1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 48 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 49 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 50 CXXThisValue(0), CXXDefaultInitExprThis(0), 51 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 52 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 53 TerminateHandler(0), TrapBB(0) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 } 76 77 78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 79 return CGM.getTypes().ConvertTypeForMem(T); 80 } 81 82 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 83 return CGM.getTypes().ConvertType(T); 84 } 85 86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 87 type = type.getCanonicalType(); 88 while (true) { 89 switch (type->getTypeClass()) { 90 #define TYPE(name, parent) 91 #define ABSTRACT_TYPE(name, parent) 92 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 93 #define DEPENDENT_TYPE(name, parent) case Type::name: 94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 95 #include "clang/AST/TypeNodes.def" 96 llvm_unreachable("non-canonical or dependent type in IR-generation"); 97 98 case Type::Auto: 99 llvm_unreachable("undeduced auto type in IR-generation"); 100 101 // Various scalar types. 102 case Type::Builtin: 103 case Type::Pointer: 104 case Type::BlockPointer: 105 case Type::LValueReference: 106 case Type::RValueReference: 107 case Type::MemberPointer: 108 case Type::Vector: 109 case Type::ExtVector: 110 case Type::FunctionProto: 111 case Type::FunctionNoProto: 112 case Type::Enum: 113 case Type::ObjCObjectPointer: 114 return TEK_Scalar; 115 116 // Complexes. 117 case Type::Complex: 118 return TEK_Complex; 119 120 // Arrays, records, and Objective-C objects. 121 case Type::ConstantArray: 122 case Type::IncompleteArray: 123 case Type::VariableArray: 124 case Type::Record: 125 case Type::ObjCObject: 126 case Type::ObjCInterface: 127 return TEK_Aggregate; 128 129 // We operate on atomic values according to their underlying type. 130 case Type::Atomic: 131 type = cast<AtomicType>(type)->getValueType(); 132 continue; 133 } 134 llvm_unreachable("unknown type kind!"); 135 } 136 } 137 138 void CodeGenFunction::EmitReturnBlock() { 139 // For cleanliness, we try to avoid emitting the return block for 140 // simple cases. 141 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 142 143 if (CurBB) { 144 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 145 146 // We have a valid insert point, reuse it if it is empty or there are no 147 // explicit jumps to the return block. 148 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 149 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 150 delete ReturnBlock.getBlock(); 151 } else 152 EmitBlock(ReturnBlock.getBlock()); 153 return; 154 } 155 156 // Otherwise, if the return block is the target of a single direct 157 // branch then we can just put the code in that block instead. This 158 // cleans up functions which started with a unified return block. 159 if (ReturnBlock.getBlock()->hasOneUse()) { 160 llvm::BranchInst *BI = 161 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 162 if (BI && BI->isUnconditional() && 163 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 164 // Reset insertion point, including debug location, and delete the 165 // branch. This is really subtle and only works because the next change 166 // in location will hit the caching in CGDebugInfo::EmitLocation and not 167 // override this. 168 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 169 Builder.SetInsertPoint(BI->getParent()); 170 BI->eraseFromParent(); 171 delete ReturnBlock.getBlock(); 172 return; 173 } 174 } 175 176 // FIXME: We are at an unreachable point, there is no reason to emit the block 177 // unless it has uses. However, we still need a place to put the debug 178 // region.end for now. 179 180 EmitBlock(ReturnBlock.getBlock()); 181 } 182 183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 184 if (!BB) return; 185 if (!BB->use_empty()) 186 return CGF.CurFn->getBasicBlockList().push_back(BB); 187 delete BB; 188 } 189 190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 191 assert(BreakContinueStack.empty() && 192 "mismatched push/pop in break/continue stack!"); 193 194 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 195 && NumSimpleReturnExprs == NumReturnExprs 196 && ReturnBlock.getBlock()->use_empty(); 197 // Usually the return expression is evaluated before the cleanup 198 // code. If the function contains only a simple return statement, 199 // such as a constant, the location before the cleanup code becomes 200 // the last useful breakpoint in the function, because the simple 201 // return expression will be evaluated after the cleanup code. To be 202 // safe, set the debug location for cleanup code to the location of 203 // the return statement. Otherwise the cleanup code should be at the 204 // end of the function's lexical scope. 205 // 206 // If there are multiple branches to the return block, the branch 207 // instructions will get the location of the return statements and 208 // all will be fine. 209 if (CGDebugInfo *DI = getDebugInfo()) { 210 if (OnlySimpleReturnStmts) 211 DI->EmitLocation(Builder, LastStopPoint); 212 else 213 DI->EmitLocation(Builder, EndLoc); 214 } 215 216 // Pop any cleanups that might have been associated with the 217 // parameters. Do this in whatever block we're currently in; it's 218 // important to do this before we enter the return block or return 219 // edges will be *really* confused. 220 bool EmitRetDbgLoc = true; 221 if (EHStack.stable_begin() != PrologueCleanupDepth) { 222 PopCleanupBlocks(PrologueCleanupDepth); 223 224 // Make sure the line table doesn't jump back into the body for 225 // the ret after it's been at EndLoc. 226 EmitRetDbgLoc = false; 227 228 if (CGDebugInfo *DI = getDebugInfo()) 229 if (OnlySimpleReturnStmts) 230 DI->EmitLocation(Builder, EndLoc); 231 } 232 233 // Emit function epilog (to return). 234 EmitReturnBlock(); 235 236 if (ShouldInstrumentFunction()) 237 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 238 239 // Emit debug descriptor for function end. 240 if (CGDebugInfo *DI = getDebugInfo()) { 241 DI->EmitFunctionEnd(Builder); 242 } 243 244 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 245 EmitEndEHSpec(CurCodeDecl); 246 247 assert(EHStack.empty() && 248 "did not remove all scopes from cleanup stack!"); 249 250 // If someone did an indirect goto, emit the indirect goto block at the end of 251 // the function. 252 if (IndirectBranch) { 253 EmitBlock(IndirectBranch->getParent()); 254 Builder.ClearInsertionPoint(); 255 } 256 257 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 258 llvm::Instruction *Ptr = AllocaInsertPt; 259 AllocaInsertPt = 0; 260 Ptr->eraseFromParent(); 261 262 // If someone took the address of a label but never did an indirect goto, we 263 // made a zero entry PHI node, which is illegal, zap it now. 264 if (IndirectBranch) { 265 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 266 if (PN->getNumIncomingValues() == 0) { 267 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 268 PN->eraseFromParent(); 269 } 270 } 271 272 EmitIfUsed(*this, EHResumeBlock); 273 EmitIfUsed(*this, TerminateLandingPad); 274 EmitIfUsed(*this, TerminateHandler); 275 EmitIfUsed(*this, UnreachableBlock); 276 277 if (CGM.getCodeGenOpts().EmitDeclMetadata) 278 EmitDeclMetadata(); 279 280 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 281 I = DeferredReplacements.begin(), 282 E = DeferredReplacements.end(); 283 I != E; ++I) { 284 I->first->replaceAllUsesWith(I->second); 285 I->first->eraseFromParent(); 286 } 287 } 288 289 /// ShouldInstrumentFunction - Return true if the current function should be 290 /// instrumented with __cyg_profile_func_* calls 291 bool CodeGenFunction::ShouldInstrumentFunction() { 292 if (!CGM.getCodeGenOpts().InstrumentFunctions) 293 return false; 294 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 295 return false; 296 return true; 297 } 298 299 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 300 /// instrumentation function with the current function and the call site, if 301 /// function instrumentation is enabled. 302 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 303 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 304 llvm::PointerType *PointerTy = Int8PtrTy; 305 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 306 llvm::FunctionType *FunctionTy = 307 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 308 309 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 310 llvm::CallInst *CallSite = Builder.CreateCall( 311 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 312 llvm::ConstantInt::get(Int32Ty, 0), 313 "callsite"); 314 315 llvm::Value *args[] = { 316 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 317 CallSite 318 }; 319 320 EmitNounwindRuntimeCall(F, args); 321 } 322 323 void CodeGenFunction::EmitMCountInstrumentation() { 324 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 325 326 llvm::Constant *MCountFn = 327 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 328 EmitNounwindRuntimeCall(MCountFn); 329 } 330 331 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 332 // information in the program executable. The argument information stored 333 // includes the argument name, its type, the address and access qualifiers used. 334 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 335 CodeGenModule &CGM,llvm::LLVMContext &Context, 336 SmallVector <llvm::Value*, 5> &kernelMDArgs, 337 CGBuilderTy& Builder, ASTContext &ASTCtx) { 338 // Create MDNodes that represent the kernel arg metadata. 339 // Each MDNode is a list in the form of "key", N number of values which is 340 // the same number of values as their are kernel arguments. 341 342 // MDNode for the kernel argument address space qualifiers. 343 SmallVector<llvm::Value*, 8> addressQuals; 344 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 345 346 // MDNode for the kernel argument access qualifiers (images only). 347 SmallVector<llvm::Value*, 8> accessQuals; 348 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 349 350 // MDNode for the kernel argument type names. 351 SmallVector<llvm::Value*, 8> argTypeNames; 352 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 353 354 // MDNode for the kernel argument type qualifiers. 355 SmallVector<llvm::Value*, 8> argTypeQuals; 356 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 357 358 // MDNode for the kernel argument names. 359 SmallVector<llvm::Value*, 8> argNames; 360 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 361 362 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 363 const ParmVarDecl *parm = FD->getParamDecl(i); 364 QualType ty = parm->getType(); 365 std::string typeQuals; 366 367 if (ty->isPointerType()) { 368 QualType pointeeTy = ty->getPointeeType(); 369 370 // Get address qualifier. 371 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 372 pointeeTy.getAddressSpace()))); 373 374 // Get argument type name. 375 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 376 377 // Turn "unsigned type" to "utype" 378 std::string::size_type pos = typeName.find("unsigned"); 379 if (pos != std::string::npos) 380 typeName.erase(pos+1, 8); 381 382 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 383 384 // Get argument type qualifiers: 385 if (ty.isRestrictQualified()) 386 typeQuals = "restrict"; 387 if (pointeeTy.isConstQualified() || 388 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 389 typeQuals += typeQuals.empty() ? "const" : " const"; 390 if (pointeeTy.isVolatileQualified()) 391 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 392 } else { 393 uint32_t AddrSpc = 0; 394 if (ty->isImageType()) 395 AddrSpc = 396 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 397 398 addressQuals.push_back(Builder.getInt32(AddrSpc)); 399 400 // Get argument type name. 401 std::string typeName = ty.getUnqualifiedType().getAsString(); 402 403 // Turn "unsigned type" to "utype" 404 std::string::size_type pos = typeName.find("unsigned"); 405 if (pos != std::string::npos) 406 typeName.erase(pos+1, 8); 407 408 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 409 410 // Get argument type qualifiers: 411 if (ty.isConstQualified()) 412 typeQuals = "const"; 413 if (ty.isVolatileQualified()) 414 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 415 } 416 417 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 418 419 // Get image access qualifier: 420 if (ty->isImageType()) { 421 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 422 if (A && A->isWriteOnly()) 423 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 424 else 425 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 426 // FIXME: what about read_write? 427 } else 428 accessQuals.push_back(llvm::MDString::get(Context, "none")); 429 430 // Get argument name. 431 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 432 } 433 434 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 435 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 436 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 437 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 438 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 439 } 440 441 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 442 llvm::Function *Fn) 443 { 444 if (!FD->hasAttr<OpenCLKernelAttr>()) 445 return; 446 447 llvm::LLVMContext &Context = getLLVMContext(); 448 449 SmallVector <llvm::Value*, 5> kernelMDArgs; 450 kernelMDArgs.push_back(Fn); 451 452 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 453 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 454 Builder, getContext()); 455 456 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 457 QualType hintQTy = A->getTypeHint(); 458 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 459 bool isSignedInteger = 460 hintQTy->isSignedIntegerType() || 461 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 462 llvm::Value *attrMDArgs[] = { 463 llvm::MDString::get(Context, "vec_type_hint"), 464 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 465 llvm::ConstantInt::get( 466 llvm::IntegerType::get(Context, 32), 467 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 468 }; 469 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 470 } 471 472 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 473 llvm::Value *attrMDArgs[] = { 474 llvm::MDString::get(Context, "work_group_size_hint"), 475 Builder.getInt32(A->getXDim()), 476 Builder.getInt32(A->getYDim()), 477 Builder.getInt32(A->getZDim()) 478 }; 479 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 480 } 481 482 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 483 llvm::Value *attrMDArgs[] = { 484 llvm::MDString::get(Context, "reqd_work_group_size"), 485 Builder.getInt32(A->getXDim()), 486 Builder.getInt32(A->getYDim()), 487 Builder.getInt32(A->getZDim()) 488 }; 489 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 490 } 491 492 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 493 llvm::NamedMDNode *OpenCLKernelMetadata = 494 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 495 OpenCLKernelMetadata->addOperand(kernelMDNode); 496 } 497 498 void CodeGenFunction::StartFunction(GlobalDecl GD, 499 QualType RetTy, 500 llvm::Function *Fn, 501 const CGFunctionInfo &FnInfo, 502 const FunctionArgList &Args, 503 SourceLocation StartLoc) { 504 const Decl *D = GD.getDecl(); 505 506 DidCallStackSave = false; 507 CurCodeDecl = D; 508 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 509 FnRetTy = RetTy; 510 CurFn = Fn; 511 CurFnInfo = &FnInfo; 512 assert(CurFn->isDeclaration() && "Function already has body?"); 513 514 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 515 SanOpts = &SanitizerOptions::Disabled; 516 SanitizePerformTypeCheck = false; 517 } 518 519 // Pass inline keyword to optimizer if it appears explicitly on any 520 // declaration. Also, in the case of -fno-inline attach NoInline 521 // attribute to all function that are not marked AlwaysInline. 522 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 523 if (!CGM.getCodeGenOpts().NoInline) { 524 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 525 RE = FD->redecls_end(); RI != RE; ++RI) 526 if (RI->isInlineSpecified()) { 527 Fn->addFnAttr(llvm::Attribute::InlineHint); 528 break; 529 } 530 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 531 Fn->addFnAttr(llvm::Attribute::NoInline); 532 } 533 534 if (getLangOpts().OpenCL) { 535 // Add metadata for a kernel function. 536 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 537 EmitOpenCLKernelMetadata(FD, Fn); 538 } 539 540 // If we are checking function types, emit a function type signature as 541 // prefix data. 542 if (getLangOpts().CPlusPlus && SanOpts->Function) { 543 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 544 if (llvm::Constant *PrefixSig = 545 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 546 llvm::Constant *FTRTTIConst = 547 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 548 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 549 llvm::Constant *PrefixStructConst = 550 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 551 Fn->setPrefixData(PrefixStructConst); 552 } 553 } 554 } 555 556 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 557 558 // Create a marker to make it easy to insert allocas into the entryblock 559 // later. Don't create this with the builder, because we don't want it 560 // folded. 561 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 562 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 563 if (Builder.isNamePreserving()) 564 AllocaInsertPt->setName("allocapt"); 565 566 ReturnBlock = getJumpDestInCurrentScope("return"); 567 568 Builder.SetInsertPoint(EntryBB); 569 570 // Emit subprogram debug descriptor. 571 if (CGDebugInfo *DI = getDebugInfo()) { 572 SmallVector<QualType, 16> ArgTypes; 573 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 574 i != e; ++i) { 575 ArgTypes.push_back((*i)->getType()); 576 } 577 578 QualType FnType = 579 getContext().getFunctionType(RetTy, ArgTypes, 580 FunctionProtoType::ExtProtoInfo()); 581 582 DI->setLocation(StartLoc); 583 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 584 } 585 586 if (ShouldInstrumentFunction()) 587 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 588 589 if (CGM.getCodeGenOpts().InstrumentForProfiling) 590 EmitMCountInstrumentation(); 591 592 PGO.assignRegionCounters(GD); 593 if (CGM.getPGOData() && D) { 594 // Turn on InlineHint attribute for hot functions. 595 if (CGM.getPGOData()->isHotFunction(CGM.getMangledName(GD))) 596 Fn->addFnAttr(llvm::Attribute::InlineHint); 597 // Turn on Cold attribute for cold functions. 598 else if (CGM.getPGOData()->isColdFunction(CGM.getMangledName(GD))) 599 Fn->addFnAttr(llvm::Attribute::Cold); 600 } 601 602 if (RetTy->isVoidType()) { 603 // Void type; nothing to return. 604 ReturnValue = 0; 605 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 606 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 607 // Indirect aggregate return; emit returned value directly into sret slot. 608 // This reduces code size, and affects correctness in C++. 609 ReturnValue = CurFn->arg_begin(); 610 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 611 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 612 // Load the sret pointer from the argument struct and return into that. 613 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 614 llvm::Function::arg_iterator EI = CurFn->arg_end(); 615 --EI; 616 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 617 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 618 } else { 619 ReturnValue = CreateIRTemp(RetTy, "retval"); 620 621 // Tell the epilog emitter to autorelease the result. We do this 622 // now so that various specialized functions can suppress it 623 // during their IR-generation. 624 if (getLangOpts().ObjCAutoRefCount && 625 !CurFnInfo->isReturnsRetained() && 626 RetTy->isObjCRetainableType()) 627 AutoreleaseResult = true; 628 } 629 630 EmitStartEHSpec(CurCodeDecl); 631 632 PrologueCleanupDepth = EHStack.stable_begin(); 633 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 634 635 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 636 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 637 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 638 if (MD->getParent()->isLambda() && 639 MD->getOverloadedOperator() == OO_Call) { 640 // We're in a lambda; figure out the captures. 641 MD->getParent()->getCaptureFields(LambdaCaptureFields, 642 LambdaThisCaptureField); 643 if (LambdaThisCaptureField) { 644 // If this lambda captures this, load it. 645 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 646 CXXThisValue = EmitLoadOfLValue(ThisLValue, 647 SourceLocation()).getScalarVal(); 648 } 649 } else { 650 // Not in a lambda; just use 'this' from the method. 651 // FIXME: Should we generate a new load for each use of 'this'? The 652 // fast register allocator would be happier... 653 CXXThisValue = CXXABIThisValue; 654 } 655 } 656 657 // If any of the arguments have a variably modified type, make sure to 658 // emit the type size. 659 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 660 i != e; ++i) { 661 const VarDecl *VD = *i; 662 663 // Dig out the type as written from ParmVarDecls; it's unclear whether 664 // the standard (C99 6.9.1p10) requires this, but we're following the 665 // precedent set by gcc. 666 QualType Ty; 667 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 668 Ty = PVD->getOriginalType(); 669 else 670 Ty = VD->getType(); 671 672 if (Ty->isVariablyModifiedType()) 673 EmitVariablyModifiedType(Ty); 674 } 675 // Emit a location at the end of the prologue. 676 if (CGDebugInfo *DI = getDebugInfo()) 677 DI->EmitLocation(Builder, StartLoc); 678 } 679 680 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 681 const Stmt *Body) { 682 RegionCounter Cnt = getPGORegionCounter(Body); 683 Cnt.beginRegion(Builder); 684 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 685 EmitCompoundStmtWithoutScope(*S); 686 else 687 EmitStmt(Body); 688 } 689 690 /// When instrumenting to collect profile data, the counts for some blocks 691 /// such as switch cases need to not include the fall-through counts, so 692 /// emit a branch around the instrumentation code. When not instrumenting, 693 /// this just calls EmitBlock(). 694 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 695 RegionCounter &Cnt) { 696 llvm::BasicBlock *SkipCountBB = 0; 697 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 698 // When instrumenting for profiling, the fallthrough to certain 699 // statements needs to skip over the instrumentation code so that we 700 // get an accurate count. 701 SkipCountBB = createBasicBlock("skipcount"); 702 EmitBranch(SkipCountBB); 703 } 704 EmitBlock(BB); 705 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 706 if (SkipCountBB) 707 EmitBlock(SkipCountBB); 708 } 709 710 /// Tries to mark the given function nounwind based on the 711 /// non-existence of any throwing calls within it. We believe this is 712 /// lightweight enough to do at -O0. 713 static void TryMarkNoThrow(llvm::Function *F) { 714 // LLVM treats 'nounwind' on a function as part of the type, so we 715 // can't do this on functions that can be overwritten. 716 if (F->mayBeOverridden()) return; 717 718 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 719 for (llvm::BasicBlock::iterator 720 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 721 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 722 if (!Call->doesNotThrow()) 723 return; 724 } else if (isa<llvm::ResumeInst>(&*BI)) { 725 return; 726 } 727 F->setDoesNotThrow(); 728 } 729 730 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 731 const FunctionDecl *UnsizedDealloc) { 732 // This is a weak discardable definition of the sized deallocation function. 733 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 734 735 // Call the unsized deallocation function and forward the first argument 736 // unchanged. 737 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 738 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 739 } 740 741 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 742 const CGFunctionInfo &FnInfo) { 743 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 744 745 // Check if we should generate debug info for this function. 746 if (FD->hasAttr<NoDebugAttr>()) 747 DebugInfo = NULL; // disable debug info indefinitely for this function 748 749 FunctionArgList Args; 750 QualType ResTy = FD->getReturnType(); 751 752 CurGD = GD; 753 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 754 if (MD && MD->isInstance()) { 755 if (CGM.getCXXABI().HasThisReturn(GD)) 756 ResTy = MD->getThisType(getContext()); 757 CGM.getCXXABI().buildThisParam(*this, Args); 758 } 759 760 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 761 Args.push_back(FD->getParamDecl(i)); 762 763 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 764 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 765 766 SourceRange BodyRange; 767 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 768 CurEHLocation = BodyRange.getEnd(); 769 770 // Emit the standard function prologue. 771 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 772 773 // Generate the body of the function. 774 if (isa<CXXDestructorDecl>(FD)) 775 EmitDestructorBody(Args); 776 else if (isa<CXXConstructorDecl>(FD)) 777 EmitConstructorBody(Args); 778 else if (getLangOpts().CUDA && 779 !CGM.getCodeGenOpts().CUDAIsDevice && 780 FD->hasAttr<CUDAGlobalAttr>()) 781 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 782 else if (isa<CXXConversionDecl>(FD) && 783 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 784 // The lambda conversion to block pointer is special; the semantics can't be 785 // expressed in the AST, so IRGen needs to special-case it. 786 EmitLambdaToBlockPointerBody(Args); 787 } else if (isa<CXXMethodDecl>(FD) && 788 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 789 // The lambda static invoker function is special, because it forwards or 790 // clones the body of the function call operator (but is actually static). 791 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 792 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 793 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 794 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 795 // Implicit copy-assignment gets the same special treatment as implicit 796 // copy-constructors. 797 emitImplicitAssignmentOperatorBody(Args); 798 } else if (Stmt *Body = FD->getBody()) { 799 EmitFunctionBody(Args, Body); 800 } else if (FunctionDecl *UnsizedDealloc = 801 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 802 // Global sized deallocation functions get an implicit weak definition if 803 // they don't have an explicit definition. 804 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 805 } else 806 llvm_unreachable("no definition for emitted function"); 807 808 // C++11 [stmt.return]p2: 809 // Flowing off the end of a function [...] results in undefined behavior in 810 // a value-returning function. 811 // C11 6.9.1p12: 812 // If the '}' that terminates a function is reached, and the value of the 813 // function call is used by the caller, the behavior is undefined. 814 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 815 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 816 if (SanOpts->Return) 817 EmitCheck(Builder.getFalse(), "missing_return", 818 EmitCheckSourceLocation(FD->getLocation()), 819 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 820 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 821 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 822 Builder.CreateUnreachable(); 823 Builder.ClearInsertionPoint(); 824 } 825 826 // Emit the standard function epilogue. 827 FinishFunction(BodyRange.getEnd()); 828 829 // If we haven't marked the function nothrow through other means, do 830 // a quick pass now to see if we can. 831 if (!CurFn->doesNotThrow()) 832 TryMarkNoThrow(CurFn); 833 834 PGO.emitWriteoutFunction(CurGD); 835 PGO.destroyRegionCounters(); 836 } 837 838 /// ContainsLabel - Return true if the statement contains a label in it. If 839 /// this statement is not executed normally, it not containing a label means 840 /// that we can just remove the code. 841 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 842 // Null statement, not a label! 843 if (S == 0) return false; 844 845 // If this is a label, we have to emit the code, consider something like: 846 // if (0) { ... foo: bar(); } goto foo; 847 // 848 // TODO: If anyone cared, we could track __label__'s, since we know that you 849 // can't jump to one from outside their declared region. 850 if (isa<LabelStmt>(S)) 851 return true; 852 853 // If this is a case/default statement, and we haven't seen a switch, we have 854 // to emit the code. 855 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 856 return true; 857 858 // If this is a switch statement, we want to ignore cases below it. 859 if (isa<SwitchStmt>(S)) 860 IgnoreCaseStmts = true; 861 862 // Scan subexpressions for verboten labels. 863 for (Stmt::const_child_range I = S->children(); I; ++I) 864 if (ContainsLabel(*I, IgnoreCaseStmts)) 865 return true; 866 867 return false; 868 } 869 870 /// containsBreak - Return true if the statement contains a break out of it. 871 /// If the statement (recursively) contains a switch or loop with a break 872 /// inside of it, this is fine. 873 bool CodeGenFunction::containsBreak(const Stmt *S) { 874 // Null statement, not a label! 875 if (S == 0) return false; 876 877 // If this is a switch or loop that defines its own break scope, then we can 878 // include it and anything inside of it. 879 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 880 isa<ForStmt>(S)) 881 return false; 882 883 if (isa<BreakStmt>(S)) 884 return true; 885 886 // Scan subexpressions for verboten breaks. 887 for (Stmt::const_child_range I = S->children(); I; ++I) 888 if (containsBreak(*I)) 889 return true; 890 891 return false; 892 } 893 894 895 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 896 /// to a constant, or if it does but contains a label, return false. If it 897 /// constant folds return true and set the boolean result in Result. 898 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 899 bool &ResultBool) { 900 llvm::APSInt ResultInt; 901 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 902 return false; 903 904 ResultBool = ResultInt.getBoolValue(); 905 return true; 906 } 907 908 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 909 /// to a constant, or if it does but contains a label, return false. If it 910 /// constant folds return true and set the folded value. 911 bool CodeGenFunction:: 912 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 913 // FIXME: Rename and handle conversion of other evaluatable things 914 // to bool. 915 llvm::APSInt Int; 916 if (!Cond->EvaluateAsInt(Int, getContext())) 917 return false; // Not foldable, not integer or not fully evaluatable. 918 919 if (CodeGenFunction::ContainsLabel(Cond)) 920 return false; // Contains a label. 921 922 ResultInt = Int; 923 return true; 924 } 925 926 927 928 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 929 /// statement) to the specified blocks. Based on the condition, this might try 930 /// to simplify the codegen of the conditional based on the branch. 931 /// 932 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 933 llvm::BasicBlock *TrueBlock, 934 llvm::BasicBlock *FalseBlock, 935 uint64_t TrueCount) { 936 Cond = Cond->IgnoreParens(); 937 938 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 939 940 // Handle X && Y in a condition. 941 if (CondBOp->getOpcode() == BO_LAnd) { 942 RegionCounter Cnt = getPGORegionCounter(CondBOp); 943 944 // If we have "1 && X", simplify the code. "0 && X" would have constant 945 // folded if the case was simple enough. 946 bool ConstantBool = false; 947 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 948 ConstantBool) { 949 // br(1 && X) -> br(X). 950 Cnt.beginRegion(Builder); 951 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 952 TrueCount); 953 } 954 955 // If we have "X && 1", simplify the code to use an uncond branch. 956 // "X && 0" would have been constant folded to 0. 957 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 958 ConstantBool) { 959 // br(X && 1) -> br(X). 960 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 961 TrueCount); 962 } 963 964 // Emit the LHS as a conditional. If the LHS conditional is false, we 965 // want to jump to the FalseBlock. 966 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 967 // The counter tells us how often we evaluate RHS, and all of TrueCount 968 // can be propagated to that branch. 969 uint64_t RHSCount = Cnt.getCount(); 970 971 ConditionalEvaluation eval(*this); 972 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 973 EmitBlock(LHSTrue); 974 975 // Any temporaries created here are conditional. 976 Cnt.beginRegion(Builder); 977 eval.begin(*this); 978 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 979 eval.end(*this); 980 981 return; 982 } 983 984 if (CondBOp->getOpcode() == BO_LOr) { 985 RegionCounter Cnt = getPGORegionCounter(CondBOp); 986 987 // If we have "0 || X", simplify the code. "1 || X" would have constant 988 // folded if the case was simple enough. 989 bool ConstantBool = false; 990 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 991 !ConstantBool) { 992 // br(0 || X) -> br(X). 993 Cnt.beginRegion(Builder); 994 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 995 TrueCount); 996 } 997 998 // If we have "X || 0", simplify the code to use an uncond branch. 999 // "X || 1" would have been constant folded to 1. 1000 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1001 !ConstantBool) { 1002 // br(X || 0) -> br(X). 1003 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1004 TrueCount); 1005 } 1006 1007 // Emit the LHS as a conditional. If the LHS conditional is true, we 1008 // want to jump to the TrueBlock. 1009 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1010 // We have the count for entry to the RHS and for the whole expression 1011 // being true, so we can divy up True count between the short circuit and 1012 // the RHS. 1013 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1014 uint64_t RHSCount = TrueCount - LHSCount; 1015 1016 ConditionalEvaluation eval(*this); 1017 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1018 EmitBlock(LHSFalse); 1019 1020 // Any temporaries created here are conditional. 1021 Cnt.beginRegion(Builder); 1022 eval.begin(*this); 1023 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1024 1025 eval.end(*this); 1026 1027 return; 1028 } 1029 } 1030 1031 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1032 // br(!x, t, f) -> br(x, f, t) 1033 if (CondUOp->getOpcode() == UO_LNot) { 1034 // Negate the count. 1035 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1036 // Negate the condition and swap the destination blocks. 1037 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1038 FalseCount); 1039 } 1040 } 1041 1042 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1043 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1044 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1045 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1046 1047 RegionCounter Cnt = getPGORegionCounter(CondOp); 1048 ConditionalEvaluation cond(*this); 1049 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1050 1051 // When computing PGO branch weights, we only know the overall count for 1052 // the true block. This code is essentially doing tail duplication of the 1053 // naive code-gen, introducing new edges for which counts are not 1054 // available. Divide the counts proportionally between the LHS and RHS of 1055 // the conditional operator. 1056 uint64_t LHSScaledTrueCount = 0; 1057 if (TrueCount) { 1058 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1059 LHSScaledTrueCount = TrueCount * LHSRatio; 1060 } 1061 1062 cond.begin(*this); 1063 EmitBlock(LHSBlock); 1064 Cnt.beginRegion(Builder); 1065 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1066 LHSScaledTrueCount); 1067 cond.end(*this); 1068 1069 cond.begin(*this); 1070 EmitBlock(RHSBlock); 1071 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1072 TrueCount - LHSScaledTrueCount); 1073 cond.end(*this); 1074 1075 return; 1076 } 1077 1078 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1079 // Conditional operator handling can give us a throw expression as a 1080 // condition for a case like: 1081 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1082 // Fold this to: 1083 // br(c, throw x, br(y, t, f)) 1084 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1085 return; 1086 } 1087 1088 // Create branch weights based on the number of times we get here and the 1089 // number of times the condition should be true. 1090 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1091 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1092 CurrentCount - TrueCount); 1093 1094 // Emit the code with the fully general case. 1095 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1096 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1097 } 1098 1099 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1100 /// specified stmt yet. 1101 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1102 CGM.ErrorUnsupported(S, Type); 1103 } 1104 1105 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1106 /// variable-length array whose elements have a non-zero bit-pattern. 1107 /// 1108 /// \param baseType the inner-most element type of the array 1109 /// \param src - a char* pointing to the bit-pattern for a single 1110 /// base element of the array 1111 /// \param sizeInChars - the total size of the VLA, in chars 1112 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1113 llvm::Value *dest, llvm::Value *src, 1114 llvm::Value *sizeInChars) { 1115 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1116 = CGF.getContext().getTypeInfoInChars(baseType); 1117 1118 CGBuilderTy &Builder = CGF.Builder; 1119 1120 llvm::Value *baseSizeInChars 1121 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1122 1123 llvm::Type *i8p = Builder.getInt8PtrTy(); 1124 1125 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1126 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1127 1128 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1129 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1130 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1131 1132 // Make a loop over the VLA. C99 guarantees that the VLA element 1133 // count must be nonzero. 1134 CGF.EmitBlock(loopBB); 1135 1136 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1137 cur->addIncoming(begin, originBB); 1138 1139 // memcpy the individual element bit-pattern. 1140 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1141 baseSizeAndAlign.second.getQuantity(), 1142 /*volatile*/ false); 1143 1144 // Go to the next element. 1145 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1146 1147 // Leave if that's the end of the VLA. 1148 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1149 Builder.CreateCondBr(done, contBB, loopBB); 1150 cur->addIncoming(next, loopBB); 1151 1152 CGF.EmitBlock(contBB); 1153 } 1154 1155 void 1156 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1157 // Ignore empty classes in C++. 1158 if (getLangOpts().CPlusPlus) { 1159 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1160 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1161 return; 1162 } 1163 } 1164 1165 // Cast the dest ptr to the appropriate i8 pointer type. 1166 unsigned DestAS = 1167 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1168 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1169 if (DestPtr->getType() != BP) 1170 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1171 1172 // Get size and alignment info for this aggregate. 1173 std::pair<CharUnits, CharUnits> TypeInfo = 1174 getContext().getTypeInfoInChars(Ty); 1175 CharUnits Size = TypeInfo.first; 1176 CharUnits Align = TypeInfo.second; 1177 1178 llvm::Value *SizeVal; 1179 const VariableArrayType *vla; 1180 1181 // Don't bother emitting a zero-byte memset. 1182 if (Size.isZero()) { 1183 // But note that getTypeInfo returns 0 for a VLA. 1184 if (const VariableArrayType *vlaType = 1185 dyn_cast_or_null<VariableArrayType>( 1186 getContext().getAsArrayType(Ty))) { 1187 QualType eltType; 1188 llvm::Value *numElts; 1189 std::tie(numElts, eltType) = getVLASize(vlaType); 1190 1191 SizeVal = numElts; 1192 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1193 if (!eltSize.isOne()) 1194 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1195 vla = vlaType; 1196 } else { 1197 return; 1198 } 1199 } else { 1200 SizeVal = CGM.getSize(Size); 1201 vla = 0; 1202 } 1203 1204 // If the type contains a pointer to data member we can't memset it to zero. 1205 // Instead, create a null constant and copy it to the destination. 1206 // TODO: there are other patterns besides zero that we can usefully memset, 1207 // like -1, which happens to be the pattern used by member-pointers. 1208 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1209 // For a VLA, emit a single element, then splat that over the VLA. 1210 if (vla) Ty = getContext().getBaseElementType(vla); 1211 1212 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1213 1214 llvm::GlobalVariable *NullVariable = 1215 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1216 /*isConstant=*/true, 1217 llvm::GlobalVariable::PrivateLinkage, 1218 NullConstant, Twine()); 1219 llvm::Value *SrcPtr = 1220 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1221 1222 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1223 1224 // Get and call the appropriate llvm.memcpy overload. 1225 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1226 return; 1227 } 1228 1229 // Otherwise, just memset the whole thing to zero. This is legal 1230 // because in LLVM, all default initializers (other than the ones we just 1231 // handled above) are guaranteed to have a bit pattern of all zeros. 1232 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1233 Align.getQuantity(), false); 1234 } 1235 1236 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1237 // Make sure that there is a block for the indirect goto. 1238 if (IndirectBranch == 0) 1239 GetIndirectGotoBlock(); 1240 1241 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1242 1243 // Make sure the indirect branch includes all of the address-taken blocks. 1244 IndirectBranch->addDestination(BB); 1245 return llvm::BlockAddress::get(CurFn, BB); 1246 } 1247 1248 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1249 // If we already made the indirect branch for indirect goto, return its block. 1250 if (IndirectBranch) return IndirectBranch->getParent(); 1251 1252 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1253 1254 // Create the PHI node that indirect gotos will add entries to. 1255 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1256 "indirect.goto.dest"); 1257 1258 // Create the indirect branch instruction. 1259 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1260 return IndirectBranch->getParent(); 1261 } 1262 1263 /// Computes the length of an array in elements, as well as the base 1264 /// element type and a properly-typed first element pointer. 1265 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1266 QualType &baseType, 1267 llvm::Value *&addr) { 1268 const ArrayType *arrayType = origArrayType; 1269 1270 // If it's a VLA, we have to load the stored size. Note that 1271 // this is the size of the VLA in bytes, not its size in elements. 1272 llvm::Value *numVLAElements = 0; 1273 if (isa<VariableArrayType>(arrayType)) { 1274 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1275 1276 // Walk into all VLAs. This doesn't require changes to addr, 1277 // which has type T* where T is the first non-VLA element type. 1278 do { 1279 QualType elementType = arrayType->getElementType(); 1280 arrayType = getContext().getAsArrayType(elementType); 1281 1282 // If we only have VLA components, 'addr' requires no adjustment. 1283 if (!arrayType) { 1284 baseType = elementType; 1285 return numVLAElements; 1286 } 1287 } while (isa<VariableArrayType>(arrayType)); 1288 1289 // We get out here only if we find a constant array type 1290 // inside the VLA. 1291 } 1292 1293 // We have some number of constant-length arrays, so addr should 1294 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1295 // down to the first element of addr. 1296 SmallVector<llvm::Value*, 8> gepIndices; 1297 1298 // GEP down to the array type. 1299 llvm::ConstantInt *zero = Builder.getInt32(0); 1300 gepIndices.push_back(zero); 1301 1302 uint64_t countFromCLAs = 1; 1303 QualType eltType; 1304 1305 llvm::ArrayType *llvmArrayType = 1306 dyn_cast<llvm::ArrayType>( 1307 cast<llvm::PointerType>(addr->getType())->getElementType()); 1308 while (llvmArrayType) { 1309 assert(isa<ConstantArrayType>(arrayType)); 1310 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1311 == llvmArrayType->getNumElements()); 1312 1313 gepIndices.push_back(zero); 1314 countFromCLAs *= llvmArrayType->getNumElements(); 1315 eltType = arrayType->getElementType(); 1316 1317 llvmArrayType = 1318 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1319 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1320 assert((!llvmArrayType || arrayType) && 1321 "LLVM and Clang types are out-of-synch"); 1322 } 1323 1324 if (arrayType) { 1325 // From this point onwards, the Clang array type has been emitted 1326 // as some other type (probably a packed struct). Compute the array 1327 // size, and just emit the 'begin' expression as a bitcast. 1328 while (arrayType) { 1329 countFromCLAs *= 1330 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1331 eltType = arrayType->getElementType(); 1332 arrayType = getContext().getAsArrayType(eltType); 1333 } 1334 1335 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1336 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1337 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1338 } else { 1339 // Create the actual GEP. 1340 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1341 } 1342 1343 baseType = eltType; 1344 1345 llvm::Value *numElements 1346 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1347 1348 // If we had any VLA dimensions, factor them in. 1349 if (numVLAElements) 1350 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1351 1352 return numElements; 1353 } 1354 1355 std::pair<llvm::Value*, QualType> 1356 CodeGenFunction::getVLASize(QualType type) { 1357 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1358 assert(vla && "type was not a variable array type!"); 1359 return getVLASize(vla); 1360 } 1361 1362 std::pair<llvm::Value*, QualType> 1363 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1364 // The number of elements so far; always size_t. 1365 llvm::Value *numElements = 0; 1366 1367 QualType elementType; 1368 do { 1369 elementType = type->getElementType(); 1370 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1371 assert(vlaSize && "no size for VLA!"); 1372 assert(vlaSize->getType() == SizeTy); 1373 1374 if (!numElements) { 1375 numElements = vlaSize; 1376 } else { 1377 // It's undefined behavior if this wraps around, so mark it that way. 1378 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1379 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1380 } 1381 } while ((type = getContext().getAsVariableArrayType(elementType))); 1382 1383 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1384 } 1385 1386 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1387 assert(type->isVariablyModifiedType() && 1388 "Must pass variably modified type to EmitVLASizes!"); 1389 1390 EnsureInsertPoint(); 1391 1392 // We're going to walk down into the type and look for VLA 1393 // expressions. 1394 do { 1395 assert(type->isVariablyModifiedType()); 1396 1397 const Type *ty = type.getTypePtr(); 1398 switch (ty->getTypeClass()) { 1399 1400 #define TYPE(Class, Base) 1401 #define ABSTRACT_TYPE(Class, Base) 1402 #define NON_CANONICAL_TYPE(Class, Base) 1403 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1404 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1405 #include "clang/AST/TypeNodes.def" 1406 llvm_unreachable("unexpected dependent type!"); 1407 1408 // These types are never variably-modified. 1409 case Type::Builtin: 1410 case Type::Complex: 1411 case Type::Vector: 1412 case Type::ExtVector: 1413 case Type::Record: 1414 case Type::Enum: 1415 case Type::Elaborated: 1416 case Type::TemplateSpecialization: 1417 case Type::ObjCObject: 1418 case Type::ObjCInterface: 1419 case Type::ObjCObjectPointer: 1420 llvm_unreachable("type class is never variably-modified!"); 1421 1422 case Type::Adjusted: 1423 type = cast<AdjustedType>(ty)->getAdjustedType(); 1424 break; 1425 1426 case Type::Decayed: 1427 type = cast<DecayedType>(ty)->getPointeeType(); 1428 break; 1429 1430 case Type::Pointer: 1431 type = cast<PointerType>(ty)->getPointeeType(); 1432 break; 1433 1434 case Type::BlockPointer: 1435 type = cast<BlockPointerType>(ty)->getPointeeType(); 1436 break; 1437 1438 case Type::LValueReference: 1439 case Type::RValueReference: 1440 type = cast<ReferenceType>(ty)->getPointeeType(); 1441 break; 1442 1443 case Type::MemberPointer: 1444 type = cast<MemberPointerType>(ty)->getPointeeType(); 1445 break; 1446 1447 case Type::ConstantArray: 1448 case Type::IncompleteArray: 1449 // Losing element qualification here is fine. 1450 type = cast<ArrayType>(ty)->getElementType(); 1451 break; 1452 1453 case Type::VariableArray: { 1454 // Losing element qualification here is fine. 1455 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1456 1457 // Unknown size indication requires no size computation. 1458 // Otherwise, evaluate and record it. 1459 if (const Expr *size = vat->getSizeExpr()) { 1460 // It's possible that we might have emitted this already, 1461 // e.g. with a typedef and a pointer to it. 1462 llvm::Value *&entry = VLASizeMap[size]; 1463 if (!entry) { 1464 llvm::Value *Size = EmitScalarExpr(size); 1465 1466 // C11 6.7.6.2p5: 1467 // If the size is an expression that is not an integer constant 1468 // expression [...] each time it is evaluated it shall have a value 1469 // greater than zero. 1470 if (SanOpts->VLABound && 1471 size->getType()->isSignedIntegerType()) { 1472 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1473 llvm::Constant *StaticArgs[] = { 1474 EmitCheckSourceLocation(size->getLocStart()), 1475 EmitCheckTypeDescriptor(size->getType()) 1476 }; 1477 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1478 "vla_bound_not_positive", StaticArgs, Size, 1479 CRK_Recoverable); 1480 } 1481 1482 // Always zexting here would be wrong if it weren't 1483 // undefined behavior to have a negative bound. 1484 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1485 } 1486 } 1487 type = vat->getElementType(); 1488 break; 1489 } 1490 1491 case Type::FunctionProto: 1492 case Type::FunctionNoProto: 1493 type = cast<FunctionType>(ty)->getReturnType(); 1494 break; 1495 1496 case Type::Paren: 1497 case Type::TypeOf: 1498 case Type::UnaryTransform: 1499 case Type::Attributed: 1500 case Type::SubstTemplateTypeParm: 1501 case Type::PackExpansion: 1502 // Keep walking after single level desugaring. 1503 type = type.getSingleStepDesugaredType(getContext()); 1504 break; 1505 1506 case Type::Typedef: 1507 case Type::Decltype: 1508 case Type::Auto: 1509 // Stop walking: nothing to do. 1510 return; 1511 1512 case Type::TypeOfExpr: 1513 // Stop walking: emit typeof expression. 1514 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1515 return; 1516 1517 case Type::Atomic: 1518 type = cast<AtomicType>(ty)->getValueType(); 1519 break; 1520 } 1521 } while (type->isVariablyModifiedType()); 1522 } 1523 1524 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1525 if (getContext().getBuiltinVaListType()->isArrayType()) 1526 return EmitScalarExpr(E); 1527 return EmitLValue(E).getAddress(); 1528 } 1529 1530 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1531 llvm::Constant *Init) { 1532 assert (Init && "Invalid DeclRefExpr initializer!"); 1533 if (CGDebugInfo *Dbg = getDebugInfo()) 1534 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1535 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1536 } 1537 1538 CodeGenFunction::PeepholeProtection 1539 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1540 // At the moment, the only aggressive peephole we do in IR gen 1541 // is trunc(zext) folding, but if we add more, we can easily 1542 // extend this protection. 1543 1544 if (!rvalue.isScalar()) return PeepholeProtection(); 1545 llvm::Value *value = rvalue.getScalarVal(); 1546 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1547 1548 // Just make an extra bitcast. 1549 assert(HaveInsertPoint()); 1550 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1551 Builder.GetInsertBlock()); 1552 1553 PeepholeProtection protection; 1554 protection.Inst = inst; 1555 return protection; 1556 } 1557 1558 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1559 if (!protection.Inst) return; 1560 1561 // In theory, we could try to duplicate the peepholes now, but whatever. 1562 protection.Inst->eraseFromParent(); 1563 } 1564 1565 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1566 llvm::Value *AnnotatedVal, 1567 StringRef AnnotationStr, 1568 SourceLocation Location) { 1569 llvm::Value *Args[4] = { 1570 AnnotatedVal, 1571 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1572 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1573 CGM.EmitAnnotationLineNo(Location) 1574 }; 1575 return Builder.CreateCall(AnnotationFn, Args); 1576 } 1577 1578 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1579 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1580 // FIXME We create a new bitcast for every annotation because that's what 1581 // llvm-gcc was doing. 1582 for (specific_attr_iterator<AnnotateAttr> 1583 ai = D->specific_attr_begin<AnnotateAttr>(), 1584 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1585 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1586 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1587 (*ai)->getAnnotation(), D->getLocation()); 1588 } 1589 1590 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1591 llvm::Value *V) { 1592 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1593 llvm::Type *VTy = V->getType(); 1594 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1595 CGM.Int8PtrTy); 1596 1597 for (specific_attr_iterator<AnnotateAttr> 1598 ai = D->specific_attr_begin<AnnotateAttr>(), 1599 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1600 // FIXME Always emit the cast inst so we can differentiate between 1601 // annotation on the first field of a struct and annotation on the struct 1602 // itself. 1603 if (VTy != CGM.Int8PtrTy) 1604 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1605 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1606 V = Builder.CreateBitCast(V, VTy); 1607 } 1608 1609 return V; 1610 } 1611 1612 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1613