1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 Builder.setFastMathFlags(FMF); 107 } 108 109 CodeGenFunction::~CodeGenFunction() { 110 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 111 112 // If there are any unclaimed block infos, go ahead and destroy them 113 // now. This can happen if IR-gen gets clever and skips evaluating 114 // something. 115 if (FirstBlockInfo) 116 destroyBlockInfos(FirstBlockInfo); 117 118 if (getLangOpts().OpenMP && CurFn) 119 CGM.getOpenMPRuntime().functionFinished(*this); 120 } 121 122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 123 LValueBaseInfo *BaseInfo, 124 TBAAAccessInfo *TBAAInfo) { 125 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 126 /* forPointeeType= */ true); 127 } 128 129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 130 LValueBaseInfo *BaseInfo, 131 TBAAAccessInfo *TBAAInfo, 132 bool forPointeeType) { 133 if (TBAAInfo) 134 *TBAAInfo = CGM.getTBAAAccessInfo(T); 135 136 // Honor alignment typedef attributes even on incomplete types. 137 // We also honor them straight for C++ class types, even as pointees; 138 // there's an expressivity gap here. 139 if (auto TT = T->getAs<TypedefType>()) { 140 if (auto Align = TT->getDecl()->getMaxAlignment()) { 141 if (BaseInfo) 142 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 143 return getContext().toCharUnitsFromBits(Align); 144 } 145 } 146 147 if (BaseInfo) 148 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 149 150 CharUnits Alignment; 151 if (T->isIncompleteType()) { 152 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 153 } else { 154 // For C++ class pointees, we don't know whether we're pointing at a 155 // base or a complete object, so we generally need to use the 156 // non-virtual alignment. 157 const CXXRecordDecl *RD; 158 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 159 Alignment = CGM.getClassPointerAlignment(RD); 160 } else { 161 Alignment = getContext().getTypeAlignInChars(T); 162 if (T.getQualifiers().hasUnaligned()) 163 Alignment = CharUnits::One(); 164 } 165 166 // Cap to the global maximum type alignment unless the alignment 167 // was somehow explicit on the type. 168 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 169 if (Alignment.getQuantity() > MaxAlign && 170 !getContext().isAlignmentRequired(T)) 171 Alignment = CharUnits::fromQuantity(MaxAlign); 172 } 173 } 174 return Alignment; 175 } 176 177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 178 LValueBaseInfo BaseInfo; 179 TBAAAccessInfo TBAAInfo; 180 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 181 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 182 TBAAInfo); 183 } 184 185 /// Given a value of type T* that may not be to a complete object, 186 /// construct an l-value with the natural pointee alignment of T. 187 LValue 188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 189 LValueBaseInfo BaseInfo; 190 TBAAAccessInfo TBAAInfo; 191 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 192 /* forPointeeType= */ true); 193 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 194 } 195 196 197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 198 return CGM.getTypes().ConvertTypeForMem(T); 199 } 200 201 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 202 return CGM.getTypes().ConvertType(T); 203 } 204 205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 206 type = type.getCanonicalType(); 207 while (true) { 208 switch (type->getTypeClass()) { 209 #define TYPE(name, parent) 210 #define ABSTRACT_TYPE(name, parent) 211 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 212 #define DEPENDENT_TYPE(name, parent) case Type::name: 213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 214 #include "clang/AST/TypeNodes.def" 215 llvm_unreachable("non-canonical or dependent type in IR-generation"); 216 217 case Type::Auto: 218 case Type::DeducedTemplateSpecialization: 219 llvm_unreachable("undeduced type in IR-generation"); 220 221 // Various scalar types. 222 case Type::Builtin: 223 case Type::Pointer: 224 case Type::BlockPointer: 225 case Type::LValueReference: 226 case Type::RValueReference: 227 case Type::MemberPointer: 228 case Type::Vector: 229 case Type::ExtVector: 230 case Type::FunctionProto: 231 case Type::FunctionNoProto: 232 case Type::Enum: 233 case Type::ObjCObjectPointer: 234 case Type::Pipe: 235 return TEK_Scalar; 236 237 // Complexes. 238 case Type::Complex: 239 return TEK_Complex; 240 241 // Arrays, records, and Objective-C objects. 242 case Type::ConstantArray: 243 case Type::IncompleteArray: 244 case Type::VariableArray: 245 case Type::Record: 246 case Type::ObjCObject: 247 case Type::ObjCInterface: 248 return TEK_Aggregate; 249 250 // We operate on atomic values according to their underlying type. 251 case Type::Atomic: 252 type = cast<AtomicType>(type)->getValueType(); 253 continue; 254 } 255 llvm_unreachable("unknown type kind!"); 256 } 257 } 258 259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 260 // For cleanliness, we try to avoid emitting the return block for 261 // simple cases. 262 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 263 264 if (CurBB) { 265 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 266 267 // We have a valid insert point, reuse it if it is empty or there are no 268 // explicit jumps to the return block. 269 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 270 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 271 delete ReturnBlock.getBlock(); 272 } else 273 EmitBlock(ReturnBlock.getBlock()); 274 return llvm::DebugLoc(); 275 } 276 277 // Otherwise, if the return block is the target of a single direct 278 // branch then we can just put the code in that block instead. This 279 // cleans up functions which started with a unified return block. 280 if (ReturnBlock.getBlock()->hasOneUse()) { 281 llvm::BranchInst *BI = 282 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 283 if (BI && BI->isUnconditional() && 284 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 285 // Record/return the DebugLoc of the simple 'return' expression to be used 286 // later by the actual 'ret' instruction. 287 llvm::DebugLoc Loc = BI->getDebugLoc(); 288 Builder.SetInsertPoint(BI->getParent()); 289 BI->eraseFromParent(); 290 delete ReturnBlock.getBlock(); 291 return Loc; 292 } 293 } 294 295 // FIXME: We are at an unreachable point, there is no reason to emit the block 296 // unless it has uses. However, we still need a place to put the debug 297 // region.end for now. 298 299 EmitBlock(ReturnBlock.getBlock()); 300 return llvm::DebugLoc(); 301 } 302 303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 304 if (!BB) return; 305 if (!BB->use_empty()) 306 return CGF.CurFn->getBasicBlockList().push_back(BB); 307 delete BB; 308 } 309 310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 311 assert(BreakContinueStack.empty() && 312 "mismatched push/pop in break/continue stack!"); 313 314 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 315 && NumSimpleReturnExprs == NumReturnExprs 316 && ReturnBlock.getBlock()->use_empty(); 317 // Usually the return expression is evaluated before the cleanup 318 // code. If the function contains only a simple return statement, 319 // such as a constant, the location before the cleanup code becomes 320 // the last useful breakpoint in the function, because the simple 321 // return expression will be evaluated after the cleanup code. To be 322 // safe, set the debug location for cleanup code to the location of 323 // the return statement. Otherwise the cleanup code should be at the 324 // end of the function's lexical scope. 325 // 326 // If there are multiple branches to the return block, the branch 327 // instructions will get the location of the return statements and 328 // all will be fine. 329 if (CGDebugInfo *DI = getDebugInfo()) { 330 if (OnlySimpleReturnStmts) 331 DI->EmitLocation(Builder, LastStopPoint); 332 else 333 DI->EmitLocation(Builder, EndLoc); 334 } 335 336 // Pop any cleanups that might have been associated with the 337 // parameters. Do this in whatever block we're currently in; it's 338 // important to do this before we enter the return block or return 339 // edges will be *really* confused. 340 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 341 bool HasOnlyLifetimeMarkers = 342 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 343 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 344 if (HasCleanups) { 345 // Make sure the line table doesn't jump back into the body for 346 // the ret after it's been at EndLoc. 347 if (CGDebugInfo *DI = getDebugInfo()) 348 if (OnlySimpleReturnStmts) 349 DI->EmitLocation(Builder, EndLoc); 350 351 PopCleanupBlocks(PrologueCleanupDepth); 352 } 353 354 // Emit function epilog (to return). 355 llvm::DebugLoc Loc = EmitReturnBlock(); 356 357 if (ShouldInstrumentFunction()) { 358 CurFn->addFnAttr(!CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining 359 ? "instrument-function-exit" 360 : "instrument-function-exit-inlined", 361 "__cyg_profile_func_exit"); 362 } 363 364 // Emit debug descriptor for function end. 365 if (CGDebugInfo *DI = getDebugInfo()) 366 DI->EmitFunctionEnd(Builder, CurFn); 367 368 // Reset the debug location to that of the simple 'return' expression, if any 369 // rather than that of the end of the function's scope '}'. 370 ApplyDebugLocation AL(*this, Loc); 371 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 372 EmitEndEHSpec(CurCodeDecl); 373 374 assert(EHStack.empty() && 375 "did not remove all scopes from cleanup stack!"); 376 377 // If someone did an indirect goto, emit the indirect goto block at the end of 378 // the function. 379 if (IndirectBranch) { 380 EmitBlock(IndirectBranch->getParent()); 381 Builder.ClearInsertionPoint(); 382 } 383 384 // If some of our locals escaped, insert a call to llvm.localescape in the 385 // entry block. 386 if (!EscapedLocals.empty()) { 387 // Invert the map from local to index into a simple vector. There should be 388 // no holes. 389 SmallVector<llvm::Value *, 4> EscapeArgs; 390 EscapeArgs.resize(EscapedLocals.size()); 391 for (auto &Pair : EscapedLocals) 392 EscapeArgs[Pair.second] = Pair.first; 393 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 394 &CGM.getModule(), llvm::Intrinsic::localescape); 395 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 396 } 397 398 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 399 llvm::Instruction *Ptr = AllocaInsertPt; 400 AllocaInsertPt = nullptr; 401 Ptr->eraseFromParent(); 402 403 // If someone took the address of a label but never did an indirect goto, we 404 // made a zero entry PHI node, which is illegal, zap it now. 405 if (IndirectBranch) { 406 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 407 if (PN->getNumIncomingValues() == 0) { 408 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 409 PN->eraseFromParent(); 410 } 411 } 412 413 EmitIfUsed(*this, EHResumeBlock); 414 EmitIfUsed(*this, TerminateLandingPad); 415 EmitIfUsed(*this, TerminateHandler); 416 EmitIfUsed(*this, UnreachableBlock); 417 418 if (CGM.getCodeGenOpts().EmitDeclMetadata) 419 EmitDeclMetadata(); 420 421 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 422 I = DeferredReplacements.begin(), 423 E = DeferredReplacements.end(); 424 I != E; ++I) { 425 I->first->replaceAllUsesWith(I->second); 426 I->first->eraseFromParent(); 427 } 428 429 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 430 // PHIs if the current function is a coroutine. We don't do it for all 431 // functions as it may result in slight increase in numbers of instructions 432 // if compiled with no optimizations. We do it for coroutine as the lifetime 433 // of CleanupDestSlot alloca make correct coroutine frame building very 434 // difficult. 435 if (NormalCleanupDest && isCoroutine()) { 436 llvm::DominatorTree DT(*CurFn); 437 llvm::PromoteMemToReg(NormalCleanupDest, DT); 438 NormalCleanupDest = nullptr; 439 } 440 } 441 442 /// ShouldInstrumentFunction - Return true if the current function should be 443 /// instrumented with __cyg_profile_func_* calls 444 bool CodeGenFunction::ShouldInstrumentFunction() { 445 if (!CGM.getCodeGenOpts().InstrumentFunctions && 446 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 447 return false; 448 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 449 return false; 450 return true; 451 } 452 453 /// ShouldXRayInstrument - Return true if the current function should be 454 /// instrumented with XRay nop sleds. 455 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 456 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 457 } 458 459 llvm::Constant * 460 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 461 llvm::Constant *Addr) { 462 // Addresses stored in prologue data can't require run-time fixups and must 463 // be PC-relative. Run-time fixups are undesirable because they necessitate 464 // writable text segments, which are unsafe. And absolute addresses are 465 // undesirable because they break PIE mode. 466 467 // Add a layer of indirection through a private global. Taking its address 468 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 469 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 470 /*isConstant=*/true, 471 llvm::GlobalValue::PrivateLinkage, Addr); 472 473 // Create a PC-relative address. 474 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 475 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 476 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 477 return (IntPtrTy == Int32Ty) 478 ? PCRelAsInt 479 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 480 } 481 482 llvm::Value * 483 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 484 llvm::Value *EncodedAddr) { 485 // Reconstruct the address of the global. 486 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 487 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 488 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 489 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 490 491 // Load the original pointer through the global. 492 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 493 "decoded_addr"); 494 } 495 496 static void removeImageAccessQualifier(std::string& TyName) { 497 std::string ReadOnlyQual("__read_only"); 498 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 499 if (ReadOnlyPos != std::string::npos) 500 // "+ 1" for the space after access qualifier. 501 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 502 else { 503 std::string WriteOnlyQual("__write_only"); 504 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 505 if (WriteOnlyPos != std::string::npos) 506 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 507 else { 508 std::string ReadWriteQual("__read_write"); 509 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 510 if (ReadWritePos != std::string::npos) 511 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 512 } 513 } 514 } 515 516 // Returns the address space id that should be produced to the 517 // kernel_arg_addr_space metadata. This is always fixed to the ids 518 // as specified in the SPIR 2.0 specification in order to differentiate 519 // for example in clGetKernelArgInfo() implementation between the address 520 // spaces with targets without unique mapping to the OpenCL address spaces 521 // (basically all single AS CPUs). 522 static unsigned ArgInfoAddressSpace(LangAS AS) { 523 switch (AS) { 524 case LangAS::opencl_global: return 1; 525 case LangAS::opencl_constant: return 2; 526 case LangAS::opencl_local: return 3; 527 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 528 default: 529 return 0; // Assume private. 530 } 531 } 532 533 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 534 // information in the program executable. The argument information stored 535 // includes the argument name, its type, the address and access qualifiers used. 536 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 537 CodeGenModule &CGM, llvm::LLVMContext &Context, 538 CGBuilderTy &Builder, ASTContext &ASTCtx) { 539 // Create MDNodes that represent the kernel arg metadata. 540 // Each MDNode is a list in the form of "key", N number of values which is 541 // the same number of values as their are kernel arguments. 542 543 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 544 545 // MDNode for the kernel argument address space qualifiers. 546 SmallVector<llvm::Metadata *, 8> addressQuals; 547 548 // MDNode for the kernel argument access qualifiers (images only). 549 SmallVector<llvm::Metadata *, 8> accessQuals; 550 551 // MDNode for the kernel argument type names. 552 SmallVector<llvm::Metadata *, 8> argTypeNames; 553 554 // MDNode for the kernel argument base type names. 555 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 556 557 // MDNode for the kernel argument type qualifiers. 558 SmallVector<llvm::Metadata *, 8> argTypeQuals; 559 560 // MDNode for the kernel argument names. 561 SmallVector<llvm::Metadata *, 8> argNames; 562 563 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 564 const ParmVarDecl *parm = FD->getParamDecl(i); 565 QualType ty = parm->getType(); 566 std::string typeQuals; 567 568 if (ty->isPointerType()) { 569 QualType pointeeTy = ty->getPointeeType(); 570 571 // Get address qualifier. 572 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 573 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 574 575 // Get argument type name. 576 std::string typeName = 577 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 578 579 // Turn "unsigned type" to "utype" 580 std::string::size_type pos = typeName.find("unsigned"); 581 if (pointeeTy.isCanonical() && pos != std::string::npos) 582 typeName.erase(pos+1, 8); 583 584 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 585 586 std::string baseTypeName = 587 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 588 Policy) + 589 "*"; 590 591 // Turn "unsigned type" to "utype" 592 pos = baseTypeName.find("unsigned"); 593 if (pos != std::string::npos) 594 baseTypeName.erase(pos+1, 8); 595 596 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 597 598 // Get argument type qualifiers: 599 if (ty.isRestrictQualified()) 600 typeQuals = "restrict"; 601 if (pointeeTy.isConstQualified() || 602 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 603 typeQuals += typeQuals.empty() ? "const" : " const"; 604 if (pointeeTy.isVolatileQualified()) 605 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 606 } else { 607 uint32_t AddrSpc = 0; 608 bool isPipe = ty->isPipeType(); 609 if (ty->isImageType() || isPipe) 610 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 611 612 addressQuals.push_back( 613 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 614 615 // Get argument type name. 616 std::string typeName; 617 if (isPipe) 618 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 619 .getAsString(Policy); 620 else 621 typeName = ty.getUnqualifiedType().getAsString(Policy); 622 623 // Turn "unsigned type" to "utype" 624 std::string::size_type pos = typeName.find("unsigned"); 625 if (ty.isCanonical() && pos != std::string::npos) 626 typeName.erase(pos+1, 8); 627 628 std::string baseTypeName; 629 if (isPipe) 630 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 631 ->getElementType().getCanonicalType() 632 .getAsString(Policy); 633 else 634 baseTypeName = 635 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 636 637 // Remove access qualifiers on images 638 // (as they are inseparable from type in clang implementation, 639 // but OpenCL spec provides a special query to get access qualifier 640 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 641 if (ty->isImageType()) { 642 removeImageAccessQualifier(typeName); 643 removeImageAccessQualifier(baseTypeName); 644 } 645 646 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 647 648 // Turn "unsigned type" to "utype" 649 pos = baseTypeName.find("unsigned"); 650 if (pos != std::string::npos) 651 baseTypeName.erase(pos+1, 8); 652 653 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 654 655 if (isPipe) 656 typeQuals = "pipe"; 657 } 658 659 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 660 661 // Get image and pipe access qualifier: 662 if (ty->isImageType()|| ty->isPipeType()) { 663 const Decl *PDecl = parm; 664 if (auto *TD = dyn_cast<TypedefType>(ty)) 665 PDecl = TD->getDecl(); 666 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 667 if (A && A->isWriteOnly()) 668 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 669 else if (A && A->isReadWrite()) 670 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 671 else 672 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 673 } else 674 accessQuals.push_back(llvm::MDString::get(Context, "none")); 675 676 // Get argument name. 677 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 678 } 679 680 Fn->setMetadata("kernel_arg_addr_space", 681 llvm::MDNode::get(Context, addressQuals)); 682 Fn->setMetadata("kernel_arg_access_qual", 683 llvm::MDNode::get(Context, accessQuals)); 684 Fn->setMetadata("kernel_arg_type", 685 llvm::MDNode::get(Context, argTypeNames)); 686 Fn->setMetadata("kernel_arg_base_type", 687 llvm::MDNode::get(Context, argBaseTypeNames)); 688 Fn->setMetadata("kernel_arg_type_qual", 689 llvm::MDNode::get(Context, argTypeQuals)); 690 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 691 Fn->setMetadata("kernel_arg_name", 692 llvm::MDNode::get(Context, argNames)); 693 } 694 695 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 696 llvm::Function *Fn) 697 { 698 if (!FD->hasAttr<OpenCLKernelAttr>()) 699 return; 700 701 llvm::LLVMContext &Context = getLLVMContext(); 702 703 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 704 705 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 706 QualType HintQTy = A->getTypeHint(); 707 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 708 bool IsSignedInteger = 709 HintQTy->isSignedIntegerType() || 710 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 711 llvm::Metadata *AttrMDArgs[] = { 712 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 713 CGM.getTypes().ConvertType(A->getTypeHint()))), 714 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 715 llvm::IntegerType::get(Context, 32), 716 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 717 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 718 } 719 720 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 721 llvm::Metadata *AttrMDArgs[] = { 722 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 723 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 724 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 725 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 726 } 727 728 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 729 llvm::Metadata *AttrMDArgs[] = { 730 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 731 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 732 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 733 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 734 } 735 736 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 737 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 738 llvm::Metadata *AttrMDArgs[] = { 739 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 740 Fn->setMetadata("intel_reqd_sub_group_size", 741 llvm::MDNode::get(Context, AttrMDArgs)); 742 } 743 } 744 745 /// Determine whether the function F ends with a return stmt. 746 static bool endsWithReturn(const Decl* F) { 747 const Stmt *Body = nullptr; 748 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 749 Body = FD->getBody(); 750 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 751 Body = OMD->getBody(); 752 753 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 754 auto LastStmt = CS->body_rbegin(); 755 if (LastStmt != CS->body_rend()) 756 return isa<ReturnStmt>(*LastStmt); 757 } 758 return false; 759 } 760 761 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 762 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 763 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 764 } 765 766 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 767 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 768 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 769 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 770 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 771 return false; 772 773 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 774 return false; 775 776 if (MD->getNumParams() == 2) { 777 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 778 if (!PT || !PT->isVoidPointerType() || 779 !PT->getPointeeType().isConstQualified()) 780 return false; 781 } 782 783 return true; 784 } 785 786 /// Return the UBSan prologue signature for \p FD if one is available. 787 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 788 const FunctionDecl *FD) { 789 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 790 if (!MD->isStatic()) 791 return nullptr; 792 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 793 } 794 795 void CodeGenFunction::StartFunction(GlobalDecl GD, 796 QualType RetTy, 797 llvm::Function *Fn, 798 const CGFunctionInfo &FnInfo, 799 const FunctionArgList &Args, 800 SourceLocation Loc, 801 SourceLocation StartLoc) { 802 assert(!CurFn && 803 "Do not use a CodeGenFunction object for more than one function"); 804 805 const Decl *D = GD.getDecl(); 806 807 DidCallStackSave = false; 808 CurCodeDecl = D; 809 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 810 if (FD->usesSEHTry()) 811 CurSEHParent = FD; 812 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 813 FnRetTy = RetTy; 814 CurFn = Fn; 815 CurFnInfo = &FnInfo; 816 assert(CurFn->isDeclaration() && "Function already has body?"); 817 818 // If this function has been blacklisted for any of the enabled sanitizers, 819 // disable the sanitizer for the function. 820 do { 821 #define SANITIZER(NAME, ID) \ 822 if (SanOpts.empty()) \ 823 break; \ 824 if (SanOpts.has(SanitizerKind::ID)) \ 825 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 826 SanOpts.set(SanitizerKind::ID, false); 827 828 #include "clang/Basic/Sanitizers.def" 829 #undef SANITIZER 830 } while (0); 831 832 if (D) { 833 // Apply the no_sanitize* attributes to SanOpts. 834 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 835 SanOpts.Mask &= ~Attr->getMask(); 836 } 837 838 // Apply sanitizer attributes to the function. 839 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 840 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 841 if (SanOpts.has(SanitizerKind::Thread)) 842 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 843 if (SanOpts.has(SanitizerKind::Memory)) 844 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 845 if (SanOpts.has(SanitizerKind::SafeStack)) 846 Fn->addFnAttr(llvm::Attribute::SafeStack); 847 848 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 849 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 850 if (SanOpts.has(SanitizerKind::Thread)) { 851 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 852 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 853 if (OMD->getMethodFamily() == OMF_dealloc || 854 OMD->getMethodFamily() == OMF_initialize || 855 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 856 markAsIgnoreThreadCheckingAtRuntime(Fn); 857 } 858 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 859 IdentifierInfo *II = FD->getIdentifier(); 860 if (II && II->isStr("__destroy_helper_block_")) 861 markAsIgnoreThreadCheckingAtRuntime(Fn); 862 } 863 } 864 865 // Ignore unrelated casts in STL allocate() since the allocator must cast 866 // from void* to T* before object initialization completes. Don't match on the 867 // namespace because not all allocators are in std:: 868 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 869 if (matchesStlAllocatorFn(D, getContext())) 870 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 871 } 872 873 // Apply xray attributes to the function (as a string, for now) 874 if (D && ShouldXRayInstrumentFunction()) { 875 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 876 if (XRayAttr->alwaysXRayInstrument()) 877 Fn->addFnAttr("function-instrument", "xray-always"); 878 if (XRayAttr->neverXRayInstrument()) 879 Fn->addFnAttr("function-instrument", "xray-never"); 880 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 881 Fn->addFnAttr("xray-log-args", 882 llvm::utostr(LogArgs->getArgumentCount())); 883 } 884 } else { 885 if (!CGM.imbueXRayAttrs(Fn, Loc)) 886 Fn->addFnAttr( 887 "xray-instruction-threshold", 888 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 889 } 890 } 891 892 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 893 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 894 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 895 896 // Add no-jump-tables value. 897 Fn->addFnAttr("no-jump-tables", 898 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 899 900 // Add profile-sample-accurate value. 901 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 902 Fn->addFnAttr("profile-sample-accurate"); 903 904 if (getLangOpts().OpenCL) { 905 // Add metadata for a kernel function. 906 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 907 EmitOpenCLKernelMetadata(FD, Fn); 908 } 909 910 // If we are checking function types, emit a function type signature as 911 // prologue data. 912 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 913 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 914 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 915 llvm::Constant *FTRTTIConst = 916 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 917 llvm::Constant *FTRTTIConstEncoded = 918 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 919 llvm::Constant *PrologueStructElems[] = {PrologueSig, 920 FTRTTIConstEncoded}; 921 llvm::Constant *PrologueStructConst = 922 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 923 Fn->setPrologueData(PrologueStructConst); 924 } 925 } 926 } 927 928 // If we're checking nullability, we need to know whether we can check the 929 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 930 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 931 auto Nullability = FnRetTy->getNullability(getContext()); 932 if (Nullability && *Nullability == NullabilityKind::NonNull) { 933 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 934 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 935 RetValNullabilityPrecondition = 936 llvm::ConstantInt::getTrue(getLLVMContext()); 937 } 938 } 939 940 // If we're in C++ mode and the function name is "main", it is guaranteed 941 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 942 // used within a program"). 943 if (getLangOpts().CPlusPlus) 944 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 945 if (FD->isMain()) 946 Fn->addFnAttr(llvm::Attribute::NoRecurse); 947 948 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 949 950 // Create a marker to make it easy to insert allocas into the entryblock 951 // later. Don't create this with the builder, because we don't want it 952 // folded. 953 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 954 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 955 956 ReturnBlock = getJumpDestInCurrentScope("return"); 957 958 Builder.SetInsertPoint(EntryBB); 959 960 // If we're checking the return value, allocate space for a pointer to a 961 // precise source location of the checked return statement. 962 if (requiresReturnValueCheck()) { 963 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 964 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 965 } 966 967 // Emit subprogram debug descriptor. 968 if (CGDebugInfo *DI = getDebugInfo()) { 969 // Reconstruct the type from the argument list so that implicit parameters, 970 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 971 // convention. 972 CallingConv CC = CallingConv::CC_C; 973 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 974 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 975 CC = SrcFnTy->getCallConv(); 976 SmallVector<QualType, 16> ArgTypes; 977 for (const VarDecl *VD : Args) 978 ArgTypes.push_back(VD->getType()); 979 QualType FnType = getContext().getFunctionType( 980 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 981 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 982 } 983 984 if (ShouldInstrumentFunction()) { 985 Fn->addFnAttr(!CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining 986 ? "instrument-function-entry" 987 : "instrument-function-entry-inlined", 988 "__cyg_profile_func_enter"); 989 } 990 991 // Since emitting the mcount call here impacts optimizations such as function 992 // inlining, we just add an attribute to insert a mcount call in backend. 993 // The attribute "counting-function" is set to mcount function name which is 994 // architecture dependent. 995 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 996 if (CGM.getCodeGenOpts().CallFEntry) 997 Fn->addFnAttr("fentry-call", "true"); 998 else { 999 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1000 Fn->addFnAttr("instrument-function-entry-inlined", 1001 getTarget().getMCountName()); 1002 } 1003 } 1004 } 1005 1006 if (RetTy->isVoidType()) { 1007 // Void type; nothing to return. 1008 ReturnValue = Address::invalid(); 1009 1010 // Count the implicit return. 1011 if (!endsWithReturn(D)) 1012 ++NumReturnExprs; 1013 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1014 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1015 // Indirect aggregate return; emit returned value directly into sret slot. 1016 // This reduces code size, and affects correctness in C++. 1017 auto AI = CurFn->arg_begin(); 1018 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1019 ++AI; 1020 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1021 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1022 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1023 // Load the sret pointer from the argument struct and return into that. 1024 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1025 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1026 --EI; 1027 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1028 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1029 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1030 } else { 1031 ReturnValue = CreateIRTemp(RetTy, "retval"); 1032 1033 // Tell the epilog emitter to autorelease the result. We do this 1034 // now so that various specialized functions can suppress it 1035 // during their IR-generation. 1036 if (getLangOpts().ObjCAutoRefCount && 1037 !CurFnInfo->isReturnsRetained() && 1038 RetTy->isObjCRetainableType()) 1039 AutoreleaseResult = true; 1040 } 1041 1042 EmitStartEHSpec(CurCodeDecl); 1043 1044 PrologueCleanupDepth = EHStack.stable_begin(); 1045 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1046 1047 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1048 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1049 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1050 if (MD->getParent()->isLambda() && 1051 MD->getOverloadedOperator() == OO_Call) { 1052 // We're in a lambda; figure out the captures. 1053 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1054 LambdaThisCaptureField); 1055 if (LambdaThisCaptureField) { 1056 // If the lambda captures the object referred to by '*this' - either by 1057 // value or by reference, make sure CXXThisValue points to the correct 1058 // object. 1059 1060 // Get the lvalue for the field (which is a copy of the enclosing object 1061 // or contains the address of the enclosing object). 1062 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1063 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1064 // If the enclosing object was captured by value, just use its address. 1065 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1066 } else { 1067 // Load the lvalue pointed to by the field, since '*this' was captured 1068 // by reference. 1069 CXXThisValue = 1070 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1071 } 1072 } 1073 for (auto *FD : MD->getParent()->fields()) { 1074 if (FD->hasCapturedVLAType()) { 1075 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1076 SourceLocation()).getScalarVal(); 1077 auto VAT = FD->getCapturedVLAType(); 1078 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1079 } 1080 } 1081 } else { 1082 // Not in a lambda; just use 'this' from the method. 1083 // FIXME: Should we generate a new load for each use of 'this'? The 1084 // fast register allocator would be happier... 1085 CXXThisValue = CXXABIThisValue; 1086 } 1087 1088 // Check the 'this' pointer once per function, if it's available. 1089 if (CXXABIThisValue) { 1090 SanitizerSet SkippedChecks; 1091 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1092 QualType ThisTy = MD->getThisType(getContext()); 1093 1094 // If this is the call operator of a lambda with no capture-default, it 1095 // may have a static invoker function, which may call this operator with 1096 // a null 'this' pointer. 1097 if (isLambdaCallOperator(MD) && 1098 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1099 LCD_None) 1100 SkippedChecks.set(SanitizerKind::Null, true); 1101 1102 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1103 : TCK_MemberCall, 1104 Loc, CXXABIThisValue, ThisTy, 1105 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1106 SkippedChecks); 1107 } 1108 } 1109 1110 // If any of the arguments have a variably modified type, make sure to 1111 // emit the type size. 1112 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1113 i != e; ++i) { 1114 const VarDecl *VD = *i; 1115 1116 // Dig out the type as written from ParmVarDecls; it's unclear whether 1117 // the standard (C99 6.9.1p10) requires this, but we're following the 1118 // precedent set by gcc. 1119 QualType Ty; 1120 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1121 Ty = PVD->getOriginalType(); 1122 else 1123 Ty = VD->getType(); 1124 1125 if (Ty->isVariablyModifiedType()) 1126 EmitVariablyModifiedType(Ty); 1127 } 1128 // Emit a location at the end of the prologue. 1129 if (CGDebugInfo *DI = getDebugInfo()) 1130 DI->EmitLocation(Builder, StartLoc); 1131 } 1132 1133 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1134 const Stmt *Body) { 1135 incrementProfileCounter(Body); 1136 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1137 EmitCompoundStmtWithoutScope(*S); 1138 else 1139 EmitStmt(Body); 1140 } 1141 1142 /// When instrumenting to collect profile data, the counts for some blocks 1143 /// such as switch cases need to not include the fall-through counts, so 1144 /// emit a branch around the instrumentation code. When not instrumenting, 1145 /// this just calls EmitBlock(). 1146 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1147 const Stmt *S) { 1148 llvm::BasicBlock *SkipCountBB = nullptr; 1149 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1150 // When instrumenting for profiling, the fallthrough to certain 1151 // statements needs to skip over the instrumentation code so that we 1152 // get an accurate count. 1153 SkipCountBB = createBasicBlock("skipcount"); 1154 EmitBranch(SkipCountBB); 1155 } 1156 EmitBlock(BB); 1157 uint64_t CurrentCount = getCurrentProfileCount(); 1158 incrementProfileCounter(S); 1159 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1160 if (SkipCountBB) 1161 EmitBlock(SkipCountBB); 1162 } 1163 1164 /// Tries to mark the given function nounwind based on the 1165 /// non-existence of any throwing calls within it. We believe this is 1166 /// lightweight enough to do at -O0. 1167 static void TryMarkNoThrow(llvm::Function *F) { 1168 // LLVM treats 'nounwind' on a function as part of the type, so we 1169 // can't do this on functions that can be overwritten. 1170 if (F->isInterposable()) return; 1171 1172 for (llvm::BasicBlock &BB : *F) 1173 for (llvm::Instruction &I : BB) 1174 if (I.mayThrow()) 1175 return; 1176 1177 F->setDoesNotThrow(); 1178 } 1179 1180 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1181 FunctionArgList &Args) { 1182 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1183 QualType ResTy = FD->getReturnType(); 1184 1185 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1186 if (MD && MD->isInstance()) { 1187 if (CGM.getCXXABI().HasThisReturn(GD)) 1188 ResTy = MD->getThisType(getContext()); 1189 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1190 ResTy = CGM.getContext().VoidPtrTy; 1191 CGM.getCXXABI().buildThisParam(*this, Args); 1192 } 1193 1194 // The base version of an inheriting constructor whose constructed base is a 1195 // virtual base is not passed any arguments (because it doesn't actually call 1196 // the inherited constructor). 1197 bool PassedParams = true; 1198 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1199 if (auto Inherited = CD->getInheritedConstructor()) 1200 PassedParams = 1201 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1202 1203 if (PassedParams) { 1204 for (auto *Param : FD->parameters()) { 1205 Args.push_back(Param); 1206 if (!Param->hasAttr<PassObjectSizeAttr>()) 1207 continue; 1208 1209 auto *Implicit = ImplicitParamDecl::Create( 1210 getContext(), Param->getDeclContext(), Param->getLocation(), 1211 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1212 SizeArguments[Param] = Implicit; 1213 Args.push_back(Implicit); 1214 } 1215 } 1216 1217 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1218 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1219 1220 return ResTy; 1221 } 1222 1223 static bool 1224 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1225 const ASTContext &Context) { 1226 QualType T = FD->getReturnType(); 1227 // Avoid the optimization for functions that return a record type with a 1228 // trivial destructor or another trivially copyable type. 1229 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1230 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1231 return !ClassDecl->hasTrivialDestructor(); 1232 } 1233 return !T.isTriviallyCopyableType(Context); 1234 } 1235 1236 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1237 const CGFunctionInfo &FnInfo) { 1238 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1239 CurGD = GD; 1240 1241 FunctionArgList Args; 1242 QualType ResTy = BuildFunctionArgList(GD, Args); 1243 1244 // Check if we should generate debug info for this function. 1245 if (FD->hasAttr<NoDebugAttr>()) 1246 DebugInfo = nullptr; // disable debug info indefinitely for this function 1247 1248 // The function might not have a body if we're generating thunks for a 1249 // function declaration. 1250 SourceRange BodyRange; 1251 if (Stmt *Body = FD->getBody()) 1252 BodyRange = Body->getSourceRange(); 1253 else 1254 BodyRange = FD->getLocation(); 1255 CurEHLocation = BodyRange.getEnd(); 1256 1257 // Use the location of the start of the function to determine where 1258 // the function definition is located. By default use the location 1259 // of the declaration as the location for the subprogram. A function 1260 // may lack a declaration in the source code if it is created by code 1261 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1262 SourceLocation Loc = FD->getLocation(); 1263 1264 // If this is a function specialization then use the pattern body 1265 // as the location for the function. 1266 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1267 if (SpecDecl->hasBody(SpecDecl)) 1268 Loc = SpecDecl->getLocation(); 1269 1270 Stmt *Body = FD->getBody(); 1271 1272 // Initialize helper which will detect jumps which can cause invalid lifetime 1273 // markers. 1274 if (Body && ShouldEmitLifetimeMarkers) 1275 Bypasses.Init(Body); 1276 1277 // Emit the standard function prologue. 1278 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1279 1280 // Generate the body of the function. 1281 PGO.assignRegionCounters(GD, CurFn); 1282 if (isa<CXXDestructorDecl>(FD)) 1283 EmitDestructorBody(Args); 1284 else if (isa<CXXConstructorDecl>(FD)) 1285 EmitConstructorBody(Args); 1286 else if (getLangOpts().CUDA && 1287 !getLangOpts().CUDAIsDevice && 1288 FD->hasAttr<CUDAGlobalAttr>()) 1289 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1290 else if (isa<CXXMethodDecl>(FD) && 1291 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1292 // The lambda static invoker function is special, because it forwards or 1293 // clones the body of the function call operator (but is actually static). 1294 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1295 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1296 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1297 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1298 // Implicit copy-assignment gets the same special treatment as implicit 1299 // copy-constructors. 1300 emitImplicitAssignmentOperatorBody(Args); 1301 } else if (Body) { 1302 EmitFunctionBody(Args, Body); 1303 } else 1304 llvm_unreachable("no definition for emitted function"); 1305 1306 // C++11 [stmt.return]p2: 1307 // Flowing off the end of a function [...] results in undefined behavior in 1308 // a value-returning function. 1309 // C11 6.9.1p12: 1310 // If the '}' that terminates a function is reached, and the value of the 1311 // function call is used by the caller, the behavior is undefined. 1312 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1313 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1314 bool ShouldEmitUnreachable = 1315 CGM.getCodeGenOpts().StrictReturn || 1316 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1317 if (SanOpts.has(SanitizerKind::Return)) { 1318 SanitizerScope SanScope(this); 1319 llvm::Value *IsFalse = Builder.getFalse(); 1320 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1321 SanitizerHandler::MissingReturn, 1322 EmitCheckSourceLocation(FD->getLocation()), None); 1323 } else if (ShouldEmitUnreachable) { 1324 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1325 EmitTrapCall(llvm::Intrinsic::trap); 1326 } 1327 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1328 Builder.CreateUnreachable(); 1329 Builder.ClearInsertionPoint(); 1330 } 1331 } 1332 1333 // Emit the standard function epilogue. 1334 FinishFunction(BodyRange.getEnd()); 1335 1336 // If we haven't marked the function nothrow through other means, do 1337 // a quick pass now to see if we can. 1338 if (!CurFn->doesNotThrow()) 1339 TryMarkNoThrow(CurFn); 1340 } 1341 1342 /// ContainsLabel - Return true if the statement contains a label in it. If 1343 /// this statement is not executed normally, it not containing a label means 1344 /// that we can just remove the code. 1345 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1346 // Null statement, not a label! 1347 if (!S) return false; 1348 1349 // If this is a label, we have to emit the code, consider something like: 1350 // if (0) { ... foo: bar(); } goto foo; 1351 // 1352 // TODO: If anyone cared, we could track __label__'s, since we know that you 1353 // can't jump to one from outside their declared region. 1354 if (isa<LabelStmt>(S)) 1355 return true; 1356 1357 // If this is a case/default statement, and we haven't seen a switch, we have 1358 // to emit the code. 1359 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1360 return true; 1361 1362 // If this is a switch statement, we want to ignore cases below it. 1363 if (isa<SwitchStmt>(S)) 1364 IgnoreCaseStmts = true; 1365 1366 // Scan subexpressions for verboten labels. 1367 for (const Stmt *SubStmt : S->children()) 1368 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1369 return true; 1370 1371 return false; 1372 } 1373 1374 /// containsBreak - Return true if the statement contains a break out of it. 1375 /// If the statement (recursively) contains a switch or loop with a break 1376 /// inside of it, this is fine. 1377 bool CodeGenFunction::containsBreak(const Stmt *S) { 1378 // Null statement, not a label! 1379 if (!S) return false; 1380 1381 // If this is a switch or loop that defines its own break scope, then we can 1382 // include it and anything inside of it. 1383 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1384 isa<ForStmt>(S)) 1385 return false; 1386 1387 if (isa<BreakStmt>(S)) 1388 return true; 1389 1390 // Scan subexpressions for verboten breaks. 1391 for (const Stmt *SubStmt : S->children()) 1392 if (containsBreak(SubStmt)) 1393 return true; 1394 1395 return false; 1396 } 1397 1398 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1399 if (!S) return false; 1400 1401 // Some statement kinds add a scope and thus never add a decl to the current 1402 // scope. Note, this list is longer than the list of statements that might 1403 // have an unscoped decl nested within them, but this way is conservatively 1404 // correct even if more statement kinds are added. 1405 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1406 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1407 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1408 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1409 return false; 1410 1411 if (isa<DeclStmt>(S)) 1412 return true; 1413 1414 for (const Stmt *SubStmt : S->children()) 1415 if (mightAddDeclToScope(SubStmt)) 1416 return true; 1417 1418 return false; 1419 } 1420 1421 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1422 /// to a constant, or if it does but contains a label, return false. If it 1423 /// constant folds return true and set the boolean result in Result. 1424 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1425 bool &ResultBool, 1426 bool AllowLabels) { 1427 llvm::APSInt ResultInt; 1428 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1429 return false; 1430 1431 ResultBool = ResultInt.getBoolValue(); 1432 return true; 1433 } 1434 1435 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1436 /// to a constant, or if it does but contains a label, return false. If it 1437 /// constant folds return true and set the folded value. 1438 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1439 llvm::APSInt &ResultInt, 1440 bool AllowLabels) { 1441 // FIXME: Rename and handle conversion of other evaluatable things 1442 // to bool. 1443 llvm::APSInt Int; 1444 if (!Cond->EvaluateAsInt(Int, getContext())) 1445 return false; // Not foldable, not integer or not fully evaluatable. 1446 1447 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1448 return false; // Contains a label. 1449 1450 ResultInt = Int; 1451 return true; 1452 } 1453 1454 1455 1456 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1457 /// statement) to the specified blocks. Based on the condition, this might try 1458 /// to simplify the codegen of the conditional based on the branch. 1459 /// 1460 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1461 llvm::BasicBlock *TrueBlock, 1462 llvm::BasicBlock *FalseBlock, 1463 uint64_t TrueCount) { 1464 Cond = Cond->IgnoreParens(); 1465 1466 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1467 1468 // Handle X && Y in a condition. 1469 if (CondBOp->getOpcode() == BO_LAnd) { 1470 // If we have "1 && X", simplify the code. "0 && X" would have constant 1471 // folded if the case was simple enough. 1472 bool ConstantBool = false; 1473 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1474 ConstantBool) { 1475 // br(1 && X) -> br(X). 1476 incrementProfileCounter(CondBOp); 1477 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1478 TrueCount); 1479 } 1480 1481 // If we have "X && 1", simplify the code to use an uncond branch. 1482 // "X && 0" would have been constant folded to 0. 1483 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1484 ConstantBool) { 1485 // br(X && 1) -> br(X). 1486 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1487 TrueCount); 1488 } 1489 1490 // Emit the LHS as a conditional. If the LHS conditional is false, we 1491 // want to jump to the FalseBlock. 1492 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1493 // The counter tells us how often we evaluate RHS, and all of TrueCount 1494 // can be propagated to that branch. 1495 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1496 1497 ConditionalEvaluation eval(*this); 1498 { 1499 ApplyDebugLocation DL(*this, Cond); 1500 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1501 EmitBlock(LHSTrue); 1502 } 1503 1504 incrementProfileCounter(CondBOp); 1505 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1506 1507 // Any temporaries created here are conditional. 1508 eval.begin(*this); 1509 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1510 eval.end(*this); 1511 1512 return; 1513 } 1514 1515 if (CondBOp->getOpcode() == BO_LOr) { 1516 // If we have "0 || X", simplify the code. "1 || X" would have constant 1517 // folded if the case was simple enough. 1518 bool ConstantBool = false; 1519 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1520 !ConstantBool) { 1521 // br(0 || X) -> br(X). 1522 incrementProfileCounter(CondBOp); 1523 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1524 TrueCount); 1525 } 1526 1527 // If we have "X || 0", simplify the code to use an uncond branch. 1528 // "X || 1" would have been constant folded to 1. 1529 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1530 !ConstantBool) { 1531 // br(X || 0) -> br(X). 1532 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1533 TrueCount); 1534 } 1535 1536 // Emit the LHS as a conditional. If the LHS conditional is true, we 1537 // want to jump to the TrueBlock. 1538 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1539 // We have the count for entry to the RHS and for the whole expression 1540 // being true, so we can divy up True count between the short circuit and 1541 // the RHS. 1542 uint64_t LHSCount = 1543 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1544 uint64_t RHSCount = TrueCount - LHSCount; 1545 1546 ConditionalEvaluation eval(*this); 1547 { 1548 ApplyDebugLocation DL(*this, Cond); 1549 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1550 EmitBlock(LHSFalse); 1551 } 1552 1553 incrementProfileCounter(CondBOp); 1554 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1555 1556 // Any temporaries created here are conditional. 1557 eval.begin(*this); 1558 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1559 1560 eval.end(*this); 1561 1562 return; 1563 } 1564 } 1565 1566 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1567 // br(!x, t, f) -> br(x, f, t) 1568 if (CondUOp->getOpcode() == UO_LNot) { 1569 // Negate the count. 1570 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1571 // Negate the condition and swap the destination blocks. 1572 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1573 FalseCount); 1574 } 1575 } 1576 1577 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1578 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1579 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1580 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1581 1582 ConditionalEvaluation cond(*this); 1583 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1584 getProfileCount(CondOp)); 1585 1586 // When computing PGO branch weights, we only know the overall count for 1587 // the true block. This code is essentially doing tail duplication of the 1588 // naive code-gen, introducing new edges for which counts are not 1589 // available. Divide the counts proportionally between the LHS and RHS of 1590 // the conditional operator. 1591 uint64_t LHSScaledTrueCount = 0; 1592 if (TrueCount) { 1593 double LHSRatio = 1594 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1595 LHSScaledTrueCount = TrueCount * LHSRatio; 1596 } 1597 1598 cond.begin(*this); 1599 EmitBlock(LHSBlock); 1600 incrementProfileCounter(CondOp); 1601 { 1602 ApplyDebugLocation DL(*this, Cond); 1603 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1604 LHSScaledTrueCount); 1605 } 1606 cond.end(*this); 1607 1608 cond.begin(*this); 1609 EmitBlock(RHSBlock); 1610 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1611 TrueCount - LHSScaledTrueCount); 1612 cond.end(*this); 1613 1614 return; 1615 } 1616 1617 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1618 // Conditional operator handling can give us a throw expression as a 1619 // condition for a case like: 1620 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1621 // Fold this to: 1622 // br(c, throw x, br(y, t, f)) 1623 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1624 return; 1625 } 1626 1627 // If the branch has a condition wrapped by __builtin_unpredictable, 1628 // create metadata that specifies that the branch is unpredictable. 1629 // Don't bother if not optimizing because that metadata would not be used. 1630 llvm::MDNode *Unpredictable = nullptr; 1631 auto *Call = dyn_cast<CallExpr>(Cond); 1632 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1633 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1634 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1635 llvm::MDBuilder MDHelper(getLLVMContext()); 1636 Unpredictable = MDHelper.createUnpredictable(); 1637 } 1638 } 1639 1640 // Create branch weights based on the number of times we get here and the 1641 // number of times the condition should be true. 1642 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1643 llvm::MDNode *Weights = 1644 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1645 1646 // Emit the code with the fully general case. 1647 llvm::Value *CondV; 1648 { 1649 ApplyDebugLocation DL(*this, Cond); 1650 CondV = EvaluateExprAsBool(Cond); 1651 } 1652 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1653 } 1654 1655 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1656 /// specified stmt yet. 1657 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1658 CGM.ErrorUnsupported(S, Type); 1659 } 1660 1661 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1662 /// variable-length array whose elements have a non-zero bit-pattern. 1663 /// 1664 /// \param baseType the inner-most element type of the array 1665 /// \param src - a char* pointing to the bit-pattern for a single 1666 /// base element of the array 1667 /// \param sizeInChars - the total size of the VLA, in chars 1668 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1669 Address dest, Address src, 1670 llvm::Value *sizeInChars) { 1671 CGBuilderTy &Builder = CGF.Builder; 1672 1673 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1674 llvm::Value *baseSizeInChars 1675 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1676 1677 Address begin = 1678 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1679 llvm::Value *end = 1680 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1681 1682 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1683 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1684 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1685 1686 // Make a loop over the VLA. C99 guarantees that the VLA element 1687 // count must be nonzero. 1688 CGF.EmitBlock(loopBB); 1689 1690 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1691 cur->addIncoming(begin.getPointer(), originBB); 1692 1693 CharUnits curAlign = 1694 dest.getAlignment().alignmentOfArrayElement(baseSize); 1695 1696 // memcpy the individual element bit-pattern. 1697 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1698 /*volatile*/ false); 1699 1700 // Go to the next element. 1701 llvm::Value *next = 1702 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1703 1704 // Leave if that's the end of the VLA. 1705 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1706 Builder.CreateCondBr(done, contBB, loopBB); 1707 cur->addIncoming(next, loopBB); 1708 1709 CGF.EmitBlock(contBB); 1710 } 1711 1712 void 1713 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1714 // Ignore empty classes in C++. 1715 if (getLangOpts().CPlusPlus) { 1716 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1717 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1718 return; 1719 } 1720 } 1721 1722 // Cast the dest ptr to the appropriate i8 pointer type. 1723 if (DestPtr.getElementType() != Int8Ty) 1724 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1725 1726 // Get size and alignment info for this aggregate. 1727 CharUnits size = getContext().getTypeSizeInChars(Ty); 1728 1729 llvm::Value *SizeVal; 1730 const VariableArrayType *vla; 1731 1732 // Don't bother emitting a zero-byte memset. 1733 if (size.isZero()) { 1734 // But note that getTypeInfo returns 0 for a VLA. 1735 if (const VariableArrayType *vlaType = 1736 dyn_cast_or_null<VariableArrayType>( 1737 getContext().getAsArrayType(Ty))) { 1738 QualType eltType; 1739 llvm::Value *numElts; 1740 std::tie(numElts, eltType) = getVLASize(vlaType); 1741 1742 SizeVal = numElts; 1743 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1744 if (!eltSize.isOne()) 1745 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1746 vla = vlaType; 1747 } else { 1748 return; 1749 } 1750 } else { 1751 SizeVal = CGM.getSize(size); 1752 vla = nullptr; 1753 } 1754 1755 // If the type contains a pointer to data member we can't memset it to zero. 1756 // Instead, create a null constant and copy it to the destination. 1757 // TODO: there are other patterns besides zero that we can usefully memset, 1758 // like -1, which happens to be the pattern used by member-pointers. 1759 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1760 // For a VLA, emit a single element, then splat that over the VLA. 1761 if (vla) Ty = getContext().getBaseElementType(vla); 1762 1763 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1764 1765 llvm::GlobalVariable *NullVariable = 1766 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1767 /*isConstant=*/true, 1768 llvm::GlobalVariable::PrivateLinkage, 1769 NullConstant, Twine()); 1770 CharUnits NullAlign = DestPtr.getAlignment(); 1771 NullVariable->setAlignment(NullAlign.getQuantity()); 1772 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1773 NullAlign); 1774 1775 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1776 1777 // Get and call the appropriate llvm.memcpy overload. 1778 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1779 return; 1780 } 1781 1782 // Otherwise, just memset the whole thing to zero. This is legal 1783 // because in LLVM, all default initializers (other than the ones we just 1784 // handled above) are guaranteed to have a bit pattern of all zeros. 1785 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1786 } 1787 1788 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1789 // Make sure that there is a block for the indirect goto. 1790 if (!IndirectBranch) 1791 GetIndirectGotoBlock(); 1792 1793 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1794 1795 // Make sure the indirect branch includes all of the address-taken blocks. 1796 IndirectBranch->addDestination(BB); 1797 return llvm::BlockAddress::get(CurFn, BB); 1798 } 1799 1800 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1801 // If we already made the indirect branch for indirect goto, return its block. 1802 if (IndirectBranch) return IndirectBranch->getParent(); 1803 1804 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1805 1806 // Create the PHI node that indirect gotos will add entries to. 1807 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1808 "indirect.goto.dest"); 1809 1810 // Create the indirect branch instruction. 1811 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1812 return IndirectBranch->getParent(); 1813 } 1814 1815 /// Computes the length of an array in elements, as well as the base 1816 /// element type and a properly-typed first element pointer. 1817 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1818 QualType &baseType, 1819 Address &addr) { 1820 const ArrayType *arrayType = origArrayType; 1821 1822 // If it's a VLA, we have to load the stored size. Note that 1823 // this is the size of the VLA in bytes, not its size in elements. 1824 llvm::Value *numVLAElements = nullptr; 1825 if (isa<VariableArrayType>(arrayType)) { 1826 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1827 1828 // Walk into all VLAs. This doesn't require changes to addr, 1829 // which has type T* where T is the first non-VLA element type. 1830 do { 1831 QualType elementType = arrayType->getElementType(); 1832 arrayType = getContext().getAsArrayType(elementType); 1833 1834 // If we only have VLA components, 'addr' requires no adjustment. 1835 if (!arrayType) { 1836 baseType = elementType; 1837 return numVLAElements; 1838 } 1839 } while (isa<VariableArrayType>(arrayType)); 1840 1841 // We get out here only if we find a constant array type 1842 // inside the VLA. 1843 } 1844 1845 // We have some number of constant-length arrays, so addr should 1846 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1847 // down to the first element of addr. 1848 SmallVector<llvm::Value*, 8> gepIndices; 1849 1850 // GEP down to the array type. 1851 llvm::ConstantInt *zero = Builder.getInt32(0); 1852 gepIndices.push_back(zero); 1853 1854 uint64_t countFromCLAs = 1; 1855 QualType eltType; 1856 1857 llvm::ArrayType *llvmArrayType = 1858 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1859 while (llvmArrayType) { 1860 assert(isa<ConstantArrayType>(arrayType)); 1861 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1862 == llvmArrayType->getNumElements()); 1863 1864 gepIndices.push_back(zero); 1865 countFromCLAs *= llvmArrayType->getNumElements(); 1866 eltType = arrayType->getElementType(); 1867 1868 llvmArrayType = 1869 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1870 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1871 assert((!llvmArrayType || arrayType) && 1872 "LLVM and Clang types are out-of-synch"); 1873 } 1874 1875 if (arrayType) { 1876 // From this point onwards, the Clang array type has been emitted 1877 // as some other type (probably a packed struct). Compute the array 1878 // size, and just emit the 'begin' expression as a bitcast. 1879 while (arrayType) { 1880 countFromCLAs *= 1881 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1882 eltType = arrayType->getElementType(); 1883 arrayType = getContext().getAsArrayType(eltType); 1884 } 1885 1886 llvm::Type *baseType = ConvertType(eltType); 1887 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1888 } else { 1889 // Create the actual GEP. 1890 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1891 gepIndices, "array.begin"), 1892 addr.getAlignment()); 1893 } 1894 1895 baseType = eltType; 1896 1897 llvm::Value *numElements 1898 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1899 1900 // If we had any VLA dimensions, factor them in. 1901 if (numVLAElements) 1902 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1903 1904 return numElements; 1905 } 1906 1907 std::pair<llvm::Value*, QualType> 1908 CodeGenFunction::getVLASize(QualType type) { 1909 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1910 assert(vla && "type was not a variable array type!"); 1911 return getVLASize(vla); 1912 } 1913 1914 std::pair<llvm::Value*, QualType> 1915 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1916 // The number of elements so far; always size_t. 1917 llvm::Value *numElements = nullptr; 1918 1919 QualType elementType; 1920 do { 1921 elementType = type->getElementType(); 1922 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1923 assert(vlaSize && "no size for VLA!"); 1924 assert(vlaSize->getType() == SizeTy); 1925 1926 if (!numElements) { 1927 numElements = vlaSize; 1928 } else { 1929 // It's undefined behavior if this wraps around, so mark it that way. 1930 // FIXME: Teach -fsanitize=undefined to trap this. 1931 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1932 } 1933 } while ((type = getContext().getAsVariableArrayType(elementType))); 1934 1935 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1936 } 1937 1938 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1939 assert(type->isVariablyModifiedType() && 1940 "Must pass variably modified type to EmitVLASizes!"); 1941 1942 EnsureInsertPoint(); 1943 1944 // We're going to walk down into the type and look for VLA 1945 // expressions. 1946 do { 1947 assert(type->isVariablyModifiedType()); 1948 1949 const Type *ty = type.getTypePtr(); 1950 switch (ty->getTypeClass()) { 1951 1952 #define TYPE(Class, Base) 1953 #define ABSTRACT_TYPE(Class, Base) 1954 #define NON_CANONICAL_TYPE(Class, Base) 1955 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1956 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1957 #include "clang/AST/TypeNodes.def" 1958 llvm_unreachable("unexpected dependent type!"); 1959 1960 // These types are never variably-modified. 1961 case Type::Builtin: 1962 case Type::Complex: 1963 case Type::Vector: 1964 case Type::ExtVector: 1965 case Type::Record: 1966 case Type::Enum: 1967 case Type::Elaborated: 1968 case Type::TemplateSpecialization: 1969 case Type::ObjCTypeParam: 1970 case Type::ObjCObject: 1971 case Type::ObjCInterface: 1972 case Type::ObjCObjectPointer: 1973 llvm_unreachable("type class is never variably-modified!"); 1974 1975 case Type::Adjusted: 1976 type = cast<AdjustedType>(ty)->getAdjustedType(); 1977 break; 1978 1979 case Type::Decayed: 1980 type = cast<DecayedType>(ty)->getPointeeType(); 1981 break; 1982 1983 case Type::Pointer: 1984 type = cast<PointerType>(ty)->getPointeeType(); 1985 break; 1986 1987 case Type::BlockPointer: 1988 type = cast<BlockPointerType>(ty)->getPointeeType(); 1989 break; 1990 1991 case Type::LValueReference: 1992 case Type::RValueReference: 1993 type = cast<ReferenceType>(ty)->getPointeeType(); 1994 break; 1995 1996 case Type::MemberPointer: 1997 type = cast<MemberPointerType>(ty)->getPointeeType(); 1998 break; 1999 2000 case Type::ConstantArray: 2001 case Type::IncompleteArray: 2002 // Losing element qualification here is fine. 2003 type = cast<ArrayType>(ty)->getElementType(); 2004 break; 2005 2006 case Type::VariableArray: { 2007 // Losing element qualification here is fine. 2008 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2009 2010 // Unknown size indication requires no size computation. 2011 // Otherwise, evaluate and record it. 2012 if (const Expr *size = vat->getSizeExpr()) { 2013 // It's possible that we might have emitted this already, 2014 // e.g. with a typedef and a pointer to it. 2015 llvm::Value *&entry = VLASizeMap[size]; 2016 if (!entry) { 2017 llvm::Value *Size = EmitScalarExpr(size); 2018 2019 // C11 6.7.6.2p5: 2020 // If the size is an expression that is not an integer constant 2021 // expression [...] each time it is evaluated it shall have a value 2022 // greater than zero. 2023 if (SanOpts.has(SanitizerKind::VLABound) && 2024 size->getType()->isSignedIntegerType()) { 2025 SanitizerScope SanScope(this); 2026 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2027 llvm::Constant *StaticArgs[] = { 2028 EmitCheckSourceLocation(size->getLocStart()), 2029 EmitCheckTypeDescriptor(size->getType()) 2030 }; 2031 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2032 SanitizerKind::VLABound), 2033 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2034 } 2035 2036 // Always zexting here would be wrong if it weren't 2037 // undefined behavior to have a negative bound. 2038 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2039 } 2040 } 2041 type = vat->getElementType(); 2042 break; 2043 } 2044 2045 case Type::FunctionProto: 2046 case Type::FunctionNoProto: 2047 type = cast<FunctionType>(ty)->getReturnType(); 2048 break; 2049 2050 case Type::Paren: 2051 case Type::TypeOf: 2052 case Type::UnaryTransform: 2053 case Type::Attributed: 2054 case Type::SubstTemplateTypeParm: 2055 case Type::PackExpansion: 2056 // Keep walking after single level desugaring. 2057 type = type.getSingleStepDesugaredType(getContext()); 2058 break; 2059 2060 case Type::Typedef: 2061 case Type::Decltype: 2062 case Type::Auto: 2063 case Type::DeducedTemplateSpecialization: 2064 // Stop walking: nothing to do. 2065 return; 2066 2067 case Type::TypeOfExpr: 2068 // Stop walking: emit typeof expression. 2069 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2070 return; 2071 2072 case Type::Atomic: 2073 type = cast<AtomicType>(ty)->getValueType(); 2074 break; 2075 2076 case Type::Pipe: 2077 type = cast<PipeType>(ty)->getElementType(); 2078 break; 2079 } 2080 } while (type->isVariablyModifiedType()); 2081 } 2082 2083 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2084 if (getContext().getBuiltinVaListType()->isArrayType()) 2085 return EmitPointerWithAlignment(E); 2086 return EmitLValue(E).getAddress(); 2087 } 2088 2089 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2090 return EmitLValue(E).getAddress(); 2091 } 2092 2093 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2094 const APValue &Init) { 2095 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2096 if (CGDebugInfo *Dbg = getDebugInfo()) 2097 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2098 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2099 } 2100 2101 CodeGenFunction::PeepholeProtection 2102 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2103 // At the moment, the only aggressive peephole we do in IR gen 2104 // is trunc(zext) folding, but if we add more, we can easily 2105 // extend this protection. 2106 2107 if (!rvalue.isScalar()) return PeepholeProtection(); 2108 llvm::Value *value = rvalue.getScalarVal(); 2109 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2110 2111 // Just make an extra bitcast. 2112 assert(HaveInsertPoint()); 2113 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2114 Builder.GetInsertBlock()); 2115 2116 PeepholeProtection protection; 2117 protection.Inst = inst; 2118 return protection; 2119 } 2120 2121 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2122 if (!protection.Inst) return; 2123 2124 // In theory, we could try to duplicate the peepholes now, but whatever. 2125 protection.Inst->eraseFromParent(); 2126 } 2127 2128 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2129 llvm::Value *AnnotatedVal, 2130 StringRef AnnotationStr, 2131 SourceLocation Location) { 2132 llvm::Value *Args[4] = { 2133 AnnotatedVal, 2134 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2135 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2136 CGM.EmitAnnotationLineNo(Location) 2137 }; 2138 return Builder.CreateCall(AnnotationFn, Args); 2139 } 2140 2141 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2142 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2143 // FIXME We create a new bitcast for every annotation because that's what 2144 // llvm-gcc was doing. 2145 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2146 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2147 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2148 I->getAnnotation(), D->getLocation()); 2149 } 2150 2151 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2152 Address Addr) { 2153 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2154 llvm::Value *V = Addr.getPointer(); 2155 llvm::Type *VTy = V->getType(); 2156 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2157 CGM.Int8PtrTy); 2158 2159 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2160 // FIXME Always emit the cast inst so we can differentiate between 2161 // annotation on the first field of a struct and annotation on the struct 2162 // itself. 2163 if (VTy != CGM.Int8PtrTy) 2164 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2165 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2166 V = Builder.CreateBitCast(V, VTy); 2167 } 2168 2169 return Address(V, Addr.getAlignment()); 2170 } 2171 2172 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2173 2174 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2175 : CGF(CGF) { 2176 assert(!CGF->IsSanitizerScope); 2177 CGF->IsSanitizerScope = true; 2178 } 2179 2180 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2181 CGF->IsSanitizerScope = false; 2182 } 2183 2184 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2185 const llvm::Twine &Name, 2186 llvm::BasicBlock *BB, 2187 llvm::BasicBlock::iterator InsertPt) const { 2188 LoopStack.InsertHelper(I); 2189 if (IsSanitizerScope) 2190 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2191 } 2192 2193 void CGBuilderInserter::InsertHelper( 2194 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2195 llvm::BasicBlock::iterator InsertPt) const { 2196 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2197 if (CGF) 2198 CGF->InsertHelper(I, Name, BB, InsertPt); 2199 } 2200 2201 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2202 CodeGenModule &CGM, const FunctionDecl *FD, 2203 std::string &FirstMissing) { 2204 // If there aren't any required features listed then go ahead and return. 2205 if (ReqFeatures.empty()) 2206 return false; 2207 2208 // Now build up the set of caller features and verify that all the required 2209 // features are there. 2210 llvm::StringMap<bool> CallerFeatureMap; 2211 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2212 2213 // If we have at least one of the features in the feature list return 2214 // true, otherwise return false. 2215 return std::all_of( 2216 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2217 SmallVector<StringRef, 1> OrFeatures; 2218 Feature.split(OrFeatures, "|"); 2219 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2220 [&](StringRef Feature) { 2221 if (!CallerFeatureMap.lookup(Feature)) { 2222 FirstMissing = Feature.str(); 2223 return false; 2224 } 2225 return true; 2226 }); 2227 }); 2228 } 2229 2230 // Emits an error if we don't have a valid set of target features for the 2231 // called function. 2232 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2233 const FunctionDecl *TargetDecl) { 2234 // Early exit if this is an indirect call. 2235 if (!TargetDecl) 2236 return; 2237 2238 // Get the current enclosing function if it exists. If it doesn't 2239 // we can't check the target features anyhow. 2240 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2241 if (!FD) 2242 return; 2243 2244 // Grab the required features for the call. For a builtin this is listed in 2245 // the td file with the default cpu, for an always_inline function this is any 2246 // listed cpu and any listed features. 2247 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2248 std::string MissingFeature; 2249 if (BuiltinID) { 2250 SmallVector<StringRef, 1> ReqFeatures; 2251 const char *FeatureList = 2252 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2253 // Return if the builtin doesn't have any required features. 2254 if (!FeatureList || StringRef(FeatureList) == "") 2255 return; 2256 StringRef(FeatureList).split(ReqFeatures, ","); 2257 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2258 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2259 << TargetDecl->getDeclName() 2260 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2261 2262 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2263 // Get the required features for the callee. 2264 SmallVector<StringRef, 1> ReqFeatures; 2265 llvm::StringMap<bool> CalleeFeatureMap; 2266 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2267 for (const auto &F : CalleeFeatureMap) { 2268 // Only positive features are "required". 2269 if (F.getValue()) 2270 ReqFeatures.push_back(F.getKey()); 2271 } 2272 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2273 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2274 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2275 } 2276 } 2277 2278 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2279 if (!CGM.getCodeGenOpts().SanitizeStats) 2280 return; 2281 2282 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2283 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2284 CGM.getSanStats().create(IRB, SSK); 2285 } 2286 2287 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2288 if (CGDebugInfo *DI = getDebugInfo()) 2289 return DI->SourceLocToDebugLoc(Location); 2290 2291 return llvm::DebugLoc(); 2292 } 2293