1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   Builder.setFastMathFlags(FMF);
107 }
108 
109 CodeGenFunction::~CodeGenFunction() {
110   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
111 
112   // If there are any unclaimed block infos, go ahead and destroy them
113   // now.  This can happen if IR-gen gets clever and skips evaluating
114   // something.
115   if (FirstBlockInfo)
116     destroyBlockInfos(FirstBlockInfo);
117 
118   if (getLangOpts().OpenMP && CurFn)
119     CGM.getOpenMPRuntime().functionFinished(*this);
120 }
121 
122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
123                                                     LValueBaseInfo *BaseInfo,
124                                                     TBAAAccessInfo *TBAAInfo) {
125   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
126                                  /* forPointeeType= */ true);
127 }
128 
129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
130                                                    LValueBaseInfo *BaseInfo,
131                                                    TBAAAccessInfo *TBAAInfo,
132                                                    bool forPointeeType) {
133   if (TBAAInfo)
134     *TBAAInfo = CGM.getTBAAAccessInfo(T);
135 
136   // Honor alignment typedef attributes even on incomplete types.
137   // We also honor them straight for C++ class types, even as pointees;
138   // there's an expressivity gap here.
139   if (auto TT = T->getAs<TypedefType>()) {
140     if (auto Align = TT->getDecl()->getMaxAlignment()) {
141       if (BaseInfo)
142         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
143       return getContext().toCharUnitsFromBits(Align);
144     }
145   }
146 
147   if (BaseInfo)
148     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
149 
150   CharUnits Alignment;
151   if (T->isIncompleteType()) {
152     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
153   } else {
154     // For C++ class pointees, we don't know whether we're pointing at a
155     // base or a complete object, so we generally need to use the
156     // non-virtual alignment.
157     const CXXRecordDecl *RD;
158     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
159       Alignment = CGM.getClassPointerAlignment(RD);
160     } else {
161       Alignment = getContext().getTypeAlignInChars(T);
162       if (T.getQualifiers().hasUnaligned())
163         Alignment = CharUnits::One();
164     }
165 
166     // Cap to the global maximum type alignment unless the alignment
167     // was somehow explicit on the type.
168     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
169       if (Alignment.getQuantity() > MaxAlign &&
170           !getContext().isAlignmentRequired(T))
171         Alignment = CharUnits::fromQuantity(MaxAlign);
172     }
173   }
174   return Alignment;
175 }
176 
177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
178   LValueBaseInfo BaseInfo;
179   TBAAAccessInfo TBAAInfo;
180   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
181   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
182                           TBAAInfo);
183 }
184 
185 /// Given a value of type T* that may not be to a complete object,
186 /// construct an l-value with the natural pointee alignment of T.
187 LValue
188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
189   LValueBaseInfo BaseInfo;
190   TBAAAccessInfo TBAAInfo;
191   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
192                                             /* forPointeeType= */ true);
193   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
194 }
195 
196 
197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
198   return CGM.getTypes().ConvertTypeForMem(T);
199 }
200 
201 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
202   return CGM.getTypes().ConvertType(T);
203 }
204 
205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
206   type = type.getCanonicalType();
207   while (true) {
208     switch (type->getTypeClass()) {
209 #define TYPE(name, parent)
210 #define ABSTRACT_TYPE(name, parent)
211 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
212 #define DEPENDENT_TYPE(name, parent) case Type::name:
213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
214 #include "clang/AST/TypeNodes.def"
215       llvm_unreachable("non-canonical or dependent type in IR-generation");
216 
217     case Type::Auto:
218     case Type::DeducedTemplateSpecialization:
219       llvm_unreachable("undeduced type in IR-generation");
220 
221     // Various scalar types.
222     case Type::Builtin:
223     case Type::Pointer:
224     case Type::BlockPointer:
225     case Type::LValueReference:
226     case Type::RValueReference:
227     case Type::MemberPointer:
228     case Type::Vector:
229     case Type::ExtVector:
230     case Type::FunctionProto:
231     case Type::FunctionNoProto:
232     case Type::Enum:
233     case Type::ObjCObjectPointer:
234     case Type::Pipe:
235       return TEK_Scalar;
236 
237     // Complexes.
238     case Type::Complex:
239       return TEK_Complex;
240 
241     // Arrays, records, and Objective-C objects.
242     case Type::ConstantArray:
243     case Type::IncompleteArray:
244     case Type::VariableArray:
245     case Type::Record:
246     case Type::ObjCObject:
247     case Type::ObjCInterface:
248       return TEK_Aggregate;
249 
250     // We operate on atomic values according to their underlying type.
251     case Type::Atomic:
252       type = cast<AtomicType>(type)->getValueType();
253       continue;
254     }
255     llvm_unreachable("unknown type kind!");
256   }
257 }
258 
259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
260   // For cleanliness, we try to avoid emitting the return block for
261   // simple cases.
262   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
263 
264   if (CurBB) {
265     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
266 
267     // We have a valid insert point, reuse it if it is empty or there are no
268     // explicit jumps to the return block.
269     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
270       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
271       delete ReturnBlock.getBlock();
272     } else
273       EmitBlock(ReturnBlock.getBlock());
274     return llvm::DebugLoc();
275   }
276 
277   // Otherwise, if the return block is the target of a single direct
278   // branch then we can just put the code in that block instead. This
279   // cleans up functions which started with a unified return block.
280   if (ReturnBlock.getBlock()->hasOneUse()) {
281     llvm::BranchInst *BI =
282       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
283     if (BI && BI->isUnconditional() &&
284         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
285       // Record/return the DebugLoc of the simple 'return' expression to be used
286       // later by the actual 'ret' instruction.
287       llvm::DebugLoc Loc = BI->getDebugLoc();
288       Builder.SetInsertPoint(BI->getParent());
289       BI->eraseFromParent();
290       delete ReturnBlock.getBlock();
291       return Loc;
292     }
293   }
294 
295   // FIXME: We are at an unreachable point, there is no reason to emit the block
296   // unless it has uses. However, we still need a place to put the debug
297   // region.end for now.
298 
299   EmitBlock(ReturnBlock.getBlock());
300   return llvm::DebugLoc();
301 }
302 
303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
304   if (!BB) return;
305   if (!BB->use_empty())
306     return CGF.CurFn->getBasicBlockList().push_back(BB);
307   delete BB;
308 }
309 
310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
311   assert(BreakContinueStack.empty() &&
312          "mismatched push/pop in break/continue stack!");
313 
314   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
315     && NumSimpleReturnExprs == NumReturnExprs
316     && ReturnBlock.getBlock()->use_empty();
317   // Usually the return expression is evaluated before the cleanup
318   // code.  If the function contains only a simple return statement,
319   // such as a constant, the location before the cleanup code becomes
320   // the last useful breakpoint in the function, because the simple
321   // return expression will be evaluated after the cleanup code. To be
322   // safe, set the debug location for cleanup code to the location of
323   // the return statement.  Otherwise the cleanup code should be at the
324   // end of the function's lexical scope.
325   //
326   // If there are multiple branches to the return block, the branch
327   // instructions will get the location of the return statements and
328   // all will be fine.
329   if (CGDebugInfo *DI = getDebugInfo()) {
330     if (OnlySimpleReturnStmts)
331       DI->EmitLocation(Builder, LastStopPoint);
332     else
333       DI->EmitLocation(Builder, EndLoc);
334   }
335 
336   // Pop any cleanups that might have been associated with the
337   // parameters.  Do this in whatever block we're currently in; it's
338   // important to do this before we enter the return block or return
339   // edges will be *really* confused.
340   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
341   bool HasOnlyLifetimeMarkers =
342       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
343   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
344   if (HasCleanups) {
345     // Make sure the line table doesn't jump back into the body for
346     // the ret after it's been at EndLoc.
347     if (CGDebugInfo *DI = getDebugInfo())
348       if (OnlySimpleReturnStmts)
349         DI->EmitLocation(Builder, EndLoc);
350 
351     PopCleanupBlocks(PrologueCleanupDepth);
352   }
353 
354   // Emit function epilog (to return).
355   llvm::DebugLoc Loc = EmitReturnBlock();
356 
357   if (ShouldInstrumentFunction()) {
358     CurFn->addFnAttr(!CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining
359                          ? "instrument-function-exit"
360                          : "instrument-function-exit-inlined",
361                      "__cyg_profile_func_exit");
362   }
363 
364   // Emit debug descriptor for function end.
365   if (CGDebugInfo *DI = getDebugInfo())
366     DI->EmitFunctionEnd(Builder, CurFn);
367 
368   // Reset the debug location to that of the simple 'return' expression, if any
369   // rather than that of the end of the function's scope '}'.
370   ApplyDebugLocation AL(*this, Loc);
371   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
372   EmitEndEHSpec(CurCodeDecl);
373 
374   assert(EHStack.empty() &&
375          "did not remove all scopes from cleanup stack!");
376 
377   // If someone did an indirect goto, emit the indirect goto block at the end of
378   // the function.
379   if (IndirectBranch) {
380     EmitBlock(IndirectBranch->getParent());
381     Builder.ClearInsertionPoint();
382   }
383 
384   // If some of our locals escaped, insert a call to llvm.localescape in the
385   // entry block.
386   if (!EscapedLocals.empty()) {
387     // Invert the map from local to index into a simple vector. There should be
388     // no holes.
389     SmallVector<llvm::Value *, 4> EscapeArgs;
390     EscapeArgs.resize(EscapedLocals.size());
391     for (auto &Pair : EscapedLocals)
392       EscapeArgs[Pair.second] = Pair.first;
393     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
394         &CGM.getModule(), llvm::Intrinsic::localescape);
395     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
396   }
397 
398   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
399   llvm::Instruction *Ptr = AllocaInsertPt;
400   AllocaInsertPt = nullptr;
401   Ptr->eraseFromParent();
402 
403   // If someone took the address of a label but never did an indirect goto, we
404   // made a zero entry PHI node, which is illegal, zap it now.
405   if (IndirectBranch) {
406     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
407     if (PN->getNumIncomingValues() == 0) {
408       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
409       PN->eraseFromParent();
410     }
411   }
412 
413   EmitIfUsed(*this, EHResumeBlock);
414   EmitIfUsed(*this, TerminateLandingPad);
415   EmitIfUsed(*this, TerminateHandler);
416   EmitIfUsed(*this, UnreachableBlock);
417 
418   if (CGM.getCodeGenOpts().EmitDeclMetadata)
419     EmitDeclMetadata();
420 
421   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
422            I = DeferredReplacements.begin(),
423            E = DeferredReplacements.end();
424        I != E; ++I) {
425     I->first->replaceAllUsesWith(I->second);
426     I->first->eraseFromParent();
427   }
428 
429   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
430   // PHIs if the current function is a coroutine. We don't do it for all
431   // functions as it may result in slight increase in numbers of instructions
432   // if compiled with no optimizations. We do it for coroutine as the lifetime
433   // of CleanupDestSlot alloca make correct coroutine frame building very
434   // difficult.
435   if (NormalCleanupDest && isCoroutine()) {
436     llvm::DominatorTree DT(*CurFn);
437     llvm::PromoteMemToReg(NormalCleanupDest, DT);
438     NormalCleanupDest = nullptr;
439   }
440 }
441 
442 /// ShouldInstrumentFunction - Return true if the current function should be
443 /// instrumented with __cyg_profile_func_* calls
444 bool CodeGenFunction::ShouldInstrumentFunction() {
445   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
446       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
447     return false;
448   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
449     return false;
450   return true;
451 }
452 
453 /// ShouldXRayInstrument - Return true if the current function should be
454 /// instrumented with XRay nop sleds.
455 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
456   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
457 }
458 
459 llvm::Constant *
460 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
461                                             llvm::Constant *Addr) {
462   // Addresses stored in prologue data can't require run-time fixups and must
463   // be PC-relative. Run-time fixups are undesirable because they necessitate
464   // writable text segments, which are unsafe. And absolute addresses are
465   // undesirable because they break PIE mode.
466 
467   // Add a layer of indirection through a private global. Taking its address
468   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
469   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
470                                       /*isConstant=*/true,
471                                       llvm::GlobalValue::PrivateLinkage, Addr);
472 
473   // Create a PC-relative address.
474   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
475   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
476   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
477   return (IntPtrTy == Int32Ty)
478              ? PCRelAsInt
479              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
480 }
481 
482 llvm::Value *
483 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
484                                           llvm::Value *EncodedAddr) {
485   // Reconstruct the address of the global.
486   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
487   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
488   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
489   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
490 
491   // Load the original pointer through the global.
492   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
493                             "decoded_addr");
494 }
495 
496 static void removeImageAccessQualifier(std::string& TyName) {
497   std::string ReadOnlyQual("__read_only");
498   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
499   if (ReadOnlyPos != std::string::npos)
500     // "+ 1" for the space after access qualifier.
501     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
502   else {
503     std::string WriteOnlyQual("__write_only");
504     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
505     if (WriteOnlyPos != std::string::npos)
506       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
507     else {
508       std::string ReadWriteQual("__read_write");
509       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
510       if (ReadWritePos != std::string::npos)
511         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
512     }
513   }
514 }
515 
516 // Returns the address space id that should be produced to the
517 // kernel_arg_addr_space metadata. This is always fixed to the ids
518 // as specified in the SPIR 2.0 specification in order to differentiate
519 // for example in clGetKernelArgInfo() implementation between the address
520 // spaces with targets without unique mapping to the OpenCL address spaces
521 // (basically all single AS CPUs).
522 static unsigned ArgInfoAddressSpace(LangAS AS) {
523   switch (AS) {
524   case LangAS::opencl_global:   return 1;
525   case LangAS::opencl_constant: return 2;
526   case LangAS::opencl_local:    return 3;
527   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
528   default:
529     return 0; // Assume private.
530   }
531 }
532 
533 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
534 // information in the program executable. The argument information stored
535 // includes the argument name, its type, the address and access qualifiers used.
536 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
537                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
538                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
539   // Create MDNodes that represent the kernel arg metadata.
540   // Each MDNode is a list in the form of "key", N number of values which is
541   // the same number of values as their are kernel arguments.
542 
543   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
544 
545   // MDNode for the kernel argument address space qualifiers.
546   SmallVector<llvm::Metadata *, 8> addressQuals;
547 
548   // MDNode for the kernel argument access qualifiers (images only).
549   SmallVector<llvm::Metadata *, 8> accessQuals;
550 
551   // MDNode for the kernel argument type names.
552   SmallVector<llvm::Metadata *, 8> argTypeNames;
553 
554   // MDNode for the kernel argument base type names.
555   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
556 
557   // MDNode for the kernel argument type qualifiers.
558   SmallVector<llvm::Metadata *, 8> argTypeQuals;
559 
560   // MDNode for the kernel argument names.
561   SmallVector<llvm::Metadata *, 8> argNames;
562 
563   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
564     const ParmVarDecl *parm = FD->getParamDecl(i);
565     QualType ty = parm->getType();
566     std::string typeQuals;
567 
568     if (ty->isPointerType()) {
569       QualType pointeeTy = ty->getPointeeType();
570 
571       // Get address qualifier.
572       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
573         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
574 
575       // Get argument type name.
576       std::string typeName =
577           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
578 
579       // Turn "unsigned type" to "utype"
580       std::string::size_type pos = typeName.find("unsigned");
581       if (pointeeTy.isCanonical() && pos != std::string::npos)
582         typeName.erase(pos+1, 8);
583 
584       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
585 
586       std::string baseTypeName =
587           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
588               Policy) +
589           "*";
590 
591       // Turn "unsigned type" to "utype"
592       pos = baseTypeName.find("unsigned");
593       if (pos != std::string::npos)
594         baseTypeName.erase(pos+1, 8);
595 
596       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
597 
598       // Get argument type qualifiers:
599       if (ty.isRestrictQualified())
600         typeQuals = "restrict";
601       if (pointeeTy.isConstQualified() ||
602           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
603         typeQuals += typeQuals.empty() ? "const" : " const";
604       if (pointeeTy.isVolatileQualified())
605         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
606     } else {
607       uint32_t AddrSpc = 0;
608       bool isPipe = ty->isPipeType();
609       if (ty->isImageType() || isPipe)
610         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
611 
612       addressQuals.push_back(
613           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
614 
615       // Get argument type name.
616       std::string typeName;
617       if (isPipe)
618         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
619                      .getAsString(Policy);
620       else
621         typeName = ty.getUnqualifiedType().getAsString(Policy);
622 
623       // Turn "unsigned type" to "utype"
624       std::string::size_type pos = typeName.find("unsigned");
625       if (ty.isCanonical() && pos != std::string::npos)
626         typeName.erase(pos+1, 8);
627 
628       std::string baseTypeName;
629       if (isPipe)
630         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
631                           ->getElementType().getCanonicalType()
632                           .getAsString(Policy);
633       else
634         baseTypeName =
635           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
636 
637       // Remove access qualifiers on images
638       // (as they are inseparable from type in clang implementation,
639       // but OpenCL spec provides a special query to get access qualifier
640       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
641       if (ty->isImageType()) {
642         removeImageAccessQualifier(typeName);
643         removeImageAccessQualifier(baseTypeName);
644       }
645 
646       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
647 
648       // Turn "unsigned type" to "utype"
649       pos = baseTypeName.find("unsigned");
650       if (pos != std::string::npos)
651         baseTypeName.erase(pos+1, 8);
652 
653       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
654 
655       if (isPipe)
656         typeQuals = "pipe";
657     }
658 
659     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
660 
661     // Get image and pipe access qualifier:
662     if (ty->isImageType()|| ty->isPipeType()) {
663       const Decl *PDecl = parm;
664       if (auto *TD = dyn_cast<TypedefType>(ty))
665         PDecl = TD->getDecl();
666       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
667       if (A && A->isWriteOnly())
668         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
669       else if (A && A->isReadWrite())
670         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
671       else
672         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
673     } else
674       accessQuals.push_back(llvm::MDString::get(Context, "none"));
675 
676     // Get argument name.
677     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
678   }
679 
680   Fn->setMetadata("kernel_arg_addr_space",
681                   llvm::MDNode::get(Context, addressQuals));
682   Fn->setMetadata("kernel_arg_access_qual",
683                   llvm::MDNode::get(Context, accessQuals));
684   Fn->setMetadata("kernel_arg_type",
685                   llvm::MDNode::get(Context, argTypeNames));
686   Fn->setMetadata("kernel_arg_base_type",
687                   llvm::MDNode::get(Context, argBaseTypeNames));
688   Fn->setMetadata("kernel_arg_type_qual",
689                   llvm::MDNode::get(Context, argTypeQuals));
690   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
691     Fn->setMetadata("kernel_arg_name",
692                     llvm::MDNode::get(Context, argNames));
693 }
694 
695 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
696                                                llvm::Function *Fn)
697 {
698   if (!FD->hasAttr<OpenCLKernelAttr>())
699     return;
700 
701   llvm::LLVMContext &Context = getLLVMContext();
702 
703   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
704 
705   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
706     QualType HintQTy = A->getTypeHint();
707     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
708     bool IsSignedInteger =
709         HintQTy->isSignedIntegerType() ||
710         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
711     llvm::Metadata *AttrMDArgs[] = {
712         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
713             CGM.getTypes().ConvertType(A->getTypeHint()))),
714         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715             llvm::IntegerType::get(Context, 32),
716             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
717     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
718   }
719 
720   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
721     llvm::Metadata *AttrMDArgs[] = {
722         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
723         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
724         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
725     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
726   }
727 
728   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
729     llvm::Metadata *AttrMDArgs[] = {
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
731         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
732         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
733     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
734   }
735 
736   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
737           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
738     llvm::Metadata *AttrMDArgs[] = {
739         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
740     Fn->setMetadata("intel_reqd_sub_group_size",
741                     llvm::MDNode::get(Context, AttrMDArgs));
742   }
743 }
744 
745 /// Determine whether the function F ends with a return stmt.
746 static bool endsWithReturn(const Decl* F) {
747   const Stmt *Body = nullptr;
748   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
749     Body = FD->getBody();
750   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
751     Body = OMD->getBody();
752 
753   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
754     auto LastStmt = CS->body_rbegin();
755     if (LastStmt != CS->body_rend())
756       return isa<ReturnStmt>(*LastStmt);
757   }
758   return false;
759 }
760 
761 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
762   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
763   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
764 }
765 
766 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
767   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
768   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
769       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
770       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
771     return false;
772 
773   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
774     return false;
775 
776   if (MD->getNumParams() == 2) {
777     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
778     if (!PT || !PT->isVoidPointerType() ||
779         !PT->getPointeeType().isConstQualified())
780       return false;
781   }
782 
783   return true;
784 }
785 
786 /// Return the UBSan prologue signature for \p FD if one is available.
787 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
788                                             const FunctionDecl *FD) {
789   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
790     if (!MD->isStatic())
791       return nullptr;
792   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
793 }
794 
795 void CodeGenFunction::StartFunction(GlobalDecl GD,
796                                     QualType RetTy,
797                                     llvm::Function *Fn,
798                                     const CGFunctionInfo &FnInfo,
799                                     const FunctionArgList &Args,
800                                     SourceLocation Loc,
801                                     SourceLocation StartLoc) {
802   assert(!CurFn &&
803          "Do not use a CodeGenFunction object for more than one function");
804 
805   const Decl *D = GD.getDecl();
806 
807   DidCallStackSave = false;
808   CurCodeDecl = D;
809   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
810     if (FD->usesSEHTry())
811       CurSEHParent = FD;
812   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
813   FnRetTy = RetTy;
814   CurFn = Fn;
815   CurFnInfo = &FnInfo;
816   assert(CurFn->isDeclaration() && "Function already has body?");
817 
818   // If this function has been blacklisted for any of the enabled sanitizers,
819   // disable the sanitizer for the function.
820   do {
821 #define SANITIZER(NAME, ID)                                                    \
822   if (SanOpts.empty())                                                         \
823     break;                                                                     \
824   if (SanOpts.has(SanitizerKind::ID))                                          \
825     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
826       SanOpts.set(SanitizerKind::ID, false);
827 
828 #include "clang/Basic/Sanitizers.def"
829 #undef SANITIZER
830   } while (0);
831 
832   if (D) {
833     // Apply the no_sanitize* attributes to SanOpts.
834     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
835       SanOpts.Mask &= ~Attr->getMask();
836   }
837 
838   // Apply sanitizer attributes to the function.
839   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
840     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
841   if (SanOpts.has(SanitizerKind::Thread))
842     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
843   if (SanOpts.has(SanitizerKind::Memory))
844     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
845   if (SanOpts.has(SanitizerKind::SafeStack))
846     Fn->addFnAttr(llvm::Attribute::SafeStack);
847 
848   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
849   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
850   if (SanOpts.has(SanitizerKind::Thread)) {
851     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
852       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
853       if (OMD->getMethodFamily() == OMF_dealloc ||
854           OMD->getMethodFamily() == OMF_initialize ||
855           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
856         markAsIgnoreThreadCheckingAtRuntime(Fn);
857       }
858     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
859       IdentifierInfo *II = FD->getIdentifier();
860       if (II && II->isStr("__destroy_helper_block_"))
861         markAsIgnoreThreadCheckingAtRuntime(Fn);
862     }
863   }
864 
865   // Ignore unrelated casts in STL allocate() since the allocator must cast
866   // from void* to T* before object initialization completes. Don't match on the
867   // namespace because not all allocators are in std::
868   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
869     if (matchesStlAllocatorFn(D, getContext()))
870       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
871   }
872 
873   // Apply xray attributes to the function (as a string, for now)
874   if (D && ShouldXRayInstrumentFunction()) {
875     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
876       if (XRayAttr->alwaysXRayInstrument())
877         Fn->addFnAttr("function-instrument", "xray-always");
878       if (XRayAttr->neverXRayInstrument())
879         Fn->addFnAttr("function-instrument", "xray-never");
880       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
881         Fn->addFnAttr("xray-log-args",
882                       llvm::utostr(LogArgs->getArgumentCount()));
883       }
884     } else {
885       if (!CGM.imbueXRayAttrs(Fn, Loc))
886         Fn->addFnAttr(
887             "xray-instruction-threshold",
888             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
889     }
890   }
891 
892   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
893     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
894       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
895 
896   // Add no-jump-tables value.
897   Fn->addFnAttr("no-jump-tables",
898                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
899 
900   // Add profile-sample-accurate value.
901   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
902     Fn->addFnAttr("profile-sample-accurate");
903 
904   if (getLangOpts().OpenCL) {
905     // Add metadata for a kernel function.
906     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
907       EmitOpenCLKernelMetadata(FD, Fn);
908   }
909 
910   // If we are checking function types, emit a function type signature as
911   // prologue data.
912   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
913     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
914       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
915         llvm::Constant *FTRTTIConst =
916             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
917         llvm::Constant *FTRTTIConstEncoded =
918             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
919         llvm::Constant *PrologueStructElems[] = {PrologueSig,
920                                                  FTRTTIConstEncoded};
921         llvm::Constant *PrologueStructConst =
922             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
923         Fn->setPrologueData(PrologueStructConst);
924       }
925     }
926   }
927 
928   // If we're checking nullability, we need to know whether we can check the
929   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
930   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
931     auto Nullability = FnRetTy->getNullability(getContext());
932     if (Nullability && *Nullability == NullabilityKind::NonNull) {
933       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
934             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
935         RetValNullabilityPrecondition =
936             llvm::ConstantInt::getTrue(getLLVMContext());
937     }
938   }
939 
940   // If we're in C++ mode and the function name is "main", it is guaranteed
941   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
942   // used within a program").
943   if (getLangOpts().CPlusPlus)
944     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
945       if (FD->isMain())
946         Fn->addFnAttr(llvm::Attribute::NoRecurse);
947 
948   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
949 
950   // Create a marker to make it easy to insert allocas into the entryblock
951   // later.  Don't create this with the builder, because we don't want it
952   // folded.
953   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
954   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
955 
956   ReturnBlock = getJumpDestInCurrentScope("return");
957 
958   Builder.SetInsertPoint(EntryBB);
959 
960   // If we're checking the return value, allocate space for a pointer to a
961   // precise source location of the checked return statement.
962   if (requiresReturnValueCheck()) {
963     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
964     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
965   }
966 
967   // Emit subprogram debug descriptor.
968   if (CGDebugInfo *DI = getDebugInfo()) {
969     // Reconstruct the type from the argument list so that implicit parameters,
970     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
971     // convention.
972     CallingConv CC = CallingConv::CC_C;
973     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
974       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
975         CC = SrcFnTy->getCallConv();
976     SmallVector<QualType, 16> ArgTypes;
977     for (const VarDecl *VD : Args)
978       ArgTypes.push_back(VD->getType());
979     QualType FnType = getContext().getFunctionType(
980         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
981     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
982   }
983 
984   if (ShouldInstrumentFunction()) {
985     Fn->addFnAttr(!CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining
986                       ? "instrument-function-entry"
987                       : "instrument-function-entry-inlined",
988                   "__cyg_profile_func_enter");
989   }
990 
991   // Since emitting the mcount call here impacts optimizations such as function
992   // inlining, we just add an attribute to insert a mcount call in backend.
993   // The attribute "counting-function" is set to mcount function name which is
994   // architecture dependent.
995   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
996     if (CGM.getCodeGenOpts().CallFEntry)
997       Fn->addFnAttr("fentry-call", "true");
998     else {
999       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1000         Fn->addFnAttr("instrument-function-entry-inlined",
1001                       getTarget().getMCountName());
1002       }
1003     }
1004   }
1005 
1006   if (RetTy->isVoidType()) {
1007     // Void type; nothing to return.
1008     ReturnValue = Address::invalid();
1009 
1010     // Count the implicit return.
1011     if (!endsWithReturn(D))
1012       ++NumReturnExprs;
1013   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1014              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1015     // Indirect aggregate return; emit returned value directly into sret slot.
1016     // This reduces code size, and affects correctness in C++.
1017     auto AI = CurFn->arg_begin();
1018     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1019       ++AI;
1020     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1021   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1022              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1023     // Load the sret pointer from the argument struct and return into that.
1024     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1025     llvm::Function::arg_iterator EI = CurFn->arg_end();
1026     --EI;
1027     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1028     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1029     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1030   } else {
1031     ReturnValue = CreateIRTemp(RetTy, "retval");
1032 
1033     // Tell the epilog emitter to autorelease the result.  We do this
1034     // now so that various specialized functions can suppress it
1035     // during their IR-generation.
1036     if (getLangOpts().ObjCAutoRefCount &&
1037         !CurFnInfo->isReturnsRetained() &&
1038         RetTy->isObjCRetainableType())
1039       AutoreleaseResult = true;
1040   }
1041 
1042   EmitStartEHSpec(CurCodeDecl);
1043 
1044   PrologueCleanupDepth = EHStack.stable_begin();
1045   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1046 
1047   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1048     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1049     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1050     if (MD->getParent()->isLambda() &&
1051         MD->getOverloadedOperator() == OO_Call) {
1052       // We're in a lambda; figure out the captures.
1053       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1054                                         LambdaThisCaptureField);
1055       if (LambdaThisCaptureField) {
1056         // If the lambda captures the object referred to by '*this' - either by
1057         // value or by reference, make sure CXXThisValue points to the correct
1058         // object.
1059 
1060         // Get the lvalue for the field (which is a copy of the enclosing object
1061         // or contains the address of the enclosing object).
1062         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1063         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1064           // If the enclosing object was captured by value, just use its address.
1065           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1066         } else {
1067           // Load the lvalue pointed to by the field, since '*this' was captured
1068           // by reference.
1069           CXXThisValue =
1070               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1071         }
1072       }
1073       for (auto *FD : MD->getParent()->fields()) {
1074         if (FD->hasCapturedVLAType()) {
1075           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1076                                            SourceLocation()).getScalarVal();
1077           auto VAT = FD->getCapturedVLAType();
1078           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1079         }
1080       }
1081     } else {
1082       // Not in a lambda; just use 'this' from the method.
1083       // FIXME: Should we generate a new load for each use of 'this'?  The
1084       // fast register allocator would be happier...
1085       CXXThisValue = CXXABIThisValue;
1086     }
1087 
1088     // Check the 'this' pointer once per function, if it's available.
1089     if (CXXABIThisValue) {
1090       SanitizerSet SkippedChecks;
1091       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1092       QualType ThisTy = MD->getThisType(getContext());
1093 
1094       // If this is the call operator of a lambda with no capture-default, it
1095       // may have a static invoker function, which may call this operator with
1096       // a null 'this' pointer.
1097       if (isLambdaCallOperator(MD) &&
1098           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1099               LCD_None)
1100         SkippedChecks.set(SanitizerKind::Null, true);
1101 
1102       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1103                                                 : TCK_MemberCall,
1104                     Loc, CXXABIThisValue, ThisTy,
1105                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1106                     SkippedChecks);
1107     }
1108   }
1109 
1110   // If any of the arguments have a variably modified type, make sure to
1111   // emit the type size.
1112   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1113        i != e; ++i) {
1114     const VarDecl *VD = *i;
1115 
1116     // Dig out the type as written from ParmVarDecls; it's unclear whether
1117     // the standard (C99 6.9.1p10) requires this, but we're following the
1118     // precedent set by gcc.
1119     QualType Ty;
1120     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1121       Ty = PVD->getOriginalType();
1122     else
1123       Ty = VD->getType();
1124 
1125     if (Ty->isVariablyModifiedType())
1126       EmitVariablyModifiedType(Ty);
1127   }
1128   // Emit a location at the end of the prologue.
1129   if (CGDebugInfo *DI = getDebugInfo())
1130     DI->EmitLocation(Builder, StartLoc);
1131 }
1132 
1133 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1134                                        const Stmt *Body) {
1135   incrementProfileCounter(Body);
1136   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1137     EmitCompoundStmtWithoutScope(*S);
1138   else
1139     EmitStmt(Body);
1140 }
1141 
1142 /// When instrumenting to collect profile data, the counts for some blocks
1143 /// such as switch cases need to not include the fall-through counts, so
1144 /// emit a branch around the instrumentation code. When not instrumenting,
1145 /// this just calls EmitBlock().
1146 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1147                                                const Stmt *S) {
1148   llvm::BasicBlock *SkipCountBB = nullptr;
1149   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1150     // When instrumenting for profiling, the fallthrough to certain
1151     // statements needs to skip over the instrumentation code so that we
1152     // get an accurate count.
1153     SkipCountBB = createBasicBlock("skipcount");
1154     EmitBranch(SkipCountBB);
1155   }
1156   EmitBlock(BB);
1157   uint64_t CurrentCount = getCurrentProfileCount();
1158   incrementProfileCounter(S);
1159   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1160   if (SkipCountBB)
1161     EmitBlock(SkipCountBB);
1162 }
1163 
1164 /// Tries to mark the given function nounwind based on the
1165 /// non-existence of any throwing calls within it.  We believe this is
1166 /// lightweight enough to do at -O0.
1167 static void TryMarkNoThrow(llvm::Function *F) {
1168   // LLVM treats 'nounwind' on a function as part of the type, so we
1169   // can't do this on functions that can be overwritten.
1170   if (F->isInterposable()) return;
1171 
1172   for (llvm::BasicBlock &BB : *F)
1173     for (llvm::Instruction &I : BB)
1174       if (I.mayThrow())
1175         return;
1176 
1177   F->setDoesNotThrow();
1178 }
1179 
1180 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1181                                                FunctionArgList &Args) {
1182   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1183   QualType ResTy = FD->getReturnType();
1184 
1185   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1186   if (MD && MD->isInstance()) {
1187     if (CGM.getCXXABI().HasThisReturn(GD))
1188       ResTy = MD->getThisType(getContext());
1189     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1190       ResTy = CGM.getContext().VoidPtrTy;
1191     CGM.getCXXABI().buildThisParam(*this, Args);
1192   }
1193 
1194   // The base version of an inheriting constructor whose constructed base is a
1195   // virtual base is not passed any arguments (because it doesn't actually call
1196   // the inherited constructor).
1197   bool PassedParams = true;
1198   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1199     if (auto Inherited = CD->getInheritedConstructor())
1200       PassedParams =
1201           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1202 
1203   if (PassedParams) {
1204     for (auto *Param : FD->parameters()) {
1205       Args.push_back(Param);
1206       if (!Param->hasAttr<PassObjectSizeAttr>())
1207         continue;
1208 
1209       auto *Implicit = ImplicitParamDecl::Create(
1210           getContext(), Param->getDeclContext(), Param->getLocation(),
1211           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1212       SizeArguments[Param] = Implicit;
1213       Args.push_back(Implicit);
1214     }
1215   }
1216 
1217   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1218     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1219 
1220   return ResTy;
1221 }
1222 
1223 static bool
1224 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1225                                              const ASTContext &Context) {
1226   QualType T = FD->getReturnType();
1227   // Avoid the optimization for functions that return a record type with a
1228   // trivial destructor or another trivially copyable type.
1229   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1230     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1231       return !ClassDecl->hasTrivialDestructor();
1232   }
1233   return !T.isTriviallyCopyableType(Context);
1234 }
1235 
1236 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1237                                    const CGFunctionInfo &FnInfo) {
1238   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1239   CurGD = GD;
1240 
1241   FunctionArgList Args;
1242   QualType ResTy = BuildFunctionArgList(GD, Args);
1243 
1244   // Check if we should generate debug info for this function.
1245   if (FD->hasAttr<NoDebugAttr>())
1246     DebugInfo = nullptr; // disable debug info indefinitely for this function
1247 
1248   // The function might not have a body if we're generating thunks for a
1249   // function declaration.
1250   SourceRange BodyRange;
1251   if (Stmt *Body = FD->getBody())
1252     BodyRange = Body->getSourceRange();
1253   else
1254     BodyRange = FD->getLocation();
1255   CurEHLocation = BodyRange.getEnd();
1256 
1257   // Use the location of the start of the function to determine where
1258   // the function definition is located. By default use the location
1259   // of the declaration as the location for the subprogram. A function
1260   // may lack a declaration in the source code if it is created by code
1261   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1262   SourceLocation Loc = FD->getLocation();
1263 
1264   // If this is a function specialization then use the pattern body
1265   // as the location for the function.
1266   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1267     if (SpecDecl->hasBody(SpecDecl))
1268       Loc = SpecDecl->getLocation();
1269 
1270   Stmt *Body = FD->getBody();
1271 
1272   // Initialize helper which will detect jumps which can cause invalid lifetime
1273   // markers.
1274   if (Body && ShouldEmitLifetimeMarkers)
1275     Bypasses.Init(Body);
1276 
1277   // Emit the standard function prologue.
1278   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1279 
1280   // Generate the body of the function.
1281   PGO.assignRegionCounters(GD, CurFn);
1282   if (isa<CXXDestructorDecl>(FD))
1283     EmitDestructorBody(Args);
1284   else if (isa<CXXConstructorDecl>(FD))
1285     EmitConstructorBody(Args);
1286   else if (getLangOpts().CUDA &&
1287            !getLangOpts().CUDAIsDevice &&
1288            FD->hasAttr<CUDAGlobalAttr>())
1289     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1290   else if (isa<CXXMethodDecl>(FD) &&
1291            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1292     // The lambda static invoker function is special, because it forwards or
1293     // clones the body of the function call operator (but is actually static).
1294     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1295   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1296              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1297               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1298     // Implicit copy-assignment gets the same special treatment as implicit
1299     // copy-constructors.
1300     emitImplicitAssignmentOperatorBody(Args);
1301   } else if (Body) {
1302     EmitFunctionBody(Args, Body);
1303   } else
1304     llvm_unreachable("no definition for emitted function");
1305 
1306   // C++11 [stmt.return]p2:
1307   //   Flowing off the end of a function [...] results in undefined behavior in
1308   //   a value-returning function.
1309   // C11 6.9.1p12:
1310   //   If the '}' that terminates a function is reached, and the value of the
1311   //   function call is used by the caller, the behavior is undefined.
1312   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1313       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1314     bool ShouldEmitUnreachable =
1315         CGM.getCodeGenOpts().StrictReturn ||
1316         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1317     if (SanOpts.has(SanitizerKind::Return)) {
1318       SanitizerScope SanScope(this);
1319       llvm::Value *IsFalse = Builder.getFalse();
1320       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1321                 SanitizerHandler::MissingReturn,
1322                 EmitCheckSourceLocation(FD->getLocation()), None);
1323     } else if (ShouldEmitUnreachable) {
1324       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1325         EmitTrapCall(llvm::Intrinsic::trap);
1326     }
1327     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1328       Builder.CreateUnreachable();
1329       Builder.ClearInsertionPoint();
1330     }
1331   }
1332 
1333   // Emit the standard function epilogue.
1334   FinishFunction(BodyRange.getEnd());
1335 
1336   // If we haven't marked the function nothrow through other means, do
1337   // a quick pass now to see if we can.
1338   if (!CurFn->doesNotThrow())
1339     TryMarkNoThrow(CurFn);
1340 }
1341 
1342 /// ContainsLabel - Return true if the statement contains a label in it.  If
1343 /// this statement is not executed normally, it not containing a label means
1344 /// that we can just remove the code.
1345 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1346   // Null statement, not a label!
1347   if (!S) return false;
1348 
1349   // If this is a label, we have to emit the code, consider something like:
1350   // if (0) {  ...  foo:  bar(); }  goto foo;
1351   //
1352   // TODO: If anyone cared, we could track __label__'s, since we know that you
1353   // can't jump to one from outside their declared region.
1354   if (isa<LabelStmt>(S))
1355     return true;
1356 
1357   // If this is a case/default statement, and we haven't seen a switch, we have
1358   // to emit the code.
1359   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1360     return true;
1361 
1362   // If this is a switch statement, we want to ignore cases below it.
1363   if (isa<SwitchStmt>(S))
1364     IgnoreCaseStmts = true;
1365 
1366   // Scan subexpressions for verboten labels.
1367   for (const Stmt *SubStmt : S->children())
1368     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1369       return true;
1370 
1371   return false;
1372 }
1373 
1374 /// containsBreak - Return true if the statement contains a break out of it.
1375 /// If the statement (recursively) contains a switch or loop with a break
1376 /// inside of it, this is fine.
1377 bool CodeGenFunction::containsBreak(const Stmt *S) {
1378   // Null statement, not a label!
1379   if (!S) return false;
1380 
1381   // If this is a switch or loop that defines its own break scope, then we can
1382   // include it and anything inside of it.
1383   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1384       isa<ForStmt>(S))
1385     return false;
1386 
1387   if (isa<BreakStmt>(S))
1388     return true;
1389 
1390   // Scan subexpressions for verboten breaks.
1391   for (const Stmt *SubStmt : S->children())
1392     if (containsBreak(SubStmt))
1393       return true;
1394 
1395   return false;
1396 }
1397 
1398 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1399   if (!S) return false;
1400 
1401   // Some statement kinds add a scope and thus never add a decl to the current
1402   // scope. Note, this list is longer than the list of statements that might
1403   // have an unscoped decl nested within them, but this way is conservatively
1404   // correct even if more statement kinds are added.
1405   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1406       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1407       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1408       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1409     return false;
1410 
1411   if (isa<DeclStmt>(S))
1412     return true;
1413 
1414   for (const Stmt *SubStmt : S->children())
1415     if (mightAddDeclToScope(SubStmt))
1416       return true;
1417 
1418   return false;
1419 }
1420 
1421 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1422 /// to a constant, or if it does but contains a label, return false.  If it
1423 /// constant folds return true and set the boolean result in Result.
1424 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1425                                                    bool &ResultBool,
1426                                                    bool AllowLabels) {
1427   llvm::APSInt ResultInt;
1428   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1429     return false;
1430 
1431   ResultBool = ResultInt.getBoolValue();
1432   return true;
1433 }
1434 
1435 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1436 /// to a constant, or if it does but contains a label, return false.  If it
1437 /// constant folds return true and set the folded value.
1438 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1439                                                    llvm::APSInt &ResultInt,
1440                                                    bool AllowLabels) {
1441   // FIXME: Rename and handle conversion of other evaluatable things
1442   // to bool.
1443   llvm::APSInt Int;
1444   if (!Cond->EvaluateAsInt(Int, getContext()))
1445     return false;  // Not foldable, not integer or not fully evaluatable.
1446 
1447   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1448     return false;  // Contains a label.
1449 
1450   ResultInt = Int;
1451   return true;
1452 }
1453 
1454 
1455 
1456 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1457 /// statement) to the specified blocks.  Based on the condition, this might try
1458 /// to simplify the codegen of the conditional based on the branch.
1459 ///
1460 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1461                                            llvm::BasicBlock *TrueBlock,
1462                                            llvm::BasicBlock *FalseBlock,
1463                                            uint64_t TrueCount) {
1464   Cond = Cond->IgnoreParens();
1465 
1466   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1467 
1468     // Handle X && Y in a condition.
1469     if (CondBOp->getOpcode() == BO_LAnd) {
1470       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1471       // folded if the case was simple enough.
1472       bool ConstantBool = false;
1473       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1474           ConstantBool) {
1475         // br(1 && X) -> br(X).
1476         incrementProfileCounter(CondBOp);
1477         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1478                                     TrueCount);
1479       }
1480 
1481       // If we have "X && 1", simplify the code to use an uncond branch.
1482       // "X && 0" would have been constant folded to 0.
1483       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1484           ConstantBool) {
1485         // br(X && 1) -> br(X).
1486         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1487                                     TrueCount);
1488       }
1489 
1490       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1491       // want to jump to the FalseBlock.
1492       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1493       // The counter tells us how often we evaluate RHS, and all of TrueCount
1494       // can be propagated to that branch.
1495       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1496 
1497       ConditionalEvaluation eval(*this);
1498       {
1499         ApplyDebugLocation DL(*this, Cond);
1500         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1501         EmitBlock(LHSTrue);
1502       }
1503 
1504       incrementProfileCounter(CondBOp);
1505       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1506 
1507       // Any temporaries created here are conditional.
1508       eval.begin(*this);
1509       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1510       eval.end(*this);
1511 
1512       return;
1513     }
1514 
1515     if (CondBOp->getOpcode() == BO_LOr) {
1516       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1517       // folded if the case was simple enough.
1518       bool ConstantBool = false;
1519       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1520           !ConstantBool) {
1521         // br(0 || X) -> br(X).
1522         incrementProfileCounter(CondBOp);
1523         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1524                                     TrueCount);
1525       }
1526 
1527       // If we have "X || 0", simplify the code to use an uncond branch.
1528       // "X || 1" would have been constant folded to 1.
1529       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1530           !ConstantBool) {
1531         // br(X || 0) -> br(X).
1532         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1533                                     TrueCount);
1534       }
1535 
1536       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1537       // want to jump to the TrueBlock.
1538       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1539       // We have the count for entry to the RHS and for the whole expression
1540       // being true, so we can divy up True count between the short circuit and
1541       // the RHS.
1542       uint64_t LHSCount =
1543           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1544       uint64_t RHSCount = TrueCount - LHSCount;
1545 
1546       ConditionalEvaluation eval(*this);
1547       {
1548         ApplyDebugLocation DL(*this, Cond);
1549         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1550         EmitBlock(LHSFalse);
1551       }
1552 
1553       incrementProfileCounter(CondBOp);
1554       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1555 
1556       // Any temporaries created here are conditional.
1557       eval.begin(*this);
1558       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1559 
1560       eval.end(*this);
1561 
1562       return;
1563     }
1564   }
1565 
1566   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1567     // br(!x, t, f) -> br(x, f, t)
1568     if (CondUOp->getOpcode() == UO_LNot) {
1569       // Negate the count.
1570       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1571       // Negate the condition and swap the destination blocks.
1572       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1573                                   FalseCount);
1574     }
1575   }
1576 
1577   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1578     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1579     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1580     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1581 
1582     ConditionalEvaluation cond(*this);
1583     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1584                          getProfileCount(CondOp));
1585 
1586     // When computing PGO branch weights, we only know the overall count for
1587     // the true block. This code is essentially doing tail duplication of the
1588     // naive code-gen, introducing new edges for which counts are not
1589     // available. Divide the counts proportionally between the LHS and RHS of
1590     // the conditional operator.
1591     uint64_t LHSScaledTrueCount = 0;
1592     if (TrueCount) {
1593       double LHSRatio =
1594           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1595       LHSScaledTrueCount = TrueCount * LHSRatio;
1596     }
1597 
1598     cond.begin(*this);
1599     EmitBlock(LHSBlock);
1600     incrementProfileCounter(CondOp);
1601     {
1602       ApplyDebugLocation DL(*this, Cond);
1603       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1604                            LHSScaledTrueCount);
1605     }
1606     cond.end(*this);
1607 
1608     cond.begin(*this);
1609     EmitBlock(RHSBlock);
1610     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1611                          TrueCount - LHSScaledTrueCount);
1612     cond.end(*this);
1613 
1614     return;
1615   }
1616 
1617   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1618     // Conditional operator handling can give us a throw expression as a
1619     // condition for a case like:
1620     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1621     // Fold this to:
1622     //   br(c, throw x, br(y, t, f))
1623     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1624     return;
1625   }
1626 
1627   // If the branch has a condition wrapped by __builtin_unpredictable,
1628   // create metadata that specifies that the branch is unpredictable.
1629   // Don't bother if not optimizing because that metadata would not be used.
1630   llvm::MDNode *Unpredictable = nullptr;
1631   auto *Call = dyn_cast<CallExpr>(Cond);
1632   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1633     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1634     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1635       llvm::MDBuilder MDHelper(getLLVMContext());
1636       Unpredictable = MDHelper.createUnpredictable();
1637     }
1638   }
1639 
1640   // Create branch weights based on the number of times we get here and the
1641   // number of times the condition should be true.
1642   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1643   llvm::MDNode *Weights =
1644       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1645 
1646   // Emit the code with the fully general case.
1647   llvm::Value *CondV;
1648   {
1649     ApplyDebugLocation DL(*this, Cond);
1650     CondV = EvaluateExprAsBool(Cond);
1651   }
1652   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1653 }
1654 
1655 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1656 /// specified stmt yet.
1657 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1658   CGM.ErrorUnsupported(S, Type);
1659 }
1660 
1661 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1662 /// variable-length array whose elements have a non-zero bit-pattern.
1663 ///
1664 /// \param baseType the inner-most element type of the array
1665 /// \param src - a char* pointing to the bit-pattern for a single
1666 /// base element of the array
1667 /// \param sizeInChars - the total size of the VLA, in chars
1668 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1669                                Address dest, Address src,
1670                                llvm::Value *sizeInChars) {
1671   CGBuilderTy &Builder = CGF.Builder;
1672 
1673   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1674   llvm::Value *baseSizeInChars
1675     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1676 
1677   Address begin =
1678     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1679   llvm::Value *end =
1680     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1681 
1682   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1683   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1684   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1685 
1686   // Make a loop over the VLA.  C99 guarantees that the VLA element
1687   // count must be nonzero.
1688   CGF.EmitBlock(loopBB);
1689 
1690   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1691   cur->addIncoming(begin.getPointer(), originBB);
1692 
1693   CharUnits curAlign =
1694     dest.getAlignment().alignmentOfArrayElement(baseSize);
1695 
1696   // memcpy the individual element bit-pattern.
1697   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1698                        /*volatile*/ false);
1699 
1700   // Go to the next element.
1701   llvm::Value *next =
1702     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1703 
1704   // Leave if that's the end of the VLA.
1705   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1706   Builder.CreateCondBr(done, contBB, loopBB);
1707   cur->addIncoming(next, loopBB);
1708 
1709   CGF.EmitBlock(contBB);
1710 }
1711 
1712 void
1713 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1714   // Ignore empty classes in C++.
1715   if (getLangOpts().CPlusPlus) {
1716     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1717       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1718         return;
1719     }
1720   }
1721 
1722   // Cast the dest ptr to the appropriate i8 pointer type.
1723   if (DestPtr.getElementType() != Int8Ty)
1724     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1725 
1726   // Get size and alignment info for this aggregate.
1727   CharUnits size = getContext().getTypeSizeInChars(Ty);
1728 
1729   llvm::Value *SizeVal;
1730   const VariableArrayType *vla;
1731 
1732   // Don't bother emitting a zero-byte memset.
1733   if (size.isZero()) {
1734     // But note that getTypeInfo returns 0 for a VLA.
1735     if (const VariableArrayType *vlaType =
1736           dyn_cast_or_null<VariableArrayType>(
1737                                           getContext().getAsArrayType(Ty))) {
1738       QualType eltType;
1739       llvm::Value *numElts;
1740       std::tie(numElts, eltType) = getVLASize(vlaType);
1741 
1742       SizeVal = numElts;
1743       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1744       if (!eltSize.isOne())
1745         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1746       vla = vlaType;
1747     } else {
1748       return;
1749     }
1750   } else {
1751     SizeVal = CGM.getSize(size);
1752     vla = nullptr;
1753   }
1754 
1755   // If the type contains a pointer to data member we can't memset it to zero.
1756   // Instead, create a null constant and copy it to the destination.
1757   // TODO: there are other patterns besides zero that we can usefully memset,
1758   // like -1, which happens to be the pattern used by member-pointers.
1759   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1760     // For a VLA, emit a single element, then splat that over the VLA.
1761     if (vla) Ty = getContext().getBaseElementType(vla);
1762 
1763     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1764 
1765     llvm::GlobalVariable *NullVariable =
1766       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1767                                /*isConstant=*/true,
1768                                llvm::GlobalVariable::PrivateLinkage,
1769                                NullConstant, Twine());
1770     CharUnits NullAlign = DestPtr.getAlignment();
1771     NullVariable->setAlignment(NullAlign.getQuantity());
1772     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1773                    NullAlign);
1774 
1775     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1776 
1777     // Get and call the appropriate llvm.memcpy overload.
1778     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1779     return;
1780   }
1781 
1782   // Otherwise, just memset the whole thing to zero.  This is legal
1783   // because in LLVM, all default initializers (other than the ones we just
1784   // handled above) are guaranteed to have a bit pattern of all zeros.
1785   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1786 }
1787 
1788 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1789   // Make sure that there is a block for the indirect goto.
1790   if (!IndirectBranch)
1791     GetIndirectGotoBlock();
1792 
1793   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1794 
1795   // Make sure the indirect branch includes all of the address-taken blocks.
1796   IndirectBranch->addDestination(BB);
1797   return llvm::BlockAddress::get(CurFn, BB);
1798 }
1799 
1800 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1801   // If we already made the indirect branch for indirect goto, return its block.
1802   if (IndirectBranch) return IndirectBranch->getParent();
1803 
1804   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1805 
1806   // Create the PHI node that indirect gotos will add entries to.
1807   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1808                                               "indirect.goto.dest");
1809 
1810   // Create the indirect branch instruction.
1811   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1812   return IndirectBranch->getParent();
1813 }
1814 
1815 /// Computes the length of an array in elements, as well as the base
1816 /// element type and a properly-typed first element pointer.
1817 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1818                                               QualType &baseType,
1819                                               Address &addr) {
1820   const ArrayType *arrayType = origArrayType;
1821 
1822   // If it's a VLA, we have to load the stored size.  Note that
1823   // this is the size of the VLA in bytes, not its size in elements.
1824   llvm::Value *numVLAElements = nullptr;
1825   if (isa<VariableArrayType>(arrayType)) {
1826     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1827 
1828     // Walk into all VLAs.  This doesn't require changes to addr,
1829     // which has type T* where T is the first non-VLA element type.
1830     do {
1831       QualType elementType = arrayType->getElementType();
1832       arrayType = getContext().getAsArrayType(elementType);
1833 
1834       // If we only have VLA components, 'addr' requires no adjustment.
1835       if (!arrayType) {
1836         baseType = elementType;
1837         return numVLAElements;
1838       }
1839     } while (isa<VariableArrayType>(arrayType));
1840 
1841     // We get out here only if we find a constant array type
1842     // inside the VLA.
1843   }
1844 
1845   // We have some number of constant-length arrays, so addr should
1846   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1847   // down to the first element of addr.
1848   SmallVector<llvm::Value*, 8> gepIndices;
1849 
1850   // GEP down to the array type.
1851   llvm::ConstantInt *zero = Builder.getInt32(0);
1852   gepIndices.push_back(zero);
1853 
1854   uint64_t countFromCLAs = 1;
1855   QualType eltType;
1856 
1857   llvm::ArrayType *llvmArrayType =
1858     dyn_cast<llvm::ArrayType>(addr.getElementType());
1859   while (llvmArrayType) {
1860     assert(isa<ConstantArrayType>(arrayType));
1861     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1862              == llvmArrayType->getNumElements());
1863 
1864     gepIndices.push_back(zero);
1865     countFromCLAs *= llvmArrayType->getNumElements();
1866     eltType = arrayType->getElementType();
1867 
1868     llvmArrayType =
1869       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1870     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1871     assert((!llvmArrayType || arrayType) &&
1872            "LLVM and Clang types are out-of-synch");
1873   }
1874 
1875   if (arrayType) {
1876     // From this point onwards, the Clang array type has been emitted
1877     // as some other type (probably a packed struct). Compute the array
1878     // size, and just emit the 'begin' expression as a bitcast.
1879     while (arrayType) {
1880       countFromCLAs *=
1881           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1882       eltType = arrayType->getElementType();
1883       arrayType = getContext().getAsArrayType(eltType);
1884     }
1885 
1886     llvm::Type *baseType = ConvertType(eltType);
1887     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1888   } else {
1889     // Create the actual GEP.
1890     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1891                                              gepIndices, "array.begin"),
1892                    addr.getAlignment());
1893   }
1894 
1895   baseType = eltType;
1896 
1897   llvm::Value *numElements
1898     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1899 
1900   // If we had any VLA dimensions, factor them in.
1901   if (numVLAElements)
1902     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1903 
1904   return numElements;
1905 }
1906 
1907 std::pair<llvm::Value*, QualType>
1908 CodeGenFunction::getVLASize(QualType type) {
1909   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1910   assert(vla && "type was not a variable array type!");
1911   return getVLASize(vla);
1912 }
1913 
1914 std::pair<llvm::Value*, QualType>
1915 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1916   // The number of elements so far; always size_t.
1917   llvm::Value *numElements = nullptr;
1918 
1919   QualType elementType;
1920   do {
1921     elementType = type->getElementType();
1922     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1923     assert(vlaSize && "no size for VLA!");
1924     assert(vlaSize->getType() == SizeTy);
1925 
1926     if (!numElements) {
1927       numElements = vlaSize;
1928     } else {
1929       // It's undefined behavior if this wraps around, so mark it that way.
1930       // FIXME: Teach -fsanitize=undefined to trap this.
1931       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1932     }
1933   } while ((type = getContext().getAsVariableArrayType(elementType)));
1934 
1935   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1936 }
1937 
1938 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1939   assert(type->isVariablyModifiedType() &&
1940          "Must pass variably modified type to EmitVLASizes!");
1941 
1942   EnsureInsertPoint();
1943 
1944   // We're going to walk down into the type and look for VLA
1945   // expressions.
1946   do {
1947     assert(type->isVariablyModifiedType());
1948 
1949     const Type *ty = type.getTypePtr();
1950     switch (ty->getTypeClass()) {
1951 
1952 #define TYPE(Class, Base)
1953 #define ABSTRACT_TYPE(Class, Base)
1954 #define NON_CANONICAL_TYPE(Class, Base)
1955 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1956 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1957 #include "clang/AST/TypeNodes.def"
1958       llvm_unreachable("unexpected dependent type!");
1959 
1960     // These types are never variably-modified.
1961     case Type::Builtin:
1962     case Type::Complex:
1963     case Type::Vector:
1964     case Type::ExtVector:
1965     case Type::Record:
1966     case Type::Enum:
1967     case Type::Elaborated:
1968     case Type::TemplateSpecialization:
1969     case Type::ObjCTypeParam:
1970     case Type::ObjCObject:
1971     case Type::ObjCInterface:
1972     case Type::ObjCObjectPointer:
1973       llvm_unreachable("type class is never variably-modified!");
1974 
1975     case Type::Adjusted:
1976       type = cast<AdjustedType>(ty)->getAdjustedType();
1977       break;
1978 
1979     case Type::Decayed:
1980       type = cast<DecayedType>(ty)->getPointeeType();
1981       break;
1982 
1983     case Type::Pointer:
1984       type = cast<PointerType>(ty)->getPointeeType();
1985       break;
1986 
1987     case Type::BlockPointer:
1988       type = cast<BlockPointerType>(ty)->getPointeeType();
1989       break;
1990 
1991     case Type::LValueReference:
1992     case Type::RValueReference:
1993       type = cast<ReferenceType>(ty)->getPointeeType();
1994       break;
1995 
1996     case Type::MemberPointer:
1997       type = cast<MemberPointerType>(ty)->getPointeeType();
1998       break;
1999 
2000     case Type::ConstantArray:
2001     case Type::IncompleteArray:
2002       // Losing element qualification here is fine.
2003       type = cast<ArrayType>(ty)->getElementType();
2004       break;
2005 
2006     case Type::VariableArray: {
2007       // Losing element qualification here is fine.
2008       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2009 
2010       // Unknown size indication requires no size computation.
2011       // Otherwise, evaluate and record it.
2012       if (const Expr *size = vat->getSizeExpr()) {
2013         // It's possible that we might have emitted this already,
2014         // e.g. with a typedef and a pointer to it.
2015         llvm::Value *&entry = VLASizeMap[size];
2016         if (!entry) {
2017           llvm::Value *Size = EmitScalarExpr(size);
2018 
2019           // C11 6.7.6.2p5:
2020           //   If the size is an expression that is not an integer constant
2021           //   expression [...] each time it is evaluated it shall have a value
2022           //   greater than zero.
2023           if (SanOpts.has(SanitizerKind::VLABound) &&
2024               size->getType()->isSignedIntegerType()) {
2025             SanitizerScope SanScope(this);
2026             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2027             llvm::Constant *StaticArgs[] = {
2028               EmitCheckSourceLocation(size->getLocStart()),
2029               EmitCheckTypeDescriptor(size->getType())
2030             };
2031             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2032                                      SanitizerKind::VLABound),
2033                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2034           }
2035 
2036           // Always zexting here would be wrong if it weren't
2037           // undefined behavior to have a negative bound.
2038           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2039         }
2040       }
2041       type = vat->getElementType();
2042       break;
2043     }
2044 
2045     case Type::FunctionProto:
2046     case Type::FunctionNoProto:
2047       type = cast<FunctionType>(ty)->getReturnType();
2048       break;
2049 
2050     case Type::Paren:
2051     case Type::TypeOf:
2052     case Type::UnaryTransform:
2053     case Type::Attributed:
2054     case Type::SubstTemplateTypeParm:
2055     case Type::PackExpansion:
2056       // Keep walking after single level desugaring.
2057       type = type.getSingleStepDesugaredType(getContext());
2058       break;
2059 
2060     case Type::Typedef:
2061     case Type::Decltype:
2062     case Type::Auto:
2063     case Type::DeducedTemplateSpecialization:
2064       // Stop walking: nothing to do.
2065       return;
2066 
2067     case Type::TypeOfExpr:
2068       // Stop walking: emit typeof expression.
2069       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2070       return;
2071 
2072     case Type::Atomic:
2073       type = cast<AtomicType>(ty)->getValueType();
2074       break;
2075 
2076     case Type::Pipe:
2077       type = cast<PipeType>(ty)->getElementType();
2078       break;
2079     }
2080   } while (type->isVariablyModifiedType());
2081 }
2082 
2083 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2084   if (getContext().getBuiltinVaListType()->isArrayType())
2085     return EmitPointerWithAlignment(E);
2086   return EmitLValue(E).getAddress();
2087 }
2088 
2089 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2090   return EmitLValue(E).getAddress();
2091 }
2092 
2093 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2094                                               const APValue &Init) {
2095   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2096   if (CGDebugInfo *Dbg = getDebugInfo())
2097     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2098       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2099 }
2100 
2101 CodeGenFunction::PeepholeProtection
2102 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2103   // At the moment, the only aggressive peephole we do in IR gen
2104   // is trunc(zext) folding, but if we add more, we can easily
2105   // extend this protection.
2106 
2107   if (!rvalue.isScalar()) return PeepholeProtection();
2108   llvm::Value *value = rvalue.getScalarVal();
2109   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2110 
2111   // Just make an extra bitcast.
2112   assert(HaveInsertPoint());
2113   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2114                                                   Builder.GetInsertBlock());
2115 
2116   PeepholeProtection protection;
2117   protection.Inst = inst;
2118   return protection;
2119 }
2120 
2121 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2122   if (!protection.Inst) return;
2123 
2124   // In theory, we could try to duplicate the peepholes now, but whatever.
2125   protection.Inst->eraseFromParent();
2126 }
2127 
2128 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2129                                                  llvm::Value *AnnotatedVal,
2130                                                  StringRef AnnotationStr,
2131                                                  SourceLocation Location) {
2132   llvm::Value *Args[4] = {
2133     AnnotatedVal,
2134     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2135     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2136     CGM.EmitAnnotationLineNo(Location)
2137   };
2138   return Builder.CreateCall(AnnotationFn, Args);
2139 }
2140 
2141 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2142   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2143   // FIXME We create a new bitcast for every annotation because that's what
2144   // llvm-gcc was doing.
2145   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2146     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2147                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2148                        I->getAnnotation(), D->getLocation());
2149 }
2150 
2151 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2152                                               Address Addr) {
2153   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2154   llvm::Value *V = Addr.getPointer();
2155   llvm::Type *VTy = V->getType();
2156   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2157                                     CGM.Int8PtrTy);
2158 
2159   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2160     // FIXME Always emit the cast inst so we can differentiate between
2161     // annotation on the first field of a struct and annotation on the struct
2162     // itself.
2163     if (VTy != CGM.Int8PtrTy)
2164       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2165     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2166     V = Builder.CreateBitCast(V, VTy);
2167   }
2168 
2169   return Address(V, Addr.getAlignment());
2170 }
2171 
2172 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2173 
2174 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2175     : CGF(CGF) {
2176   assert(!CGF->IsSanitizerScope);
2177   CGF->IsSanitizerScope = true;
2178 }
2179 
2180 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2181   CGF->IsSanitizerScope = false;
2182 }
2183 
2184 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2185                                    const llvm::Twine &Name,
2186                                    llvm::BasicBlock *BB,
2187                                    llvm::BasicBlock::iterator InsertPt) const {
2188   LoopStack.InsertHelper(I);
2189   if (IsSanitizerScope)
2190     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2191 }
2192 
2193 void CGBuilderInserter::InsertHelper(
2194     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2195     llvm::BasicBlock::iterator InsertPt) const {
2196   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2197   if (CGF)
2198     CGF->InsertHelper(I, Name, BB, InsertPt);
2199 }
2200 
2201 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2202                                 CodeGenModule &CGM, const FunctionDecl *FD,
2203                                 std::string &FirstMissing) {
2204   // If there aren't any required features listed then go ahead and return.
2205   if (ReqFeatures.empty())
2206     return false;
2207 
2208   // Now build up the set of caller features and verify that all the required
2209   // features are there.
2210   llvm::StringMap<bool> CallerFeatureMap;
2211   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2212 
2213   // If we have at least one of the features in the feature list return
2214   // true, otherwise return false.
2215   return std::all_of(
2216       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2217         SmallVector<StringRef, 1> OrFeatures;
2218         Feature.split(OrFeatures, "|");
2219         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2220                            [&](StringRef Feature) {
2221                              if (!CallerFeatureMap.lookup(Feature)) {
2222                                FirstMissing = Feature.str();
2223                                return false;
2224                              }
2225                              return true;
2226                            });
2227       });
2228 }
2229 
2230 // Emits an error if we don't have a valid set of target features for the
2231 // called function.
2232 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2233                                           const FunctionDecl *TargetDecl) {
2234   // Early exit if this is an indirect call.
2235   if (!TargetDecl)
2236     return;
2237 
2238   // Get the current enclosing function if it exists. If it doesn't
2239   // we can't check the target features anyhow.
2240   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2241   if (!FD)
2242     return;
2243 
2244   // Grab the required features for the call. For a builtin this is listed in
2245   // the td file with the default cpu, for an always_inline function this is any
2246   // listed cpu and any listed features.
2247   unsigned BuiltinID = TargetDecl->getBuiltinID();
2248   std::string MissingFeature;
2249   if (BuiltinID) {
2250     SmallVector<StringRef, 1> ReqFeatures;
2251     const char *FeatureList =
2252         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2253     // Return if the builtin doesn't have any required features.
2254     if (!FeatureList || StringRef(FeatureList) == "")
2255       return;
2256     StringRef(FeatureList).split(ReqFeatures, ",");
2257     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2258       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2259           << TargetDecl->getDeclName()
2260           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2261 
2262   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2263     // Get the required features for the callee.
2264     SmallVector<StringRef, 1> ReqFeatures;
2265     llvm::StringMap<bool> CalleeFeatureMap;
2266     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2267     for (const auto &F : CalleeFeatureMap) {
2268       // Only positive features are "required".
2269       if (F.getValue())
2270         ReqFeatures.push_back(F.getKey());
2271     }
2272     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2273       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2274           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2275   }
2276 }
2277 
2278 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2279   if (!CGM.getCodeGenOpts().SanitizeStats)
2280     return;
2281 
2282   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2283   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2284   CGM.getSanStats().create(IRB, SSK);
2285 }
2286 
2287 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2288   if (CGDebugInfo *DI = getDebugInfo())
2289     return DI->SourceLocToDebugLoc(Location);
2290 
2291   return llvm::DebugLoc();
2292 }
2293