1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78 
79   SetFastMathFlags(CurFPFeatures);
80   SetFPModel();
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize();
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFPModel() {
112   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
113   auto fpExceptionBehavior = ToConstrainedExceptMD(
114                                getLangOpts().getFPExceptionMode());
115 
116   Builder.setDefaultConstrainedRounding(RM);
117   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
118   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
119                              RM != llvm::RoundingMode::NearestTiesToEven);
120 }
121 
122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
123   llvm::FastMathFlags FMF;
124   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
125   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
126   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
127   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
128   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
129   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
130   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
131   Builder.setFastMathFlags(FMF);
132 }
133 
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135                                                   const Expr *E)
136     : CGF(CGF) {
137   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
138 }
139 
140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
141                                                   FPOptions FPFeatures)
142     : CGF(CGF) {
143   ConstructorHelper(FPFeatures);
144 }
145 
146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
147   OldFPFeatures = CGF.CurFPFeatures;
148   CGF.CurFPFeatures = FPFeatures;
149 
150   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
151   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
152 
153   if (OldFPFeatures == FPFeatures)
154     return;
155 
156   FMFGuard.emplace(CGF.Builder);
157 
158   llvm::RoundingMode NewRoundingBehavior =
159       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
160   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
161   auto NewExceptionBehavior =
162       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
163           FPFeatures.getFPExceptionMode()));
164   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
165 
166   CGF.SetFastMathFlags(FPFeatures);
167 
168   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
169           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
170           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
171           (NewExceptionBehavior == llvm::fp::ebIgnore &&
172            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
173          "FPConstrained should be enabled on entire function");
174 
175   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
176     auto OldValue =
177         CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true";
178     auto NewValue = OldValue & Value;
179     if (OldValue != NewValue)
180       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
181   };
182   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
183   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
184   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
185   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
186                                          FPFeatures.getAllowReciprocal() &&
187                                          FPFeatures.getAllowApproxFunc() &&
188                                          FPFeatures.getNoSignedZero());
189 }
190 
191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
192   CGF.CurFPFeatures = OldFPFeatures;
193   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
194   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
195 }
196 
197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
201   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
202                           TBAAInfo);
203 }
204 
205 /// Given a value of type T* that may not be to a complete object,
206 /// construct an l-value with the natural pointee alignment of T.
207 LValue
208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
212                                                 /* forPointeeType= */ true);
213   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
214 }
215 
216 
217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
218   return CGM.getTypes().ConvertTypeForMem(T);
219 }
220 
221 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
222   return CGM.getTypes().ConvertType(T);
223 }
224 
225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
226   type = type.getCanonicalType();
227   while (true) {
228     switch (type->getTypeClass()) {
229 #define TYPE(name, parent)
230 #define ABSTRACT_TYPE(name, parent)
231 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
232 #define DEPENDENT_TYPE(name, parent) case Type::name:
233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
234 #include "clang/AST/TypeNodes.inc"
235       llvm_unreachable("non-canonical or dependent type in IR-generation");
236 
237     case Type::Auto:
238     case Type::DeducedTemplateSpecialization:
239       llvm_unreachable("undeduced type in IR-generation");
240 
241     // Various scalar types.
242     case Type::Builtin:
243     case Type::Pointer:
244     case Type::BlockPointer:
245     case Type::LValueReference:
246     case Type::RValueReference:
247     case Type::MemberPointer:
248     case Type::Vector:
249     case Type::ExtVector:
250     case Type::ConstantMatrix:
251     case Type::FunctionProto:
252     case Type::FunctionNoProto:
253     case Type::Enum:
254     case Type::ObjCObjectPointer:
255     case Type::Pipe:
256     case Type::ExtInt:
257       return TEK_Scalar;
258 
259     // Complexes.
260     case Type::Complex:
261       return TEK_Complex;
262 
263     // Arrays, records, and Objective-C objects.
264     case Type::ConstantArray:
265     case Type::IncompleteArray:
266     case Type::VariableArray:
267     case Type::Record:
268     case Type::ObjCObject:
269     case Type::ObjCInterface:
270       return TEK_Aggregate;
271 
272     // We operate on atomic values according to their underlying type.
273     case Type::Atomic:
274       type = cast<AtomicType>(type)->getValueType();
275       continue;
276     }
277     llvm_unreachable("unknown type kind!");
278   }
279 }
280 
281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
282   // For cleanliness, we try to avoid emitting the return block for
283   // simple cases.
284   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
285 
286   if (CurBB) {
287     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
288 
289     // We have a valid insert point, reuse it if it is empty or there are no
290     // explicit jumps to the return block.
291     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
292       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
293       delete ReturnBlock.getBlock();
294       ReturnBlock = JumpDest();
295     } else
296       EmitBlock(ReturnBlock.getBlock());
297     return llvm::DebugLoc();
298   }
299 
300   // Otherwise, if the return block is the target of a single direct
301   // branch then we can just put the code in that block instead. This
302   // cleans up functions which started with a unified return block.
303   if (ReturnBlock.getBlock()->hasOneUse()) {
304     llvm::BranchInst *BI =
305       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
306     if (BI && BI->isUnconditional() &&
307         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
308       // Record/return the DebugLoc of the simple 'return' expression to be used
309       // later by the actual 'ret' instruction.
310       llvm::DebugLoc Loc = BI->getDebugLoc();
311       Builder.SetInsertPoint(BI->getParent());
312       BI->eraseFromParent();
313       delete ReturnBlock.getBlock();
314       ReturnBlock = JumpDest();
315       return Loc;
316     }
317   }
318 
319   // FIXME: We are at an unreachable point, there is no reason to emit the block
320   // unless it has uses. However, we still need a place to put the debug
321   // region.end for now.
322 
323   EmitBlock(ReturnBlock.getBlock());
324   return llvm::DebugLoc();
325 }
326 
327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
328   if (!BB) return;
329   if (!BB->use_empty())
330     return CGF.CurFn->getBasicBlockList().push_back(BB);
331   delete BB;
332 }
333 
334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
335   assert(BreakContinueStack.empty() &&
336          "mismatched push/pop in break/continue stack!");
337 
338   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
339     && NumSimpleReturnExprs == NumReturnExprs
340     && ReturnBlock.getBlock()->use_empty();
341   // Usually the return expression is evaluated before the cleanup
342   // code.  If the function contains only a simple return statement,
343   // such as a constant, the location before the cleanup code becomes
344   // the last useful breakpoint in the function, because the simple
345   // return expression will be evaluated after the cleanup code. To be
346   // safe, set the debug location for cleanup code to the location of
347   // the return statement.  Otherwise the cleanup code should be at the
348   // end of the function's lexical scope.
349   //
350   // If there are multiple branches to the return block, the branch
351   // instructions will get the location of the return statements and
352   // all will be fine.
353   if (CGDebugInfo *DI = getDebugInfo()) {
354     if (OnlySimpleReturnStmts)
355       DI->EmitLocation(Builder, LastStopPoint);
356     else
357       DI->EmitLocation(Builder, EndLoc);
358   }
359 
360   // Pop any cleanups that might have been associated with the
361   // parameters.  Do this in whatever block we're currently in; it's
362   // important to do this before we enter the return block or return
363   // edges will be *really* confused.
364   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
365   bool HasOnlyLifetimeMarkers =
366       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
367   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
368   if (HasCleanups) {
369     // Make sure the line table doesn't jump back into the body for
370     // the ret after it's been at EndLoc.
371     Optional<ApplyDebugLocation> AL;
372     if (CGDebugInfo *DI = getDebugInfo()) {
373       if (OnlySimpleReturnStmts)
374         DI->EmitLocation(Builder, EndLoc);
375       else
376         // We may not have a valid end location. Try to apply it anyway, and
377         // fall back to an artificial location if needed.
378         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379     }
380 
381     PopCleanupBlocks(PrologueCleanupDepth);
382   }
383 
384   // Emit function epilog (to return).
385   llvm::DebugLoc Loc = EmitReturnBlock();
386 
387   if (ShouldInstrumentFunction()) {
388     if (CGM.getCodeGenOpts().InstrumentFunctions)
389       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
390     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
391       CurFn->addFnAttr("instrument-function-exit-inlined",
392                        "__cyg_profile_func_exit");
393   }
394 
395   // Emit debug descriptor for function end.
396   if (CGDebugInfo *DI = getDebugInfo())
397     DI->EmitFunctionEnd(Builder, CurFn);
398 
399   // Reset the debug location to that of the simple 'return' expression, if any
400   // rather than that of the end of the function's scope '}'.
401   ApplyDebugLocation AL(*this, Loc);
402   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
403   EmitEndEHSpec(CurCodeDecl);
404 
405   assert(EHStack.empty() &&
406          "did not remove all scopes from cleanup stack!");
407 
408   // If someone did an indirect goto, emit the indirect goto block at the end of
409   // the function.
410   if (IndirectBranch) {
411     EmitBlock(IndirectBranch->getParent());
412     Builder.ClearInsertionPoint();
413   }
414 
415   // If some of our locals escaped, insert a call to llvm.localescape in the
416   // entry block.
417   if (!EscapedLocals.empty()) {
418     // Invert the map from local to index into a simple vector. There should be
419     // no holes.
420     SmallVector<llvm::Value *, 4> EscapeArgs;
421     EscapeArgs.resize(EscapedLocals.size());
422     for (auto &Pair : EscapedLocals)
423       EscapeArgs[Pair.second] = Pair.first;
424     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
425         &CGM.getModule(), llvm::Intrinsic::localescape);
426     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427   }
428 
429   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
430   llvm::Instruction *Ptr = AllocaInsertPt;
431   AllocaInsertPt = nullptr;
432   Ptr->eraseFromParent();
433 
434   // If someone took the address of a label but never did an indirect goto, we
435   // made a zero entry PHI node, which is illegal, zap it now.
436   if (IndirectBranch) {
437     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
438     if (PN->getNumIncomingValues() == 0) {
439       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
440       PN->eraseFromParent();
441     }
442   }
443 
444   EmitIfUsed(*this, EHResumeBlock);
445   EmitIfUsed(*this, TerminateLandingPad);
446   EmitIfUsed(*this, TerminateHandler);
447   EmitIfUsed(*this, UnreachableBlock);
448 
449   for (const auto &FuncletAndParent : TerminateFunclets)
450     EmitIfUsed(*this, FuncletAndParent.second);
451 
452   if (CGM.getCodeGenOpts().EmitDeclMetadata)
453     EmitDeclMetadata();
454 
455   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
456            I = DeferredReplacements.begin(),
457            E = DeferredReplacements.end();
458        I != E; ++I) {
459     I->first->replaceAllUsesWith(I->second);
460     I->first->eraseFromParent();
461   }
462 
463   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
464   // PHIs if the current function is a coroutine. We don't do it for all
465   // functions as it may result in slight increase in numbers of instructions
466   // if compiled with no optimizations. We do it for coroutine as the lifetime
467   // of CleanupDestSlot alloca make correct coroutine frame building very
468   // difficult.
469   if (NormalCleanupDest.isValid() && isCoroutine()) {
470     llvm::DominatorTree DT(*CurFn);
471     llvm::PromoteMemToReg(
472         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
473     NormalCleanupDest = Address::invalid();
474   }
475 
476   // Scan function arguments for vector width.
477   for (llvm::Argument &A : CurFn->args())
478     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
479       LargestVectorWidth =
480           std::max((uint64_t)LargestVectorWidth,
481                    VT->getPrimitiveSizeInBits().getKnownMinSize());
482 
483   // Update vector width based on return type.
484   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
485     LargestVectorWidth =
486         std::max((uint64_t)LargestVectorWidth,
487                  VT->getPrimitiveSizeInBits().getKnownMinSize());
488 
489   // Add the required-vector-width attribute. This contains the max width from:
490   // 1. min-vector-width attribute used in the source program.
491   // 2. Any builtins used that have a vector width specified.
492   // 3. Values passed in and out of inline assembly.
493   // 4. Width of vector arguments and return types for this function.
494   // 5. Width of vector aguments and return types for functions called by this
495   //    function.
496   if (LargestVectorWidth)
497     CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498 
499   // If we generated an unreachable return block, delete it now.
500   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
501     Builder.ClearInsertionPoint();
502     ReturnBlock.getBlock()->eraseFromParent();
503   }
504   if (ReturnValue.isValid()) {
505     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
506     if (RetAlloca && RetAlloca->use_empty()) {
507       RetAlloca->eraseFromParent();
508       ReturnValue = Address::invalid();
509     }
510   }
511 }
512 
513 /// ShouldInstrumentFunction - Return true if the current function should be
514 /// instrumented with __cyg_profile_func_* calls
515 bool CodeGenFunction::ShouldInstrumentFunction() {
516   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
517       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
518       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
519     return false;
520   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
521     return false;
522   return true;
523 }
524 
525 /// ShouldXRayInstrument - Return true if the current function should be
526 /// instrumented with XRay nop sleds.
527 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
528   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
529 }
530 
531 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
532 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
533 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
534   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
535          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
536           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
537               XRayInstrKind::Custom);
538 }
539 
540 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Typed);
545 }
546 
547 llvm::Constant *
548 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
549                                             llvm::Constant *Addr) {
550   // Addresses stored in prologue data can't require run-time fixups and must
551   // be PC-relative. Run-time fixups are undesirable because they necessitate
552   // writable text segments, which are unsafe. And absolute addresses are
553   // undesirable because they break PIE mode.
554 
555   // Add a layer of indirection through a private global. Taking its address
556   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
557   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
558                                       /*isConstant=*/true,
559                                       llvm::GlobalValue::PrivateLinkage, Addr);
560 
561   // Create a PC-relative address.
562   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
563   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
564   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
565   return (IntPtrTy == Int32Ty)
566              ? PCRelAsInt
567              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
568 }
569 
570 llvm::Value *
571 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
572                                           llvm::Value *EncodedAddr) {
573   // Reconstruct the address of the global.
574   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
575   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
576   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
577   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
578 
579   // Load the original pointer through the global.
580   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
581                             "decoded_addr");
582 }
583 
584 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
585                                                llvm::Function *Fn)
586 {
587   if (!FD->hasAttr<OpenCLKernelAttr>())
588     return;
589 
590   llvm::LLVMContext &Context = getLLVMContext();
591 
592   CGM.GenOpenCLArgMetadata(Fn, FD, this);
593 
594   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
595     QualType HintQTy = A->getTypeHint();
596     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
597     bool IsSignedInteger =
598         HintQTy->isSignedIntegerType() ||
599         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
600     llvm::Metadata *AttrMDArgs[] = {
601         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
602             CGM.getTypes().ConvertType(A->getTypeHint()))),
603         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
604             llvm::IntegerType::get(Context, 32),
605             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
606     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
607   }
608 
609   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
610     llvm::Metadata *AttrMDArgs[] = {
611         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
612         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
613         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
614     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
615   }
616 
617   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
618     llvm::Metadata *AttrMDArgs[] = {
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
621         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
622     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
626           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
627     llvm::Metadata *AttrMDArgs[] = {
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
629     Fn->setMetadata("intel_reqd_sub_group_size",
630                     llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 }
633 
634 /// Determine whether the function F ends with a return stmt.
635 static bool endsWithReturn(const Decl* F) {
636   const Stmt *Body = nullptr;
637   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
638     Body = FD->getBody();
639   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
640     Body = OMD->getBody();
641 
642   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
643     auto LastStmt = CS->body_rbegin();
644     if (LastStmt != CS->body_rend())
645       return isa<ReturnStmt>(*LastStmt);
646   }
647   return false;
648 }
649 
650 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
651   if (SanOpts.has(SanitizerKind::Thread)) {
652     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
653     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
654   }
655 }
656 
657 /// Check if the return value of this function requires sanitization.
658 bool CodeGenFunction::requiresReturnValueCheck() const {
659   return requiresReturnValueNullabilityCheck() ||
660          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
661           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
662 }
663 
664 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
665   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
666   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
667       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
668       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
669     return false;
670 
671   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
672     return false;
673 
674   if (MD->getNumParams() == 2) {
675     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
676     if (!PT || !PT->isVoidPointerType() ||
677         !PT->getPointeeType().isConstQualified())
678       return false;
679   }
680 
681   return true;
682 }
683 
684 /// Return the UBSan prologue signature for \p FD if one is available.
685 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
686                                             const FunctionDecl *FD) {
687   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
688     if (!MD->isStatic())
689       return nullptr;
690   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
691 }
692 
693 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
694                                     llvm::Function *Fn,
695                                     const CGFunctionInfo &FnInfo,
696                                     const FunctionArgList &Args,
697                                     SourceLocation Loc,
698                                     SourceLocation StartLoc) {
699   assert(!CurFn &&
700          "Do not use a CodeGenFunction object for more than one function");
701 
702   const Decl *D = GD.getDecl();
703 
704   DidCallStackSave = false;
705   CurCodeDecl = D;
706   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
707     if (FD->usesSEHTry())
708       CurSEHParent = FD;
709   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
710   FnRetTy = RetTy;
711   CurFn = Fn;
712   CurFnInfo = &FnInfo;
713   assert(CurFn->isDeclaration() && "Function already has body?");
714 
715   // If this function is ignored for any of the enabled sanitizers,
716   // disable the sanitizer for the function.
717   do {
718 #define SANITIZER(NAME, ID)                                                    \
719   if (SanOpts.empty())                                                         \
720     break;                                                                     \
721   if (SanOpts.has(SanitizerKind::ID))                                          \
722     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
723       SanOpts.set(SanitizerKind::ID, false);
724 
725 #include "clang/Basic/Sanitizers.def"
726 #undef SANITIZER
727   } while (0);
728 
729   if (D) {
730     // Apply the no_sanitize* attributes to SanOpts.
731     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
732       SanitizerMask mask = Attr->getMask();
733       SanOpts.Mask &= ~mask;
734       if (mask & SanitizerKind::Address)
735         SanOpts.set(SanitizerKind::KernelAddress, false);
736       if (mask & SanitizerKind::KernelAddress)
737         SanOpts.set(SanitizerKind::Address, false);
738       if (mask & SanitizerKind::HWAddress)
739         SanOpts.set(SanitizerKind::KernelHWAddress, false);
740       if (mask & SanitizerKind::KernelHWAddress)
741         SanOpts.set(SanitizerKind::HWAddress, false);
742     }
743   }
744 
745   // Apply sanitizer attributes to the function.
746   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
747     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
748   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
749     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
750   if (SanOpts.has(SanitizerKind::MemTag))
751     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
752   if (SanOpts.has(SanitizerKind::Thread))
753     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
754   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
755     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
756   if (SanOpts.has(SanitizerKind::SafeStack))
757     Fn->addFnAttr(llvm::Attribute::SafeStack);
758   if (SanOpts.has(SanitizerKind::ShadowCallStack))
759     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
760 
761   // Apply fuzzing attribute to the function.
762   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
763     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
764 
765   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
766   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
767   if (SanOpts.has(SanitizerKind::Thread)) {
768     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
769       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
770       if (OMD->getMethodFamily() == OMF_dealloc ||
771           OMD->getMethodFamily() == OMF_initialize ||
772           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
773         markAsIgnoreThreadCheckingAtRuntime(Fn);
774       }
775     }
776   }
777 
778   // Ignore unrelated casts in STL allocate() since the allocator must cast
779   // from void* to T* before object initialization completes. Don't match on the
780   // namespace because not all allocators are in std::
781   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
782     if (matchesStlAllocatorFn(D, getContext()))
783       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
784   }
785 
786   // Ignore null checks in coroutine functions since the coroutines passes
787   // are not aware of how to move the extra UBSan instructions across the split
788   // coroutine boundaries.
789   if (D && SanOpts.has(SanitizerKind::Null))
790     if (const auto *FD = dyn_cast<FunctionDecl>(D))
791       if (FD->getBody() &&
792           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
793         SanOpts.Mask &= ~SanitizerKind::Null;
794 
795   // Apply xray attributes to the function (as a string, for now)
796   bool AlwaysXRayAttr = false;
797   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
798     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
799             XRayInstrKind::FunctionEntry) ||
800         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
801             XRayInstrKind::FunctionExit)) {
802       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
803         Fn->addFnAttr("function-instrument", "xray-always");
804         AlwaysXRayAttr = true;
805       }
806       if (XRayAttr->neverXRayInstrument())
807         Fn->addFnAttr("function-instrument", "xray-never");
808       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
809         if (ShouldXRayInstrumentFunction())
810           Fn->addFnAttr("xray-log-args",
811                         llvm::utostr(LogArgs->getArgumentCount()));
812     }
813   } else {
814     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
815       Fn->addFnAttr(
816           "xray-instruction-threshold",
817           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
818   }
819 
820   if (ShouldXRayInstrumentFunction()) {
821     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
822       Fn->addFnAttr("xray-ignore-loops");
823 
824     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionExit))
826       Fn->addFnAttr("xray-skip-exit");
827 
828     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
829             XRayInstrKind::FunctionEntry))
830       Fn->addFnAttr("xray-skip-entry");
831 
832     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
833     if (FuncGroups > 1) {
834       auto FuncName = llvm::makeArrayRef<uint8_t>(
835           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
836       auto Group = crc32(FuncName) % FuncGroups;
837       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
838           !AlwaysXRayAttr)
839         Fn->addFnAttr("function-instrument", "xray-never");
840     }
841   }
842 
843   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
844     if (CGM.isProfileInstrExcluded(Fn, Loc))
845       Fn->addFnAttr(llvm::Attribute::NoProfile);
846 
847   unsigned Count, Offset;
848   if (const auto *Attr =
849           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
850     Count = Attr->getCount();
851     Offset = Attr->getOffset();
852   } else {
853     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
854     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
855   }
856   if (Count && Offset <= Count) {
857     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
858     if (Offset)
859       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
860   }
861 
862   // Add no-jump-tables value.
863   if (CGM.getCodeGenOpts().NoUseJumpTables)
864     Fn->addFnAttr("no-jump-tables", "true");
865 
866   // Add no-inline-line-tables value.
867   if (CGM.getCodeGenOpts().NoInlineLineTables)
868     Fn->addFnAttr("no-inline-line-tables");
869 
870   // Add profile-sample-accurate value.
871   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
872     Fn->addFnAttr("profile-sample-accurate");
873 
874   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
875     Fn->addFnAttr("use-sample-profile");
876 
877   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
878     Fn->addFnAttr("cfi-canonical-jump-table");
879 
880   if (getLangOpts().OpenCL) {
881     // Add metadata for a kernel function.
882     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
883       EmitOpenCLKernelMetadata(FD, Fn);
884   }
885 
886   // If we are checking function types, emit a function type signature as
887   // prologue data.
888   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
889     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
890       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
891         // Remove any (C++17) exception specifications, to allow calling e.g. a
892         // noexcept function through a non-noexcept pointer.
893         auto ProtoTy =
894           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
895                                                         EST_None);
896         llvm::Constant *FTRTTIConst =
897             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
898         llvm::Constant *FTRTTIConstEncoded =
899             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
900         llvm::Constant *PrologueStructElems[] = {PrologueSig,
901                                                  FTRTTIConstEncoded};
902         llvm::Constant *PrologueStructConst =
903             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
904         Fn->setPrologueData(PrologueStructConst);
905       }
906     }
907   }
908 
909   // If we're checking nullability, we need to know whether we can check the
910   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
911   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
912     auto Nullability = FnRetTy->getNullability(getContext());
913     if (Nullability && *Nullability == NullabilityKind::NonNull) {
914       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
915             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
916         RetValNullabilityPrecondition =
917             llvm::ConstantInt::getTrue(getLLVMContext());
918     }
919   }
920 
921   // If we're in C++ mode and the function name is "main", it is guaranteed
922   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
923   // used within a program").
924   //
925   // OpenCL C 2.0 v2.2-11 s6.9.i:
926   //     Recursion is not supported.
927   //
928   // SYCL v1.2.1 s3.10:
929   //     kernels cannot include RTTI information, exception classes,
930   //     recursive code, virtual functions or make use of C++ libraries that
931   //     are not compiled for the device.
932   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
933     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
934         getLangOpts().SYCLIsDevice ||
935         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
936       Fn->addFnAttr(llvm::Attribute::NoRecurse);
937   }
938 
939   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
940     Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
941     if (FD->hasAttr<StrictFPAttr>())
942       Fn->addFnAttr(llvm::Attribute::StrictFP);
943   }
944 
945   // If a custom alignment is used, force realigning to this alignment on
946   // any main function which certainly will need it.
947   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
948     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
949         CGM.getCodeGenOpts().StackAlignment)
950       Fn->addFnAttr("stackrealign");
951 
952   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
953 
954   // Create a marker to make it easy to insert allocas into the entryblock
955   // later.  Don't create this with the builder, because we don't want it
956   // folded.
957   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
958   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
959 
960   ReturnBlock = getJumpDestInCurrentScope("return");
961 
962   Builder.SetInsertPoint(EntryBB);
963 
964   // If we're checking the return value, allocate space for a pointer to a
965   // precise source location of the checked return statement.
966   if (requiresReturnValueCheck()) {
967     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
968     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
969   }
970 
971   // Emit subprogram debug descriptor.
972   if (CGDebugInfo *DI = getDebugInfo()) {
973     // Reconstruct the type from the argument list so that implicit parameters,
974     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
975     // convention.
976     CallingConv CC = CallingConv::CC_C;
977     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
978       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
979         CC = SrcFnTy->getCallConv();
980     SmallVector<QualType, 16> ArgTypes;
981     for (const VarDecl *VD : Args)
982       ArgTypes.push_back(VD->getType());
983     QualType FnType = getContext().getFunctionType(
984         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
985     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
986   }
987 
988   if (ShouldInstrumentFunction()) {
989     if (CGM.getCodeGenOpts().InstrumentFunctions)
990       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
991     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
992       CurFn->addFnAttr("instrument-function-entry-inlined",
993                        "__cyg_profile_func_enter");
994     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
995       CurFn->addFnAttr("instrument-function-entry-inlined",
996                        "__cyg_profile_func_enter_bare");
997   }
998 
999   // Since emitting the mcount call here impacts optimizations such as function
1000   // inlining, we just add an attribute to insert a mcount call in backend.
1001   // The attribute "counting-function" is set to mcount function name which is
1002   // architecture dependent.
1003   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1004     // Calls to fentry/mcount should not be generated if function has
1005     // the no_instrument_function attribute.
1006     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1007       if (CGM.getCodeGenOpts().CallFEntry)
1008         Fn->addFnAttr("fentry-call", "true");
1009       else {
1010         Fn->addFnAttr("instrument-function-entry-inlined",
1011                       getTarget().getMCountName());
1012       }
1013       if (CGM.getCodeGenOpts().MNopMCount) {
1014         if (!CGM.getCodeGenOpts().CallFEntry)
1015           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1016             << "-mnop-mcount" << "-mfentry";
1017         Fn->addFnAttr("mnop-mcount");
1018       }
1019 
1020       if (CGM.getCodeGenOpts().RecordMCount) {
1021         if (!CGM.getCodeGenOpts().CallFEntry)
1022           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1023             << "-mrecord-mcount" << "-mfentry";
1024         Fn->addFnAttr("mrecord-mcount");
1025       }
1026     }
1027   }
1028 
1029   if (CGM.getCodeGenOpts().PackedStack) {
1030     if (getContext().getTargetInfo().getTriple().getArch() !=
1031         llvm::Triple::systemz)
1032       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1033         << "-mpacked-stack";
1034     Fn->addFnAttr("packed-stack");
1035   }
1036 
1037   if (RetTy->isVoidType()) {
1038     // Void type; nothing to return.
1039     ReturnValue = Address::invalid();
1040 
1041     // Count the implicit return.
1042     if (!endsWithReturn(D))
1043       ++NumReturnExprs;
1044   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1045     // Indirect return; emit returned value directly into sret slot.
1046     // This reduces code size, and affects correctness in C++.
1047     auto AI = CurFn->arg_begin();
1048     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1049       ++AI;
1050     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1051     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1052       ReturnValuePointer =
1053           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1054       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1055                               ReturnValue.getPointer(), Int8PtrTy),
1056                           ReturnValuePointer);
1057     }
1058   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1059              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1060     // Load the sret pointer from the argument struct and return into that.
1061     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1062     llvm::Function::arg_iterator EI = CurFn->arg_end();
1063     --EI;
1064     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1065     ReturnValuePointer = Address(Addr, getPointerAlign());
1066     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1067     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1068   } else {
1069     ReturnValue = CreateIRTemp(RetTy, "retval");
1070 
1071     // Tell the epilog emitter to autorelease the result.  We do this
1072     // now so that various specialized functions can suppress it
1073     // during their IR-generation.
1074     if (getLangOpts().ObjCAutoRefCount &&
1075         !CurFnInfo->isReturnsRetained() &&
1076         RetTy->isObjCRetainableType())
1077       AutoreleaseResult = true;
1078   }
1079 
1080   EmitStartEHSpec(CurCodeDecl);
1081 
1082   PrologueCleanupDepth = EHStack.stable_begin();
1083 
1084   // Emit OpenMP specific initialization of the device functions.
1085   if (getLangOpts().OpenMP && CurCodeDecl)
1086     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1087 
1088   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1089 
1090   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1091     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1092     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1093     if (MD->getParent()->isLambda() &&
1094         MD->getOverloadedOperator() == OO_Call) {
1095       // We're in a lambda; figure out the captures.
1096       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1097                                         LambdaThisCaptureField);
1098       if (LambdaThisCaptureField) {
1099         // If the lambda captures the object referred to by '*this' - either by
1100         // value or by reference, make sure CXXThisValue points to the correct
1101         // object.
1102 
1103         // Get the lvalue for the field (which is a copy of the enclosing object
1104         // or contains the address of the enclosing object).
1105         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1106         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1107           // If the enclosing object was captured by value, just use its address.
1108           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1109         } else {
1110           // Load the lvalue pointed to by the field, since '*this' was captured
1111           // by reference.
1112           CXXThisValue =
1113               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1114         }
1115       }
1116       for (auto *FD : MD->getParent()->fields()) {
1117         if (FD->hasCapturedVLAType()) {
1118           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1119                                            SourceLocation()).getScalarVal();
1120           auto VAT = FD->getCapturedVLAType();
1121           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1122         }
1123       }
1124     } else {
1125       // Not in a lambda; just use 'this' from the method.
1126       // FIXME: Should we generate a new load for each use of 'this'?  The
1127       // fast register allocator would be happier...
1128       CXXThisValue = CXXABIThisValue;
1129     }
1130 
1131     // Check the 'this' pointer once per function, if it's available.
1132     if (CXXABIThisValue) {
1133       SanitizerSet SkippedChecks;
1134       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1135       QualType ThisTy = MD->getThisType();
1136 
1137       // If this is the call operator of a lambda with no capture-default, it
1138       // may have a static invoker function, which may call this operator with
1139       // a null 'this' pointer.
1140       if (isLambdaCallOperator(MD) &&
1141           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1142         SkippedChecks.set(SanitizerKind::Null, true);
1143 
1144       EmitTypeCheck(
1145           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1146           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1147     }
1148   }
1149 
1150   // If any of the arguments have a variably modified type, make sure to
1151   // emit the type size.
1152   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1153        i != e; ++i) {
1154     const VarDecl *VD = *i;
1155 
1156     // Dig out the type as written from ParmVarDecls; it's unclear whether
1157     // the standard (C99 6.9.1p10) requires this, but we're following the
1158     // precedent set by gcc.
1159     QualType Ty;
1160     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1161       Ty = PVD->getOriginalType();
1162     else
1163       Ty = VD->getType();
1164 
1165     if (Ty->isVariablyModifiedType())
1166       EmitVariablyModifiedType(Ty);
1167   }
1168   // Emit a location at the end of the prologue.
1169   if (CGDebugInfo *DI = getDebugInfo())
1170     DI->EmitLocation(Builder, StartLoc);
1171 
1172   // TODO: Do we need to handle this in two places like we do with
1173   // target-features/target-cpu?
1174   if (CurFuncDecl)
1175     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1176       LargestVectorWidth = VecWidth->getVectorWidth();
1177 }
1178 
1179 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1180   incrementProfileCounter(Body);
1181   if (CPlusPlusWithProgress())
1182     FnIsMustProgress = true;
1183 
1184   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1185     EmitCompoundStmtWithoutScope(*S);
1186   else
1187     EmitStmt(Body);
1188 
1189   // This is checked after emitting the function body so we know if there
1190   // are any permitted infinite loops.
1191   if (FnIsMustProgress)
1192     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1193 }
1194 
1195 /// When instrumenting to collect profile data, the counts for some blocks
1196 /// such as switch cases need to not include the fall-through counts, so
1197 /// emit a branch around the instrumentation code. When not instrumenting,
1198 /// this just calls EmitBlock().
1199 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1200                                                const Stmt *S) {
1201   llvm::BasicBlock *SkipCountBB = nullptr;
1202   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1203     // When instrumenting for profiling, the fallthrough to certain
1204     // statements needs to skip over the instrumentation code so that we
1205     // get an accurate count.
1206     SkipCountBB = createBasicBlock("skipcount");
1207     EmitBranch(SkipCountBB);
1208   }
1209   EmitBlock(BB);
1210   uint64_t CurrentCount = getCurrentProfileCount();
1211   incrementProfileCounter(S);
1212   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1213   if (SkipCountBB)
1214     EmitBlock(SkipCountBB);
1215 }
1216 
1217 /// Tries to mark the given function nounwind based on the
1218 /// non-existence of any throwing calls within it.  We believe this is
1219 /// lightweight enough to do at -O0.
1220 static void TryMarkNoThrow(llvm::Function *F) {
1221   // LLVM treats 'nounwind' on a function as part of the type, so we
1222   // can't do this on functions that can be overwritten.
1223   if (F->isInterposable()) return;
1224 
1225   for (llvm::BasicBlock &BB : *F)
1226     for (llvm::Instruction &I : BB)
1227       if (I.mayThrow())
1228         return;
1229 
1230   F->setDoesNotThrow();
1231 }
1232 
1233 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1234                                                FunctionArgList &Args) {
1235   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1236   QualType ResTy = FD->getReturnType();
1237 
1238   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1239   if (MD && MD->isInstance()) {
1240     if (CGM.getCXXABI().HasThisReturn(GD))
1241       ResTy = MD->getThisType();
1242     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1243       ResTy = CGM.getContext().VoidPtrTy;
1244     CGM.getCXXABI().buildThisParam(*this, Args);
1245   }
1246 
1247   // The base version of an inheriting constructor whose constructed base is a
1248   // virtual base is not passed any arguments (because it doesn't actually call
1249   // the inherited constructor).
1250   bool PassedParams = true;
1251   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1252     if (auto Inherited = CD->getInheritedConstructor())
1253       PassedParams =
1254           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1255 
1256   if (PassedParams) {
1257     for (auto *Param : FD->parameters()) {
1258       Args.push_back(Param);
1259       if (!Param->hasAttr<PassObjectSizeAttr>())
1260         continue;
1261 
1262       auto *Implicit = ImplicitParamDecl::Create(
1263           getContext(), Param->getDeclContext(), Param->getLocation(),
1264           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1265       SizeArguments[Param] = Implicit;
1266       Args.push_back(Implicit);
1267     }
1268   }
1269 
1270   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1271     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1272 
1273   return ResTy;
1274 }
1275 
1276 static bool
1277 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1278                                              const ASTContext &Context) {
1279   QualType T = FD->getReturnType();
1280   // Avoid the optimization for functions that return a record type with a
1281   // trivial destructor or another trivially copyable type.
1282   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1283     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1284       return !ClassDecl->hasTrivialDestructor();
1285   }
1286   return !T.isTriviallyCopyableType(Context);
1287 }
1288 
1289 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1290                                    const CGFunctionInfo &FnInfo) {
1291   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1292   CurGD = GD;
1293 
1294   FunctionArgList Args;
1295   QualType ResTy = BuildFunctionArgList(GD, Args);
1296 
1297   // Check if we should generate debug info for this function.
1298   if (FD->hasAttr<NoDebugAttr>())
1299     DebugInfo = nullptr; // disable debug info indefinitely for this function
1300 
1301   // The function might not have a body if we're generating thunks for a
1302   // function declaration.
1303   SourceRange BodyRange;
1304   if (Stmt *Body = FD->getBody())
1305     BodyRange = Body->getSourceRange();
1306   else
1307     BodyRange = FD->getLocation();
1308   CurEHLocation = BodyRange.getEnd();
1309 
1310   // Use the location of the start of the function to determine where
1311   // the function definition is located. By default use the location
1312   // of the declaration as the location for the subprogram. A function
1313   // may lack a declaration in the source code if it is created by code
1314   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1315   SourceLocation Loc = FD->getLocation();
1316 
1317   // If this is a function specialization then use the pattern body
1318   // as the location for the function.
1319   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1320     if (SpecDecl->hasBody(SpecDecl))
1321       Loc = SpecDecl->getLocation();
1322 
1323   Stmt *Body = FD->getBody();
1324 
1325   // Initialize helper which will detect jumps which can cause invalid lifetime
1326   // markers.
1327   if (Body && ShouldEmitLifetimeMarkers)
1328     Bypasses.Init(Body);
1329 
1330   // Emit the standard function prologue.
1331   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1332 
1333   // Generate the body of the function.
1334   PGO.assignRegionCounters(GD, CurFn);
1335   if (isa<CXXDestructorDecl>(FD))
1336     EmitDestructorBody(Args);
1337   else if (isa<CXXConstructorDecl>(FD))
1338     EmitConstructorBody(Args);
1339   else if (getLangOpts().CUDA &&
1340            !getLangOpts().CUDAIsDevice &&
1341            FD->hasAttr<CUDAGlobalAttr>())
1342     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1343   else if (isa<CXXMethodDecl>(FD) &&
1344            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1345     // The lambda static invoker function is special, because it forwards or
1346     // clones the body of the function call operator (but is actually static).
1347     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1348   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1349              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1350               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1351     // Implicit copy-assignment gets the same special treatment as implicit
1352     // copy-constructors.
1353     emitImplicitAssignmentOperatorBody(Args);
1354   } else if (Body) {
1355     EmitFunctionBody(Body);
1356   } else
1357     llvm_unreachable("no definition for emitted function");
1358 
1359   // C++11 [stmt.return]p2:
1360   //   Flowing off the end of a function [...] results in undefined behavior in
1361   //   a value-returning function.
1362   // C11 6.9.1p12:
1363   //   If the '}' that terminates a function is reached, and the value of the
1364   //   function call is used by the caller, the behavior is undefined.
1365   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1366       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1367     bool ShouldEmitUnreachable =
1368         CGM.getCodeGenOpts().StrictReturn ||
1369         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1370     if (SanOpts.has(SanitizerKind::Return)) {
1371       SanitizerScope SanScope(this);
1372       llvm::Value *IsFalse = Builder.getFalse();
1373       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1374                 SanitizerHandler::MissingReturn,
1375                 EmitCheckSourceLocation(FD->getLocation()), None);
1376     } else if (ShouldEmitUnreachable) {
1377       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1378         EmitTrapCall(llvm::Intrinsic::trap);
1379     }
1380     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1381       Builder.CreateUnreachable();
1382       Builder.ClearInsertionPoint();
1383     }
1384   }
1385 
1386   // Emit the standard function epilogue.
1387   FinishFunction(BodyRange.getEnd());
1388 
1389   // If we haven't marked the function nothrow through other means, do
1390   // a quick pass now to see if we can.
1391   if (!CurFn->doesNotThrow())
1392     TryMarkNoThrow(CurFn);
1393 }
1394 
1395 /// ContainsLabel - Return true if the statement contains a label in it.  If
1396 /// this statement is not executed normally, it not containing a label means
1397 /// that we can just remove the code.
1398 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1399   // Null statement, not a label!
1400   if (!S) return false;
1401 
1402   // If this is a label, we have to emit the code, consider something like:
1403   // if (0) {  ...  foo:  bar(); }  goto foo;
1404   //
1405   // TODO: If anyone cared, we could track __label__'s, since we know that you
1406   // can't jump to one from outside their declared region.
1407   if (isa<LabelStmt>(S))
1408     return true;
1409 
1410   // If this is a case/default statement, and we haven't seen a switch, we have
1411   // to emit the code.
1412   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1413     return true;
1414 
1415   // If this is a switch statement, we want to ignore cases below it.
1416   if (isa<SwitchStmt>(S))
1417     IgnoreCaseStmts = true;
1418 
1419   // Scan subexpressions for verboten labels.
1420   for (const Stmt *SubStmt : S->children())
1421     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1422       return true;
1423 
1424   return false;
1425 }
1426 
1427 /// containsBreak - Return true if the statement contains a break out of it.
1428 /// If the statement (recursively) contains a switch or loop with a break
1429 /// inside of it, this is fine.
1430 bool CodeGenFunction::containsBreak(const Stmt *S) {
1431   // Null statement, not a label!
1432   if (!S) return false;
1433 
1434   // If this is a switch or loop that defines its own break scope, then we can
1435   // include it and anything inside of it.
1436   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1437       isa<ForStmt>(S))
1438     return false;
1439 
1440   if (isa<BreakStmt>(S))
1441     return true;
1442 
1443   // Scan subexpressions for verboten breaks.
1444   for (const Stmt *SubStmt : S->children())
1445     if (containsBreak(SubStmt))
1446       return true;
1447 
1448   return false;
1449 }
1450 
1451 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1452   if (!S) return false;
1453 
1454   // Some statement kinds add a scope and thus never add a decl to the current
1455   // scope. Note, this list is longer than the list of statements that might
1456   // have an unscoped decl nested within them, but this way is conservatively
1457   // correct even if more statement kinds are added.
1458   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1459       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1460       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1461       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1462     return false;
1463 
1464   if (isa<DeclStmt>(S))
1465     return true;
1466 
1467   for (const Stmt *SubStmt : S->children())
1468     if (mightAddDeclToScope(SubStmt))
1469       return true;
1470 
1471   return false;
1472 }
1473 
1474 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1475 /// to a constant, or if it does but contains a label, return false.  If it
1476 /// constant folds return true and set the boolean result in Result.
1477 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1478                                                    bool &ResultBool,
1479                                                    bool AllowLabels) {
1480   llvm::APSInt ResultInt;
1481   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1482     return false;
1483 
1484   ResultBool = ResultInt.getBoolValue();
1485   return true;
1486 }
1487 
1488 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1489 /// to a constant, or if it does but contains a label, return false.  If it
1490 /// constant folds return true and set the folded value.
1491 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1492                                                    llvm::APSInt &ResultInt,
1493                                                    bool AllowLabels) {
1494   // FIXME: Rename and handle conversion of other evaluatable things
1495   // to bool.
1496   Expr::EvalResult Result;
1497   if (!Cond->EvaluateAsInt(Result, getContext()))
1498     return false;  // Not foldable, not integer or not fully evaluatable.
1499 
1500   llvm::APSInt Int = Result.Val.getInt();
1501   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1502     return false;  // Contains a label.
1503 
1504   ResultInt = Int;
1505   return true;
1506 }
1507 
1508 /// Determine whether the given condition is an instrumentable condition
1509 /// (i.e. no "&&" or "||").
1510 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1511   // Bypass simplistic logical-NOT operator before determining whether the
1512   // condition contains any other logical operator.
1513   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1514     if (UnOp->getOpcode() == UO_LNot)
1515       C = UnOp->getSubExpr();
1516 
1517   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1518   return (!BOp || !BOp->isLogicalOp());
1519 }
1520 
1521 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1522 /// increments a profile counter based on the semantics of the given logical
1523 /// operator opcode.  This is used to instrument branch condition coverage for
1524 /// logical operators.
1525 void CodeGenFunction::EmitBranchToCounterBlock(
1526     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1527     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1528     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1529   // If not instrumenting, just emit a branch.
1530   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1531   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1532     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1533 
1534   llvm::BasicBlock *ThenBlock = NULL;
1535   llvm::BasicBlock *ElseBlock = NULL;
1536   llvm::BasicBlock *NextBlock = NULL;
1537 
1538   // Create the block we'll use to increment the appropriate counter.
1539   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1540 
1541   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1542   // means we need to evaluate the condition and increment the counter on TRUE:
1543   //
1544   // if (Cond)
1545   //   goto CounterIncrBlock;
1546   // else
1547   //   goto FalseBlock;
1548   //
1549   // CounterIncrBlock:
1550   //   Counter++;
1551   //   goto TrueBlock;
1552 
1553   if (LOp == BO_LAnd) {
1554     ThenBlock = CounterIncrBlock;
1555     ElseBlock = FalseBlock;
1556     NextBlock = TrueBlock;
1557   }
1558 
1559   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1560   // we need to evaluate the condition and increment the counter on FALSE:
1561   //
1562   // if (Cond)
1563   //   goto TrueBlock;
1564   // else
1565   //   goto CounterIncrBlock;
1566   //
1567   // CounterIncrBlock:
1568   //   Counter++;
1569   //   goto FalseBlock;
1570 
1571   else if (LOp == BO_LOr) {
1572     ThenBlock = TrueBlock;
1573     ElseBlock = CounterIncrBlock;
1574     NextBlock = FalseBlock;
1575   } else {
1576     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1577   }
1578 
1579   // Emit Branch based on condition.
1580   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1581 
1582   // Emit the block containing the counter increment(s).
1583   EmitBlock(CounterIncrBlock);
1584 
1585   // Increment corresponding counter; if index not provided, use Cond as index.
1586   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1587 
1588   // Go to the next block.
1589   EmitBranch(NextBlock);
1590 }
1591 
1592 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1593 /// statement) to the specified blocks.  Based on the condition, this might try
1594 /// to simplify the codegen of the conditional based on the branch.
1595 /// \param LH The value of the likelihood attribute on the True branch.
1596 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1597                                            llvm::BasicBlock *TrueBlock,
1598                                            llvm::BasicBlock *FalseBlock,
1599                                            uint64_t TrueCount,
1600                                            Stmt::Likelihood LH) {
1601   Cond = Cond->IgnoreParens();
1602 
1603   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1604 
1605     // Handle X && Y in a condition.
1606     if (CondBOp->getOpcode() == BO_LAnd) {
1607       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1608       // folded if the case was simple enough.
1609       bool ConstantBool = false;
1610       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1611           ConstantBool) {
1612         // br(1 && X) -> br(X).
1613         incrementProfileCounter(CondBOp);
1614         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1615                                         FalseBlock, TrueCount, LH);
1616       }
1617 
1618       // If we have "X && 1", simplify the code to use an uncond branch.
1619       // "X && 0" would have been constant folded to 0.
1620       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1621           ConstantBool) {
1622         // br(X && 1) -> br(X).
1623         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1624                                         FalseBlock, TrueCount, LH, CondBOp);
1625       }
1626 
1627       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1628       // want to jump to the FalseBlock.
1629       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1630       // The counter tells us how often we evaluate RHS, and all of TrueCount
1631       // can be propagated to that branch.
1632       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1633 
1634       ConditionalEvaluation eval(*this);
1635       {
1636         ApplyDebugLocation DL(*this, Cond);
1637         // Propagate the likelihood attribute like __builtin_expect
1638         // __builtin_expect(X && Y, 1) -> X and Y are likely
1639         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1640         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1641                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1642         EmitBlock(LHSTrue);
1643       }
1644 
1645       incrementProfileCounter(CondBOp);
1646       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1647 
1648       // Any temporaries created here are conditional.
1649       eval.begin(*this);
1650       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1651                                FalseBlock, TrueCount, LH);
1652       eval.end(*this);
1653 
1654       return;
1655     }
1656 
1657     if (CondBOp->getOpcode() == BO_LOr) {
1658       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1659       // folded if the case was simple enough.
1660       bool ConstantBool = false;
1661       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1662           !ConstantBool) {
1663         // br(0 || X) -> br(X).
1664         incrementProfileCounter(CondBOp);
1665         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1666                                         FalseBlock, TrueCount, LH);
1667       }
1668 
1669       // If we have "X || 0", simplify the code to use an uncond branch.
1670       // "X || 1" would have been constant folded to 1.
1671       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1672           !ConstantBool) {
1673         // br(X || 0) -> br(X).
1674         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1675                                         FalseBlock, TrueCount, LH, CondBOp);
1676       }
1677 
1678       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1679       // want to jump to the TrueBlock.
1680       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1681       // We have the count for entry to the RHS and for the whole expression
1682       // being true, so we can divy up True count between the short circuit and
1683       // the RHS.
1684       uint64_t LHSCount =
1685           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1686       uint64_t RHSCount = TrueCount - LHSCount;
1687 
1688       ConditionalEvaluation eval(*this);
1689       {
1690         // Propagate the likelihood attribute like __builtin_expect
1691         // __builtin_expect(X || Y, 1) -> only Y is likely
1692         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1693         ApplyDebugLocation DL(*this, Cond);
1694         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1695                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1696         EmitBlock(LHSFalse);
1697       }
1698 
1699       incrementProfileCounter(CondBOp);
1700       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1701 
1702       // Any temporaries created here are conditional.
1703       eval.begin(*this);
1704       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1705                                RHSCount, LH);
1706 
1707       eval.end(*this);
1708 
1709       return;
1710     }
1711   }
1712 
1713   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1714     // br(!x, t, f) -> br(x, f, t)
1715     if (CondUOp->getOpcode() == UO_LNot) {
1716       // Negate the count.
1717       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1718       // The values of the enum are chosen to make this negation possible.
1719       LH = static_cast<Stmt::Likelihood>(-LH);
1720       // Negate the condition and swap the destination blocks.
1721       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1722                                   FalseCount, LH);
1723     }
1724   }
1725 
1726   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1727     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1728     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1729     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1730 
1731     // The ConditionalOperator itself has no likelihood information for its
1732     // true and false branches. This matches the behavior of __builtin_expect.
1733     ConditionalEvaluation cond(*this);
1734     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1735                          getProfileCount(CondOp), Stmt::LH_None);
1736 
1737     // When computing PGO branch weights, we only know the overall count for
1738     // the true block. This code is essentially doing tail duplication of the
1739     // naive code-gen, introducing new edges for which counts are not
1740     // available. Divide the counts proportionally between the LHS and RHS of
1741     // the conditional operator.
1742     uint64_t LHSScaledTrueCount = 0;
1743     if (TrueCount) {
1744       double LHSRatio =
1745           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1746       LHSScaledTrueCount = TrueCount * LHSRatio;
1747     }
1748 
1749     cond.begin(*this);
1750     EmitBlock(LHSBlock);
1751     incrementProfileCounter(CondOp);
1752     {
1753       ApplyDebugLocation DL(*this, Cond);
1754       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1755                            LHSScaledTrueCount, LH);
1756     }
1757     cond.end(*this);
1758 
1759     cond.begin(*this);
1760     EmitBlock(RHSBlock);
1761     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1762                          TrueCount - LHSScaledTrueCount, LH);
1763     cond.end(*this);
1764 
1765     return;
1766   }
1767 
1768   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1769     // Conditional operator handling can give us a throw expression as a
1770     // condition for a case like:
1771     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1772     // Fold this to:
1773     //   br(c, throw x, br(y, t, f))
1774     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1775     return;
1776   }
1777 
1778   // If the branch has a condition wrapped by __builtin_unpredictable,
1779   // create metadata that specifies that the branch is unpredictable.
1780   // Don't bother if not optimizing because that metadata would not be used.
1781   llvm::MDNode *Unpredictable = nullptr;
1782   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1783   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1784     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1785     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1786       llvm::MDBuilder MDHelper(getLLVMContext());
1787       Unpredictable = MDHelper.createUnpredictable();
1788     }
1789   }
1790 
1791   llvm::MDNode *Weights = createBranchWeights(LH);
1792   if (!Weights) {
1793     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1794     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1795   }
1796 
1797   // Emit the code with the fully general case.
1798   llvm::Value *CondV;
1799   {
1800     ApplyDebugLocation DL(*this, Cond);
1801     CondV = EvaluateExprAsBool(Cond);
1802   }
1803   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1804 }
1805 
1806 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1807 /// specified stmt yet.
1808 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1809   CGM.ErrorUnsupported(S, Type);
1810 }
1811 
1812 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1813 /// variable-length array whose elements have a non-zero bit-pattern.
1814 ///
1815 /// \param baseType the inner-most element type of the array
1816 /// \param src - a char* pointing to the bit-pattern for a single
1817 /// base element of the array
1818 /// \param sizeInChars - the total size of the VLA, in chars
1819 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1820                                Address dest, Address src,
1821                                llvm::Value *sizeInChars) {
1822   CGBuilderTy &Builder = CGF.Builder;
1823 
1824   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1825   llvm::Value *baseSizeInChars
1826     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1827 
1828   Address begin =
1829     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1830   llvm::Value *end =
1831     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1832 
1833   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1834   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1835   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1836 
1837   // Make a loop over the VLA.  C99 guarantees that the VLA element
1838   // count must be nonzero.
1839   CGF.EmitBlock(loopBB);
1840 
1841   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1842   cur->addIncoming(begin.getPointer(), originBB);
1843 
1844   CharUnits curAlign =
1845     dest.getAlignment().alignmentOfArrayElement(baseSize);
1846 
1847   // memcpy the individual element bit-pattern.
1848   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1849                        /*volatile*/ false);
1850 
1851   // Go to the next element.
1852   llvm::Value *next =
1853     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1854 
1855   // Leave if that's the end of the VLA.
1856   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1857   Builder.CreateCondBr(done, contBB, loopBB);
1858   cur->addIncoming(next, loopBB);
1859 
1860   CGF.EmitBlock(contBB);
1861 }
1862 
1863 void
1864 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1865   // Ignore empty classes in C++.
1866   if (getLangOpts().CPlusPlus) {
1867     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1868       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1869         return;
1870     }
1871   }
1872 
1873   // Cast the dest ptr to the appropriate i8 pointer type.
1874   if (DestPtr.getElementType() != Int8Ty)
1875     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1876 
1877   // Get size and alignment info for this aggregate.
1878   CharUnits size = getContext().getTypeSizeInChars(Ty);
1879 
1880   llvm::Value *SizeVal;
1881   const VariableArrayType *vla;
1882 
1883   // Don't bother emitting a zero-byte memset.
1884   if (size.isZero()) {
1885     // But note that getTypeInfo returns 0 for a VLA.
1886     if (const VariableArrayType *vlaType =
1887           dyn_cast_or_null<VariableArrayType>(
1888                                           getContext().getAsArrayType(Ty))) {
1889       auto VlaSize = getVLASize(vlaType);
1890       SizeVal = VlaSize.NumElts;
1891       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1892       if (!eltSize.isOne())
1893         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1894       vla = vlaType;
1895     } else {
1896       return;
1897     }
1898   } else {
1899     SizeVal = CGM.getSize(size);
1900     vla = nullptr;
1901   }
1902 
1903   // If the type contains a pointer to data member we can't memset it to zero.
1904   // Instead, create a null constant and copy it to the destination.
1905   // TODO: there are other patterns besides zero that we can usefully memset,
1906   // like -1, which happens to be the pattern used by member-pointers.
1907   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1908     // For a VLA, emit a single element, then splat that over the VLA.
1909     if (vla) Ty = getContext().getBaseElementType(vla);
1910 
1911     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1912 
1913     llvm::GlobalVariable *NullVariable =
1914       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1915                                /*isConstant=*/true,
1916                                llvm::GlobalVariable::PrivateLinkage,
1917                                NullConstant, Twine());
1918     CharUnits NullAlign = DestPtr.getAlignment();
1919     NullVariable->setAlignment(NullAlign.getAsAlign());
1920     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1921                    NullAlign);
1922 
1923     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1924 
1925     // Get and call the appropriate llvm.memcpy overload.
1926     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1927     return;
1928   }
1929 
1930   // Otherwise, just memset the whole thing to zero.  This is legal
1931   // because in LLVM, all default initializers (other than the ones we just
1932   // handled above) are guaranteed to have a bit pattern of all zeros.
1933   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1934 }
1935 
1936 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1937   // Make sure that there is a block for the indirect goto.
1938   if (!IndirectBranch)
1939     GetIndirectGotoBlock();
1940 
1941   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1942 
1943   // Make sure the indirect branch includes all of the address-taken blocks.
1944   IndirectBranch->addDestination(BB);
1945   return llvm::BlockAddress::get(CurFn, BB);
1946 }
1947 
1948 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1949   // If we already made the indirect branch for indirect goto, return its block.
1950   if (IndirectBranch) return IndirectBranch->getParent();
1951 
1952   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1953 
1954   // Create the PHI node that indirect gotos will add entries to.
1955   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1956                                               "indirect.goto.dest");
1957 
1958   // Create the indirect branch instruction.
1959   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1960   return IndirectBranch->getParent();
1961 }
1962 
1963 /// Computes the length of an array in elements, as well as the base
1964 /// element type and a properly-typed first element pointer.
1965 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1966                                               QualType &baseType,
1967                                               Address &addr) {
1968   const ArrayType *arrayType = origArrayType;
1969 
1970   // If it's a VLA, we have to load the stored size.  Note that
1971   // this is the size of the VLA in bytes, not its size in elements.
1972   llvm::Value *numVLAElements = nullptr;
1973   if (isa<VariableArrayType>(arrayType)) {
1974     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1975 
1976     // Walk into all VLAs.  This doesn't require changes to addr,
1977     // which has type T* where T is the first non-VLA element type.
1978     do {
1979       QualType elementType = arrayType->getElementType();
1980       arrayType = getContext().getAsArrayType(elementType);
1981 
1982       // If we only have VLA components, 'addr' requires no adjustment.
1983       if (!arrayType) {
1984         baseType = elementType;
1985         return numVLAElements;
1986       }
1987     } while (isa<VariableArrayType>(arrayType));
1988 
1989     // We get out here only if we find a constant array type
1990     // inside the VLA.
1991   }
1992 
1993   // We have some number of constant-length arrays, so addr should
1994   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1995   // down to the first element of addr.
1996   SmallVector<llvm::Value*, 8> gepIndices;
1997 
1998   // GEP down to the array type.
1999   llvm::ConstantInt *zero = Builder.getInt32(0);
2000   gepIndices.push_back(zero);
2001 
2002   uint64_t countFromCLAs = 1;
2003   QualType eltType;
2004 
2005   llvm::ArrayType *llvmArrayType =
2006     dyn_cast<llvm::ArrayType>(addr.getElementType());
2007   while (llvmArrayType) {
2008     assert(isa<ConstantArrayType>(arrayType));
2009     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2010              == llvmArrayType->getNumElements());
2011 
2012     gepIndices.push_back(zero);
2013     countFromCLAs *= llvmArrayType->getNumElements();
2014     eltType = arrayType->getElementType();
2015 
2016     llvmArrayType =
2017       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2018     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2019     assert((!llvmArrayType || arrayType) &&
2020            "LLVM and Clang types are out-of-synch");
2021   }
2022 
2023   if (arrayType) {
2024     // From this point onwards, the Clang array type has been emitted
2025     // as some other type (probably a packed struct). Compute the array
2026     // size, and just emit the 'begin' expression as a bitcast.
2027     while (arrayType) {
2028       countFromCLAs *=
2029           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2030       eltType = arrayType->getElementType();
2031       arrayType = getContext().getAsArrayType(eltType);
2032     }
2033 
2034     llvm::Type *baseType = ConvertType(eltType);
2035     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2036   } else {
2037     // Create the actual GEP.
2038     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
2039                                              gepIndices, "array.begin"),
2040                    addr.getAlignment());
2041   }
2042 
2043   baseType = eltType;
2044 
2045   llvm::Value *numElements
2046     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2047 
2048   // If we had any VLA dimensions, factor them in.
2049   if (numVLAElements)
2050     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2051 
2052   return numElements;
2053 }
2054 
2055 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2056   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2057   assert(vla && "type was not a variable array type!");
2058   return getVLASize(vla);
2059 }
2060 
2061 CodeGenFunction::VlaSizePair
2062 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2063   // The number of elements so far; always size_t.
2064   llvm::Value *numElements = nullptr;
2065 
2066   QualType elementType;
2067   do {
2068     elementType = type->getElementType();
2069     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2070     assert(vlaSize && "no size for VLA!");
2071     assert(vlaSize->getType() == SizeTy);
2072 
2073     if (!numElements) {
2074       numElements = vlaSize;
2075     } else {
2076       // It's undefined behavior if this wraps around, so mark it that way.
2077       // FIXME: Teach -fsanitize=undefined to trap this.
2078       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2079     }
2080   } while ((type = getContext().getAsVariableArrayType(elementType)));
2081 
2082   return { numElements, elementType };
2083 }
2084 
2085 CodeGenFunction::VlaSizePair
2086 CodeGenFunction::getVLAElements1D(QualType type) {
2087   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2088   assert(vla && "type was not a variable array type!");
2089   return getVLAElements1D(vla);
2090 }
2091 
2092 CodeGenFunction::VlaSizePair
2093 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2094   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2095   assert(VlaSize && "no size for VLA!");
2096   assert(VlaSize->getType() == SizeTy);
2097   return { VlaSize, Vla->getElementType() };
2098 }
2099 
2100 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2101   assert(type->isVariablyModifiedType() &&
2102          "Must pass variably modified type to EmitVLASizes!");
2103 
2104   EnsureInsertPoint();
2105 
2106   // We're going to walk down into the type and look for VLA
2107   // expressions.
2108   do {
2109     assert(type->isVariablyModifiedType());
2110 
2111     const Type *ty = type.getTypePtr();
2112     switch (ty->getTypeClass()) {
2113 
2114 #define TYPE(Class, Base)
2115 #define ABSTRACT_TYPE(Class, Base)
2116 #define NON_CANONICAL_TYPE(Class, Base)
2117 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2118 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2119 #include "clang/AST/TypeNodes.inc"
2120       llvm_unreachable("unexpected dependent type!");
2121 
2122     // These types are never variably-modified.
2123     case Type::Builtin:
2124     case Type::Complex:
2125     case Type::Vector:
2126     case Type::ExtVector:
2127     case Type::ConstantMatrix:
2128     case Type::Record:
2129     case Type::Enum:
2130     case Type::Elaborated:
2131     case Type::TemplateSpecialization:
2132     case Type::ObjCTypeParam:
2133     case Type::ObjCObject:
2134     case Type::ObjCInterface:
2135     case Type::ObjCObjectPointer:
2136     case Type::ExtInt:
2137       llvm_unreachable("type class is never variably-modified!");
2138 
2139     case Type::Adjusted:
2140       type = cast<AdjustedType>(ty)->getAdjustedType();
2141       break;
2142 
2143     case Type::Decayed:
2144       type = cast<DecayedType>(ty)->getPointeeType();
2145       break;
2146 
2147     case Type::Pointer:
2148       type = cast<PointerType>(ty)->getPointeeType();
2149       break;
2150 
2151     case Type::BlockPointer:
2152       type = cast<BlockPointerType>(ty)->getPointeeType();
2153       break;
2154 
2155     case Type::LValueReference:
2156     case Type::RValueReference:
2157       type = cast<ReferenceType>(ty)->getPointeeType();
2158       break;
2159 
2160     case Type::MemberPointer:
2161       type = cast<MemberPointerType>(ty)->getPointeeType();
2162       break;
2163 
2164     case Type::ConstantArray:
2165     case Type::IncompleteArray:
2166       // Losing element qualification here is fine.
2167       type = cast<ArrayType>(ty)->getElementType();
2168       break;
2169 
2170     case Type::VariableArray: {
2171       // Losing element qualification here is fine.
2172       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2173 
2174       // Unknown size indication requires no size computation.
2175       // Otherwise, evaluate and record it.
2176       if (const Expr *size = vat->getSizeExpr()) {
2177         // It's possible that we might have emitted this already,
2178         // e.g. with a typedef and a pointer to it.
2179         llvm::Value *&entry = VLASizeMap[size];
2180         if (!entry) {
2181           llvm::Value *Size = EmitScalarExpr(size);
2182 
2183           // C11 6.7.6.2p5:
2184           //   If the size is an expression that is not an integer constant
2185           //   expression [...] each time it is evaluated it shall have a value
2186           //   greater than zero.
2187           if (SanOpts.has(SanitizerKind::VLABound) &&
2188               size->getType()->isSignedIntegerType()) {
2189             SanitizerScope SanScope(this);
2190             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2191             llvm::Constant *StaticArgs[] = {
2192                 EmitCheckSourceLocation(size->getBeginLoc()),
2193                 EmitCheckTypeDescriptor(size->getType())};
2194             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2195                                      SanitizerKind::VLABound),
2196                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2197           }
2198 
2199           // Always zexting here would be wrong if it weren't
2200           // undefined behavior to have a negative bound.
2201           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2202         }
2203       }
2204       type = vat->getElementType();
2205       break;
2206     }
2207 
2208     case Type::FunctionProto:
2209     case Type::FunctionNoProto:
2210       type = cast<FunctionType>(ty)->getReturnType();
2211       break;
2212 
2213     case Type::Paren:
2214     case Type::TypeOf:
2215     case Type::UnaryTransform:
2216     case Type::Attributed:
2217     case Type::SubstTemplateTypeParm:
2218     case Type::MacroQualified:
2219       // Keep walking after single level desugaring.
2220       type = type.getSingleStepDesugaredType(getContext());
2221       break;
2222 
2223     case Type::Typedef:
2224     case Type::Decltype:
2225     case Type::Auto:
2226     case Type::DeducedTemplateSpecialization:
2227       // Stop walking: nothing to do.
2228       return;
2229 
2230     case Type::TypeOfExpr:
2231       // Stop walking: emit typeof expression.
2232       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2233       return;
2234 
2235     case Type::Atomic:
2236       type = cast<AtomicType>(ty)->getValueType();
2237       break;
2238 
2239     case Type::Pipe:
2240       type = cast<PipeType>(ty)->getElementType();
2241       break;
2242     }
2243   } while (type->isVariablyModifiedType());
2244 }
2245 
2246 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2247   if (getContext().getBuiltinVaListType()->isArrayType())
2248     return EmitPointerWithAlignment(E);
2249   return EmitLValue(E).getAddress(*this);
2250 }
2251 
2252 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2253   return EmitLValue(E).getAddress(*this);
2254 }
2255 
2256 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2257                                               const APValue &Init) {
2258   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2259   if (CGDebugInfo *Dbg = getDebugInfo())
2260     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2261       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2262 }
2263 
2264 CodeGenFunction::PeepholeProtection
2265 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2266   // At the moment, the only aggressive peephole we do in IR gen
2267   // is trunc(zext) folding, but if we add more, we can easily
2268   // extend this protection.
2269 
2270   if (!rvalue.isScalar()) return PeepholeProtection();
2271   llvm::Value *value = rvalue.getScalarVal();
2272   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2273 
2274   // Just make an extra bitcast.
2275   assert(HaveInsertPoint());
2276   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2277                                                   Builder.GetInsertBlock());
2278 
2279   PeepholeProtection protection;
2280   protection.Inst = inst;
2281   return protection;
2282 }
2283 
2284 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2285   if (!protection.Inst) return;
2286 
2287   // In theory, we could try to duplicate the peepholes now, but whatever.
2288   protection.Inst->eraseFromParent();
2289 }
2290 
2291 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2292                                               QualType Ty, SourceLocation Loc,
2293                                               SourceLocation AssumptionLoc,
2294                                               llvm::Value *Alignment,
2295                                               llvm::Value *OffsetValue) {
2296   if (Alignment->getType() != IntPtrTy)
2297     Alignment =
2298         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2299   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2300     OffsetValue =
2301         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2302   llvm::Value *TheCheck = nullptr;
2303   if (SanOpts.has(SanitizerKind::Alignment)) {
2304     llvm::Value *PtrIntValue =
2305         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2306 
2307     if (OffsetValue) {
2308       bool IsOffsetZero = false;
2309       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2310         IsOffsetZero = CI->isZero();
2311 
2312       if (!IsOffsetZero)
2313         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2314     }
2315 
2316     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2317     llvm::Value *Mask =
2318         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2319     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2320     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2321   }
2322   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2323       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2324 
2325   if (!SanOpts.has(SanitizerKind::Alignment))
2326     return;
2327   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2328                                OffsetValue, TheCheck, Assumption);
2329 }
2330 
2331 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2332                                               const Expr *E,
2333                                               SourceLocation AssumptionLoc,
2334                                               llvm::Value *Alignment,
2335                                               llvm::Value *OffsetValue) {
2336   if (auto *CE = dyn_cast<CastExpr>(E))
2337     E = CE->getSubExprAsWritten();
2338   QualType Ty = E->getType();
2339   SourceLocation Loc = E->getExprLoc();
2340 
2341   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2342                           OffsetValue);
2343 }
2344 
2345 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2346                                                  llvm::Value *AnnotatedVal,
2347                                                  StringRef AnnotationStr,
2348                                                  SourceLocation Location,
2349                                                  const AnnotateAttr *Attr) {
2350   SmallVector<llvm::Value *, 5> Args = {
2351       AnnotatedVal,
2352       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2353       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2354       CGM.EmitAnnotationLineNo(Location),
2355   };
2356   if (Attr)
2357     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2358   return Builder.CreateCall(AnnotationFn, Args);
2359 }
2360 
2361 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2362   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2363   // FIXME We create a new bitcast for every annotation because that's what
2364   // llvm-gcc was doing.
2365   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2366     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2367                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2368                        I->getAnnotation(), D->getLocation(), I);
2369 }
2370 
2371 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2372                                               Address Addr) {
2373   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2374   llvm::Value *V = Addr.getPointer();
2375   llvm::Type *VTy = V->getType();
2376   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2377                                     CGM.Int8PtrTy);
2378 
2379   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2380     // FIXME Always emit the cast inst so we can differentiate between
2381     // annotation on the first field of a struct and annotation on the struct
2382     // itself.
2383     if (VTy != CGM.Int8PtrTy)
2384       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2385     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2386     V = Builder.CreateBitCast(V, VTy);
2387   }
2388 
2389   return Address(V, Addr.getAlignment());
2390 }
2391 
2392 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2393 
2394 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2395     : CGF(CGF) {
2396   assert(!CGF->IsSanitizerScope);
2397   CGF->IsSanitizerScope = true;
2398 }
2399 
2400 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2401   CGF->IsSanitizerScope = false;
2402 }
2403 
2404 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2405                                    const llvm::Twine &Name,
2406                                    llvm::BasicBlock *BB,
2407                                    llvm::BasicBlock::iterator InsertPt) const {
2408   LoopStack.InsertHelper(I);
2409   if (IsSanitizerScope)
2410     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2411 }
2412 
2413 void CGBuilderInserter::InsertHelper(
2414     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2415     llvm::BasicBlock::iterator InsertPt) const {
2416   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2417   if (CGF)
2418     CGF->InsertHelper(I, Name, BB, InsertPt);
2419 }
2420 
2421 // Emits an error if we don't have a valid set of target features for the
2422 // called function.
2423 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2424                                           const FunctionDecl *TargetDecl) {
2425   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2426 }
2427 
2428 // Emits an error if we don't have a valid set of target features for the
2429 // called function.
2430 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2431                                           const FunctionDecl *TargetDecl) {
2432   // Early exit if this is an indirect call.
2433   if (!TargetDecl)
2434     return;
2435 
2436   // Get the current enclosing function if it exists. If it doesn't
2437   // we can't check the target features anyhow.
2438   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2439   if (!FD)
2440     return;
2441 
2442   // Grab the required features for the call. For a builtin this is listed in
2443   // the td file with the default cpu, for an always_inline function this is any
2444   // listed cpu and any listed features.
2445   unsigned BuiltinID = TargetDecl->getBuiltinID();
2446   std::string MissingFeature;
2447   llvm::StringMap<bool> CallerFeatureMap;
2448   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2449   if (BuiltinID) {
2450     StringRef FeatureList(
2451         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2452     // Return if the builtin doesn't have any required features.
2453     if (FeatureList.empty())
2454       return;
2455     assert(FeatureList.find(' ') == StringRef::npos &&
2456            "Space in feature list");
2457     TargetFeatures TF(CallerFeatureMap);
2458     if (!TF.hasRequiredFeatures(FeatureList))
2459       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2460           << TargetDecl->getDeclName() << FeatureList;
2461   } else if (!TargetDecl->isMultiVersion() &&
2462              TargetDecl->hasAttr<TargetAttr>()) {
2463     // Get the required features for the callee.
2464 
2465     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2466     ParsedTargetAttr ParsedAttr =
2467         CGM.getContext().filterFunctionTargetAttrs(TD);
2468 
2469     SmallVector<StringRef, 1> ReqFeatures;
2470     llvm::StringMap<bool> CalleeFeatureMap;
2471     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2472 
2473     for (const auto &F : ParsedAttr.Features) {
2474       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2475         ReqFeatures.push_back(StringRef(F).substr(1));
2476     }
2477 
2478     for (const auto &F : CalleeFeatureMap) {
2479       // Only positive features are "required".
2480       if (F.getValue())
2481         ReqFeatures.push_back(F.getKey());
2482     }
2483     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2484       if (!CallerFeatureMap.lookup(Feature)) {
2485         MissingFeature = Feature.str();
2486         return false;
2487       }
2488       return true;
2489     }))
2490       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2491           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2492   }
2493 }
2494 
2495 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2496   if (!CGM.getCodeGenOpts().SanitizeStats)
2497     return;
2498 
2499   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2500   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2501   CGM.getSanStats().create(IRB, SSK);
2502 }
2503 
2504 llvm::Value *
2505 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2506   llvm::Value *Condition = nullptr;
2507 
2508   if (!RO.Conditions.Architecture.empty())
2509     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2510 
2511   if (!RO.Conditions.Features.empty()) {
2512     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2513     Condition =
2514         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2515   }
2516   return Condition;
2517 }
2518 
2519 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2520                                              llvm::Function *Resolver,
2521                                              CGBuilderTy &Builder,
2522                                              llvm::Function *FuncToReturn,
2523                                              bool SupportsIFunc) {
2524   if (SupportsIFunc) {
2525     Builder.CreateRet(FuncToReturn);
2526     return;
2527   }
2528 
2529   llvm::SmallVector<llvm::Value *, 10> Args;
2530   llvm::for_each(Resolver->args(),
2531                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2532 
2533   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2534   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2535 
2536   if (Resolver->getReturnType()->isVoidTy())
2537     Builder.CreateRetVoid();
2538   else
2539     Builder.CreateRet(Result);
2540 }
2541 
2542 void CodeGenFunction::EmitMultiVersionResolver(
2543     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2544   assert(getContext().getTargetInfo().getTriple().isX86() &&
2545          "Only implemented for x86 targets");
2546 
2547   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2548 
2549   // Main function's basic block.
2550   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2551   Builder.SetInsertPoint(CurBlock);
2552   EmitX86CpuInit();
2553 
2554   for (const MultiVersionResolverOption &RO : Options) {
2555     Builder.SetInsertPoint(CurBlock);
2556     llvm::Value *Condition = FormResolverCondition(RO);
2557 
2558     // The 'default' or 'generic' case.
2559     if (!Condition) {
2560       assert(&RO == Options.end() - 1 &&
2561              "Default or Generic case must be last");
2562       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2563                                        SupportsIFunc);
2564       return;
2565     }
2566 
2567     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2568     CGBuilderTy RetBuilder(*this, RetBlock);
2569     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2570                                      SupportsIFunc);
2571     CurBlock = createBasicBlock("resolver_else", Resolver);
2572     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2573   }
2574 
2575   // If no generic/default, emit an unreachable.
2576   Builder.SetInsertPoint(CurBlock);
2577   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2578   TrapCall->setDoesNotReturn();
2579   TrapCall->setDoesNotThrow();
2580   Builder.CreateUnreachable();
2581   Builder.ClearInsertionPoint();
2582 }
2583 
2584 // Loc - where the diagnostic will point, where in the source code this
2585 //  alignment has failed.
2586 // SecondaryLoc - if present (will be present if sufficiently different from
2587 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2588 //  It should be the location where the __attribute__((assume_aligned))
2589 //  was written e.g.
2590 void CodeGenFunction::emitAlignmentAssumptionCheck(
2591     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2592     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2593     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2594     llvm::Instruction *Assumption) {
2595   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2596          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2597              llvm::Intrinsic::getDeclaration(
2598                  Builder.GetInsertBlock()->getParent()->getParent(),
2599                  llvm::Intrinsic::assume) &&
2600          "Assumption should be a call to llvm.assume().");
2601   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2602          "Assumption should be the last instruction of the basic block, "
2603          "since the basic block is still being generated.");
2604 
2605   if (!SanOpts.has(SanitizerKind::Alignment))
2606     return;
2607 
2608   // Don't check pointers to volatile data. The behavior here is implementation-
2609   // defined.
2610   if (Ty->getPointeeType().isVolatileQualified())
2611     return;
2612 
2613   // We need to temorairly remove the assumption so we can insert the
2614   // sanitizer check before it, else the check will be dropped by optimizations.
2615   Assumption->removeFromParent();
2616 
2617   {
2618     SanitizerScope SanScope(this);
2619 
2620     if (!OffsetValue)
2621       OffsetValue = Builder.getInt1(0); // no offset.
2622 
2623     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2624                                     EmitCheckSourceLocation(SecondaryLoc),
2625                                     EmitCheckTypeDescriptor(Ty)};
2626     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2627                                   EmitCheckValue(Alignment),
2628                                   EmitCheckValue(OffsetValue)};
2629     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2630               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2631   }
2632 
2633   // We are now in the (new, empty) "cont" basic block.
2634   // Reintroduce the assumption.
2635   Builder.Insert(Assumption);
2636   // FIXME: Assumption still has it's original basic block as it's Parent.
2637 }
2638 
2639 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2640   if (CGDebugInfo *DI = getDebugInfo())
2641     return DI->SourceLocToDebugLoc(Location);
2642 
2643   return llvm::DebugLoc();
2644 }
2645 
2646 static Optional<std::pair<uint32_t, uint32_t>>
2647 getLikelihoodWeights(Stmt::Likelihood LH) {
2648   switch (LH) {
2649   case Stmt::LH_Unlikely:
2650     return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight,
2651                                          llvm::LikelyBranchWeight);
2652   case Stmt::LH_None:
2653     return None;
2654   case Stmt::LH_Likely:
2655     return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight,
2656                                          llvm::UnlikelyBranchWeight);
2657   }
2658   llvm_unreachable("Unknown Likelihood");
2659 }
2660 
2661 llvm::MDNode *CodeGenFunction::createBranchWeights(Stmt::Likelihood LH) const {
2662   Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH);
2663   if (!LHW)
2664     return nullptr;
2665 
2666   llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2667   return MDHelper.createBranchWeights(LHW->first, LHW->second);
2668 }
2669 
2670 llvm::MDNode *CodeGenFunction::createProfileOrBranchWeightsForLoop(
2671     const Stmt *Cond, uint64_t LoopCount, const Stmt *Body) const {
2672   llvm::MDNode *Weights = createProfileWeightsForLoop(Cond, LoopCount);
2673   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
2674     Weights = createBranchWeights(Stmt::getLikelihood(Body));
2675 
2676   return Weights;
2677 }
2678