1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/MDBuilder.h"
27 #include "llvm/DataLayout.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()),
34     Builder(cgm.getModule().getContext()),
35     SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull |
36                              CGM.getLangOpts().SanitizeAlignment |
37                              CGM.getLangOpts().SanitizeObjectSize |
38                              CGM.getLangOpts().SanitizeVptr),
39     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
40     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
41     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
42     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
43     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
44     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
45     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
46     TerminateHandler(0), TrapBB(0) {
47   if (!suppressNewContext)
48     CGM.getCXXABI().getMangleContext().startNewFunction();
49 }
50 
51 CodeGenFunction::~CodeGenFunction() {
52   // If there are any unclaimed block infos, go ahead and destroy them
53   // now.  This can happen if IR-gen gets clever and skips evaluating
54   // something.
55   if (FirstBlockInfo)
56     destroyBlockInfos(FirstBlockInfo);
57 }
58 
59 
60 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
61   return CGM.getTypes().ConvertTypeForMem(T);
62 }
63 
64 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
65   return CGM.getTypes().ConvertType(T);
66 }
67 
68 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
69   switch (type.getCanonicalType()->getTypeClass()) {
70 #define TYPE(name, parent)
71 #define ABSTRACT_TYPE(name, parent)
72 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
73 #define DEPENDENT_TYPE(name, parent) case Type::name:
74 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
75 #include "clang/AST/TypeNodes.def"
76     llvm_unreachable("non-canonical or dependent type in IR-generation");
77 
78   case Type::Builtin:
79   case Type::Pointer:
80   case Type::BlockPointer:
81   case Type::LValueReference:
82   case Type::RValueReference:
83   case Type::MemberPointer:
84   case Type::Vector:
85   case Type::ExtVector:
86   case Type::FunctionProto:
87   case Type::FunctionNoProto:
88   case Type::Enum:
89   case Type::ObjCObjectPointer:
90     return false;
91 
92   // Complexes, arrays, records, and Objective-C objects.
93   case Type::Complex:
94   case Type::ConstantArray:
95   case Type::IncompleteArray:
96   case Type::VariableArray:
97   case Type::Record:
98   case Type::ObjCObject:
99   case Type::ObjCInterface:
100     return true;
101 
102   // In IRGen, atomic types are just the underlying type
103   case Type::Atomic:
104     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
105   }
106   llvm_unreachable("unknown type kind!");
107 }
108 
109 void CodeGenFunction::EmitReturnBlock() {
110   // For cleanliness, we try to avoid emitting the return block for
111   // simple cases.
112   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
113 
114   if (CurBB) {
115     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
116 
117     // We have a valid insert point, reuse it if it is empty or there are no
118     // explicit jumps to the return block.
119     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
120       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
121       delete ReturnBlock.getBlock();
122     } else
123       EmitBlock(ReturnBlock.getBlock());
124     return;
125   }
126 
127   // Otherwise, if the return block is the target of a single direct
128   // branch then we can just put the code in that block instead. This
129   // cleans up functions which started with a unified return block.
130   if (ReturnBlock.getBlock()->hasOneUse()) {
131     llvm::BranchInst *BI =
132       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
133     if (BI && BI->isUnconditional() &&
134         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
135       // Reset insertion point, including debug location, and delete the branch.
136       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
137       Builder.SetInsertPoint(BI->getParent());
138       BI->eraseFromParent();
139       delete ReturnBlock.getBlock();
140       return;
141     }
142   }
143 
144   // FIXME: We are at an unreachable point, there is no reason to emit the block
145   // unless it has uses. However, we still need a place to put the debug
146   // region.end for now.
147 
148   EmitBlock(ReturnBlock.getBlock());
149 }
150 
151 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
152   if (!BB) return;
153   if (!BB->use_empty())
154     return CGF.CurFn->getBasicBlockList().push_back(BB);
155   delete BB;
156 }
157 
158 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
159   assert(BreakContinueStack.empty() &&
160          "mismatched push/pop in break/continue stack!");
161 
162   // Pop any cleanups that might have been associated with the
163   // parameters.  Do this in whatever block we're currently in; it's
164   // important to do this before we enter the return block or return
165   // edges will be *really* confused.
166   if (EHStack.stable_begin() != PrologueCleanupDepth)
167     PopCleanupBlocks(PrologueCleanupDepth);
168 
169   // Emit function epilog (to return).
170   EmitReturnBlock();
171 
172   if (ShouldInstrumentFunction())
173     EmitFunctionInstrumentation("__cyg_profile_func_exit");
174 
175   // Emit debug descriptor for function end.
176   if (CGDebugInfo *DI = getDebugInfo()) {
177     DI->setLocation(EndLoc);
178     DI->EmitFunctionEnd(Builder);
179   }
180 
181   EmitFunctionEpilog(*CurFnInfo);
182   EmitEndEHSpec(CurCodeDecl);
183 
184   assert(EHStack.empty() &&
185          "did not remove all scopes from cleanup stack!");
186 
187   // If someone did an indirect goto, emit the indirect goto block at the end of
188   // the function.
189   if (IndirectBranch) {
190     EmitBlock(IndirectBranch->getParent());
191     Builder.ClearInsertionPoint();
192   }
193 
194   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
195   llvm::Instruction *Ptr = AllocaInsertPt;
196   AllocaInsertPt = 0;
197   Ptr->eraseFromParent();
198 
199   // If someone took the address of a label but never did an indirect goto, we
200   // made a zero entry PHI node, which is illegal, zap it now.
201   if (IndirectBranch) {
202     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
203     if (PN->getNumIncomingValues() == 0) {
204       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
205       PN->eraseFromParent();
206     }
207   }
208 
209   EmitIfUsed(*this, EHResumeBlock);
210   EmitIfUsed(*this, TerminateLandingPad);
211   EmitIfUsed(*this, TerminateHandler);
212   EmitIfUsed(*this, UnreachableBlock);
213 
214   if (CGM.getCodeGenOpts().EmitDeclMetadata)
215     EmitDeclMetadata();
216 }
217 
218 /// ShouldInstrumentFunction - Return true if the current function should be
219 /// instrumented with __cyg_profile_func_* calls
220 bool CodeGenFunction::ShouldInstrumentFunction() {
221   if (!CGM.getCodeGenOpts().InstrumentFunctions)
222     return false;
223   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
224     return false;
225   return true;
226 }
227 
228 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
229 /// instrumentation function with the current function and the call site, if
230 /// function instrumentation is enabled.
231 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
232   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
233   llvm::PointerType *PointerTy = Int8PtrTy;
234   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
235   llvm::FunctionType *FunctionTy =
236     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
237 
238   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
239   llvm::CallInst *CallSite = Builder.CreateCall(
240     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
241     llvm::ConstantInt::get(Int32Ty, 0),
242     "callsite");
243 
244   Builder.CreateCall2(F,
245                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
246                       CallSite);
247 }
248 
249 void CodeGenFunction::EmitMCountInstrumentation() {
250   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
251 
252   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
253                                                        Target.getMCountName());
254   Builder.CreateCall(MCountFn);
255 }
256 
257 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
258 // information in the program executable. The argument information stored
259 // includes the argument name, its type, the address and access qualifiers used.
260 // FIXME: Add type, address, and access qualifiers.
261 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
262                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
263                                  llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) {
264 
265   // Create MDNodes that represents the kernel arg metadata.
266   // Each MDNode is a list in the form of "key", N number of values which is
267   // the same number of values as their are kernel arguments.
268 
269   // MDNode for the kernel argument names.
270   SmallVector<llvm::Value*, 8> argNames;
271   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
272 
273   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
274     const ParmVarDecl *parm = FD->getParamDecl(i);
275 
276     // Get argument name.
277     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
278 
279   }
280   // Add MDNode to the list of all metadata.
281   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
282 }
283 
284 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
285                                                llvm::Function *Fn)
286 {
287   if (!FD->hasAttr<OpenCLKernelAttr>())
288     return;
289 
290   llvm::LLVMContext &Context = getLLVMContext();
291 
292   llvm::SmallVector <llvm::Value*, 5> kernelMDArgs;
293   kernelMDArgs.push_back(Fn);
294 
295   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
296     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
297 
298   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
299     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
300     llvm::Value *attrMDArgs[] = {
301       llvm::MDString::get(Context, "work_group_size_hint"),
302       Builder.getInt32(attr->getXDim()),
303       Builder.getInt32(attr->getYDim()),
304       Builder.getInt32(attr->getZDim())
305     };
306     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
307   }
308 
309   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
310     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
311     llvm::Value *attrMDArgs[] = {
312       llvm::MDString::get(Context, "reqd_work_group_size"),
313       Builder.getInt32(attr->getXDim()),
314       Builder.getInt32(attr->getYDim()),
315       Builder.getInt32(attr->getZDim())
316     };
317     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
318   }
319 
320   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
321   llvm::NamedMDNode *OpenCLKernelMetadata =
322     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
323   OpenCLKernelMetadata->addOperand(kernelMDNode);
324 }
325 
326 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
327                                     llvm::Function *Fn,
328                                     const CGFunctionInfo &FnInfo,
329                                     const FunctionArgList &Args,
330                                     SourceLocation StartLoc) {
331   const Decl *D = GD.getDecl();
332 
333   DidCallStackSave = false;
334   CurCodeDecl = CurFuncDecl = D;
335   FnRetTy = RetTy;
336   CurFn = Fn;
337   CurFnInfo = &FnInfo;
338   assert(CurFn->isDeclaration() && "Function already has body?");
339 
340   // Pass inline keyword to optimizer if it appears explicitly on any
341   // declaration.
342   if (!CGM.getCodeGenOpts().NoInline)
343     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
344       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
345              RE = FD->redecls_end(); RI != RE; ++RI)
346         if (RI->isInlineSpecified()) {
347           Fn->addFnAttr(llvm::Attributes::InlineHint);
348           break;
349         }
350 
351   if (getLangOpts().OpenCL) {
352     // Add metadata for a kernel function.
353     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
354       EmitOpenCLKernelMetadata(FD, Fn);
355   }
356 
357   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
358 
359   // Create a marker to make it easy to insert allocas into the entryblock
360   // later.  Don't create this with the builder, because we don't want it
361   // folded.
362   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
363   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
364   if (Builder.isNamePreserving())
365     AllocaInsertPt->setName("allocapt");
366 
367   ReturnBlock = getJumpDestInCurrentScope("return");
368 
369   Builder.SetInsertPoint(EntryBB);
370 
371   // Emit subprogram debug descriptor.
372   if (CGDebugInfo *DI = getDebugInfo()) {
373     unsigned NumArgs = 0;
374     QualType *ArgsArray = new QualType[Args.size()];
375     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
376 	 i != e; ++i) {
377       ArgsArray[NumArgs++] = (*i)->getType();
378     }
379 
380     QualType FnType =
381       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
382                                    FunctionProtoType::ExtProtoInfo());
383 
384     delete[] ArgsArray;
385 
386     DI->setLocation(StartLoc);
387     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
388   }
389 
390   if (ShouldInstrumentFunction())
391     EmitFunctionInstrumentation("__cyg_profile_func_enter");
392 
393   if (CGM.getCodeGenOpts().InstrumentForProfiling)
394     EmitMCountInstrumentation();
395 
396   if (RetTy->isVoidType()) {
397     // Void type; nothing to return.
398     ReturnValue = 0;
399   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
400              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
401     // Indirect aggregate return; emit returned value directly into sret slot.
402     // This reduces code size, and affects correctness in C++.
403     ReturnValue = CurFn->arg_begin();
404   } else {
405     ReturnValue = CreateIRTemp(RetTy, "retval");
406 
407     // Tell the epilog emitter to autorelease the result.  We do this
408     // now so that various specialized functions can suppress it
409     // during their IR-generation.
410     if (getLangOpts().ObjCAutoRefCount &&
411         !CurFnInfo->isReturnsRetained() &&
412         RetTy->isObjCRetainableType())
413       AutoreleaseResult = true;
414   }
415 
416   EmitStartEHSpec(CurCodeDecl);
417 
418   PrologueCleanupDepth = EHStack.stable_begin();
419   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
420 
421   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
422     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
423     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
424     if (MD->getParent()->isLambda() &&
425         MD->getOverloadedOperator() == OO_Call) {
426       // We're in a lambda; figure out the captures.
427       MD->getParent()->getCaptureFields(LambdaCaptureFields,
428                                         LambdaThisCaptureField);
429       if (LambdaThisCaptureField) {
430         // If this lambda captures this, load it.
431         QualType LambdaTagType =
432             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
433         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
434                                                      LambdaTagType);
435         LValue ThisLValue = EmitLValueForField(LambdaLV,
436                                                LambdaThisCaptureField);
437         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
438       }
439     } else {
440       // Not in a lambda; just use 'this' from the method.
441       // FIXME: Should we generate a new load for each use of 'this'?  The
442       // fast register allocator would be happier...
443       CXXThisValue = CXXABIThisValue;
444     }
445   }
446 
447   // If any of the arguments have a variably modified type, make sure to
448   // emit the type size.
449   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
450        i != e; ++i) {
451     const VarDecl *VD = *i;
452 
453     // Dig out the type as written from ParmVarDecls; it's unclear whether
454     // the standard (C99 6.9.1p10) requires this, but we're following the
455     // precedent set by gcc.
456     QualType Ty;
457     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
458       Ty = PVD->getOriginalType();
459     else
460       Ty = VD->getType();
461 
462     if (Ty->isVariablyModifiedType())
463       EmitVariablyModifiedType(Ty);
464   }
465   // Emit a location at the end of the prologue.
466   if (CGDebugInfo *DI = getDebugInfo())
467     DI->EmitLocation(Builder, StartLoc);
468 }
469 
470 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
471   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
472   assert(FD->getBody());
473   EmitStmt(FD->getBody());
474 }
475 
476 /// Tries to mark the given function nounwind based on the
477 /// non-existence of any throwing calls within it.  We believe this is
478 /// lightweight enough to do at -O0.
479 static void TryMarkNoThrow(llvm::Function *F) {
480   // LLVM treats 'nounwind' on a function as part of the type, so we
481   // can't do this on functions that can be overwritten.
482   if (F->mayBeOverridden()) return;
483 
484   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
485     for (llvm::BasicBlock::iterator
486            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
487       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
488         if (!Call->doesNotThrow())
489           return;
490       } else if (isa<llvm::ResumeInst>(&*BI)) {
491         return;
492       }
493   F->setDoesNotThrow();
494 }
495 
496 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
497                                    const CGFunctionInfo &FnInfo) {
498   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
499 
500   // Check if we should generate debug info for this function.
501   if (!FD->hasAttr<NoDebugAttr>())
502     maybeInitializeDebugInfo();
503 
504   FunctionArgList Args;
505   QualType ResTy = FD->getResultType();
506 
507   CurGD = GD;
508   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
509     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
510 
511   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
512     Args.push_back(FD->getParamDecl(i));
513 
514   SourceRange BodyRange;
515   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
516 
517   // Emit the standard function prologue.
518   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
519 
520   // Generate the body of the function.
521   if (isa<CXXDestructorDecl>(FD))
522     EmitDestructorBody(Args);
523   else if (isa<CXXConstructorDecl>(FD))
524     EmitConstructorBody(Args);
525   else if (getLangOpts().CUDA &&
526            !CGM.getCodeGenOpts().CUDAIsDevice &&
527            FD->hasAttr<CUDAGlobalAttr>())
528     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
529   else if (isa<CXXConversionDecl>(FD) &&
530            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
531     // The lambda conversion to block pointer is special; the semantics can't be
532     // expressed in the AST, so IRGen needs to special-case it.
533     EmitLambdaToBlockPointerBody(Args);
534   } else if (isa<CXXMethodDecl>(FD) &&
535              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
536     // The lambda "__invoke" function is special, because it forwards or
537     // clones the body of the function call operator (but is actually static).
538     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
539   }
540   else
541     EmitFunctionBody(Args);
542 
543   // C++11 [stmt.return]p2:
544   //   Flowing off the end of a function [...] results in undefined behavior in
545   //   a value-returning function.
546   // C11 6.9.1p12:
547   //   If the '}' that terminates a function is reached, and the value of the
548   //   function call is used by the caller, the behavior is undefined.
549   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
550       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
551     if (getLangOpts().SanitizeReturn)
552       EmitCheck(Builder.getFalse(), "missing_return",
553                 EmitCheckSourceLocation(FD->getLocation()),
554                 llvm::ArrayRef<llvm::Value*>(), CRK_Unrecoverable);
555     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
556       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
557     Builder.CreateUnreachable();
558     Builder.ClearInsertionPoint();
559   }
560 
561   // Emit the standard function epilogue.
562   FinishFunction(BodyRange.getEnd());
563 
564   // If we haven't marked the function nothrow through other means, do
565   // a quick pass now to see if we can.
566   if (!CurFn->doesNotThrow())
567     TryMarkNoThrow(CurFn);
568 }
569 
570 /// ContainsLabel - Return true if the statement contains a label in it.  If
571 /// this statement is not executed normally, it not containing a label means
572 /// that we can just remove the code.
573 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
574   // Null statement, not a label!
575   if (S == 0) return false;
576 
577   // If this is a label, we have to emit the code, consider something like:
578   // if (0) {  ...  foo:  bar(); }  goto foo;
579   //
580   // TODO: If anyone cared, we could track __label__'s, since we know that you
581   // can't jump to one from outside their declared region.
582   if (isa<LabelStmt>(S))
583     return true;
584 
585   // If this is a case/default statement, and we haven't seen a switch, we have
586   // to emit the code.
587   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
588     return true;
589 
590   // If this is a switch statement, we want to ignore cases below it.
591   if (isa<SwitchStmt>(S))
592     IgnoreCaseStmts = true;
593 
594   // Scan subexpressions for verboten labels.
595   for (Stmt::const_child_range I = S->children(); I; ++I)
596     if (ContainsLabel(*I, IgnoreCaseStmts))
597       return true;
598 
599   return false;
600 }
601 
602 /// containsBreak - Return true if the statement contains a break out of it.
603 /// If the statement (recursively) contains a switch or loop with a break
604 /// inside of it, this is fine.
605 bool CodeGenFunction::containsBreak(const Stmt *S) {
606   // Null statement, not a label!
607   if (S == 0) return false;
608 
609   // If this is a switch or loop that defines its own break scope, then we can
610   // include it and anything inside of it.
611   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
612       isa<ForStmt>(S))
613     return false;
614 
615   if (isa<BreakStmt>(S))
616     return true;
617 
618   // Scan subexpressions for verboten breaks.
619   for (Stmt::const_child_range I = S->children(); I; ++I)
620     if (containsBreak(*I))
621       return true;
622 
623   return false;
624 }
625 
626 
627 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
628 /// to a constant, or if it does but contains a label, return false.  If it
629 /// constant folds return true and set the boolean result in Result.
630 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
631                                                    bool &ResultBool) {
632   llvm::APSInt ResultInt;
633   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
634     return false;
635 
636   ResultBool = ResultInt.getBoolValue();
637   return true;
638 }
639 
640 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
641 /// to a constant, or if it does but contains a label, return false.  If it
642 /// constant folds return true and set the folded value.
643 bool CodeGenFunction::
644 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
645   // FIXME: Rename and handle conversion of other evaluatable things
646   // to bool.
647   llvm::APSInt Int;
648   if (!Cond->EvaluateAsInt(Int, getContext()))
649     return false;  // Not foldable, not integer or not fully evaluatable.
650 
651   if (CodeGenFunction::ContainsLabel(Cond))
652     return false;  // Contains a label.
653 
654   ResultInt = Int;
655   return true;
656 }
657 
658 
659 
660 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
661 /// statement) to the specified blocks.  Based on the condition, this might try
662 /// to simplify the codegen of the conditional based on the branch.
663 ///
664 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
665                                            llvm::BasicBlock *TrueBlock,
666                                            llvm::BasicBlock *FalseBlock) {
667   Cond = Cond->IgnoreParens();
668 
669   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
670     // Handle X && Y in a condition.
671     if (CondBOp->getOpcode() == BO_LAnd) {
672       // If we have "1 && X", simplify the code.  "0 && X" would have constant
673       // folded if the case was simple enough.
674       bool ConstantBool = false;
675       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
676           ConstantBool) {
677         // br(1 && X) -> br(X).
678         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
679       }
680 
681       // If we have "X && 1", simplify the code to use an uncond branch.
682       // "X && 0" would have been constant folded to 0.
683       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
684           ConstantBool) {
685         // br(X && 1) -> br(X).
686         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
687       }
688 
689       // Emit the LHS as a conditional.  If the LHS conditional is false, we
690       // want to jump to the FalseBlock.
691       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
692 
693       ConditionalEvaluation eval(*this);
694       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
695       EmitBlock(LHSTrue);
696 
697       // Any temporaries created here are conditional.
698       eval.begin(*this);
699       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
700       eval.end(*this);
701 
702       return;
703     }
704 
705     if (CondBOp->getOpcode() == BO_LOr) {
706       // If we have "0 || X", simplify the code.  "1 || X" would have constant
707       // folded if the case was simple enough.
708       bool ConstantBool = false;
709       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
710           !ConstantBool) {
711         // br(0 || X) -> br(X).
712         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
713       }
714 
715       // If we have "X || 0", simplify the code to use an uncond branch.
716       // "X || 1" would have been constant folded to 1.
717       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
718           !ConstantBool) {
719         // br(X || 0) -> br(X).
720         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
721       }
722 
723       // Emit the LHS as a conditional.  If the LHS conditional is true, we
724       // want to jump to the TrueBlock.
725       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
726 
727       ConditionalEvaluation eval(*this);
728       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
729       EmitBlock(LHSFalse);
730 
731       // Any temporaries created here are conditional.
732       eval.begin(*this);
733       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
734       eval.end(*this);
735 
736       return;
737     }
738   }
739 
740   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
741     // br(!x, t, f) -> br(x, f, t)
742     if (CondUOp->getOpcode() == UO_LNot)
743       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
744   }
745 
746   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
747     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
748     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
749     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
750 
751     ConditionalEvaluation cond(*this);
752     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
753 
754     cond.begin(*this);
755     EmitBlock(LHSBlock);
756     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
757     cond.end(*this);
758 
759     cond.begin(*this);
760     EmitBlock(RHSBlock);
761     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
762     cond.end(*this);
763 
764     return;
765   }
766 
767   // Emit the code with the fully general case.
768   llvm::Value *CondV = EvaluateExprAsBool(Cond);
769   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
770 }
771 
772 /// ErrorUnsupported - Print out an error that codegen doesn't support the
773 /// specified stmt yet.
774 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
775                                        bool OmitOnError) {
776   CGM.ErrorUnsupported(S, Type, OmitOnError);
777 }
778 
779 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
780 /// variable-length array whose elements have a non-zero bit-pattern.
781 ///
782 /// \param baseType the inner-most element type of the array
783 /// \param src - a char* pointing to the bit-pattern for a single
784 /// base element of the array
785 /// \param sizeInChars - the total size of the VLA, in chars
786 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
787                                llvm::Value *dest, llvm::Value *src,
788                                llvm::Value *sizeInChars) {
789   std::pair<CharUnits,CharUnits> baseSizeAndAlign
790     = CGF.getContext().getTypeInfoInChars(baseType);
791 
792   CGBuilderTy &Builder = CGF.Builder;
793 
794   llvm::Value *baseSizeInChars
795     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
796 
797   llvm::Type *i8p = Builder.getInt8PtrTy();
798 
799   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
800   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
801 
802   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
803   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
804   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
805 
806   // Make a loop over the VLA.  C99 guarantees that the VLA element
807   // count must be nonzero.
808   CGF.EmitBlock(loopBB);
809 
810   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
811   cur->addIncoming(begin, originBB);
812 
813   // memcpy the individual element bit-pattern.
814   Builder.CreateMemCpy(cur, src, baseSizeInChars,
815                        baseSizeAndAlign.second.getQuantity(),
816                        /*volatile*/ false);
817 
818   // Go to the next element.
819   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
820 
821   // Leave if that's the end of the VLA.
822   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
823   Builder.CreateCondBr(done, contBB, loopBB);
824   cur->addIncoming(next, loopBB);
825 
826   CGF.EmitBlock(contBB);
827 }
828 
829 void
830 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
831   // Ignore empty classes in C++.
832   if (getLangOpts().CPlusPlus) {
833     if (const RecordType *RT = Ty->getAs<RecordType>()) {
834       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
835         return;
836     }
837   }
838 
839   // Cast the dest ptr to the appropriate i8 pointer type.
840   unsigned DestAS =
841     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
842   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
843   if (DestPtr->getType() != BP)
844     DestPtr = Builder.CreateBitCast(DestPtr, BP);
845 
846   // Get size and alignment info for this aggregate.
847   std::pair<CharUnits, CharUnits> TypeInfo =
848     getContext().getTypeInfoInChars(Ty);
849   CharUnits Size = TypeInfo.first;
850   CharUnits Align = TypeInfo.second;
851 
852   llvm::Value *SizeVal;
853   const VariableArrayType *vla;
854 
855   // Don't bother emitting a zero-byte memset.
856   if (Size.isZero()) {
857     // But note that getTypeInfo returns 0 for a VLA.
858     if (const VariableArrayType *vlaType =
859           dyn_cast_or_null<VariableArrayType>(
860                                           getContext().getAsArrayType(Ty))) {
861       QualType eltType;
862       llvm::Value *numElts;
863       llvm::tie(numElts, eltType) = getVLASize(vlaType);
864 
865       SizeVal = numElts;
866       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
867       if (!eltSize.isOne())
868         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
869       vla = vlaType;
870     } else {
871       return;
872     }
873   } else {
874     SizeVal = CGM.getSize(Size);
875     vla = 0;
876   }
877 
878   // If the type contains a pointer to data member we can't memset it to zero.
879   // Instead, create a null constant and copy it to the destination.
880   // TODO: there are other patterns besides zero that we can usefully memset,
881   // like -1, which happens to be the pattern used by member-pointers.
882   if (!CGM.getTypes().isZeroInitializable(Ty)) {
883     // For a VLA, emit a single element, then splat that over the VLA.
884     if (vla) Ty = getContext().getBaseElementType(vla);
885 
886     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
887 
888     llvm::GlobalVariable *NullVariable =
889       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
890                                /*isConstant=*/true,
891                                llvm::GlobalVariable::PrivateLinkage,
892                                NullConstant, Twine());
893     llvm::Value *SrcPtr =
894       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
895 
896     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
897 
898     // Get and call the appropriate llvm.memcpy overload.
899     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
900     return;
901   }
902 
903   // Otherwise, just memset the whole thing to zero.  This is legal
904   // because in LLVM, all default initializers (other than the ones we just
905   // handled above) are guaranteed to have a bit pattern of all zeros.
906   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
907                        Align.getQuantity(), false);
908 }
909 
910 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
911   // Make sure that there is a block for the indirect goto.
912   if (IndirectBranch == 0)
913     GetIndirectGotoBlock();
914 
915   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
916 
917   // Make sure the indirect branch includes all of the address-taken blocks.
918   IndirectBranch->addDestination(BB);
919   return llvm::BlockAddress::get(CurFn, BB);
920 }
921 
922 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
923   // If we already made the indirect branch for indirect goto, return its block.
924   if (IndirectBranch) return IndirectBranch->getParent();
925 
926   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
927 
928   // Create the PHI node that indirect gotos will add entries to.
929   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
930                                               "indirect.goto.dest");
931 
932   // Create the indirect branch instruction.
933   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
934   return IndirectBranch->getParent();
935 }
936 
937 /// Computes the length of an array in elements, as well as the base
938 /// element type and a properly-typed first element pointer.
939 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
940                                               QualType &baseType,
941                                               llvm::Value *&addr) {
942   const ArrayType *arrayType = origArrayType;
943 
944   // If it's a VLA, we have to load the stored size.  Note that
945   // this is the size of the VLA in bytes, not its size in elements.
946   llvm::Value *numVLAElements = 0;
947   if (isa<VariableArrayType>(arrayType)) {
948     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
949 
950     // Walk into all VLAs.  This doesn't require changes to addr,
951     // which has type T* where T is the first non-VLA element type.
952     do {
953       QualType elementType = arrayType->getElementType();
954       arrayType = getContext().getAsArrayType(elementType);
955 
956       // If we only have VLA components, 'addr' requires no adjustment.
957       if (!arrayType) {
958         baseType = elementType;
959         return numVLAElements;
960       }
961     } while (isa<VariableArrayType>(arrayType));
962 
963     // We get out here only if we find a constant array type
964     // inside the VLA.
965   }
966 
967   // We have some number of constant-length arrays, so addr should
968   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
969   // down to the first element of addr.
970   SmallVector<llvm::Value*, 8> gepIndices;
971 
972   // GEP down to the array type.
973   llvm::ConstantInt *zero = Builder.getInt32(0);
974   gepIndices.push_back(zero);
975 
976   uint64_t countFromCLAs = 1;
977   QualType eltType;
978 
979   llvm::ArrayType *llvmArrayType =
980     dyn_cast<llvm::ArrayType>(
981       cast<llvm::PointerType>(addr->getType())->getElementType());
982   while (llvmArrayType) {
983     assert(isa<ConstantArrayType>(arrayType));
984     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
985              == llvmArrayType->getNumElements());
986 
987     gepIndices.push_back(zero);
988     countFromCLAs *= llvmArrayType->getNumElements();
989     eltType = arrayType->getElementType();
990 
991     llvmArrayType =
992       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
993     arrayType = getContext().getAsArrayType(arrayType->getElementType());
994     assert((!llvmArrayType || arrayType) &&
995            "LLVM and Clang types are out-of-synch");
996   }
997 
998   if (arrayType) {
999     // From this point onwards, the Clang array type has been emitted
1000     // as some other type (probably a packed struct). Compute the array
1001     // size, and just emit the 'begin' expression as a bitcast.
1002     while (arrayType) {
1003       countFromCLAs *=
1004           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1005       eltType = arrayType->getElementType();
1006       arrayType = getContext().getAsArrayType(eltType);
1007     }
1008 
1009     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1010     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1011     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1012   } else {
1013     // Create the actual GEP.
1014     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1015   }
1016 
1017   baseType = eltType;
1018 
1019   llvm::Value *numElements
1020     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1021 
1022   // If we had any VLA dimensions, factor them in.
1023   if (numVLAElements)
1024     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1025 
1026   return numElements;
1027 }
1028 
1029 std::pair<llvm::Value*, QualType>
1030 CodeGenFunction::getVLASize(QualType type) {
1031   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1032   assert(vla && "type was not a variable array type!");
1033   return getVLASize(vla);
1034 }
1035 
1036 std::pair<llvm::Value*, QualType>
1037 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1038   // The number of elements so far; always size_t.
1039   llvm::Value *numElements = 0;
1040 
1041   QualType elementType;
1042   do {
1043     elementType = type->getElementType();
1044     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1045     assert(vlaSize && "no size for VLA!");
1046     assert(vlaSize->getType() == SizeTy);
1047 
1048     if (!numElements) {
1049       numElements = vlaSize;
1050     } else {
1051       // It's undefined behavior if this wraps around, so mark it that way.
1052       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1053       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1054     }
1055   } while ((type = getContext().getAsVariableArrayType(elementType)));
1056 
1057   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1058 }
1059 
1060 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1061   assert(type->isVariablyModifiedType() &&
1062          "Must pass variably modified type to EmitVLASizes!");
1063 
1064   EnsureInsertPoint();
1065 
1066   // We're going to walk down into the type and look for VLA
1067   // expressions.
1068   do {
1069     assert(type->isVariablyModifiedType());
1070 
1071     const Type *ty = type.getTypePtr();
1072     switch (ty->getTypeClass()) {
1073 
1074 #define TYPE(Class, Base)
1075 #define ABSTRACT_TYPE(Class, Base)
1076 #define NON_CANONICAL_TYPE(Class, Base)
1077 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1078 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1079 #include "clang/AST/TypeNodes.def"
1080       llvm_unreachable("unexpected dependent type!");
1081 
1082     // These types are never variably-modified.
1083     case Type::Builtin:
1084     case Type::Complex:
1085     case Type::Vector:
1086     case Type::ExtVector:
1087     case Type::Record:
1088     case Type::Enum:
1089     case Type::Elaborated:
1090     case Type::TemplateSpecialization:
1091     case Type::ObjCObject:
1092     case Type::ObjCInterface:
1093     case Type::ObjCObjectPointer:
1094       llvm_unreachable("type class is never variably-modified!");
1095 
1096     case Type::Pointer:
1097       type = cast<PointerType>(ty)->getPointeeType();
1098       break;
1099 
1100     case Type::BlockPointer:
1101       type = cast<BlockPointerType>(ty)->getPointeeType();
1102       break;
1103 
1104     case Type::LValueReference:
1105     case Type::RValueReference:
1106       type = cast<ReferenceType>(ty)->getPointeeType();
1107       break;
1108 
1109     case Type::MemberPointer:
1110       type = cast<MemberPointerType>(ty)->getPointeeType();
1111       break;
1112 
1113     case Type::ConstantArray:
1114     case Type::IncompleteArray:
1115       // Losing element qualification here is fine.
1116       type = cast<ArrayType>(ty)->getElementType();
1117       break;
1118 
1119     case Type::VariableArray: {
1120       // Losing element qualification here is fine.
1121       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1122 
1123       // Unknown size indication requires no size computation.
1124       // Otherwise, evaluate and record it.
1125       if (const Expr *size = vat->getSizeExpr()) {
1126         // It's possible that we might have emitted this already,
1127         // e.g. with a typedef and a pointer to it.
1128         llvm::Value *&entry = VLASizeMap[size];
1129         if (!entry) {
1130           llvm::Value *Size = EmitScalarExpr(size);
1131 
1132           // C11 6.7.6.2p5:
1133           //   If the size is an expression that is not an integer constant
1134           //   expression [...] each time it is evaluated it shall have a value
1135           //   greater than zero.
1136           if (getLangOpts().SanitizeVLABound &&
1137               size->getType()->isSignedIntegerType()) {
1138             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1139             llvm::Constant *StaticArgs[] = {
1140               EmitCheckSourceLocation(size->getLocStart()),
1141               EmitCheckTypeDescriptor(size->getType())
1142             };
1143             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1144                       "vla_bound_not_positive", StaticArgs, Size,
1145                       CRK_Recoverable);
1146           }
1147 
1148           // Always zexting here would be wrong if it weren't
1149           // undefined behavior to have a negative bound.
1150           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1151         }
1152       }
1153       type = vat->getElementType();
1154       break;
1155     }
1156 
1157     case Type::FunctionProto:
1158     case Type::FunctionNoProto:
1159       type = cast<FunctionType>(ty)->getResultType();
1160       break;
1161 
1162     case Type::Paren:
1163     case Type::TypeOf:
1164     case Type::UnaryTransform:
1165     case Type::Attributed:
1166     case Type::SubstTemplateTypeParm:
1167       // Keep walking after single level desugaring.
1168       type = type.getSingleStepDesugaredType(getContext());
1169       break;
1170 
1171     case Type::Typedef:
1172     case Type::Decltype:
1173     case Type::Auto:
1174       // Stop walking: nothing to do.
1175       return;
1176 
1177     case Type::TypeOfExpr:
1178       // Stop walking: emit typeof expression.
1179       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1180       return;
1181 
1182     case Type::Atomic:
1183       type = cast<AtomicType>(ty)->getValueType();
1184       break;
1185     }
1186   } while (type->isVariablyModifiedType());
1187 }
1188 
1189 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1190   if (getContext().getBuiltinVaListType()->isArrayType())
1191     return EmitScalarExpr(E);
1192   return EmitLValue(E).getAddress();
1193 }
1194 
1195 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1196                                               llvm::Constant *Init) {
1197   assert (Init && "Invalid DeclRefExpr initializer!");
1198   if (CGDebugInfo *Dbg = getDebugInfo())
1199     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1200       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1201 }
1202 
1203 CodeGenFunction::PeepholeProtection
1204 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1205   // At the moment, the only aggressive peephole we do in IR gen
1206   // is trunc(zext) folding, but if we add more, we can easily
1207   // extend this protection.
1208 
1209   if (!rvalue.isScalar()) return PeepholeProtection();
1210   llvm::Value *value = rvalue.getScalarVal();
1211   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1212 
1213   // Just make an extra bitcast.
1214   assert(HaveInsertPoint());
1215   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1216                                                   Builder.GetInsertBlock());
1217 
1218   PeepholeProtection protection;
1219   protection.Inst = inst;
1220   return protection;
1221 }
1222 
1223 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1224   if (!protection.Inst) return;
1225 
1226   // In theory, we could try to duplicate the peepholes now, but whatever.
1227   protection.Inst->eraseFromParent();
1228 }
1229 
1230 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1231                                                  llvm::Value *AnnotatedVal,
1232                                                  llvm::StringRef AnnotationStr,
1233                                                  SourceLocation Location) {
1234   llvm::Value *Args[4] = {
1235     AnnotatedVal,
1236     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1237     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1238     CGM.EmitAnnotationLineNo(Location)
1239   };
1240   return Builder.CreateCall(AnnotationFn, Args);
1241 }
1242 
1243 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1244   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1245   // FIXME We create a new bitcast for every annotation because that's what
1246   // llvm-gcc was doing.
1247   for (specific_attr_iterator<AnnotateAttr>
1248        ai = D->specific_attr_begin<AnnotateAttr>(),
1249        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1250     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1251                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1252                        (*ai)->getAnnotation(), D->getLocation());
1253 }
1254 
1255 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1256                                                    llvm::Value *V) {
1257   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1258   llvm::Type *VTy = V->getType();
1259   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1260                                     CGM.Int8PtrTy);
1261 
1262   for (specific_attr_iterator<AnnotateAttr>
1263        ai = D->specific_attr_begin<AnnotateAttr>(),
1264        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1265     // FIXME Always emit the cast inst so we can differentiate between
1266     // annotation on the first field of a struct and annotation on the struct
1267     // itself.
1268     if (VTy != CGM.Int8PtrTy)
1269       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1270     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1271     V = Builder.CreateBitCast(V, VTy);
1272   }
1273 
1274   return V;
1275 }
1276