type name. 366 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 367 368 // Turn "unsigned type" to "utype" 369 std::string::size_type pos = typeName.find("unsigned"); 370 if (pos != std::string::npos) 371 typeName.erase(pos+1, 8); 372 373 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 374 375 // Get argument type qualifiers: 376 if (ty.isRestrictQualified()) 377 typeQuals = "restrict"; 378 if (pointeeTy.isConstQualified() || 379 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 380 typeQuals += typeQuals.empty() ? "const" : " const"; 381 if (pointeeTy.isVolatileQualified()) 382 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 383 } else { 384 addressQuals.push_back(Builder.getInt32(0)); 385 386 // Get argument type name. 387 std::string typeName = ty.getUnqualifiedType().getAsString(); 388 389 // Turn "unsigned type" to "utype" 390 std::string::size_type pos = typeName.find("unsigned"); 391 if (pos != std::string::npos) 392 typeName.erase(pos+1, 8); 393 394 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 395 396 // Get argument type qualifiers: 397 if (ty.isConstQualified()) 398 typeQuals = "const"; 399 if (ty.isVolatileQualified()) 400 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 401 } 402 403 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 404 405 // Get image access qualifier: 406 if (ty->isImageType()) { 407 if (parm->hasAttr<OpenCLImageAccessAttr>() && 408 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 409 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 410 else 411 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 412 } else 413 accessQuals.push_back(llvm::MDString::get(Context, "none")); 414 415 // Get argument name. 416 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 417 } 418 419 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 420 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 421 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 422 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 423 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 424 } 425 426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 427 llvm::Function *Fn) 428 { 429 if (!FD->hasAttr<OpenCLKernelAttr>()) 430 return; 431 432 llvm::LLVMContext &Context = getLLVMContext(); 433 434 SmallVector <llvm::Value*, 5> kernelMDArgs; 435 kernelMDArgs.push_back(Fn); 436 437 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 438 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 439 Builder, getContext()); 440 441 if (FD->hasAttr<VecTypeHintAttr>()) { 442 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 443 QualType hintQTy = attr->getTypeHint(); 444 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 445 bool isSignedInteger = 446 hintQTy->isSignedIntegerType() || 447 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 448 llvm::Value *attrMDArgs[] = { 449 llvm::MDString::get(Context, "vec_type_hint"), 450 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 451 llvm::ConstantInt::get( 452 llvm::IntegerType::get(Context, 32), 453 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 454 }; 455 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 456 } 457 458 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 459 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 460 llvm::Value *attrMDArgs[] = { 461 llvm::MDString::get(Context, "work_group_size_hint"), 462 Builder.getInt32(attr->getXDim()), 463 Builder.getInt32(attr->getYDim()), 464 Builder.getInt32(attr->getZDim()) 465 }; 466 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 467 } 468 469 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 470 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 471 llvm::Value *attrMDArgs[] = { 472 llvm::MDString::get(Context, "reqd_work_group_size"), 473 Builder.getInt32(attr->getXDim()), 474 Builder.getInt32(attr->getYDim()), 475 Builder.getInt32(attr->getZDim()) 476 }; 477 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 478 } 479 480 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 481 llvm::NamedMDNode *OpenCLKernelMetadata = 482 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 483 OpenCLKernelMetadata->addOperand(kernelMDNode); 484 } 485 486 void CodeGenFunction::StartFunction(GlobalDecl GD, 487 QualType RetTy, 488 llvm::Function *Fn, 489 const CGFunctionInfo &FnInfo, 490 const FunctionArgList &Args, 491 SourceLocation StartLoc) { 492 const Decl *D = GD.getDecl(); 493 494 DidCallStackSave = false; 495 CurCodeDecl = D; 496 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 497 FnRetTy = RetTy; 498 CurFn = Fn; 499 CurFnInfo = &FnInfo; 500 assert(CurFn->isDeclaration() && "Function already has body?"); 501 502 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 503 SanOpts = &SanitizerOptions::Disabled; 504 SanitizePerformTypeCheck = false; 505 } 506 507 // Pass inline keyword to optimizer if it appears explicitly on any 508 // declaration. 509 if (!CGM.getCodeGenOpts().NoInline) 510 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 511 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 512 RE = FD->redecls_end(); RI != RE; ++RI) 513 if (RI->isInlineSpecified()) { 514 Fn->addFnAttr(llvm::Attribute::InlineHint); 515 break; 516 } 517 518 if (getLangOpts().OpenCL) { 519 // Add metadata for a kernel function. 520 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 521 EmitOpenCLKernelMetadata(FD, Fn); 522 } 523 524 // If we are checking function types, emit a function type signature as 525 // prefix data. 526 if (getLangOpts().CPlusPlus && SanOpts->Function) { 527 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 528 if (llvm::Constant *PrefixSig = 529 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 530 llvm::Constant *FTRTTIConst = 531 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 532 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 533 llvm::Constant *PrefixStructConst = 534 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 535 Fn->setPrefixData(PrefixStructConst); 536 } 537 } 538 } 539 540 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 541 542 // Create a marker to make it easy to insert allocas into the entryblock 543 // later. Don't create this with the builder, because we don't want it 544 // folded. 545 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 546 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 547 if (Builder.isNamePreserving()) 548 AllocaInsertPt->setName("allocapt"); 549 550 ReturnBlock = getJumpDestInCurrentScope("return"); 551 552 Builder.SetInsertPoint(EntryBB); 553 554 // Emit subprogram debug descriptor. 555 if (CGDebugInfo *DI = getDebugInfo()) { 556 SmallVector<QualType, 16> ArgTypes; 557 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 558 i != e; ++i) { 559 ArgTypes.push_back((*i)->getType()); 560 } 561 562 QualType FnType = 563 getContext().getFunctionType(RetTy, ArgTypes, 564 FunctionProtoType::ExtProtoInfo()); 565 566 DI->setLocation(StartLoc); 567 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 568 } 569 570 if (ShouldInstrumentFunction()) 571 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 572 573 if (CGM.getCodeGenOpts().InstrumentForProfiling) 574 EmitMCountInstrumentation(); 575 576 if (RetTy->isVoidType()) { 577 // Void type; nothing to return. 578 ReturnValue = 0; 579 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 580 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 581 // Indirect aggregate return; emit returned value directly into sret slot. 582 // This reduces code size, and affects correctness in C++. 583 ReturnValue = CurFn->arg_begin(); 584 } else { 585 ReturnValue = CreateIRTemp(RetTy, "retval"); 586 587 // Tell the epilog emitter to autorelease the result. We do this 588 // now so that various specialized functions can suppress it 589 // during their IR-generation. 590 if (getLangOpts().ObjCAutoRefCount && 591 !CurFnInfo->isReturnsRetained() && 592 RetTy->isObjCRetainableType()) 593 AutoreleaseResult = true; 594 } 595 596 EmitStartEHSpec(CurCodeDecl); 597 598 PrologueCleanupDepth = EHStack.stable_begin(); 599 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 600 601 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 602 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 603 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 604 if (MD->getParent()->isLambda() && 605 MD->getOverloadedOperator() == OO_Call) { 606 // We're in a lambda; figure out the captures. 607 MD->getParent()->getCaptureFields(LambdaCaptureFields, 608 LambdaThisCaptureField); 609 if (LambdaThisCaptureField) { 610 // If this lambda captures this, load it. 611 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 612 CXXThisValue = EmitLoadOfLValue(ThisLValue, 613 SourceLocation()).getScalarVal(); 614 } 615 } else { 616 // Not in a lambda; just use 'this' from the method. 617 // FIXME: Should we generate a new load for each use of 'this'? The 618 // fast register allocator would be happier... 619 CXXThisValue = CXXABIThisValue; 620 } 621 } 622 623 // If any of the arguments have a variably modified type, make sure to 624 // emit the type size. 625 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 626 i != e; ++i) { 627 const VarDecl *VD = *i; 628 629 // Dig out the type as written from ParmVarDecls; it's unclear whether 630 // the standard (C99 6.9.1p10) requires this, but we're following the 631 // precedent set by gcc. 632 QualType Ty; 633 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 634 Ty = PVD->getOriginalType(); 635 else 636 Ty = VD->getType(); 637 638 if (Ty->isVariablyModifiedType()) 639 EmitVariablyModifiedType(Ty); 640 } 641 // Emit a location at the end of the prologue. 642 if (CGDebugInfo *DI = getDebugInfo()) 643 DI->EmitLocation(Builder, StartLoc); 644 } 645 646 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 647 const Stmt *Body) { 648 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 649 EmitCompoundStmtWithoutScope(*S); 650 else 651 EmitStmt(Body); 652 } 653 654 /// Tries to mark the given function nounwind based on the 655 /// non-existence of any throwing calls within it. We believe this is 656 /// lightweight enough to do at -O0. 657 static void TryMarkNoThrow(llvm::Function *F) { 658 // LLVM treats 'nounwind' on a function as part of the type, so we 659 // can't do this on functions that can be overwritten. 660 if (F->mayBeOverridden()) return; 661 662 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 663 for (llvm::BasicBlock::iterator 664 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 665 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 666 if (!Call->doesNotThrow()) 667 return; 668 } else if (isa<llvm::ResumeInst>(&*BI)) { 669 return; 670 } 671 F->setDoesNotThrow(); 672 } 673 674 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 675 const FunctionDecl *UnsizedDealloc) { 676 // This is a weak discardable definition of the sized deallocation function. 677 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 678 679 // Call the unsized deallocation function and forward the first argument 680 // unchanged. 681 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 682 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 683 } 684 685 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 686 const CGFunctionInfo &FnInfo) { 687 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 688 689 // Check if we should generate debug info for this function. 690 if (FD->hasAttr<NoDebugAttr>()) 691 DebugInfo = NULL; // disable debug info indefinitely for this function 692 693 FunctionArgList Args; 694 QualType ResTy = FD->getResultType(); 695 696 CurGD = GD; 697 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 698 if (MD && MD->isInstance()) { 699 if (CGM.getCXXABI().HasThisReturn(GD)) 700 ResTy = MD->getThisType(getContext()); 701 CGM.getCXXABI().buildThisParam(*this, Args); 702 } 703 704 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 705 Args.push_back(FD->getParamDecl(i)); 706 707 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 708 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 709 710 SourceRange BodyRange; 711 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 712 CurEHLocation = BodyRange.getEnd(); 713 714 // Emit the standard function prologue. 715 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 716 717 // Generate the body of the function. 718 if (isa<CXXDestructorDecl>(FD)) 719 EmitDestructorBody(Args); 720 else if (isa<CXXConstructorDecl>(FD)) 721 EmitConstructorBody(Args); 722 else if (getLangOpts().CUDA && 723 !CGM.getCodeGenOpts().CUDAIsDevice && 724 FD->hasAttr<CUDAGlobalAttr>()) 725 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 726 else if (isa<CXXConversionDecl>(FD) && 727 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 728 // The lambda conversion to block pointer is special; the semantics can't be 729 // expressed in the AST, so IRGen needs to special-case it. 730 EmitLambdaToBlockPointerBody(Args); 731 } else if (isa<CXXMethodDecl>(FD) && 732 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 733 // The lambda static invoker function is special, because it forwards or 734 // clones the body of the function call operator (but is actually static). 735 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 736 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 737 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 738 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 739 // Implicit copy-assignment gets the same special treatment as implicit 740 // copy-constructors. 741 emitImplicitAssignmentOperatorBody(Args); 742 } else if (Stmt *Body = FD->getBody()) { 743 EmitFunctionBody(Args, Body); 744 } else if (FunctionDecl *UnsizedDealloc = 745 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 746 // Global sized deallocation functions get an implicit weak definition if 747 // they don't have an explicit definition. 748 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 749 } else 750 llvm_unreachable("no definition for emitted function"); 751 752 // C++11 [stmt.return]p2: 753 // Flowing off the end of a function [...] results in undefined behavior in 754 // a value-returning function. 755 // C11 6.9.1p12: 756 // If the '}' that terminates a function is reached, and the value of the 757 // function call is used by the caller, the behavior is undefined. 758 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 759 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 760 if (SanOpts->Return) 761 EmitCheck(Builder.getFalse(), "missing_return", 762 EmitCheckSourceLocation(FD->getLocation()), 763 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 764 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 765 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 766 Builder.CreateUnreachable(); 767 Builder.ClearInsertionPoint(); 768 } 769 770 // Emit the standard function epilogue. 771 FinishFunction(BodyRange.getEnd()); 772 773 // If we haven't marked the function nothrow through other means, do 774 // a quick pass now to see if we can. 775 if (!CurFn->doesNotThrow()) 776 TryMarkNoThrow(CurFn); 777 } 778 779 /// ContainsLabel - Return true if the statement contains a label in it. If 780 /// this statement is not executed normally, it not containing a label means 781 /// that we can just remove the code. 782 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 783 // Null statement, not a label! 784 if (S == 0) return false; 785 786 // If this is a label, we have to emit the code, consider something like: 787 // if (0) { ... foo: bar(); } goto foo; 788 // 789 // TODO: If anyone cared, we could track __label__'s, since we know that you 790 // can't jump to one from outside their declared region. 791 if (isa<LabelStmt>(S)) 792 return true; 793 794 // If this is a case/default statement, and we haven't seen a switch, we have 795 // to emit the code. 796 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 797 return true; 798 799 // If this is a switch statement, we want to ignore cases below it. 800 if (isa<SwitchStmt>(S)) 801 IgnoreCaseStmts = true; 802 803 // Scan subexpressions for verboten labels. 804 for (Stmt::const_child_range I = S->children(); I; ++I) 805 if (ContainsLabel(*I, IgnoreCaseStmts)) 806 return true; 807 808 return false; 809 } 810 811 /// containsBreak - Return true if the statement contains a break out of it. 812 /// If the statement (recursively) contains a switch or loop with a break 813 /// inside of it, this is fine. 814 bool CodeGenFunction::containsBreak(const Stmt *S) { 815 // Null statement, not a label! 816 if (S == 0) return false; 817 818 // If this is a switch or loop that defines its own break scope, then we can 819 // include it and anything inside of it. 820 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 821 isa<ForStmt>(S)) 822 return false; 823 824 if (isa<BreakStmt>(S)) 825 return true; 826 827 // Scan subexpressions for verboten breaks. 828 for (Stmt::const_child_range I = S->children(); I; ++I) 829 if (containsBreak(*I)) 830 return true; 831 832 return false; 833 } 834 835 836 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 837 /// to a constant, or if it does but contains a label, return false. If it 838 /// constant folds return true and set the boolean result in Result. 839 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 840 bool &ResultBool) { 841 llvm::APSInt ResultInt; 842 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 843 return false; 844 845 ResultBool = ResultInt.getBoolValue(); 846 return true; 847 } 848 849 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 850 /// to a constant, or if it does but contains a label, return false. If it 851 /// constant folds return true and set the folded value. 852 bool CodeGenFunction:: 853 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 854 // FIXME: Rename and handle conversion of other evaluatable things 855 // to bool. 856 llvm::APSInt Int; 857 if (!Cond->EvaluateAsInt(Int, getContext())) 858 return false; // Not foldable, not integer or not fully evaluatable. 859 860 if (CodeGenFunction::ContainsLabel(Cond)) 861 return false; // Contains a label. 862 863 ResultInt = Int; 864 return true; 865 } 866 867 868 869 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 870 /// statement) to the specified blocks. Based on the condition, this might try 871 /// to simplify the codegen of the conditional based on the branch. 872 /// 873 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 874 llvm::BasicBlock *TrueBlock, 875 llvm::BasicBlock *FalseBlock) { 876 Cond = Cond->IgnoreParens(); 877 878 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 879 // Handle X && Y in a condition. 880 if (CondBOp->getOpcode() == BO_LAnd) { 881 // If we have "1 && X", simplify the code. "0 && X" would have constant 882 // folded if the case was simple enough. 883 bool ConstantBool = false; 884 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 885 ConstantBool) { 886 // br(1 && X) -> br(X). 887 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 888 } 889 890 // If we have "X && 1", simplify the code to use an uncond branch. 891 // "X && 0" would have been constant folded to 0. 892 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 893 ConstantBool) { 894 // br(X && 1) -> br(X). 895 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 896 } 897 898 // Emit the LHS as a conditional. If the LHS conditional is false, we 899 // want to jump to the FalseBlock. 900 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 901 902 ConditionalEvaluation eval(*this); 903 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 904 EmitBlock(LHSTrue); 905 906 // Any temporaries created here are conditional. 907 eval.begin(*this); 908 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 909 eval.end(*this); 910 911 return; 912 } 913 914 if (CondBOp->getOpcode() == BO_LOr) { 915 // If we have "0 || X", simplify the code. "1 || X" would have constant 916 // folded if the case was simple enough. 917 bool ConstantBool = false; 918 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 919 !ConstantBool) { 920 // br(0 || X) -> br(X). 921 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 922 } 923 924 // If we have "X || 0", simplify the code to use an uncond branch. 925 // "X || 1" would have been constant folded to 1. 926 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 927 !ConstantBool) { 928 // br(X || 0) -> br(X). 929 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 930 } 931 932 // Emit the LHS as a conditional. If the LHS conditional is true, we 933 // want to jump to the TrueBlock. 934 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 935 936 ConditionalEvaluation eval(*this); 937 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 938 EmitBlock(LHSFalse); 939 940 // Any temporaries created here are conditional. 941 eval.begin(*this); 942 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 943 eval.end(*this); 944 945 return; 946 } 947 } 948 949 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 950 // br(!x, t, f) -> br(x, f, t) 951 if (CondUOp->getOpcode() == UO_LNot) 952 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 953 } 954 955 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 956 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 957 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 958 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 959 960 ConditionalEvaluation cond(*this); 961 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 962 963 cond.begin(*this); 964 EmitBlock(LHSBlock); 965 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 966 cond.end(*this); 967 968 cond.begin(*this); 969 EmitBlock(RHSBlock); 970 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 971 cond.end(*this); 972 973 return; 974 } 975 976 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 977 // Conditional operator handling can give us a throw expression as a 978 // condition for a case like: 979 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 980 // Fold this to: 981 // br(c, throw x, br(y, t, f)) 982 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 983 return; 984 } 985 986 // Emit the code with the fully general case. 987 llvm::Value *CondV = EvaluateExprAsBool(Cond); 988 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 989 } 990 991 /// ErrorUnsupported - Print out an error that codegen doesn't support the 992 /// specified stmt yet. 993 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 994 CGM.ErrorUnsupported(S, Type); 995 } 996 997 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 998 /// variable-length array whose elements have a non-zero bit-pattern. 999 /// 1000 /// \param baseType the inner-most element type of the array 1001 /// \param src - a char* pointing to the bit-pattern for a single 1002 /// base element of the array 1003 /// \param sizeInChars - the total size of the VLA, in chars 1004 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1005 llvm::Value *dest, llvm::Value *src, 1006 llvm::Value *sizeInChars) { 1007 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1008 = CGF.getContext().getTypeInfoInChars(baseType); 1009 1010 CGBuilderTy &Builder = CGF.Builder; 1011 1012 llvm::Value *baseSizeInChars 1013 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1014 1015 llvm::Type *i8p = Builder.getInt8PtrTy(); 1016 1017 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1018 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1019 1020 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1021 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1022 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1023 1024 // Make a loop over the VLA. C99 guarantees that the VLA element 1025 // count must be nonzero. 1026 CGF.EmitBlock(loopBB); 1027 1028 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1029 cur->addIncoming(begin, originBB); 1030 1031 // memcpy the individual element bit-pattern. 1032 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1033 baseSizeAndAlign.second.getQuantity(), 1034 /*volatile*/ false); 1035 1036 // Go to the next element. 1037 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1038 1039 // Leave if that's the end of the VLA. 1040 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1041 Builder.CreateCondBr(done, contBB, loopBB); 1042 cur->addIncoming(next, loopBB); 1043 1044 CGF.EmitBlock(contBB); 1045 } 1046 1047 void 1048 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1049 // Ignore empty classes in C++. 1050 if (getLangOpts().CPlusPlus) { 1051 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1052 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1053 return; 1054 } 1055 } 1056 1057 // Cast the dest ptr to the appropriate i8 pointer type. 1058 unsigned DestAS = 1059 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1060 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1061 if (DestPtr->getType() != BP) 1062 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1063 1064 // Get size and alignment info for this aggregate. 1065 std::pair<CharUnits, CharUnits> TypeInfo = 1066 getContext().getTypeInfoInChars(Ty); 1067 CharUnits Size = TypeInfo.first; 1068 CharUnits Align = TypeInfo.second; 1069 1070 llvm::Value *SizeVal; 1071 const VariableArrayType *vla; 1072 1073 // Don't bother emitting a zero-byte memset. 1074 if (Size.isZero()) { 1075 // But note that getTypeInfo returns 0 for a VLA. 1076 if (const VariableArrayType *vlaType = 1077 dyn_cast_or_null<VariableArrayType>( 1078 getContext().getAsArrayType(Ty))) { 1079 QualType eltType; 1080 llvm::Value *numElts; 1081 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1082 1083 SizeVal = numElts; 1084 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1085 if (!eltSize.isOne()) 1086 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1087 vla = vlaType; 1088 } else { 1089 return; 1090 } 1091 } else { 1092 SizeVal = CGM.getSize(Size); 1093 vla = 0; 1094 } 1095 1096 // If the type contains a pointer to data member we can't memset it to zero. 1097 // Instead, create a null constant and copy it to the destination. 1098 // TODO: there are other patterns besides zero that we can usefully memset, 1099 // like -1, which happens to be the pattern used by member-pointers. 1100 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1101 // For a VLA, emit a single element, then splat that over the VLA. 1102 if (vla) Ty = getContext().getBaseElementType(vla); 1103 1104 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1105 1106 llvm::GlobalVariable *NullVariable = 1107 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1108 /*isConstant=*/true, 1109 llvm::GlobalVariable::PrivateLinkage, 1110 NullConstant, Twine()); 1111 llvm::Value *SrcPtr = 1112 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1113 1114 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1115 1116 // Get and call the appropriate llvm.memcpy overload. 1117 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1118 return; 1119 } 1120 1121 // Otherwise, just memset the whole thing to zero. This is legal 1122 // because in LLVM, all default initializers (other than the ones we just 1123 // handled above) are guaranteed to have a bit pattern of all zeros. 1124 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1125 Align.getQuantity(), false); 1126 } 1127 1128 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1129 // Make sure that there is a block for the indirect goto. 1130 if (IndirectBranch == 0) 1131 GetIndirectGotoBlock(); 1132 1133 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1134 1135 // Make sure the indirect branch includes all of the address-taken blocks. 1136 IndirectBranch->addDestination(BB); 1137 return llvm::BlockAddress::get(CurFn, BB); 1138 } 1139 1140 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1141 // If we already made the indirect branch for indirect goto, return its block. 1142 if (IndirectBranch) return IndirectBranch->getParent(); 1143 1144 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1145 1146 // Create the PHI node that indirect gotos will add entries to. 1147 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1148 "indirect.goto.dest"); 1149 1150 // Create the indirect branch instruction. 1151 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1152 return IndirectBranch->getParent(); 1153 } 1154 1155 /// Computes the length of an array in elements, as well as the base 1156 /// element type and a properly-typed first element pointer. 1157 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1158 QualType &baseType, 1159 llvm::Value *&addr) { 1160 const ArrayType *arrayType = origArrayType; 1161 1162 // If it's a VLA, we have to load the stored size. Note that 1163 // this is the size of the VLA in bytes, not its size in elements. 1164 llvm::Value *numVLAElements = 0; 1165 if (isa<VariableArrayType>(arrayType)) { 1166 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1167 1168 // Walk into all VLAs. This doesn't require changes to addr, 1169 // which has type T* where T is the first non-VLA element type. 1170 do { 1171 QualType elementType = arrayType->getElementType(); 1172 arrayType = getContext().getAsArrayType(elementType); 1173 1174 // If we only have VLA components, 'addr' requires no adjustment. 1175 if (!arrayType) { 1176 baseType = elementType; 1177 return numVLAElements; 1178 } 1179 } while (isa<VariableArrayType>(arrayType)); 1180 1181 // We get out here only if we find a constant array type 1182 // inside the VLA. 1183 } 1184 1185 // We have some number of constant-length arrays, so addr should 1186 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1187 // down to the first element of addr. 1188 SmallVector<llvm::Value*, 8> gepIndices; 1189 1190 // GEP down to the array type. 1191 llvm::ConstantInt *zero = Builder.getInt32(0); 1192 gepIndices.push_back(zero); 1193 1194 uint64_t countFromCLAs = 1; 1195 QualType eltType; 1196 1197 llvm::ArrayType *llvmArrayType = 1198 dyn_cast<llvm::ArrayType>( 1199 cast<llvm::PointerType>(addr->getType())->getElementType()); 1200 while (llvmArrayType) { 1201 assert(isa<ConstantArrayType>(arrayType)); 1202 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1203 == llvmArrayType->getNumElements()); 1204 1205 gepIndices.push_back(zero); 1206 countFromCLAs *= llvmArrayType->getNumElements(); 1207 eltType = arrayType->getElementType(); 1208 1209 llvmArrayType = 1210 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1211 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1212 assert((!llvmArrayType || arrayType) && 1213 "LLVM and Clang types are out-of-synch"); 1214 } 1215 1216 if (arrayType) { 1217 // From this point onwards, the Clang array type has been emitted 1218 // as some other type (probably a packed struct). Compute the array 1219 // size, and just emit the 'begin' expression as a bitcast. 1220 while (arrayType) { 1221 countFromCLAs *= 1222 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1223 eltType = arrayType->getElementType(); 1224 arrayType = getContext().getAsArrayType(eltType); 1225 } 1226 1227 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1228 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1229 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1230 } else { 1231 // Create the actual GEP. 1232 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1233 } 1234 1235 baseType = eltType; 1236 1237 llvm::Value *numElements 1238 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1239 1240 // If we had any VLA dimensions, factor them in. 1241 if (numVLAElements) 1242 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1243 1244 return numElements; 1245 } 1246 1247 std::pair<llvm::Value*, QualType> 1248 CodeGenFunction::getVLASize(QualType type) { 1249 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1250 assert(vla && "type was not a variable array type!"); 1251 return getVLASize(vla); 1252 } 1253 1254 std::pair<llvm::Value*, QualType> 1255 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1256 // The number of elements so far; always size_t. 1257 llvm::Value *numElements = 0; 1258 1259 QualType elementType; 1260 do { 1261 elementType = type->getElementType(); 1262 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1263 assert(vlaSize && "no size for VLA!"); 1264 assert(vlaSize->getType() == SizeTy); 1265 1266 if (!numElements) { 1267 numElements = vlaSize; 1268 } else { 1269 // It's undefined behavior if this wraps around, so mark it that way. 1270 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1271 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1272 } 1273 } while ((type = getContext().getAsVariableArrayType(elementType))); 1274 1275 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1276 } 1277 1278 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1279 assert(type->isVariablyModifiedType() && 1280 "Must pass variably modified type to EmitVLASizes!"); 1281 1282 EnsureInsertPoint(); 1283 1284 // We're going to walk down into the type and look for VLA 1285 // expressions. 1286 do { 1287 assert(type->isVariablyModifiedType()); 1288 1289 const Type *ty = type.getTypePtr(); 1290 switch (ty->getTypeClass()) { 1291 1292 #define TYPE(Class, Base) 1293 #define ABSTRACT_TYPE(Class, Base) 1294 #define NON_CANONICAL_TYPE(Class, Base) 1295 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1296 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1297 #include "clang/AST/TypeNodes.def" 1298 llvm_unreachable("unexpected dependent type!"); 1299 1300 // These types are never variably-modified. 1301 case Type::Builtin: 1302 case Type::Complex: 1303 case Type::Vector: 1304 case Type::ExtVector: 1305 case Type::Record: 1306 case Type::Enum: 1307 case Type::Elaborated: 1308 case Type::TemplateSpecialization: 1309 case Type::ObjCObject: 1310 case Type::ObjCInterface: 1311 case Type::ObjCObjectPointer: 1312 llvm_unreachable("type class is never variably-modified!"); 1313 1314 case Type::Adjusted: 1315 type = cast<AdjustedType>(ty)->getAdjustedType(); 1316 break; 1317 1318 case Type::Decayed: 1319 type = cast<DecayedType>(ty)->getPointeeType(); 1320 break; 1321 1322 case Type::Pointer: 1323 type = cast<PointerType>(ty)->getPointeeType(); 1324 break; 1325 1326 case Type::BlockPointer: 1327 type = cast<BlockPointerType>(ty)->getPointeeType(); 1328 break; 1329 1330 case Type::LValueReference: 1331 case Type::RValueReference: 1332 type = cast<ReferenceType>(ty)->getPointeeType(); 1333 break; 1334 1335 case Type::MemberPointer: 1336 type = cast<MemberPointerType>(ty)->getPointeeType(); 1337 break; 1338 1339 case Type::ConstantArray: 1340 case Type::IncompleteArray: 1341 // Losing element qualification here is fine. 1342 type = cast<ArrayType>(ty)->getElementType(); 1343 break; 1344 1345 case Type::VariableArray: { 1346 // Losing element qualification here is fine. 1347 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1348 1349 // Unknown size indication requires no size computation. 1350 // Otherwise, evaluate and record it. 1351 if (const Expr *size = vat->getSizeExpr()) { 1352 // It's possible that we might have emitted this already, 1353 // e.g. with a typedef and a pointer to it. 1354 llvm::Value *&entry = VLASizeMap[size]; 1355 if (!entry) { 1356 llvm::Value *Size = EmitScalarExpr(size); 1357 1358 // C11 6.7.6.2p5: 1359 // If the size is an expression that is not an integer constant 1360 // expression [...] each time it is evaluated it shall have a value 1361 // greater than zero. 1362 if (SanOpts->VLABound && 1363 size->getType()->isSignedIntegerType()) { 1364 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1365 llvm::Constant *StaticArgs[] = { 1366 EmitCheckSourceLocation(size->getLocStart()), 1367 EmitCheckTypeDescriptor(size->getType()) 1368 }; 1369 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1370 "vla_bound_not_positive", StaticArgs, Size, 1371 CRK_Recoverable); 1372 } 1373 1374 // Always zexting here would be wrong if it weren't 1375 // undefined behavior to have a negative bound. 1376 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1377 } 1378 } 1379 type = vat->getElementType(); 1380 break; 1381 } 1382 1383 case Type::FunctionProto: 1384 case Type::FunctionNoProto: 1385 type = cast<FunctionType>(ty)->getResultType(); 1386 break; 1387 1388 case Type::Paren: 1389 case Type::TypeOf: 1390 case Type::UnaryTransform: 1391 case Type::Attributed: 1392 case Type::SubstTemplateTypeParm: 1393 case Type::PackExpansion: 1394 // Keep walking after single level desugaring. 1395 type = type.getSingleStepDesugaredType(getContext()); 1396 break; 1397 1398 case Type::Typedef: 1399 case Type::Decltype: 1400 case Type::Auto: 1401 // Stop walking: nothing to do. 1402 return; 1403 1404 case Type::TypeOfExpr: 1405 // Stop walking: emit typeof expression. 1406 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1407 return; 1408 1409 case Type::Atomic: 1410 type = cast<AtomicType>(ty)->getValueType(); 1411 break; 1412 } 1413 } while (type->isVariablyModifiedType()); 1414 } 1415 1416 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1417 if (getContext().getBuiltinVaListType()->isArrayType()) 1418 return EmitScalarExpr(E); 1419 return EmitLValue(E).getAddress(); 1420 } 1421 1422 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1423 llvm::Constant *Init) { 1424 assert (Init && "Invalid DeclRefExpr initializer!"); 1425 if (CGDebugInfo *Dbg = getDebugInfo()) 1426 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1427 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1428 } 1429 1430 CodeGenFunction::PeepholeProtection 1431 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1432 // At the moment, the only aggressive peephole we do in IR gen 1433 // is trunc(zext) folding, but if we add more, we can easily 1434 // extend this protection. 1435 1436 if (!rvalue.isScalar()) return PeepholeProtection(); 1437 llvm::Value *value = rvalue.getScalarVal(); 1438 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1439 1440 // Just make an extra bitcast. 1441 assert(HaveInsertPoint()); 1442 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1443 Builder.GetInsertBlock()); 1444 1445 PeepholeProtection protection; 1446 protection.Inst = inst; 1447 return protection; 1448 } 1449 1450 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1451 if (!protection.Inst) return; 1452 1453 // In theory, we could try to duplicate the peepholes now, but whatever. 1454 protection.Inst->eraseFromParent(); 1455 } 1456 1457 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1458 llvm::Value *AnnotatedVal, 1459 StringRef AnnotationStr, 1460 SourceLocation Location) { 1461 llvm::Value *Args[4] = { 1462 AnnotatedVal, 1463 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1464 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1465 CGM.EmitAnnotationLineNo(Location) 1466 }; 1467 return Builder.CreateCall(AnnotationFn, Args); 1468 } 1469 1470 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1471 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1472 // FIXME We create a new bitcast for every annotation because that's what 1473 // llvm-gcc was doing. 1474 for (specific_attr_iterator<AnnotateAttr> 1475 ai = D->specific_attr_begin<AnnotateAttr>(), 1476 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1477 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1478 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1479 (*ai)->getAnnotation(), D->getLocation()); 1480 } 1481 1482 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1483 llvm::Value *V) { 1484 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1485 llvm::Type *VTy = V->getType(); 1486 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1487 CGM.Int8PtrTy); 1488 1489 for (specific_attr_iterator<AnnotateAttr> 1490 ai = D->specific_attr_begin<AnnotateAttr>(), 1491 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1492 // FIXME Always emit the cast inst so we can differentiate between 1493 // annotation on the first field of a struct and annotation on the struct 1494 // itself. 1495 if (VTy != CGM.Int8PtrTy) 1496 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1497 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1498 V = Builder.CreateBitCast(V, VTy); 1499 } 1500 1501 return V; 1502 } 1503 1504 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1505