1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGDebugInfo.h"
17 #include "CGException.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : BlockFunction(cgm, *this, Builder), CGM(cgm),
32     Target(CGM.getContext().Target),
33     Builder(cgm.getModule().getContext()),
34     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
35     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
36     SwitchInsn(0), CaseRangeBlock(0),
37     DidCallStackSave(false), UnreachableBlock(0),
38     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
39     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
40     TrapBB(0) {
41 
42   // Get some frequently used types.
43   LLVMPointerWidth = Target.getPointerWidth(0);
44   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
45   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
46   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
47   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
48 
49   Exceptions = getContext().getLangOptions().Exceptions;
50   CatchUndefined = getContext().getLangOptions().CatchUndefined;
51   CGM.getMangleContext().startNewFunction();
52 }
53 
54 ASTContext &CodeGenFunction::getContext() const {
55   return CGM.getContext();
56 }
57 
58 
59 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) {
60   llvm::Value *Res = LocalDeclMap[VD];
61   assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
62   return Res;
63 }
64 
65 llvm::Constant *
66 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) {
67   return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
68 }
69 
70 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
71   return CGM.getTypes().ConvertTypeForMem(T);
72 }
73 
74 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
75   return CGM.getTypes().ConvertType(T);
76 }
77 
78 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
79   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
80     T->isMemberFunctionPointerType();
81 }
82 
83 void CodeGenFunction::EmitReturnBlock() {
84   // For cleanliness, we try to avoid emitting the return block for
85   // simple cases.
86   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
87 
88   if (CurBB) {
89     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
90 
91     // We have a valid insert point, reuse it if it is empty or there are no
92     // explicit jumps to the return block.
93     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
94       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
95       delete ReturnBlock.getBlock();
96     } else
97       EmitBlock(ReturnBlock.getBlock());
98     return;
99   }
100 
101   // Otherwise, if the return block is the target of a single direct
102   // branch then we can just put the code in that block instead. This
103   // cleans up functions which started with a unified return block.
104   if (ReturnBlock.getBlock()->hasOneUse()) {
105     llvm::BranchInst *BI =
106       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
107     if (BI && BI->isUnconditional() &&
108         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
109       // Reset insertion point and delete the branch.
110       Builder.SetInsertPoint(BI->getParent());
111       BI->eraseFromParent();
112       delete ReturnBlock.getBlock();
113       return;
114     }
115   }
116 
117   // FIXME: We are at an unreachable point, there is no reason to emit the block
118   // unless it has uses. However, we still need a place to put the debug
119   // region.end for now.
120 
121   EmitBlock(ReturnBlock.getBlock());
122 }
123 
124 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
125   if (!BB) return;
126   if (!BB->use_empty())
127     return CGF.CurFn->getBasicBlockList().push_back(BB);
128   delete BB;
129 }
130 
131 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
132   assert(BreakContinueStack.empty() &&
133          "mismatched push/pop in break/continue stack!");
134 
135   // Emit function epilog (to return).
136   EmitReturnBlock();
137 
138   EmitFunctionInstrumentation("__cyg_profile_func_exit");
139 
140   // Emit debug descriptor for function end.
141   if (CGDebugInfo *DI = getDebugInfo()) {
142     DI->setLocation(EndLoc);
143     DI->EmitFunctionEnd(Builder);
144   }
145 
146   EmitFunctionEpilog(*CurFnInfo);
147   EmitEndEHSpec(CurCodeDecl);
148 
149   assert(EHStack.empty() &&
150          "did not remove all scopes from cleanup stack!");
151 
152   // If someone did an indirect goto, emit the indirect goto block at the end of
153   // the function.
154   if (IndirectBranch) {
155     EmitBlock(IndirectBranch->getParent());
156     Builder.ClearInsertionPoint();
157   }
158 
159   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
160   llvm::Instruction *Ptr = AllocaInsertPt;
161   AllocaInsertPt = 0;
162   Ptr->eraseFromParent();
163 
164   // If someone took the address of a label but never did an indirect goto, we
165   // made a zero entry PHI node, which is illegal, zap it now.
166   if (IndirectBranch) {
167     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
168     if (PN->getNumIncomingValues() == 0) {
169       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
170       PN->eraseFromParent();
171     }
172   }
173 
174   EmitIfUsed(*this, RethrowBlock.getBlock());
175   EmitIfUsed(*this, TerminateLandingPad);
176   EmitIfUsed(*this, TerminateHandler);
177   EmitIfUsed(*this, UnreachableBlock);
178 
179   if (CGM.getCodeGenOpts().EmitDeclMetadata)
180     EmitDeclMetadata();
181 }
182 
183 /// ShouldInstrumentFunction - Return true if the current function should be
184 /// instrumented with __cyg_profile_func_* calls
185 bool CodeGenFunction::ShouldInstrumentFunction() {
186   if (!CGM.getCodeGenOpts().InstrumentFunctions)
187     return false;
188   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
189     return false;
190   return true;
191 }
192 
193 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
194 /// instrumentation function with the current function and the call site, if
195 /// function instrumentation is enabled.
196 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
197   if (!ShouldInstrumentFunction())
198     return;
199 
200   const llvm::PointerType *PointerTy;
201   const llvm::FunctionType *FunctionTy;
202   std::vector<const llvm::Type*> ProfileFuncArgs;
203 
204   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
205   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
206   ProfileFuncArgs.push_back(PointerTy);
207   ProfileFuncArgs.push_back(PointerTy);
208   FunctionTy = llvm::FunctionType::get(
209     llvm::Type::getVoidTy(VMContext),
210     ProfileFuncArgs, false);
211 
212   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
213   llvm::CallInst *CallSite = Builder.CreateCall(
214     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
215     llvm::ConstantInt::get(Int32Ty, 0),
216     "callsite");
217 
218   Builder.CreateCall2(F,
219                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
220                       CallSite);
221 }
222 
223 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
224                                     llvm::Function *Fn,
225                                     const FunctionArgList &Args,
226                                     SourceLocation StartLoc) {
227   const Decl *D = GD.getDecl();
228 
229   DidCallStackSave = false;
230   CurCodeDecl = CurFuncDecl = D;
231   FnRetTy = RetTy;
232   CurFn = Fn;
233   assert(CurFn->isDeclaration() && "Function already has body?");
234 
235   // Pass inline keyword to optimizer if it appears explicitly on any
236   // declaration.
237   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
238     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
239            RE = FD->redecls_end(); RI != RE; ++RI)
240       if (RI->isInlineSpecified()) {
241         Fn->addFnAttr(llvm::Attribute::InlineHint);
242         break;
243       }
244 
245   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
246 
247   // Create a marker to make it easy to insert allocas into the entryblock
248   // later.  Don't create this with the builder, because we don't want it
249   // folded.
250   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
251   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
252   if (Builder.isNamePreserving())
253     AllocaInsertPt->setName("allocapt");
254 
255   ReturnBlock = getJumpDestInCurrentScope("return");
256 
257   Builder.SetInsertPoint(EntryBB);
258 
259   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
260                                                  false, false, 0, 0,
261                                                  /*FIXME?*/
262                                                  FunctionType::ExtInfo());
263 
264   // Emit subprogram debug descriptor.
265   if (CGDebugInfo *DI = getDebugInfo()) {
266     DI->setLocation(StartLoc);
267     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
268   }
269 
270   EmitFunctionInstrumentation("__cyg_profile_func_enter");
271 
272   // FIXME: Leaked.
273   // CC info is ignored, hopefully?
274   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
275                                               FunctionType::ExtInfo());
276 
277   if (RetTy->isVoidType()) {
278     // Void type; nothing to return.
279     ReturnValue = 0;
280   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
281              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
282     // Indirect aggregate return; emit returned value directly into sret slot.
283     // This reduces code size, and affects correctness in C++.
284     ReturnValue = CurFn->arg_begin();
285   } else {
286     ReturnValue = CreateIRTemp(RetTy, "retval");
287   }
288 
289   EmitStartEHSpec(CurCodeDecl);
290   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
291 
292   if (CXXThisDecl)
293     CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this");
294   if (CXXVTTDecl)
295     CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt");
296 
297   // If any of the arguments have a variably modified type, make sure to
298   // emit the type size.
299   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
300        i != e; ++i) {
301     QualType Ty = i->second;
302 
303     if (Ty->isVariablyModifiedType())
304       EmitVLASize(Ty);
305   }
306 }
307 
308 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
309   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
310   assert(FD->getBody());
311   EmitStmt(FD->getBody());
312 }
313 
314 /// Tries to mark the given function nounwind based on the
315 /// non-existence of any throwing calls within it.  We believe this is
316 /// lightweight enough to do at -O0.
317 static void TryMarkNoThrow(llvm::Function *F) {
318   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
319     for (llvm::BasicBlock::iterator
320            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
321       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
322         if (!Call->doesNotThrow())
323           return;
324   F->setDoesNotThrow(true);
325 }
326 
327 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
328   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
329 
330   // Check if we should generate debug info for this function.
331   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
332     DebugInfo = CGM.getDebugInfo();
333 
334   FunctionArgList Args;
335 
336   CurGD = GD;
337   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
338     if (MD->isInstance()) {
339       // Create the implicit 'this' decl.
340       // FIXME: I'm not entirely sure I like using a fake decl just for code
341       // generation. Maybe we can come up with a better way?
342       CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0,
343                                               FD->getLocation(),
344                                               &getContext().Idents.get("this"),
345                                               MD->getThisType(getContext()));
346       Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType()));
347 
348       // Check if we need a VTT parameter as well.
349       if (CodeGenVTables::needsVTTParameter(GD)) {
350         // FIXME: The comment about using a fake decl above applies here too.
351         QualType T = getContext().getPointerType(getContext().VoidPtrTy);
352         CXXVTTDecl =
353           ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(),
354                                     &getContext().Idents.get("vtt"), T);
355         Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType()));
356       }
357     }
358   }
359 
360   if (FD->getNumParams()) {
361     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
362     assert(FProto && "Function def must have prototype!");
363 
364     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
365       Args.push_back(std::make_pair(FD->getParamDecl(i),
366                                     FProto->getArgType(i)));
367   }
368 
369   SourceRange BodyRange;
370   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
371 
372   // Emit the standard function prologue.
373   StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin());
374 
375   // Generate the body of the function.
376   if (isa<CXXDestructorDecl>(FD))
377     EmitDestructorBody(Args);
378   else if (isa<CXXConstructorDecl>(FD))
379     EmitConstructorBody(Args);
380   else
381     EmitFunctionBody(Args);
382 
383   // Emit the standard function epilogue.
384   FinishFunction(BodyRange.getEnd());
385 
386   // If we haven't marked the function nothrow through other means, do
387   // a quick pass now to see if we can.
388   if (!CurFn->doesNotThrow())
389     TryMarkNoThrow(CurFn);
390 }
391 
392 /// ContainsLabel - Return true if the statement contains a label in it.  If
393 /// this statement is not executed normally, it not containing a label means
394 /// that we can just remove the code.
395 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
396   // Null statement, not a label!
397   if (S == 0) return false;
398 
399   // If this is a label, we have to emit the code, consider something like:
400   // if (0) {  ...  foo:  bar(); }  goto foo;
401   if (isa<LabelStmt>(S))
402     return true;
403 
404   // If this is a case/default statement, and we haven't seen a switch, we have
405   // to emit the code.
406   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
407     return true;
408 
409   // If this is a switch statement, we want to ignore cases below it.
410   if (isa<SwitchStmt>(S))
411     IgnoreCaseStmts = true;
412 
413   // Scan subexpressions for verboten labels.
414   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
415        I != E; ++I)
416     if (ContainsLabel(*I, IgnoreCaseStmts))
417       return true;
418 
419   return false;
420 }
421 
422 
423 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
424 /// a constant, or if it does but contains a label, return 0.  If it constant
425 /// folds to 'true' and does not contain a label, return 1, if it constant folds
426 /// to 'false' and does not contain a label, return -1.
427 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
428   // FIXME: Rename and handle conversion of other evaluatable things
429   // to bool.
430   Expr::EvalResult Result;
431   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
432       Result.HasSideEffects)
433     return 0;  // Not foldable, not integer or not fully evaluatable.
434 
435   if (CodeGenFunction::ContainsLabel(Cond))
436     return 0;  // Contains a label.
437 
438   return Result.Val.getInt().getBoolValue() ? 1 : -1;
439 }
440 
441 
442 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
443 /// statement) to the specified blocks.  Based on the condition, this might try
444 /// to simplify the codegen of the conditional based on the branch.
445 ///
446 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
447                                            llvm::BasicBlock *TrueBlock,
448                                            llvm::BasicBlock *FalseBlock) {
449   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
450     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
451 
452   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
453     // Handle X && Y in a condition.
454     if (CondBOp->getOpcode() == BinaryOperator::LAnd) {
455       // If we have "1 && X", simplify the code.  "0 && X" would have constant
456       // folded if the case was simple enough.
457       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
458         // br(1 && X) -> br(X).
459         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
460       }
461 
462       // If we have "X && 1", simplify the code to use an uncond branch.
463       // "X && 0" would have been constant folded to 0.
464       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
465         // br(X && 1) -> br(X).
466         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
467       }
468 
469       // Emit the LHS as a conditional.  If the LHS conditional is false, we
470       // want to jump to the FalseBlock.
471       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
472       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
473       EmitBlock(LHSTrue);
474 
475       // Any temporaries created here are conditional.
476       BeginConditionalBranch();
477       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
478       EndConditionalBranch();
479 
480       return;
481     } else if (CondBOp->getOpcode() == BinaryOperator::LOr) {
482       // If we have "0 || X", simplify the code.  "1 || X" would have constant
483       // folded if the case was simple enough.
484       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
485         // br(0 || X) -> br(X).
486         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
487       }
488 
489       // If we have "X || 0", simplify the code to use an uncond branch.
490       // "X || 1" would have been constant folded to 1.
491       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
492         // br(X || 0) -> br(X).
493         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
494       }
495 
496       // Emit the LHS as a conditional.  If the LHS conditional is true, we
497       // want to jump to the TrueBlock.
498       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
499       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
500       EmitBlock(LHSFalse);
501 
502       // Any temporaries created here are conditional.
503       BeginConditionalBranch();
504       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
505       EndConditionalBranch();
506 
507       return;
508     }
509   }
510 
511   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
512     // br(!x, t, f) -> br(x, f, t)
513     if (CondUOp->getOpcode() == UnaryOperator::LNot)
514       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
515   }
516 
517   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
518     // Handle ?: operator.
519 
520     // Just ignore GNU ?: extension.
521     if (CondOp->getLHS()) {
522       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
523       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
524       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
525       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
526       EmitBlock(LHSBlock);
527       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
528       EmitBlock(RHSBlock);
529       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
530       return;
531     }
532   }
533 
534   // Emit the code with the fully general case.
535   llvm::Value *CondV = EvaluateExprAsBool(Cond);
536   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
537 }
538 
539 /// ErrorUnsupported - Print out an error that codegen doesn't support the
540 /// specified stmt yet.
541 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
542                                        bool OmitOnError) {
543   CGM.ErrorUnsupported(S, Type, OmitOnError);
544 }
545 
546 void
547 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
548   // If the type contains a pointer to data member we can't memset it to zero.
549   // Instead, create a null constant and copy it to the destination.
550   if (CGM.getTypes().ContainsPointerToDataMember(Ty)) {
551     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
552 
553     llvm::GlobalVariable *NullVariable =
554       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
555                                /*isConstant=*/true,
556                                llvm::GlobalVariable::PrivateLinkage,
557                                NullConstant, llvm::Twine());
558     EmitAggregateCopy(DestPtr, NullVariable, Ty, /*isVolatile=*/false);
559     return;
560   }
561 
562 
563   // Ignore empty classes in C++.
564   if (getContext().getLangOptions().CPlusPlus) {
565     if (const RecordType *RT = Ty->getAs<RecordType>()) {
566       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
567         return;
568     }
569   }
570 
571   // Otherwise, just memset the whole thing to zero.  This is legal
572   // because in LLVM, all default initializers (other than the ones we just
573   // handled above) are guaranteed to have a bit pattern of all zeros.
574   const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
575   if (DestPtr->getType() != BP)
576     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
577 
578   // Get size and alignment info for this aggregate.
579   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
580 
581   // Don't bother emitting a zero-byte memset.
582   if (TypeInfo.first == 0)
583     return;
584 
585   // FIXME: Handle variable sized types.
586   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
587                  llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)),
588                       // TypeInfo.first describes size in bits.
589                       llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
590                       llvm::ConstantInt::get(Int32Ty, TypeInfo.second/8),
591                       llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext),
592                                              0));
593 }
594 
595 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
596   // Make sure that there is a block for the indirect goto.
597   if (IndirectBranch == 0)
598     GetIndirectGotoBlock();
599 
600   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
601 
602   // Make sure the indirect branch includes all of the address-taken blocks.
603   IndirectBranch->addDestination(BB);
604   return llvm::BlockAddress::get(CurFn, BB);
605 }
606 
607 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
608   // If we already made the indirect branch for indirect goto, return its block.
609   if (IndirectBranch) return IndirectBranch->getParent();
610 
611   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
612 
613   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
614 
615   // Create the PHI node that indirect gotos will add entries to.
616   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
617 
618   // Create the indirect branch instruction.
619   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
620   return IndirectBranch->getParent();
621 }
622 
623 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
624   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
625 
626   assert(SizeEntry && "Did not emit size for type");
627   return SizeEntry;
628 }
629 
630 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
631   assert(Ty->isVariablyModifiedType() &&
632          "Must pass variably modified type to EmitVLASizes!");
633 
634   EnsureInsertPoint();
635 
636   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
637     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
638 
639     if (!SizeEntry) {
640       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
641 
642       // Get the element size;
643       QualType ElemTy = VAT->getElementType();
644       llvm::Value *ElemSize;
645       if (ElemTy->isVariableArrayType())
646         ElemSize = EmitVLASize(ElemTy);
647       else
648         ElemSize = llvm::ConstantInt::get(SizeTy,
649             getContext().getTypeSizeInChars(ElemTy).getQuantity());
650 
651       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
652       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
653 
654       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
655     }
656 
657     return SizeEntry;
658   }
659 
660   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
661     EmitVLASize(AT->getElementType());
662     return 0;
663   }
664 
665   const PointerType *PT = Ty->getAs<PointerType>();
666   assert(PT && "unknown VM type!");
667   EmitVLASize(PT->getPointeeType());
668   return 0;
669 }
670 
671 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
672   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
673     return EmitScalarExpr(E);
674   return EmitLValue(E).getAddress();
675 }
676 
677 /// Pops cleanup blocks until the given savepoint is reached.
678 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
679   assert(Old.isValid());
680 
681   while (EHStack.stable_begin() != Old) {
682     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
683 
684     // As long as Old strictly encloses the scope's enclosing normal
685     // cleanup, we're going to emit another normal cleanup which
686     // fallthrough can propagate through.
687     bool FallThroughIsBranchThrough =
688       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
689 
690     PopCleanupBlock(FallThroughIsBranchThrough);
691   }
692 }
693 
694 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
695                                            EHCleanupScope &Scope) {
696   assert(Scope.isNormalCleanup());
697   llvm::BasicBlock *Entry = Scope.getNormalBlock();
698   if (!Entry) {
699     Entry = CGF.createBasicBlock("cleanup");
700     Scope.setNormalBlock(Entry);
701   }
702   return Entry;
703 }
704 
705 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
706                                        EHCleanupScope &Scope) {
707   assert(Scope.isEHCleanup());
708   llvm::BasicBlock *Entry = Scope.getEHBlock();
709   if (!Entry) {
710     Entry = CGF.createBasicBlock("eh.cleanup");
711     Scope.setEHBlock(Entry);
712   }
713   return Entry;
714 }
715 
716 /// Transitions the terminator of the given exit-block of a cleanup to
717 /// be a cleanup switch.
718 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
719                                                    llvm::BasicBlock *Block) {
720   // If it's a branch, turn it into a switch whose default
721   // destination is its original target.
722   llvm::TerminatorInst *Term = Block->getTerminator();
723   assert(Term && "can't transition block without terminator");
724 
725   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
726     assert(Br->isUnconditional());
727     llvm::LoadInst *Load =
728       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
729     llvm::SwitchInst *Switch =
730       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
731     Br->eraseFromParent();
732     return Switch;
733   } else {
734     return cast<llvm::SwitchInst>(Term);
735   }
736 }
737 
738 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
739 /// is basically llvm::MergeBlockIntoPredecessor, except
740 /// simplified/optimized for the tighter constraints on cleanup blocks.
741 ///
742 /// Returns the new block, whatever it is.
743 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
744                                               llvm::BasicBlock *Entry) {
745   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
746   if (!Pred) return Entry;
747 
748   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
749   if (!Br || Br->isConditional()) return Entry;
750   assert(Br->getSuccessor(0) == Entry);
751 
752   // If we were previously inserting at the end of the cleanup entry
753   // block, we'll need to continue inserting at the end of the
754   // predecessor.
755   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
756   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
757 
758   // Kill the branch.
759   Br->eraseFromParent();
760 
761   // Merge the blocks.
762   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
763 
764   // Kill the entry block.
765   Entry->eraseFromParent();
766 
767   if (WasInsertBlock)
768     CGF.Builder.SetInsertPoint(Pred);
769 
770   return Pred;
771 }
772 
773 static void EmitCleanup(CodeGenFunction &CGF,
774                         EHScopeStack::Cleanup *Fn,
775                         bool ForEH) {
776   if (ForEH) CGF.EHStack.pushTerminate();
777   Fn->Emit(CGF, ForEH);
778   if (ForEH) CGF.EHStack.popTerminate();
779   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
780 }
781 
782 /// Pops a cleanup block.  If the block includes a normal cleanup, the
783 /// current insertion point is threaded through the cleanup, as are
784 /// any branch fixups on the cleanup.
785 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
786   assert(!EHStack.empty() && "cleanup stack is empty!");
787   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
788   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
789   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
790 
791   // Check whether we need an EH cleanup.  This is only true if we've
792   // generated a lazy EH cleanup block.
793   bool RequiresEHCleanup = Scope.hasEHBranches();
794 
795   // Check the three conditions which might require a normal cleanup:
796 
797   // - whether there are branch fix-ups through this cleanup
798   unsigned FixupDepth = Scope.getFixupDepth();
799   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
800 
801   // - whether there are branch-throughs or branch-afters
802   bool HasExistingBranches = Scope.hasBranches();
803 
804   // - whether there's a fallthrough
805   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
806   bool HasFallthrough = (FallthroughSource != 0);
807 
808   bool RequiresNormalCleanup = false;
809   if (Scope.isNormalCleanup() &&
810       (HasFixups || HasExistingBranches || HasFallthrough)) {
811     RequiresNormalCleanup = true;
812   }
813 
814   // If we don't need the cleanup at all, we're done.
815   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
816     EHStack.popCleanup(); // safe because there are no fixups
817     assert(EHStack.getNumBranchFixups() == 0 ||
818            EHStack.hasNormalCleanups());
819     return;
820   }
821 
822   // Copy the cleanup emission data out.  Note that SmallVector
823   // guarantees maximal alignment for its buffer regardless of its
824   // type parameter.
825   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
826   CleanupBuffer.reserve(Scope.getCleanupSize());
827   memcpy(CleanupBuffer.data(),
828          Scope.getCleanupBuffer(), Scope.getCleanupSize());
829   CleanupBuffer.set_size(Scope.getCleanupSize());
830   EHScopeStack::Cleanup *Fn =
831     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
832 
833   // We want to emit the EH cleanup after the normal cleanup, but go
834   // ahead and do the setup for the EH cleanup while the scope is still
835   // alive.
836   llvm::BasicBlock *EHEntry = 0;
837   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
838   if (RequiresEHCleanup) {
839     EHEntry = CreateEHEntry(*this, Scope);
840 
841     // Figure out the branch-through dest if necessary.
842     llvm::BasicBlock *EHBranchThroughDest = 0;
843     if (Scope.hasEHBranchThroughs()) {
844       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
845       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
846       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
847     }
848 
849     // If we have exactly one branch-after and no branch-throughs, we
850     // can dispatch it without a switch.
851     if (!Scope.hasEHBranchThroughs() &&
852         Scope.getNumEHBranchAfters() == 1) {
853       assert(!EHBranchThroughDest);
854 
855       // TODO: remove the spurious eh.cleanup.dest stores if this edge
856       // never went through any switches.
857       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
858       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
859 
860     // Otherwise, if we have any branch-afters, we need a switch.
861     } else if (Scope.getNumEHBranchAfters()) {
862       // The default of the switch belongs to the branch-throughs if
863       // they exist.
864       llvm::BasicBlock *Default =
865         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
866 
867       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
868 
869       llvm::LoadInst *Load =
870         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
871       llvm::SwitchInst *Switch =
872         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
873 
874       EHInstsToAppend.push_back(Load);
875       EHInstsToAppend.push_back(Switch);
876 
877       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
878         Switch->addCase(Scope.getEHBranchAfterIndex(I),
879                         Scope.getEHBranchAfterBlock(I));
880 
881     // Otherwise, we have only branch-throughs; jump to the next EH
882     // cleanup.
883     } else {
884       assert(EHBranchThroughDest);
885       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
886     }
887   }
888 
889   if (!RequiresNormalCleanup) {
890     EHStack.popCleanup();
891   } else {
892     // As a kindof crazy internal case, branch-through fall-throughs
893     // leave the insertion point set to the end of the last cleanup.
894     bool HasPrebranchedFallthrough =
895       (HasFallthrough && FallthroughSource->getTerminator());
896     assert(!HasPrebranchedFallthrough ||
897            FallthroughSource->getTerminator()->getSuccessor(0)
898              == Scope.getNormalBlock());
899 
900     // If we have a fallthrough and no other need for the cleanup,
901     // emit it directly.
902     if (HasFallthrough && !HasPrebranchedFallthrough &&
903         !HasFixups && !HasExistingBranches) {
904 
905       // Fixups can cause us to optimistically create a normal block,
906       // only to later have no real uses for it.  Just delete it in
907       // this case.
908       // TODO: we can potentially simplify all the uses after this.
909       if (Scope.getNormalBlock()) {
910         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
911         delete Scope.getNormalBlock();
912       }
913 
914       EHStack.popCleanup();
915 
916       EmitCleanup(*this, Fn, /*ForEH*/ false);
917 
918     // Otherwise, the best approach is to thread everything through
919     // the cleanup block and then try to clean up after ourselves.
920     } else {
921       // Force the entry block to exist.
922       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
923 
924       // If there's a fallthrough, we need to store the cleanup
925       // destination index.  For fall-throughs this is always zero.
926       if (HasFallthrough && !HasPrebranchedFallthrough)
927         Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
928 
929       // Emit the entry block.  This implicitly branches to it if we
930       // have fallthrough.  All the fixups and existing branches should
931       // already be branched to it.
932       EmitBlock(NormalEntry);
933 
934       bool HasEnclosingCleanups =
935         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
936 
937       // Compute the branch-through dest if we need it:
938       //   - if there are branch-throughs threaded through the scope
939       //   - if fall-through is a branch-through
940       //   - if there are fixups that will be optimistically forwarded
941       //     to the enclosing cleanup
942       llvm::BasicBlock *BranchThroughDest = 0;
943       if (Scope.hasBranchThroughs() ||
944           (HasFallthrough && FallthroughIsBranchThrough) ||
945           (HasFixups && HasEnclosingCleanups)) {
946         assert(HasEnclosingCleanups);
947         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
948         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
949       }
950 
951       llvm::BasicBlock *FallthroughDest = 0;
952       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
953 
954       // If there's exactly one branch-after and no other threads,
955       // we can route it without a switch.
956       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
957           Scope.getNumBranchAfters() == 1) {
958         assert(!BranchThroughDest);
959 
960         // TODO: clean up the possibly dead stores to the cleanup dest slot.
961         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
962         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
963 
964       // Build a switch-out if we need it:
965       //   - if there are branch-afters threaded through the scope
966       //   - if fall-through is a branch-after
967       //   - if there are fixups that have nowhere left to go and
968       //     so must be immediately resolved
969       } else if (Scope.getNumBranchAfters() ||
970                  (HasFallthrough && !FallthroughIsBranchThrough) ||
971                  (HasFixups && !HasEnclosingCleanups)) {
972 
973         llvm::BasicBlock *Default =
974           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
975 
976         // TODO: base this on the number of branch-afters and fixups
977         const unsigned SwitchCapacity = 10;
978 
979         llvm::LoadInst *Load =
980           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
981         llvm::SwitchInst *Switch =
982           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
983 
984         InstsToAppend.push_back(Load);
985         InstsToAppend.push_back(Switch);
986 
987         // Branch-after fallthrough.
988         if (HasFallthrough && !FallthroughIsBranchThrough) {
989           FallthroughDest = createBasicBlock("cleanup.cont");
990           Switch->addCase(Builder.getInt32(0), FallthroughDest);
991         }
992 
993         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
994           Switch->addCase(Scope.getBranchAfterIndex(I),
995                           Scope.getBranchAfterBlock(I));
996         }
997 
998         if (HasFixups && !HasEnclosingCleanups)
999           ResolveAllBranchFixups(Switch);
1000       } else {
1001         // We should always have a branch-through destination in this case.
1002         assert(BranchThroughDest);
1003         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1004       }
1005 
1006       // We're finally ready to pop the cleanup.
1007       EHStack.popCleanup();
1008       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1009 
1010       EmitCleanup(*this, Fn, /*ForEH*/ false);
1011 
1012       // Append the prepared cleanup prologue from above.
1013       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1014       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1015         NormalExit->getInstList().push_back(InstsToAppend[I]);
1016 
1017       // Optimistically hope that any fixups will continue falling through.
1018       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1019            I < E; ++I) {
1020         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1021         if (!Fixup.Destination) continue;
1022         if (!Fixup.OptimisticBranchBlock) {
1023           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1024                               getNormalCleanupDestSlot(),
1025                               Fixup.InitialBranch);
1026           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1027         }
1028         Fixup.OptimisticBranchBlock = NormalExit;
1029       }
1030 
1031       if (FallthroughDest)
1032         EmitBlock(FallthroughDest);
1033       else if (!HasFallthrough)
1034         Builder.ClearInsertionPoint();
1035 
1036       // Check whether we can merge NormalEntry into a single predecessor.
1037       // This might invalidate (non-IR) pointers to NormalEntry.
1038       llvm::BasicBlock *NewNormalEntry =
1039         SimplifyCleanupEntry(*this, NormalEntry);
1040 
1041       // If it did invalidate those pointers, and NormalEntry was the same
1042       // as NormalExit, go back and patch up the fixups.
1043       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1044         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1045                I < E; ++I)
1046           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1047     }
1048   }
1049 
1050   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1051 
1052   // Emit the EH cleanup if required.
1053   if (RequiresEHCleanup) {
1054     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1055 
1056     EmitBlock(EHEntry);
1057     EmitCleanup(*this, Fn, /*ForEH*/ true);
1058 
1059     // Append the prepared cleanup prologue from above.
1060     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1061     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1062       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1063 
1064     Builder.restoreIP(SavedIP);
1065 
1066     SimplifyCleanupEntry(*this, EHEntry);
1067   }
1068 }
1069 
1070 /// Terminate the current block by emitting a branch which might leave
1071 /// the current cleanup-protected scope.  The target scope may not yet
1072 /// be known, in which case this will require a fixup.
1073 ///
1074 /// As a side-effect, this method clears the insertion point.
1075 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1076   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1077          && "stale jump destination");
1078 
1079   if (!HaveInsertPoint())
1080     return;
1081 
1082   // Create the branch.
1083   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1084 
1085   // If we're not in a cleanup scope, or if the destination scope is
1086   // the current normal-cleanup scope, we don't need to worry about
1087   // fixups.
1088   if (!EHStack.hasNormalCleanups() ||
1089       Dest.getScopeDepth() == EHStack.getInnermostNormalCleanup()) {
1090     Builder.ClearInsertionPoint();
1091     return;
1092   }
1093 
1094   // If we can't resolve the destination cleanup scope, just add this
1095   // to the current cleanup scope as a branch fixup.
1096   if (!Dest.getScopeDepth().isValid()) {
1097     BranchFixup &Fixup = EHStack.addBranchFixup();
1098     Fixup.Destination = Dest.getBlock();
1099     Fixup.DestinationIndex = Dest.getDestIndex();
1100     Fixup.InitialBranch = BI;
1101     Fixup.OptimisticBranchBlock = 0;
1102 
1103     Builder.ClearInsertionPoint();
1104     return;
1105   }
1106 
1107   // Otherwise, thread through all the normal cleanups in scope.
1108 
1109   // Store the index at the start.
1110   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1111   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1112 
1113   // Adjust BI to point to the first cleanup block.
1114   {
1115     EHCleanupScope &Scope =
1116       cast<EHCleanupScope>(*EHStack.find(EHStack.getInnermostNormalCleanup()));
1117     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1118   }
1119 
1120   // Add this destination to all the scopes involved.
1121   EHScopeStack::stable_iterator I = EHStack.getInnermostNormalCleanup();
1122   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1123   if (E.strictlyEncloses(I)) {
1124     while (true) {
1125       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1126       assert(Scope.isNormalCleanup());
1127       I = Scope.getEnclosingNormalCleanup();
1128 
1129       // If this is the last cleanup we're propagating through, tell it
1130       // that there's a resolved jump moving through it.
1131       if (!E.strictlyEncloses(I)) {
1132         Scope.addBranchAfter(Index, Dest.getBlock());
1133         break;
1134       }
1135 
1136       // Otherwise, tell the scope that there's a jump propoagating
1137       // through it.  If this isn't new information, all the rest of
1138       // the work has been done before.
1139       if (!Scope.addBranchThrough(Dest.getBlock()))
1140         break;
1141     }
1142   }
1143 
1144   Builder.ClearInsertionPoint();
1145 }
1146 
1147 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1148   // We should never get invalid scope depths for an UnwindDest; that
1149   // implies that the destination wasn't set up correctly.
1150   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1151 
1152   if (!HaveInsertPoint())
1153     return;
1154 
1155   // Create the branch.
1156   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1157 
1158   // If the destination is in the same EH cleanup scope as us, we
1159   // don't need to thread through anything.
1160   if (Dest.getScopeDepth() == EHStack.getInnermostEHCleanup()) {
1161     Builder.ClearInsertionPoint();
1162     return;
1163   }
1164   assert(EHStack.hasEHCleanups());
1165 
1166   // Store the index at the start.
1167   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1168   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1169 
1170   // Adjust BI to point to the first cleanup block.
1171   {
1172     EHCleanupScope &Scope =
1173       cast<EHCleanupScope>(*EHStack.find(EHStack.getInnermostEHCleanup()));
1174     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1175   }
1176 
1177   // Add this destination to all the scopes involved.
1178   for (EHScopeStack::stable_iterator
1179          I = EHStack.getInnermostEHCleanup(),
1180          E = Dest.getScopeDepth(); ; ) {
1181     assert(E.strictlyEncloses(I));
1182     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1183     assert(Scope.isEHCleanup());
1184     I = Scope.getEnclosingEHCleanup();
1185 
1186     // If this is the last cleanup we're propagating through, add this
1187     // as a branch-after.
1188     if (I == E) {
1189       Scope.addEHBranchAfter(Index, Dest.getBlock());
1190       break;
1191     }
1192 
1193     // Otherwise, add it as a branch-through.  If this isn't new
1194     // information, all the rest of the work has been done before.
1195     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1196       break;
1197   }
1198 
1199   Builder.ClearInsertionPoint();
1200 }
1201 
1202 /// All the branch fixups on the EH stack have propagated out past the
1203 /// outermost normal cleanup; resolve them all by adding cases to the
1204 /// given switch instruction.
1205 void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) {
1206   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1207 
1208   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1209     // Skip this fixup if its destination isn't set or if we've
1210     // already treated it.
1211     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1212     if (Fixup.Destination == 0) continue;
1213     if (!CasesAdded.insert(Fixup.Destination)) continue;
1214 
1215     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex),
1216                     Fixup.Destination);
1217   }
1218 
1219   EHStack.clearFixups();
1220 }
1221 
1222 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1223   assert(Block && "resolving a null target block");
1224   if (!EHStack.getNumBranchFixups()) return;
1225 
1226   assert(EHStack.hasNormalCleanups() &&
1227          "branch fixups exist with no normal cleanups on stack");
1228 
1229   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1230   bool ResolvedAny = false;
1231 
1232   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1233     // Skip this fixup if its destination doesn't match.
1234     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1235     if (Fixup.Destination != Block) continue;
1236 
1237     Fixup.Destination = 0;
1238     ResolvedAny = true;
1239 
1240     // If it doesn't have an optimistic branch block, LatestBranch is
1241     // already pointing to the right place.
1242     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1243     if (!BranchBB)
1244       continue;
1245 
1246     // Don't process the same optimistic branch block twice.
1247     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1248       continue;
1249 
1250     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1251 
1252     // Add a case to the switch.
1253     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1254   }
1255 
1256   if (ResolvedAny)
1257     EHStack.popNullFixups();
1258 }
1259 
1260 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1261   if (!NormalCleanupDest)
1262     NormalCleanupDest =
1263       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1264   return NormalCleanupDest;
1265 }
1266 
1267 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1268   if (!EHCleanupDest)
1269     EHCleanupDest =
1270       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1271   return EHCleanupDest;
1272 }
1273