1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/MDBuilder.h" 27 #include "llvm/DataLayout.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), 34 Builder(cgm.getModule().getContext()), 35 SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull | 36 CGM.getLangOpts().SanitizeAlignment | 37 CGM.getLangOpts().SanitizeObjectSize | 38 CGM.getLangOpts().SanitizeVptr), 39 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 40 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 41 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 42 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 43 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 44 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 45 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 46 TerminateHandler(0), TrapBB(0) { 47 if (!suppressNewContext) 48 CGM.getCXXABI().getMangleContext().startNewFunction(); 49 } 50 51 CodeGenFunction::~CodeGenFunction() { 52 // If there are any unclaimed block infos, go ahead and destroy them 53 // now. This can happen if IR-gen gets clever and skips evaluating 54 // something. 55 if (FirstBlockInfo) 56 destroyBlockInfos(FirstBlockInfo); 57 } 58 59 60 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 61 return CGM.getTypes().ConvertTypeForMem(T); 62 } 63 64 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 65 return CGM.getTypes().ConvertType(T); 66 } 67 68 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 69 switch (type.getCanonicalType()->getTypeClass()) { 70 #define TYPE(name, parent) 71 #define ABSTRACT_TYPE(name, parent) 72 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 73 #define DEPENDENT_TYPE(name, parent) case Type::name: 74 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 75 #include "clang/AST/TypeNodes.def" 76 llvm_unreachable("non-canonical or dependent type in IR-generation"); 77 78 case Type::Builtin: 79 case Type::Pointer: 80 case Type::BlockPointer: 81 case Type::LValueReference: 82 case Type::RValueReference: 83 case Type::MemberPointer: 84 case Type::Vector: 85 case Type::ExtVector: 86 case Type::FunctionProto: 87 case Type::FunctionNoProto: 88 case Type::Enum: 89 case Type::ObjCObjectPointer: 90 return false; 91 92 // Complexes, arrays, records, and Objective-C objects. 93 case Type::Complex: 94 case Type::ConstantArray: 95 case Type::IncompleteArray: 96 case Type::VariableArray: 97 case Type::Record: 98 case Type::ObjCObject: 99 case Type::ObjCInterface: 100 return true; 101 102 // In IRGen, atomic types are just the underlying type 103 case Type::Atomic: 104 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 105 } 106 llvm_unreachable("unknown type kind!"); 107 } 108 109 void CodeGenFunction::EmitReturnBlock() { 110 // For cleanliness, we try to avoid emitting the return block for 111 // simple cases. 112 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 113 114 if (CurBB) { 115 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 116 117 // We have a valid insert point, reuse it if it is empty or there are no 118 // explicit jumps to the return block. 119 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 120 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 121 delete ReturnBlock.getBlock(); 122 } else 123 EmitBlock(ReturnBlock.getBlock()); 124 return; 125 } 126 127 // Otherwise, if the return block is the target of a single direct 128 // branch then we can just put the code in that block instead. This 129 // cleans up functions which started with a unified return block. 130 if (ReturnBlock.getBlock()->hasOneUse()) { 131 llvm::BranchInst *BI = 132 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 133 if (BI && BI->isUnconditional() && 134 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 135 // Reset insertion point, including debug location, and delete the branch. 136 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 137 Builder.SetInsertPoint(BI->getParent()); 138 BI->eraseFromParent(); 139 delete ReturnBlock.getBlock(); 140 return; 141 } 142 } 143 144 // FIXME: We are at an unreachable point, there is no reason to emit the block 145 // unless it has uses. However, we still need a place to put the debug 146 // region.end for now. 147 148 EmitBlock(ReturnBlock.getBlock()); 149 } 150 151 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 152 if (!BB) return; 153 if (!BB->use_empty()) 154 return CGF.CurFn->getBasicBlockList().push_back(BB); 155 delete BB; 156 } 157 158 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 159 assert(BreakContinueStack.empty() && 160 "mismatched push/pop in break/continue stack!"); 161 162 // Pop any cleanups that might have been associated with the 163 // parameters. Do this in whatever block we're currently in; it's 164 // important to do this before we enter the return block or return 165 // edges will be *really* confused. 166 if (EHStack.stable_begin() != PrologueCleanupDepth) 167 PopCleanupBlocks(PrologueCleanupDepth); 168 169 // Emit function epilog (to return). 170 EmitReturnBlock(); 171 172 if (ShouldInstrumentFunction()) 173 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 174 175 // Emit debug descriptor for function end. 176 if (CGDebugInfo *DI = getDebugInfo()) { 177 DI->setLocation(EndLoc); 178 DI->EmitFunctionEnd(Builder); 179 } 180 181 EmitFunctionEpilog(*CurFnInfo); 182 EmitEndEHSpec(CurCodeDecl); 183 184 assert(EHStack.empty() && 185 "did not remove all scopes from cleanup stack!"); 186 187 // If someone did an indirect goto, emit the indirect goto block at the end of 188 // the function. 189 if (IndirectBranch) { 190 EmitBlock(IndirectBranch->getParent()); 191 Builder.ClearInsertionPoint(); 192 } 193 194 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 195 llvm::Instruction *Ptr = AllocaInsertPt; 196 AllocaInsertPt = 0; 197 Ptr->eraseFromParent(); 198 199 // If someone took the address of a label but never did an indirect goto, we 200 // made a zero entry PHI node, which is illegal, zap it now. 201 if (IndirectBranch) { 202 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 203 if (PN->getNumIncomingValues() == 0) { 204 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 205 PN->eraseFromParent(); 206 } 207 } 208 209 EmitIfUsed(*this, EHResumeBlock); 210 EmitIfUsed(*this, TerminateLandingPad); 211 EmitIfUsed(*this, TerminateHandler); 212 EmitIfUsed(*this, UnreachableBlock); 213 214 if (CGM.getCodeGenOpts().EmitDeclMetadata) 215 EmitDeclMetadata(); 216 } 217 218 /// ShouldInstrumentFunction - Return true if the current function should be 219 /// instrumented with __cyg_profile_func_* calls 220 bool CodeGenFunction::ShouldInstrumentFunction() { 221 if (!CGM.getCodeGenOpts().InstrumentFunctions) 222 return false; 223 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 224 return false; 225 return true; 226 } 227 228 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 229 /// instrumentation function with the current function and the call site, if 230 /// function instrumentation is enabled. 231 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 232 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 233 llvm::PointerType *PointerTy = Int8PtrTy; 234 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 235 llvm::FunctionType *FunctionTy = 236 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 237 238 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 239 llvm::CallInst *CallSite = Builder.CreateCall( 240 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 241 llvm::ConstantInt::get(Int32Ty, 0), 242 "callsite"); 243 244 Builder.CreateCall2(F, 245 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 246 CallSite); 247 } 248 249 void CodeGenFunction::EmitMCountInstrumentation() { 250 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 251 252 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 253 Target.getMCountName()); 254 Builder.CreateCall(MCountFn); 255 } 256 257 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 258 // information in the program executable. The argument information stored 259 // includes the argument name, its type, the address and access qualifiers used. 260 // FIXME: Add type, address, and access qualifiers. 261 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 262 CodeGenModule &CGM,llvm::LLVMContext &Context, 263 llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) { 264 265 // Create MDNodes that represents the kernel arg metadata. 266 // Each MDNode is a list in the form of "key", N number of values which is 267 // the same number of values as their are kernel arguments. 268 269 // MDNode for the kernel argument names. 270 SmallVector<llvm::Value*, 8> argNames; 271 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 272 273 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 274 const ParmVarDecl *parm = FD->getParamDecl(i); 275 276 // Get argument name. 277 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 278 279 } 280 // Add MDNode to the list of all metadata. 281 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 282 } 283 284 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 285 llvm::Function *Fn) 286 { 287 if (!FD->hasAttr<OpenCLKernelAttr>()) 288 return; 289 290 llvm::LLVMContext &Context = getLLVMContext(); 291 292 llvm::SmallVector <llvm::Value*, 5> kernelMDArgs; 293 kernelMDArgs.push_back(Fn); 294 295 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 296 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 297 298 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 299 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 300 llvm::Value *attrMDArgs[] = { 301 llvm::MDString::get(Context, "work_group_size_hint"), 302 Builder.getInt32(attr->getXDim()), 303 Builder.getInt32(attr->getYDim()), 304 Builder.getInt32(attr->getZDim()) 305 }; 306 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 307 } 308 309 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 310 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 311 llvm::Value *attrMDArgs[] = { 312 llvm::MDString::get(Context, "reqd_work_group_size"), 313 Builder.getInt32(attr->getXDim()), 314 Builder.getInt32(attr->getYDim()), 315 Builder.getInt32(attr->getZDim()) 316 }; 317 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 318 } 319 320 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 321 llvm::NamedMDNode *OpenCLKernelMetadata = 322 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 323 OpenCLKernelMetadata->addOperand(kernelMDNode); 324 } 325 326 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 327 llvm::Function *Fn, 328 const CGFunctionInfo &FnInfo, 329 const FunctionArgList &Args, 330 SourceLocation StartLoc) { 331 const Decl *D = GD.getDecl(); 332 333 DidCallStackSave = false; 334 CurCodeDecl = CurFuncDecl = D; 335 FnRetTy = RetTy; 336 CurFn = Fn; 337 CurFnInfo = &FnInfo; 338 assert(CurFn->isDeclaration() && "Function already has body?"); 339 340 // Pass inline keyword to optimizer if it appears explicitly on any 341 // declaration. 342 if (!CGM.getCodeGenOpts().NoInline) 343 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 344 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 345 RE = FD->redecls_end(); RI != RE; ++RI) 346 if (RI->isInlineSpecified()) { 347 Fn->addFnAttr(llvm::Attributes::InlineHint); 348 break; 349 } 350 351 if (getLangOpts().OpenCL) { 352 // Add metadata for a kernel function. 353 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 354 EmitOpenCLKernelMetadata(FD, Fn); 355 } 356 357 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 358 359 // Create a marker to make it easy to insert allocas into the entryblock 360 // later. Don't create this with the builder, because we don't want it 361 // folded. 362 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 363 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 364 if (Builder.isNamePreserving()) 365 AllocaInsertPt->setName("allocapt"); 366 367 ReturnBlock = getJumpDestInCurrentScope("return"); 368 369 Builder.SetInsertPoint(EntryBB); 370 371 // Emit subprogram debug descriptor. 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 unsigned NumArgs = 0; 374 QualType *ArgsArray = new QualType[Args.size()]; 375 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 376 i != e; ++i) { 377 ArgsArray[NumArgs++] = (*i)->getType(); 378 } 379 380 QualType FnType = 381 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 382 FunctionProtoType::ExtProtoInfo()); 383 384 delete[] ArgsArray; 385 386 DI->setLocation(StartLoc); 387 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 388 } 389 390 if (ShouldInstrumentFunction()) 391 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 392 393 if (CGM.getCodeGenOpts().InstrumentForProfiling) 394 EmitMCountInstrumentation(); 395 396 if (RetTy->isVoidType()) { 397 // Void type; nothing to return. 398 ReturnValue = 0; 399 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 400 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 401 // Indirect aggregate return; emit returned value directly into sret slot. 402 // This reduces code size, and affects correctness in C++. 403 ReturnValue = CurFn->arg_begin(); 404 } else { 405 ReturnValue = CreateIRTemp(RetTy, "retval"); 406 407 // Tell the epilog emitter to autorelease the result. We do this 408 // now so that various specialized functions can suppress it 409 // during their IR-generation. 410 if (getLangOpts().ObjCAutoRefCount && 411 !CurFnInfo->isReturnsRetained() && 412 RetTy->isObjCRetainableType()) 413 AutoreleaseResult = true; 414 } 415 416 EmitStartEHSpec(CurCodeDecl); 417 418 PrologueCleanupDepth = EHStack.stable_begin(); 419 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 420 421 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 422 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 423 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 424 if (MD->getParent()->isLambda() && 425 MD->getOverloadedOperator() == OO_Call) { 426 // We're in a lambda; figure out the captures. 427 MD->getParent()->getCaptureFields(LambdaCaptureFields, 428 LambdaThisCaptureField); 429 if (LambdaThisCaptureField) { 430 // If this lambda captures this, load it. 431 QualType LambdaTagType = 432 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 433 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 434 LambdaTagType); 435 LValue ThisLValue = EmitLValueForField(LambdaLV, 436 LambdaThisCaptureField); 437 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 438 } 439 } else { 440 // Not in a lambda; just use 'this' from the method. 441 // FIXME: Should we generate a new load for each use of 'this'? The 442 // fast register allocator would be happier... 443 CXXThisValue = CXXABIThisValue; 444 } 445 } 446 447 // If any of the arguments have a variably modified type, make sure to 448 // emit the type size. 449 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 450 i != e; ++i) { 451 const VarDecl *VD = *i; 452 453 // Dig out the type as written from ParmVarDecls; it's unclear whether 454 // the standard (C99 6.9.1p10) requires this, but we're following the 455 // precedent set by gcc. 456 QualType Ty; 457 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 458 Ty = PVD->getOriginalType(); 459 else 460 Ty = VD->getType(); 461 462 if (Ty->isVariablyModifiedType()) 463 EmitVariablyModifiedType(Ty); 464 } 465 // Emit a location at the end of the prologue. 466 if (CGDebugInfo *DI = getDebugInfo()) 467 DI->EmitLocation(Builder, StartLoc); 468 } 469 470 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 471 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 472 assert(FD->getBody()); 473 EmitStmt(FD->getBody()); 474 } 475 476 /// Tries to mark the given function nounwind based on the 477 /// non-existence of any throwing calls within it. We believe this is 478 /// lightweight enough to do at -O0. 479 static void TryMarkNoThrow(llvm::Function *F) { 480 // LLVM treats 'nounwind' on a function as part of the type, so we 481 // can't do this on functions that can be overwritten. 482 if (F->mayBeOverridden()) return; 483 484 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 485 for (llvm::BasicBlock::iterator 486 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 487 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 488 if (!Call->doesNotThrow()) 489 return; 490 } else if (isa<llvm::ResumeInst>(&*BI)) { 491 return; 492 } 493 F->setDoesNotThrow(); 494 } 495 496 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 497 const CGFunctionInfo &FnInfo) { 498 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 499 500 // Check if we should generate debug info for this function. 501 if (!FD->hasAttr<NoDebugAttr>()) 502 maybeInitializeDebugInfo(); 503 504 FunctionArgList Args; 505 QualType ResTy = FD->getResultType(); 506 507 CurGD = GD; 508 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 509 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 510 511 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 512 Args.push_back(FD->getParamDecl(i)); 513 514 SourceRange BodyRange; 515 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 516 517 // Emit the standard function prologue. 518 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 519 520 // Generate the body of the function. 521 if (isa<CXXDestructorDecl>(FD)) 522 EmitDestructorBody(Args); 523 else if (isa<CXXConstructorDecl>(FD)) 524 EmitConstructorBody(Args); 525 else if (getLangOpts().CUDA && 526 !CGM.getCodeGenOpts().CUDAIsDevice && 527 FD->hasAttr<CUDAGlobalAttr>()) 528 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 529 else if (isa<CXXConversionDecl>(FD) && 530 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 531 // The lambda conversion to block pointer is special; the semantics can't be 532 // expressed in the AST, so IRGen needs to special-case it. 533 EmitLambdaToBlockPointerBody(Args); 534 } else if (isa<CXXMethodDecl>(FD) && 535 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 536 // The lambda "__invoke" function is special, because it forwards or 537 // clones the body of the function call operator (but is actually static). 538 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 539 } 540 else 541 EmitFunctionBody(Args); 542 543 // C++11 [stmt.return]p2: 544 // Flowing off the end of a function [...] results in undefined behavior in 545 // a value-returning function. 546 // C11 6.9.1p12: 547 // If the '}' that terminates a function is reached, and the value of the 548 // function call is used by the caller, the behavior is undefined. 549 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 550 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 551 if (getLangOpts().SanitizeReturn) 552 EmitCheck(Builder.getFalse(), "missing_return", 553 EmitCheckSourceLocation(FD->getLocation()), 554 llvm::ArrayRef<llvm::Value*>(), CRK_Unrecoverable); 555 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 556 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 557 Builder.CreateUnreachable(); 558 Builder.ClearInsertionPoint(); 559 } 560 561 // Emit the standard function epilogue. 562 FinishFunction(BodyRange.getEnd()); 563 564 // If we haven't marked the function nothrow through other means, do 565 // a quick pass now to see if we can. 566 if (!CurFn->doesNotThrow()) 567 TryMarkNoThrow(CurFn); 568 } 569 570 /// ContainsLabel - Return true if the statement contains a label in it. If 571 /// this statement is not executed normally, it not containing a label means 572 /// that we can just remove the code. 573 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 574 // Null statement, not a label! 575 if (S == 0) return false; 576 577 // If this is a label, we have to emit the code, consider something like: 578 // if (0) { ... foo: bar(); } goto foo; 579 // 580 // TODO: If anyone cared, we could track __label__'s, since we know that you 581 // can't jump to one from outside their declared region. 582 if (isa<LabelStmt>(S)) 583 return true; 584 585 // If this is a case/default statement, and we haven't seen a switch, we have 586 // to emit the code. 587 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 588 return true; 589 590 // If this is a switch statement, we want to ignore cases below it. 591 if (isa<SwitchStmt>(S)) 592 IgnoreCaseStmts = true; 593 594 // Scan subexpressions for verboten labels. 595 for (Stmt::const_child_range I = S->children(); I; ++I) 596 if (ContainsLabel(*I, IgnoreCaseStmts)) 597 return true; 598 599 return false; 600 } 601 602 /// containsBreak - Return true if the statement contains a break out of it. 603 /// If the statement (recursively) contains a switch or loop with a break 604 /// inside of it, this is fine. 605 bool CodeGenFunction::containsBreak(const Stmt *S) { 606 // Null statement, not a label! 607 if (S == 0) return false; 608 609 // If this is a switch or loop that defines its own break scope, then we can 610 // include it and anything inside of it. 611 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 612 isa<ForStmt>(S)) 613 return false; 614 615 if (isa<BreakStmt>(S)) 616 return true; 617 618 // Scan subexpressions for verboten breaks. 619 for (Stmt::const_child_range I = S->children(); I; ++I) 620 if (containsBreak(*I)) 621 return true; 622 623 return false; 624 } 625 626 627 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 628 /// to a constant, or if it does but contains a label, return false. If it 629 /// constant folds return true and set the boolean result in Result. 630 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 631 bool &ResultBool) { 632 llvm::APSInt ResultInt; 633 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 634 return false; 635 636 ResultBool = ResultInt.getBoolValue(); 637 return true; 638 } 639 640 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 641 /// to a constant, or if it does but contains a label, return false. If it 642 /// constant folds return true and set the folded value. 643 bool CodeGenFunction:: 644 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 645 // FIXME: Rename and handle conversion of other evaluatable things 646 // to bool. 647 llvm::APSInt Int; 648 if (!Cond->EvaluateAsInt(Int, getContext())) 649 return false; // Not foldable, not integer or not fully evaluatable. 650 651 if (CodeGenFunction::ContainsLabel(Cond)) 652 return false; // Contains a label. 653 654 ResultInt = Int; 655 return true; 656 } 657 658 659 660 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 661 /// statement) to the specified blocks. Based on the condition, this might try 662 /// to simplify the codegen of the conditional based on the branch. 663 /// 664 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 665 llvm::BasicBlock *TrueBlock, 666 llvm::BasicBlock *FalseBlock) { 667 Cond = Cond->IgnoreParens(); 668 669 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 670 // Handle X && Y in a condition. 671 if (CondBOp->getOpcode() == BO_LAnd) { 672 // If we have "1 && X", simplify the code. "0 && X" would have constant 673 // folded if the case was simple enough. 674 bool ConstantBool = false; 675 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 676 ConstantBool) { 677 // br(1 && X) -> br(X). 678 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 679 } 680 681 // If we have "X && 1", simplify the code to use an uncond branch. 682 // "X && 0" would have been constant folded to 0. 683 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 684 ConstantBool) { 685 // br(X && 1) -> br(X). 686 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 687 } 688 689 // Emit the LHS as a conditional. If the LHS conditional is false, we 690 // want to jump to the FalseBlock. 691 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 692 693 ConditionalEvaluation eval(*this); 694 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 695 EmitBlock(LHSTrue); 696 697 // Any temporaries created here are conditional. 698 eval.begin(*this); 699 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 700 eval.end(*this); 701 702 return; 703 } 704 705 if (CondBOp->getOpcode() == BO_LOr) { 706 // If we have "0 || X", simplify the code. "1 || X" would have constant 707 // folded if the case was simple enough. 708 bool ConstantBool = false; 709 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 710 !ConstantBool) { 711 // br(0 || X) -> br(X). 712 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 713 } 714 715 // If we have "X || 0", simplify the code to use an uncond branch. 716 // "X || 1" would have been constant folded to 1. 717 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 718 !ConstantBool) { 719 // br(X || 0) -> br(X). 720 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 721 } 722 723 // Emit the LHS as a conditional. If the LHS conditional is true, we 724 // want to jump to the TrueBlock. 725 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 726 727 ConditionalEvaluation eval(*this); 728 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 729 EmitBlock(LHSFalse); 730 731 // Any temporaries created here are conditional. 732 eval.begin(*this); 733 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 734 eval.end(*this); 735 736 return; 737 } 738 } 739 740 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 741 // br(!x, t, f) -> br(x, f, t) 742 if (CondUOp->getOpcode() == UO_LNot) 743 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 744 } 745 746 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 747 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 748 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 749 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 750 751 ConditionalEvaluation cond(*this); 752 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 753 754 cond.begin(*this); 755 EmitBlock(LHSBlock); 756 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 757 cond.end(*this); 758 759 cond.begin(*this); 760 EmitBlock(RHSBlock); 761 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 762 cond.end(*this); 763 764 return; 765 } 766 767 // Emit the code with the fully general case. 768 llvm::Value *CondV = EvaluateExprAsBool(Cond); 769 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 770 } 771 772 /// ErrorUnsupported - Print out an error that codegen doesn't support the 773 /// specified stmt yet. 774 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 775 bool OmitOnError) { 776 CGM.ErrorUnsupported(S, Type, OmitOnError); 777 } 778 779 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 780 /// variable-length array whose elements have a non-zero bit-pattern. 781 /// 782 /// \param baseType the inner-most element type of the array 783 /// \param src - a char* pointing to the bit-pattern for a single 784 /// base element of the array 785 /// \param sizeInChars - the total size of the VLA, in chars 786 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 787 llvm::Value *dest, llvm::Value *src, 788 llvm::Value *sizeInChars) { 789 std::pair<CharUnits,CharUnits> baseSizeAndAlign 790 = CGF.getContext().getTypeInfoInChars(baseType); 791 792 CGBuilderTy &Builder = CGF.Builder; 793 794 llvm::Value *baseSizeInChars 795 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 796 797 llvm::Type *i8p = Builder.getInt8PtrTy(); 798 799 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 800 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 801 802 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 803 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 804 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 805 806 // Make a loop over the VLA. C99 guarantees that the VLA element 807 // count must be nonzero. 808 CGF.EmitBlock(loopBB); 809 810 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 811 cur->addIncoming(begin, originBB); 812 813 // memcpy the individual element bit-pattern. 814 Builder.CreateMemCpy(cur, src, baseSizeInChars, 815 baseSizeAndAlign.second.getQuantity(), 816 /*volatile*/ false); 817 818 // Go to the next element. 819 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 820 821 // Leave if that's the end of the VLA. 822 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 823 Builder.CreateCondBr(done, contBB, loopBB); 824 cur->addIncoming(next, loopBB); 825 826 CGF.EmitBlock(contBB); 827 } 828 829 void 830 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 831 // Ignore empty classes in C++. 832 if (getLangOpts().CPlusPlus) { 833 if (const RecordType *RT = Ty->getAs<RecordType>()) { 834 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 835 return; 836 } 837 } 838 839 // Cast the dest ptr to the appropriate i8 pointer type. 840 unsigned DestAS = 841 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 842 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 843 if (DestPtr->getType() != BP) 844 DestPtr = Builder.CreateBitCast(DestPtr, BP); 845 846 // Get size and alignment info for this aggregate. 847 std::pair<CharUnits, CharUnits> TypeInfo = 848 getContext().getTypeInfoInChars(Ty); 849 CharUnits Size = TypeInfo.first; 850 CharUnits Align = TypeInfo.second; 851 852 llvm::Value *SizeVal; 853 const VariableArrayType *vla; 854 855 // Don't bother emitting a zero-byte memset. 856 if (Size.isZero()) { 857 // But note that getTypeInfo returns 0 for a VLA. 858 if (const VariableArrayType *vlaType = 859 dyn_cast_or_null<VariableArrayType>( 860 getContext().getAsArrayType(Ty))) { 861 QualType eltType; 862 llvm::Value *numElts; 863 llvm::tie(numElts, eltType) = getVLASize(vlaType); 864 865 SizeVal = numElts; 866 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 867 if (!eltSize.isOne()) 868 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 869 vla = vlaType; 870 } else { 871 return; 872 } 873 } else { 874 SizeVal = CGM.getSize(Size); 875 vla = 0; 876 } 877 878 // If the type contains a pointer to data member we can't memset it to zero. 879 // Instead, create a null constant and copy it to the destination. 880 // TODO: there are other patterns besides zero that we can usefully memset, 881 // like -1, which happens to be the pattern used by member-pointers. 882 if (!CGM.getTypes().isZeroInitializable(Ty)) { 883 // For a VLA, emit a single element, then splat that over the VLA. 884 if (vla) Ty = getContext().getBaseElementType(vla); 885 886 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 887 888 llvm::GlobalVariable *NullVariable = 889 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 890 /*isConstant=*/true, 891 llvm::GlobalVariable::PrivateLinkage, 892 NullConstant, Twine()); 893 llvm::Value *SrcPtr = 894 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 895 896 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 897 898 // Get and call the appropriate llvm.memcpy overload. 899 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 900 return; 901 } 902 903 // Otherwise, just memset the whole thing to zero. This is legal 904 // because in LLVM, all default initializers (other than the ones we just 905 // handled above) are guaranteed to have a bit pattern of all zeros. 906 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 907 Align.getQuantity(), false); 908 } 909 910 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 911 // Make sure that there is a block for the indirect goto. 912 if (IndirectBranch == 0) 913 GetIndirectGotoBlock(); 914 915 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 916 917 // Make sure the indirect branch includes all of the address-taken blocks. 918 IndirectBranch->addDestination(BB); 919 return llvm::BlockAddress::get(CurFn, BB); 920 } 921 922 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 923 // If we already made the indirect branch for indirect goto, return its block. 924 if (IndirectBranch) return IndirectBranch->getParent(); 925 926 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 927 928 // Create the PHI node that indirect gotos will add entries to. 929 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 930 "indirect.goto.dest"); 931 932 // Create the indirect branch instruction. 933 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 934 return IndirectBranch->getParent(); 935 } 936 937 /// Computes the length of an array in elements, as well as the base 938 /// element type and a properly-typed first element pointer. 939 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 940 QualType &baseType, 941 llvm::Value *&addr) { 942 const ArrayType *arrayType = origArrayType; 943 944 // If it's a VLA, we have to load the stored size. Note that 945 // this is the size of the VLA in bytes, not its size in elements. 946 llvm::Value *numVLAElements = 0; 947 if (isa<VariableArrayType>(arrayType)) { 948 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 949 950 // Walk into all VLAs. This doesn't require changes to addr, 951 // which has type T* where T is the first non-VLA element type. 952 do { 953 QualType elementType = arrayType->getElementType(); 954 arrayType = getContext().getAsArrayType(elementType); 955 956 // If we only have VLA components, 'addr' requires no adjustment. 957 if (!arrayType) { 958 baseType = elementType; 959 return numVLAElements; 960 } 961 } while (isa<VariableArrayType>(arrayType)); 962 963 // We get out here only if we find a constant array type 964 // inside the VLA. 965 } 966 967 // We have some number of constant-length arrays, so addr should 968 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 969 // down to the first element of addr. 970 SmallVector<llvm::Value*, 8> gepIndices; 971 972 // GEP down to the array type. 973 llvm::ConstantInt *zero = Builder.getInt32(0); 974 gepIndices.push_back(zero); 975 976 uint64_t countFromCLAs = 1; 977 QualType eltType; 978 979 llvm::ArrayType *llvmArrayType = 980 dyn_cast<llvm::ArrayType>( 981 cast<llvm::PointerType>(addr->getType())->getElementType()); 982 while (llvmArrayType) { 983 assert(isa<ConstantArrayType>(arrayType)); 984 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 985 == llvmArrayType->getNumElements()); 986 987 gepIndices.push_back(zero); 988 countFromCLAs *= llvmArrayType->getNumElements(); 989 eltType = arrayType->getElementType(); 990 991 llvmArrayType = 992 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 993 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 994 assert((!llvmArrayType || arrayType) && 995 "LLVM and Clang types are out-of-synch"); 996 } 997 998 if (arrayType) { 999 // From this point onwards, the Clang array type has been emitted 1000 // as some other type (probably a packed struct). Compute the array 1001 // size, and just emit the 'begin' expression as a bitcast. 1002 while (arrayType) { 1003 countFromCLAs *= 1004 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1005 eltType = arrayType->getElementType(); 1006 arrayType = getContext().getAsArrayType(eltType); 1007 } 1008 1009 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1010 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1011 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1012 } else { 1013 // Create the actual GEP. 1014 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1015 } 1016 1017 baseType = eltType; 1018 1019 llvm::Value *numElements 1020 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1021 1022 // If we had any VLA dimensions, factor them in. 1023 if (numVLAElements) 1024 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1025 1026 return numElements; 1027 } 1028 1029 std::pair<llvm::Value*, QualType> 1030 CodeGenFunction::getVLASize(QualType type) { 1031 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1032 assert(vla && "type was not a variable array type!"); 1033 return getVLASize(vla); 1034 } 1035 1036 std::pair<llvm::Value*, QualType> 1037 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1038 // The number of elements so far; always size_t. 1039 llvm::Value *numElements = 0; 1040 1041 QualType elementType; 1042 do { 1043 elementType = type->getElementType(); 1044 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1045 assert(vlaSize && "no size for VLA!"); 1046 assert(vlaSize->getType() == SizeTy); 1047 1048 if (!numElements) { 1049 numElements = vlaSize; 1050 } else { 1051 // It's undefined behavior if this wraps around, so mark it that way. 1052 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1053 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1054 } 1055 } while ((type = getContext().getAsVariableArrayType(elementType))); 1056 1057 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1058 } 1059 1060 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1061 assert(type->isVariablyModifiedType() && 1062 "Must pass variably modified type to EmitVLASizes!"); 1063 1064 EnsureInsertPoint(); 1065 1066 // We're going to walk down into the type and look for VLA 1067 // expressions. 1068 do { 1069 assert(type->isVariablyModifiedType()); 1070 1071 const Type *ty = type.getTypePtr(); 1072 switch (ty->getTypeClass()) { 1073 1074 #define TYPE(Class, Base) 1075 #define ABSTRACT_TYPE(Class, Base) 1076 #define NON_CANONICAL_TYPE(Class, Base) 1077 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1078 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1079 #include "clang/AST/TypeNodes.def" 1080 llvm_unreachable("unexpected dependent type!"); 1081 1082 // These types are never variably-modified. 1083 case Type::Builtin: 1084 case Type::Complex: 1085 case Type::Vector: 1086 case Type::ExtVector: 1087 case Type::Record: 1088 case Type::Enum: 1089 case Type::Elaborated: 1090 case Type::TemplateSpecialization: 1091 case Type::ObjCObject: 1092 case Type::ObjCInterface: 1093 case Type::ObjCObjectPointer: 1094 llvm_unreachable("type class is never variably-modified!"); 1095 1096 case Type::Pointer: 1097 type = cast<PointerType>(ty)->getPointeeType(); 1098 break; 1099 1100 case Type::BlockPointer: 1101 type = cast<BlockPointerType>(ty)->getPointeeType(); 1102 break; 1103 1104 case Type::LValueReference: 1105 case Type::RValueReference: 1106 type = cast<ReferenceType>(ty)->getPointeeType(); 1107 break; 1108 1109 case Type::MemberPointer: 1110 type = cast<MemberPointerType>(ty)->getPointeeType(); 1111 break; 1112 1113 case Type::ConstantArray: 1114 case Type::IncompleteArray: 1115 // Losing element qualification here is fine. 1116 type = cast<ArrayType>(ty)->getElementType(); 1117 break; 1118 1119 case Type::VariableArray: { 1120 // Losing element qualification here is fine. 1121 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1122 1123 // Unknown size indication requires no size computation. 1124 // Otherwise, evaluate and record it. 1125 if (const Expr *size = vat->getSizeExpr()) { 1126 // It's possible that we might have emitted this already, 1127 // e.g. with a typedef and a pointer to it. 1128 llvm::Value *&entry = VLASizeMap[size]; 1129 if (!entry) { 1130 llvm::Value *Size = EmitScalarExpr(size); 1131 1132 // C11 6.7.6.2p5: 1133 // If the size is an expression that is not an integer constant 1134 // expression [...] each time it is evaluated it shall have a value 1135 // greater than zero. 1136 if (getLangOpts().SanitizeVLABound && 1137 size->getType()->isSignedIntegerType()) { 1138 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1139 llvm::Constant *StaticArgs[] = { 1140 EmitCheckSourceLocation(size->getLocStart()), 1141 EmitCheckTypeDescriptor(size->getType()) 1142 }; 1143 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1144 "vla_bound_not_positive", StaticArgs, Size, 1145 CRK_Recoverable); 1146 } 1147 1148 // Always zexting here would be wrong if it weren't 1149 // undefined behavior to have a negative bound. 1150 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1151 } 1152 } 1153 type = vat->getElementType(); 1154 break; 1155 } 1156 1157 case Type::FunctionProto: 1158 case Type::FunctionNoProto: 1159 type = cast<FunctionType>(ty)->getResultType(); 1160 break; 1161 1162 case Type::Paren: 1163 case Type::TypeOf: 1164 case Type::UnaryTransform: 1165 case Type::Attributed: 1166 case Type::SubstTemplateTypeParm: 1167 // Keep walking after single level desugaring. 1168 type = type.getSingleStepDesugaredType(getContext()); 1169 break; 1170 1171 case Type::Typedef: 1172 case Type::Decltype: 1173 case Type::Auto: 1174 // Stop walking: nothing to do. 1175 return; 1176 1177 case Type::TypeOfExpr: 1178 // Stop walking: emit typeof expression. 1179 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1180 return; 1181 1182 case Type::Atomic: 1183 type = cast<AtomicType>(ty)->getValueType(); 1184 break; 1185 } 1186 } while (type->isVariablyModifiedType()); 1187 } 1188 1189 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1190 if (getContext().getBuiltinVaListType()->isArrayType()) 1191 return EmitScalarExpr(E); 1192 return EmitLValue(E).getAddress(); 1193 } 1194 1195 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1196 llvm::Constant *Init) { 1197 assert (Init && "Invalid DeclRefExpr initializer!"); 1198 if (CGDebugInfo *Dbg = getDebugInfo()) 1199 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1200 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1201 } 1202 1203 CodeGenFunction::PeepholeProtection 1204 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1205 // At the moment, the only aggressive peephole we do in IR gen 1206 // is trunc(zext) folding, but if we add more, we can easily 1207 // extend this protection. 1208 1209 if (!rvalue.isScalar()) return PeepholeProtection(); 1210 llvm::Value *value = rvalue.getScalarVal(); 1211 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1212 1213 // Just make an extra bitcast. 1214 assert(HaveInsertPoint()); 1215 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1216 Builder.GetInsertBlock()); 1217 1218 PeepholeProtection protection; 1219 protection.Inst = inst; 1220 return protection; 1221 } 1222 1223 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1224 if (!protection.Inst) return; 1225 1226 // In theory, we could try to duplicate the peepholes now, but whatever. 1227 protection.Inst->eraseFromParent(); 1228 } 1229 1230 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1231 llvm::Value *AnnotatedVal, 1232 llvm::StringRef AnnotationStr, 1233 SourceLocation Location) { 1234 llvm::Value *Args[4] = { 1235 AnnotatedVal, 1236 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1237 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1238 CGM.EmitAnnotationLineNo(Location) 1239 }; 1240 return Builder.CreateCall(AnnotationFn, Args); 1241 } 1242 1243 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1244 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1245 // FIXME We create a new bitcast for every annotation because that's what 1246 // llvm-gcc was doing. 1247 for (specific_attr_iterator<AnnotateAttr> 1248 ai = D->specific_attr_begin<AnnotateAttr>(), 1249 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1250 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1251 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1252 (*ai)->getAnnotation(), D->getLocation()); 1253 } 1254 1255 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1256 llvm::Value *V) { 1257 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1258 llvm::Type *VTy = V->getType(); 1259 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1260 CGM.Int8PtrTy); 1261 1262 for (specific_attr_iterator<AnnotateAttr> 1263 ai = D->specific_attr_begin<AnnotateAttr>(), 1264 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1265 // FIXME Always emit the cast inst so we can differentiate between 1266 // annotation on the first field of a struct and annotation on the struct 1267 // itself. 1268 if (VTy != CGM.Int8PtrTy) 1269 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1270 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1271 V = Builder.CreateBitCast(V, VTy); 1272 } 1273 1274 return V; 1275 } 1276