1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 47 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 48 OutermostConditional(0), TerminateLandingPad(0), 49 TerminateHandler(0), TrapBB(0) { 50 if (!suppressNewContext) 51 CGM.getCXXABI().getMangleContext().startNewFunction(); 52 53 llvm::FastMathFlags FMF; 54 if (CGM.getLangOpts().FastMath) 55 FMF.setUnsafeAlgebra(); 56 if (CGM.getLangOpts().FiniteMathOnly) { 57 FMF.setNoNaNs(); 58 FMF.setNoInfs(); 59 } 60 Builder.SetFastMathFlags(FMF); 61 } 62 63 CodeGenFunction::~CodeGenFunction() { 64 // If there are any unclaimed block infos, go ahead and destroy them 65 // now. This can happen if IR-gen gets clever and skips evaluating 66 // something. 67 if (FirstBlockInfo) 68 destroyBlockInfos(FirstBlockInfo); 69 } 70 71 72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 73 return CGM.getTypes().ConvertTypeForMem(T); 74 } 75 76 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 77 return CGM.getTypes().ConvertType(T); 78 } 79 80 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 81 switch (type.getCanonicalType()->getTypeClass()) { 82 #define TYPE(name, parent) 83 #define ABSTRACT_TYPE(name, parent) 84 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 85 #define DEPENDENT_TYPE(name, parent) case Type::name: 86 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 87 #include "clang/AST/TypeNodes.def" 88 llvm_unreachable("non-canonical or dependent type in IR-generation"); 89 90 case Type::Builtin: 91 case Type::Pointer: 92 case Type::BlockPointer: 93 case Type::LValueReference: 94 case Type::RValueReference: 95 case Type::MemberPointer: 96 case Type::Vector: 97 case Type::ExtVector: 98 case Type::FunctionProto: 99 case Type::FunctionNoProto: 100 case Type::Enum: 101 case Type::ObjCObjectPointer: 102 return false; 103 104 // Complexes, arrays, records, and Objective-C objects. 105 case Type::Complex: 106 case Type::ConstantArray: 107 case Type::IncompleteArray: 108 case Type::VariableArray: 109 case Type::Record: 110 case Type::ObjCObject: 111 case Type::ObjCInterface: 112 return true; 113 114 // In IRGen, atomic types are just the underlying type 115 case Type::Atomic: 116 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 117 } 118 llvm_unreachable("unknown type kind!"); 119 } 120 121 void CodeGenFunction::EmitReturnBlock() { 122 // For cleanliness, we try to avoid emitting the return block for 123 // simple cases. 124 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 125 126 if (CurBB) { 127 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 128 129 // We have a valid insert point, reuse it if it is empty or there are no 130 // explicit jumps to the return block. 131 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 132 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 133 delete ReturnBlock.getBlock(); 134 } else 135 EmitBlock(ReturnBlock.getBlock()); 136 return; 137 } 138 139 // Otherwise, if the return block is the target of a single direct 140 // branch then we can just put the code in that block instead. This 141 // cleans up functions which started with a unified return block. 142 if (ReturnBlock.getBlock()->hasOneUse()) { 143 llvm::BranchInst *BI = 144 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 145 if (BI && BI->isUnconditional() && 146 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 147 // Reset insertion point, including debug location, and delete the 148 // branch. This is really subtle and only works because the next change 149 // in location will hit the caching in CGDebugInfo::EmitLocation and not 150 // override this. 151 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 152 Builder.SetInsertPoint(BI->getParent()); 153 BI->eraseFromParent(); 154 delete ReturnBlock.getBlock(); 155 return; 156 } 157 } 158 159 // FIXME: We are at an unreachable point, there is no reason to emit the block 160 // unless it has uses. However, we still need a place to put the debug 161 // region.end for now. 162 163 EmitBlock(ReturnBlock.getBlock()); 164 } 165 166 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 167 if (!BB) return; 168 if (!BB->use_empty()) 169 return CGF.CurFn->getBasicBlockList().push_back(BB); 170 delete BB; 171 } 172 173 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 174 assert(BreakContinueStack.empty() && 175 "mismatched push/pop in break/continue stack!"); 176 177 if (CGDebugInfo *DI = getDebugInfo()) 178 DI->EmitLocation(Builder, EndLoc); 179 180 // Pop any cleanups that might have been associated with the 181 // parameters. Do this in whatever block we're currently in; it's 182 // important to do this before we enter the return block or return 183 // edges will be *really* confused. 184 if (EHStack.stable_begin() != PrologueCleanupDepth) 185 PopCleanupBlocks(PrologueCleanupDepth); 186 187 // Emit function epilog (to return). 188 EmitReturnBlock(); 189 190 if (ShouldInstrumentFunction()) 191 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 192 193 // Emit debug descriptor for function end. 194 if (CGDebugInfo *DI = getDebugInfo()) { 195 DI->EmitFunctionEnd(Builder); 196 } 197 198 EmitFunctionEpilog(*CurFnInfo); 199 EmitEndEHSpec(CurCodeDecl); 200 201 assert(EHStack.empty() && 202 "did not remove all scopes from cleanup stack!"); 203 204 // If someone did an indirect goto, emit the indirect goto block at the end of 205 // the function. 206 if (IndirectBranch) { 207 EmitBlock(IndirectBranch->getParent()); 208 Builder.ClearInsertionPoint(); 209 } 210 211 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 212 llvm::Instruction *Ptr = AllocaInsertPt; 213 AllocaInsertPt = 0; 214 Ptr->eraseFromParent(); 215 216 // If someone took the address of a label but never did an indirect goto, we 217 // made a zero entry PHI node, which is illegal, zap it now. 218 if (IndirectBranch) { 219 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 220 if (PN->getNumIncomingValues() == 0) { 221 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 222 PN->eraseFromParent(); 223 } 224 } 225 226 EmitIfUsed(*this, EHResumeBlock); 227 EmitIfUsed(*this, TerminateLandingPad); 228 EmitIfUsed(*this, TerminateHandler); 229 EmitIfUsed(*this, UnreachableBlock); 230 231 if (CGM.getCodeGenOpts().EmitDeclMetadata) 232 EmitDeclMetadata(); 233 } 234 235 /// ShouldInstrumentFunction - Return true if the current function should be 236 /// instrumented with __cyg_profile_func_* calls 237 bool CodeGenFunction::ShouldInstrumentFunction() { 238 if (!CGM.getCodeGenOpts().InstrumentFunctions) 239 return false; 240 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 241 return false; 242 return true; 243 } 244 245 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 246 /// instrumentation function with the current function and the call site, if 247 /// function instrumentation is enabled. 248 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 249 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 250 llvm::PointerType *PointerTy = Int8PtrTy; 251 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 252 llvm::FunctionType *FunctionTy = 253 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 254 255 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 256 llvm::CallInst *CallSite = Builder.CreateCall( 257 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 258 llvm::ConstantInt::get(Int32Ty, 0), 259 "callsite"); 260 261 llvm::Value *args[] = { 262 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 263 CallSite 264 }; 265 266 EmitNounwindRuntimeCall(F, args); 267 } 268 269 void CodeGenFunction::EmitMCountInstrumentation() { 270 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 271 272 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 273 Target.getMCountName()); 274 EmitNounwindRuntimeCall(MCountFn); 275 } 276 277 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 278 // information in the program executable. The argument information stored 279 // includes the argument name, its type, the address and access qualifiers used. 280 // FIXME: Add type, address, and access qualifiers. 281 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 282 CodeGenModule &CGM,llvm::LLVMContext &Context, 283 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 284 285 // Create MDNodes that represents the kernel arg metadata. 286 // Each MDNode is a list in the form of "key", N number of values which is 287 // the same number of values as their are kernel arguments. 288 289 // MDNode for the kernel argument names. 290 SmallVector<llvm::Value*, 8> argNames; 291 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 292 293 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 294 const ParmVarDecl *parm = FD->getParamDecl(i); 295 296 // Get argument name. 297 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 298 299 } 300 // Add MDNode to the list of all metadata. 301 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 302 } 303 304 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 305 llvm::Function *Fn) 306 { 307 if (!FD->hasAttr<OpenCLKernelAttr>()) 308 return; 309 310 llvm::LLVMContext &Context = getLLVMContext(); 311 312 SmallVector <llvm::Value*, 5> kernelMDArgs; 313 kernelMDArgs.push_back(Fn); 314 315 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 316 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 317 318 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 319 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 320 llvm::Value *attrMDArgs[] = { 321 llvm::MDString::get(Context, "work_group_size_hint"), 322 Builder.getInt32(attr->getXDim()), 323 Builder.getInt32(attr->getYDim()), 324 Builder.getInt32(attr->getZDim()) 325 }; 326 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 327 } 328 329 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 330 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 331 llvm::Value *attrMDArgs[] = { 332 llvm::MDString::get(Context, "reqd_work_group_size"), 333 Builder.getInt32(attr->getXDim()), 334 Builder.getInt32(attr->getYDim()), 335 Builder.getInt32(attr->getZDim()) 336 }; 337 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 338 } 339 340 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 341 llvm::NamedMDNode *OpenCLKernelMetadata = 342 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 343 OpenCLKernelMetadata->addOperand(kernelMDNode); 344 } 345 346 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 347 llvm::Function *Fn, 348 const CGFunctionInfo &FnInfo, 349 const FunctionArgList &Args, 350 SourceLocation StartLoc) { 351 const Decl *D = GD.getDecl(); 352 353 DidCallStackSave = false; 354 CurCodeDecl = CurFuncDecl = D; 355 FnRetTy = RetTy; 356 CurFn = Fn; 357 CurFnInfo = &FnInfo; 358 assert(CurFn->isDeclaration() && "Function already has body?"); 359 360 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 361 SanOpts = &SanitizerOptions::Disabled; 362 SanitizePerformTypeCheck = false; 363 } 364 365 // Pass inline keyword to optimizer if it appears explicitly on any 366 // declaration. 367 if (!CGM.getCodeGenOpts().NoInline) 368 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 369 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 370 RE = FD->redecls_end(); RI != RE; ++RI) 371 if (RI->isInlineSpecified()) { 372 Fn->addFnAttr(llvm::Attribute::InlineHint); 373 break; 374 } 375 376 if (getLangOpts().OpenCL) { 377 // Add metadata for a kernel function. 378 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 379 EmitOpenCLKernelMetadata(FD, Fn); 380 } 381 382 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 383 384 // Create a marker to make it easy to insert allocas into the entryblock 385 // later. Don't create this with the builder, because we don't want it 386 // folded. 387 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 388 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 389 if (Builder.isNamePreserving()) 390 AllocaInsertPt->setName("allocapt"); 391 392 ReturnBlock = getJumpDestInCurrentScope("return"); 393 394 Builder.SetInsertPoint(EntryBB); 395 396 // Emit subprogram debug descriptor. 397 if (CGDebugInfo *DI = getDebugInfo()) { 398 unsigned NumArgs = 0; 399 QualType *ArgsArray = new QualType[Args.size()]; 400 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 401 i != e; ++i) { 402 ArgsArray[NumArgs++] = (*i)->getType(); 403 } 404 405 QualType FnType = 406 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 407 FunctionProtoType::ExtProtoInfo()); 408 409 delete[] ArgsArray; 410 411 DI->setLocation(StartLoc); 412 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 413 } 414 415 if (ShouldInstrumentFunction()) 416 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 417 418 if (CGM.getCodeGenOpts().InstrumentForProfiling) 419 EmitMCountInstrumentation(); 420 421 if (RetTy->isVoidType()) { 422 // Void type; nothing to return. 423 ReturnValue = 0; 424 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 425 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 426 // Indirect aggregate return; emit returned value directly into sret slot. 427 // This reduces code size, and affects correctness in C++. 428 ReturnValue = CurFn->arg_begin(); 429 } else { 430 ReturnValue = CreateIRTemp(RetTy, "retval"); 431 432 // Tell the epilog emitter to autorelease the result. We do this 433 // now so that various specialized functions can suppress it 434 // during their IR-generation. 435 if (getLangOpts().ObjCAutoRefCount && 436 !CurFnInfo->isReturnsRetained() && 437 RetTy->isObjCRetainableType()) 438 AutoreleaseResult = true; 439 } 440 441 EmitStartEHSpec(CurCodeDecl); 442 443 PrologueCleanupDepth = EHStack.stable_begin(); 444 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 445 446 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 447 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 448 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 449 if (MD->getParent()->isLambda() && 450 MD->getOverloadedOperator() == OO_Call) { 451 // We're in a lambda; figure out the captures. 452 MD->getParent()->getCaptureFields(LambdaCaptureFields, 453 LambdaThisCaptureField); 454 if (LambdaThisCaptureField) { 455 // If this lambda captures this, load it. 456 QualType LambdaTagType = 457 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 458 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 459 LambdaTagType); 460 LValue ThisLValue = EmitLValueForField(LambdaLV, 461 LambdaThisCaptureField); 462 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 463 } 464 } else { 465 // Not in a lambda; just use 'this' from the method. 466 // FIXME: Should we generate a new load for each use of 'this'? The 467 // fast register allocator would be happier... 468 CXXThisValue = CXXABIThisValue; 469 } 470 } 471 472 // If any of the arguments have a variably modified type, make sure to 473 // emit the type size. 474 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 475 i != e; ++i) { 476 const VarDecl *VD = *i; 477 478 // Dig out the type as written from ParmVarDecls; it's unclear whether 479 // the standard (C99 6.9.1p10) requires this, but we're following the 480 // precedent set by gcc. 481 QualType Ty; 482 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 483 Ty = PVD->getOriginalType(); 484 else 485 Ty = VD->getType(); 486 487 if (Ty->isVariablyModifiedType()) 488 EmitVariablyModifiedType(Ty); 489 } 490 // Emit a location at the end of the prologue. 491 if (CGDebugInfo *DI = getDebugInfo()) 492 DI->EmitLocation(Builder, StartLoc); 493 } 494 495 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 496 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 497 assert(FD->getBody()); 498 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 499 EmitCompoundStmtWithoutScope(*S); 500 else 501 EmitStmt(FD->getBody()); 502 } 503 504 /// Tries to mark the given function nounwind based on the 505 /// non-existence of any throwing calls within it. We believe this is 506 /// lightweight enough to do at -O0. 507 static void TryMarkNoThrow(llvm::Function *F) { 508 // LLVM treats 'nounwind' on a function as part of the type, so we 509 // can't do this on functions that can be overwritten. 510 if (F->mayBeOverridden()) return; 511 512 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 513 for (llvm::BasicBlock::iterator 514 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 515 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 516 if (!Call->doesNotThrow()) 517 return; 518 } else if (isa<llvm::ResumeInst>(&*BI)) { 519 return; 520 } 521 F->setDoesNotThrow(); 522 } 523 524 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 525 const CGFunctionInfo &FnInfo) { 526 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 527 528 // Check if we should generate debug info for this function. 529 if (!FD->hasAttr<NoDebugAttr>()) 530 maybeInitializeDebugInfo(); 531 532 FunctionArgList Args; 533 QualType ResTy = FD->getResultType(); 534 535 CurGD = GD; 536 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 537 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 538 539 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 540 Args.push_back(FD->getParamDecl(i)); 541 542 SourceRange BodyRange; 543 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 544 545 // Emit the standard function prologue. 546 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 547 548 // Generate the body of the function. 549 if (isa<CXXDestructorDecl>(FD)) 550 EmitDestructorBody(Args); 551 else if (isa<CXXConstructorDecl>(FD)) 552 EmitConstructorBody(Args); 553 else if (getLangOpts().CUDA && 554 !CGM.getCodeGenOpts().CUDAIsDevice && 555 FD->hasAttr<CUDAGlobalAttr>()) 556 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 557 else if (isa<CXXConversionDecl>(FD) && 558 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 559 // The lambda conversion to block pointer is special; the semantics can't be 560 // expressed in the AST, so IRGen needs to special-case it. 561 EmitLambdaToBlockPointerBody(Args); 562 } else if (isa<CXXMethodDecl>(FD) && 563 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 564 // The lambda "__invoke" function is special, because it forwards or 565 // clones the body of the function call operator (but is actually static). 566 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 567 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 568 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 569 // Implicit copy-assignment gets the same special treatment as implicit 570 // copy-constructors. 571 emitImplicitAssignmentOperatorBody(Args); 572 } 573 else 574 EmitFunctionBody(Args); 575 576 // C++11 [stmt.return]p2: 577 // Flowing off the end of a function [...] results in undefined behavior in 578 // a value-returning function. 579 // C11 6.9.1p12: 580 // If the '}' that terminates a function is reached, and the value of the 581 // function call is used by the caller, the behavior is undefined. 582 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 583 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 584 if (SanOpts->Return) 585 EmitCheck(Builder.getFalse(), "missing_return", 586 EmitCheckSourceLocation(FD->getLocation()), 587 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 588 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 589 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 590 Builder.CreateUnreachable(); 591 Builder.ClearInsertionPoint(); 592 } 593 594 // Emit the standard function epilogue. 595 FinishFunction(BodyRange.getEnd()); 596 597 // If we haven't marked the function nothrow through other means, do 598 // a quick pass now to see if we can. 599 if (!CurFn->doesNotThrow()) 600 TryMarkNoThrow(CurFn); 601 } 602 603 /// ContainsLabel - Return true if the statement contains a label in it. If 604 /// this statement is not executed normally, it not containing a label means 605 /// that we can just remove the code. 606 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 607 // Null statement, not a label! 608 if (S == 0) return false; 609 610 // If this is a label, we have to emit the code, consider something like: 611 // if (0) { ... foo: bar(); } goto foo; 612 // 613 // TODO: If anyone cared, we could track __label__'s, since we know that you 614 // can't jump to one from outside their declared region. 615 if (isa<LabelStmt>(S)) 616 return true; 617 618 // If this is a case/default statement, and we haven't seen a switch, we have 619 // to emit the code. 620 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 621 return true; 622 623 // If this is a switch statement, we want to ignore cases below it. 624 if (isa<SwitchStmt>(S)) 625 IgnoreCaseStmts = true; 626 627 // Scan subexpressions for verboten labels. 628 for (Stmt::const_child_range I = S->children(); I; ++I) 629 if (ContainsLabel(*I, IgnoreCaseStmts)) 630 return true; 631 632 return false; 633 } 634 635 /// containsBreak - Return true if the statement contains a break out of it. 636 /// If the statement (recursively) contains a switch or loop with a break 637 /// inside of it, this is fine. 638 bool CodeGenFunction::containsBreak(const Stmt *S) { 639 // Null statement, not a label! 640 if (S == 0) return false; 641 642 // If this is a switch or loop that defines its own break scope, then we can 643 // include it and anything inside of it. 644 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 645 isa<ForStmt>(S)) 646 return false; 647 648 if (isa<BreakStmt>(S)) 649 return true; 650 651 // Scan subexpressions for verboten breaks. 652 for (Stmt::const_child_range I = S->children(); I; ++I) 653 if (containsBreak(*I)) 654 return true; 655 656 return false; 657 } 658 659 660 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 661 /// to a constant, or if it does but contains a label, return false. If it 662 /// constant folds return true and set the boolean result in Result. 663 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 664 bool &ResultBool) { 665 llvm::APSInt ResultInt; 666 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 667 return false; 668 669 ResultBool = ResultInt.getBoolValue(); 670 return true; 671 } 672 673 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 674 /// to a constant, or if it does but contains a label, return false. If it 675 /// constant folds return true and set the folded value. 676 bool CodeGenFunction:: 677 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 678 // FIXME: Rename and handle conversion of other evaluatable things 679 // to bool. 680 llvm::APSInt Int; 681 if (!Cond->EvaluateAsInt(Int, getContext())) 682 return false; // Not foldable, not integer or not fully evaluatable. 683 684 if (CodeGenFunction::ContainsLabel(Cond)) 685 return false; // Contains a label. 686 687 ResultInt = Int; 688 return true; 689 } 690 691 692 693 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 694 /// statement) to the specified blocks. Based on the condition, this might try 695 /// to simplify the codegen of the conditional based on the branch. 696 /// 697 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 698 llvm::BasicBlock *TrueBlock, 699 llvm::BasicBlock *FalseBlock) { 700 Cond = Cond->IgnoreParens(); 701 702 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 703 // Handle X && Y in a condition. 704 if (CondBOp->getOpcode() == BO_LAnd) { 705 // If we have "1 && X", simplify the code. "0 && X" would have constant 706 // folded if the case was simple enough. 707 bool ConstantBool = false; 708 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 709 ConstantBool) { 710 // br(1 && X) -> br(X). 711 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 712 } 713 714 // If we have "X && 1", simplify the code to use an uncond branch. 715 // "X && 0" would have been constant folded to 0. 716 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 717 ConstantBool) { 718 // br(X && 1) -> br(X). 719 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 720 } 721 722 // Emit the LHS as a conditional. If the LHS conditional is false, we 723 // want to jump to the FalseBlock. 724 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 725 726 ConditionalEvaluation eval(*this); 727 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 728 EmitBlock(LHSTrue); 729 730 // Any temporaries created here are conditional. 731 eval.begin(*this); 732 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 733 eval.end(*this); 734 735 return; 736 } 737 738 if (CondBOp->getOpcode() == BO_LOr) { 739 // If we have "0 || X", simplify the code. "1 || X" would have constant 740 // folded if the case was simple enough. 741 bool ConstantBool = false; 742 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 743 !ConstantBool) { 744 // br(0 || X) -> br(X). 745 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 746 } 747 748 // If we have "X || 0", simplify the code to use an uncond branch. 749 // "X || 1" would have been constant folded to 1. 750 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 751 !ConstantBool) { 752 // br(X || 0) -> br(X). 753 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 754 } 755 756 // Emit the LHS as a conditional. If the LHS conditional is true, we 757 // want to jump to the TrueBlock. 758 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 759 760 ConditionalEvaluation eval(*this); 761 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 762 EmitBlock(LHSFalse); 763 764 // Any temporaries created here are conditional. 765 eval.begin(*this); 766 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 767 eval.end(*this); 768 769 return; 770 } 771 } 772 773 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 774 // br(!x, t, f) -> br(x, f, t) 775 if (CondUOp->getOpcode() == UO_LNot) 776 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 777 } 778 779 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 780 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 781 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 782 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 783 784 ConditionalEvaluation cond(*this); 785 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 786 787 cond.begin(*this); 788 EmitBlock(LHSBlock); 789 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 790 cond.end(*this); 791 792 cond.begin(*this); 793 EmitBlock(RHSBlock); 794 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 795 cond.end(*this); 796 797 return; 798 } 799 800 // Emit the code with the fully general case. 801 llvm::Value *CondV = EvaluateExprAsBool(Cond); 802 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 803 } 804 805 /// ErrorUnsupported - Print out an error that codegen doesn't support the 806 /// specified stmt yet. 807 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 808 bool OmitOnError) { 809 CGM.ErrorUnsupported(S, Type, OmitOnError); 810 } 811 812 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 813 /// variable-length array whose elements have a non-zero bit-pattern. 814 /// 815 /// \param baseType the inner-most element type of the array 816 /// \param src - a char* pointing to the bit-pattern for a single 817 /// base element of the array 818 /// \param sizeInChars - the total size of the VLA, in chars 819 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 820 llvm::Value *dest, llvm::Value *src, 821 llvm::Value *sizeInChars) { 822 std::pair<CharUnits,CharUnits> baseSizeAndAlign 823 = CGF.getContext().getTypeInfoInChars(baseType); 824 825 CGBuilderTy &Builder = CGF.Builder; 826 827 llvm::Value *baseSizeInChars 828 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 829 830 llvm::Type *i8p = Builder.getInt8PtrTy(); 831 832 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 833 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 834 835 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 836 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 837 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 838 839 // Make a loop over the VLA. C99 guarantees that the VLA element 840 // count must be nonzero. 841 CGF.EmitBlock(loopBB); 842 843 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 844 cur->addIncoming(begin, originBB); 845 846 // memcpy the individual element bit-pattern. 847 Builder.CreateMemCpy(cur, src, baseSizeInChars, 848 baseSizeAndAlign.second.getQuantity(), 849 /*volatile*/ false); 850 851 // Go to the next element. 852 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 853 854 // Leave if that's the end of the VLA. 855 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 856 Builder.CreateCondBr(done, contBB, loopBB); 857 cur->addIncoming(next, loopBB); 858 859 CGF.EmitBlock(contBB); 860 } 861 862 void 863 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 864 // Ignore empty classes in C++. 865 if (getLangOpts().CPlusPlus) { 866 if (const RecordType *RT = Ty->getAs<RecordType>()) { 867 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 868 return; 869 } 870 } 871 872 // Cast the dest ptr to the appropriate i8 pointer type. 873 unsigned DestAS = 874 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 875 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 876 if (DestPtr->getType() != BP) 877 DestPtr = Builder.CreateBitCast(DestPtr, BP); 878 879 // Get size and alignment info for this aggregate. 880 std::pair<CharUnits, CharUnits> TypeInfo = 881 getContext().getTypeInfoInChars(Ty); 882 CharUnits Size = TypeInfo.first; 883 CharUnits Align = TypeInfo.second; 884 885 llvm::Value *SizeVal; 886 const VariableArrayType *vla; 887 888 // Don't bother emitting a zero-byte memset. 889 if (Size.isZero()) { 890 // But note that getTypeInfo returns 0 for a VLA. 891 if (const VariableArrayType *vlaType = 892 dyn_cast_or_null<VariableArrayType>( 893 getContext().getAsArrayType(Ty))) { 894 QualType eltType; 895 llvm::Value *numElts; 896 llvm::tie(numElts, eltType) = getVLASize(vlaType); 897 898 SizeVal = numElts; 899 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 900 if (!eltSize.isOne()) 901 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 902 vla = vlaType; 903 } else { 904 return; 905 } 906 } else { 907 SizeVal = CGM.getSize(Size); 908 vla = 0; 909 } 910 911 // If the type contains a pointer to data member we can't memset it to zero. 912 // Instead, create a null constant and copy it to the destination. 913 // TODO: there are other patterns besides zero that we can usefully memset, 914 // like -1, which happens to be the pattern used by member-pointers. 915 if (!CGM.getTypes().isZeroInitializable(Ty)) { 916 // For a VLA, emit a single element, then splat that over the VLA. 917 if (vla) Ty = getContext().getBaseElementType(vla); 918 919 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 920 921 llvm::GlobalVariable *NullVariable = 922 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 923 /*isConstant=*/true, 924 llvm::GlobalVariable::PrivateLinkage, 925 NullConstant, Twine()); 926 llvm::Value *SrcPtr = 927 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 928 929 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 930 931 // Get and call the appropriate llvm.memcpy overload. 932 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 933 return; 934 } 935 936 // Otherwise, just memset the whole thing to zero. This is legal 937 // because in LLVM, all default initializers (other than the ones we just 938 // handled above) are guaranteed to have a bit pattern of all zeros. 939 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 940 Align.getQuantity(), false); 941 } 942 943 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 944 // Make sure that there is a block for the indirect goto. 945 if (IndirectBranch == 0) 946 GetIndirectGotoBlock(); 947 948 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 949 950 // Make sure the indirect branch includes all of the address-taken blocks. 951 IndirectBranch->addDestination(BB); 952 return llvm::BlockAddress::get(CurFn, BB); 953 } 954 955 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 956 // If we already made the indirect branch for indirect goto, return its block. 957 if (IndirectBranch) return IndirectBranch->getParent(); 958 959 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 960 961 // Create the PHI node that indirect gotos will add entries to. 962 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 963 "indirect.goto.dest"); 964 965 // Create the indirect branch instruction. 966 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 967 return IndirectBranch->getParent(); 968 } 969 970 /// Computes the length of an array in elements, as well as the base 971 /// element type and a properly-typed first element pointer. 972 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 973 QualType &baseType, 974 llvm::Value *&addr) { 975 const ArrayType *arrayType = origArrayType; 976 977 // If it's a VLA, we have to load the stored size. Note that 978 // this is the size of the VLA in bytes, not its size in elements. 979 llvm::Value *numVLAElements = 0; 980 if (isa<VariableArrayType>(arrayType)) { 981 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 982 983 // Walk into all VLAs. This doesn't require changes to addr, 984 // which has type T* where T is the first non-VLA element type. 985 do { 986 QualType elementType = arrayType->getElementType(); 987 arrayType = getContext().getAsArrayType(elementType); 988 989 // If we only have VLA components, 'addr' requires no adjustment. 990 if (!arrayType) { 991 baseType = elementType; 992 return numVLAElements; 993 } 994 } while (isa<VariableArrayType>(arrayType)); 995 996 // We get out here only if we find a constant array type 997 // inside the VLA. 998 } 999 1000 // We have some number of constant-length arrays, so addr should 1001 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1002 // down to the first element of addr. 1003 SmallVector<llvm::Value*, 8> gepIndices; 1004 1005 // GEP down to the array type. 1006 llvm::ConstantInt *zero = Builder.getInt32(0); 1007 gepIndices.push_back(zero); 1008 1009 uint64_t countFromCLAs = 1; 1010 QualType eltType; 1011 1012 llvm::ArrayType *llvmArrayType = 1013 dyn_cast<llvm::ArrayType>( 1014 cast<llvm::PointerType>(addr->getType())->getElementType()); 1015 while (llvmArrayType) { 1016 assert(isa<ConstantArrayType>(arrayType)); 1017 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1018 == llvmArrayType->getNumElements()); 1019 1020 gepIndices.push_back(zero); 1021 countFromCLAs *= llvmArrayType->getNumElements(); 1022 eltType = arrayType->getElementType(); 1023 1024 llvmArrayType = 1025 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1026 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1027 assert((!llvmArrayType || arrayType) && 1028 "LLVM and Clang types are out-of-synch"); 1029 } 1030 1031 if (arrayType) { 1032 // From this point onwards, the Clang array type has been emitted 1033 // as some other type (probably a packed struct). Compute the array 1034 // size, and just emit the 'begin' expression as a bitcast. 1035 while (arrayType) { 1036 countFromCLAs *= 1037 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1038 eltType = arrayType->getElementType(); 1039 arrayType = getContext().getAsArrayType(eltType); 1040 } 1041 1042 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1043 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1044 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1045 } else { 1046 // Create the actual GEP. 1047 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1048 } 1049 1050 baseType = eltType; 1051 1052 llvm::Value *numElements 1053 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1054 1055 // If we had any VLA dimensions, factor them in. 1056 if (numVLAElements) 1057 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1058 1059 return numElements; 1060 } 1061 1062 std::pair<llvm::Value*, QualType> 1063 CodeGenFunction::getVLASize(QualType type) { 1064 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1065 assert(vla && "type was not a variable array type!"); 1066 return getVLASize(vla); 1067 } 1068 1069 std::pair<llvm::Value*, QualType> 1070 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1071 // The number of elements so far; always size_t. 1072 llvm::Value *numElements = 0; 1073 1074 QualType elementType; 1075 do { 1076 elementType = type->getElementType(); 1077 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1078 assert(vlaSize && "no size for VLA!"); 1079 assert(vlaSize->getType() == SizeTy); 1080 1081 if (!numElements) { 1082 numElements = vlaSize; 1083 } else { 1084 // It's undefined behavior if this wraps around, so mark it that way. 1085 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1086 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1087 } 1088 } while ((type = getContext().getAsVariableArrayType(elementType))); 1089 1090 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1091 } 1092 1093 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1094 assert(type->isVariablyModifiedType() && 1095 "Must pass variably modified type to EmitVLASizes!"); 1096 1097 EnsureInsertPoint(); 1098 1099 // We're going to walk down into the type and look for VLA 1100 // expressions. 1101 do { 1102 assert(type->isVariablyModifiedType()); 1103 1104 const Type *ty = type.getTypePtr(); 1105 switch (ty->getTypeClass()) { 1106 1107 #define TYPE(Class, Base) 1108 #define ABSTRACT_TYPE(Class, Base) 1109 #define NON_CANONICAL_TYPE(Class, Base) 1110 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1111 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1112 #include "clang/AST/TypeNodes.def" 1113 llvm_unreachable("unexpected dependent type!"); 1114 1115 // These types are never variably-modified. 1116 case Type::Builtin: 1117 case Type::Complex: 1118 case Type::Vector: 1119 case Type::ExtVector: 1120 case Type::Record: 1121 case Type::Enum: 1122 case Type::Elaborated: 1123 case Type::TemplateSpecialization: 1124 case Type::ObjCObject: 1125 case Type::ObjCInterface: 1126 case Type::ObjCObjectPointer: 1127 llvm_unreachable("type class is never variably-modified!"); 1128 1129 case Type::Pointer: 1130 type = cast<PointerType>(ty)->getPointeeType(); 1131 break; 1132 1133 case Type::BlockPointer: 1134 type = cast<BlockPointerType>(ty)->getPointeeType(); 1135 break; 1136 1137 case Type::LValueReference: 1138 case Type::RValueReference: 1139 type = cast<ReferenceType>(ty)->getPointeeType(); 1140 break; 1141 1142 case Type::MemberPointer: 1143 type = cast<MemberPointerType>(ty)->getPointeeType(); 1144 break; 1145 1146 case Type::ConstantArray: 1147 case Type::IncompleteArray: 1148 // Losing element qualification here is fine. 1149 type = cast<ArrayType>(ty)->getElementType(); 1150 break; 1151 1152 case Type::VariableArray: { 1153 // Losing element qualification here is fine. 1154 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1155 1156 // Unknown size indication requires no size computation. 1157 // Otherwise, evaluate and record it. 1158 if (const Expr *size = vat->getSizeExpr()) { 1159 // It's possible that we might have emitted this already, 1160 // e.g. with a typedef and a pointer to it. 1161 llvm::Value *&entry = VLASizeMap[size]; 1162 if (!entry) { 1163 llvm::Value *Size = EmitScalarExpr(size); 1164 1165 // C11 6.7.6.2p5: 1166 // If the size is an expression that is not an integer constant 1167 // expression [...] each time it is evaluated it shall have a value 1168 // greater than zero. 1169 if (SanOpts->VLABound && 1170 size->getType()->isSignedIntegerType()) { 1171 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1172 llvm::Constant *StaticArgs[] = { 1173 EmitCheckSourceLocation(size->getLocStart()), 1174 EmitCheckTypeDescriptor(size->getType()) 1175 }; 1176 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1177 "vla_bound_not_positive", StaticArgs, Size, 1178 CRK_Recoverable); 1179 } 1180 1181 // Always zexting here would be wrong if it weren't 1182 // undefined behavior to have a negative bound. 1183 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1184 } 1185 } 1186 type = vat->getElementType(); 1187 break; 1188 } 1189 1190 case Type::FunctionProto: 1191 case Type::FunctionNoProto: 1192 type = cast<FunctionType>(ty)->getResultType(); 1193 break; 1194 1195 case Type::Paren: 1196 case Type::TypeOf: 1197 case Type::UnaryTransform: 1198 case Type::Attributed: 1199 case Type::SubstTemplateTypeParm: 1200 // Keep walking after single level desugaring. 1201 type = type.getSingleStepDesugaredType(getContext()); 1202 break; 1203 1204 case Type::Typedef: 1205 case Type::Decltype: 1206 case Type::Auto: 1207 // Stop walking: nothing to do. 1208 return; 1209 1210 case Type::TypeOfExpr: 1211 // Stop walking: emit typeof expression. 1212 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1213 return; 1214 1215 case Type::Atomic: 1216 type = cast<AtomicType>(ty)->getValueType(); 1217 break; 1218 } 1219 } while (type->isVariablyModifiedType()); 1220 } 1221 1222 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1223 if (getContext().getBuiltinVaListType()->isArrayType()) 1224 return EmitScalarExpr(E); 1225 return EmitLValue(E).getAddress(); 1226 } 1227 1228 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1229 llvm::Constant *Init) { 1230 assert (Init && "Invalid DeclRefExpr initializer!"); 1231 if (CGDebugInfo *Dbg = getDebugInfo()) 1232 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1233 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1234 } 1235 1236 CodeGenFunction::PeepholeProtection 1237 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1238 // At the moment, the only aggressive peephole we do in IR gen 1239 // is trunc(zext) folding, but if we add more, we can easily 1240 // extend this protection. 1241 1242 if (!rvalue.isScalar()) return PeepholeProtection(); 1243 llvm::Value *value = rvalue.getScalarVal(); 1244 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1245 1246 // Just make an extra bitcast. 1247 assert(HaveInsertPoint()); 1248 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1249 Builder.GetInsertBlock()); 1250 1251 PeepholeProtection protection; 1252 protection.Inst = inst; 1253 return protection; 1254 } 1255 1256 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1257 if (!protection.Inst) return; 1258 1259 // In theory, we could try to duplicate the peepholes now, but whatever. 1260 protection.Inst->eraseFromParent(); 1261 } 1262 1263 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1264 llvm::Value *AnnotatedVal, 1265 StringRef AnnotationStr, 1266 SourceLocation Location) { 1267 llvm::Value *Args[4] = { 1268 AnnotatedVal, 1269 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1270 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1271 CGM.EmitAnnotationLineNo(Location) 1272 }; 1273 return Builder.CreateCall(AnnotationFn, Args); 1274 } 1275 1276 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1277 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1278 // FIXME We create a new bitcast for every annotation because that's what 1279 // llvm-gcc was doing. 1280 for (specific_attr_iterator<AnnotateAttr> 1281 ai = D->specific_attr_begin<AnnotateAttr>(), 1282 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1283 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1284 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1285 (*ai)->getAnnotation(), D->getLocation()); 1286 } 1287 1288 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1289 llvm::Value *V) { 1290 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1291 llvm::Type *VTy = V->getType(); 1292 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1293 CGM.Int8PtrTy); 1294 1295 for (specific_attr_iterator<AnnotateAttr> 1296 ai = D->specific_attr_begin<AnnotateAttr>(), 1297 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1298 // FIXME Always emit the cast inst so we can differentiate between 1299 // annotation on the first field of a struct and annotation on the struct 1300 // itself. 1301 if (VTy != CGM.Int8PtrTy) 1302 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1303 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1304 V = Builder.CreateBitCast(V, VTy); 1305 } 1306 1307 return V; 1308 } 1309