1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : BlockFunction(cgm, *this, Builder), CGM(cgm),
33     Target(CGM.getContext().Target),
34     Builder(cgm.getModule().getContext()),
35     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
36     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
37     SwitchInsn(0), CaseRangeBlock(0),
38     DidCallStackSave(false), UnreachableBlock(0),
39     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
40     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
41     TrapBB(0) {
42 
43   // Get some frequently used types.
44   LLVMPointerWidth = Target.getPointerWidth(0);
45   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
46   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
47   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
48   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
49 
50   Exceptions = getContext().getLangOptions().Exceptions;
51   CatchUndefined = getContext().getLangOptions().CatchUndefined;
52   CGM.getCXXABI().getMangleContext().startNewFunction();
53 }
54 
55 ASTContext &CodeGenFunction::getContext() const {
56   return CGM.getContext();
57 }
58 
59 
60 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
61   return CGM.getTypes().ConvertTypeForMem(T);
62 }
63 
64 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
65   return CGM.getTypes().ConvertType(T);
66 }
67 
68 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
69   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
70     T->isObjCObjectType();
71 }
72 
73 void CodeGenFunction::EmitReturnBlock() {
74   // For cleanliness, we try to avoid emitting the return block for
75   // simple cases.
76   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
77 
78   if (CurBB) {
79     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
80 
81     // We have a valid insert point, reuse it if it is empty or there are no
82     // explicit jumps to the return block.
83     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
84       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
85       delete ReturnBlock.getBlock();
86     } else
87       EmitBlock(ReturnBlock.getBlock());
88     return;
89   }
90 
91   // Otherwise, if the return block is the target of a single direct
92   // branch then we can just put the code in that block instead. This
93   // cleans up functions which started with a unified return block.
94   if (ReturnBlock.getBlock()->hasOneUse()) {
95     llvm::BranchInst *BI =
96       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
97     if (BI && BI->isUnconditional() &&
98         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
99       // Reset insertion point and delete the branch.
100       Builder.SetInsertPoint(BI->getParent());
101       BI->eraseFromParent();
102       delete ReturnBlock.getBlock();
103       return;
104     }
105   }
106 
107   // FIXME: We are at an unreachable point, there is no reason to emit the block
108   // unless it has uses. However, we still need a place to put the debug
109   // region.end for now.
110 
111   EmitBlock(ReturnBlock.getBlock());
112 }
113 
114 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
115   if (!BB) return;
116   if (!BB->use_empty())
117     return CGF.CurFn->getBasicBlockList().push_back(BB);
118   delete BB;
119 }
120 
121 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
122   assert(BreakContinueStack.empty() &&
123          "mismatched push/pop in break/continue stack!");
124 
125   // Emit function epilog (to return).
126   EmitReturnBlock();
127 
128   EmitFunctionInstrumentation("__cyg_profile_func_exit");
129 
130   // Emit debug descriptor for function end.
131   if (CGDebugInfo *DI = getDebugInfo()) {
132     DI->setLocation(EndLoc);
133     DI->EmitFunctionEnd(Builder);
134   }
135 
136   EmitFunctionEpilog(*CurFnInfo);
137   EmitEndEHSpec(CurCodeDecl);
138 
139   assert(EHStack.empty() &&
140          "did not remove all scopes from cleanup stack!");
141 
142   // If someone did an indirect goto, emit the indirect goto block at the end of
143   // the function.
144   if (IndirectBranch) {
145     EmitBlock(IndirectBranch->getParent());
146     Builder.ClearInsertionPoint();
147   }
148 
149   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
150   llvm::Instruction *Ptr = AllocaInsertPt;
151   AllocaInsertPt = 0;
152   Ptr->eraseFromParent();
153 
154   // If someone took the address of a label but never did an indirect goto, we
155   // made a zero entry PHI node, which is illegal, zap it now.
156   if (IndirectBranch) {
157     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
158     if (PN->getNumIncomingValues() == 0) {
159       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
160       PN->eraseFromParent();
161     }
162   }
163 
164   EmitIfUsed(*this, RethrowBlock.getBlock());
165   EmitIfUsed(*this, TerminateLandingPad);
166   EmitIfUsed(*this, TerminateHandler);
167   EmitIfUsed(*this, UnreachableBlock);
168 
169   if (CGM.getCodeGenOpts().EmitDeclMetadata)
170     EmitDeclMetadata();
171 }
172 
173 /// ShouldInstrumentFunction - Return true if the current function should be
174 /// instrumented with __cyg_profile_func_* calls
175 bool CodeGenFunction::ShouldInstrumentFunction() {
176   if (!CGM.getCodeGenOpts().InstrumentFunctions)
177     return false;
178   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
179     return false;
180   return true;
181 }
182 
183 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
184 /// instrumentation function with the current function and the call site, if
185 /// function instrumentation is enabled.
186 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
187   if (!ShouldInstrumentFunction())
188     return;
189 
190   const llvm::PointerType *PointerTy;
191   const llvm::FunctionType *FunctionTy;
192   std::vector<const llvm::Type*> ProfileFuncArgs;
193 
194   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
195   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
196   ProfileFuncArgs.push_back(PointerTy);
197   ProfileFuncArgs.push_back(PointerTy);
198   FunctionTy = llvm::FunctionType::get(
199     llvm::Type::getVoidTy(VMContext),
200     ProfileFuncArgs, false);
201 
202   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
203   llvm::CallInst *CallSite = Builder.CreateCall(
204     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
205     llvm::ConstantInt::get(Int32Ty, 0),
206     "callsite");
207 
208   Builder.CreateCall2(F,
209                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
210                       CallSite);
211 }
212 
213 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
214                                     llvm::Function *Fn,
215                                     const FunctionArgList &Args,
216                                     SourceLocation StartLoc) {
217   const Decl *D = GD.getDecl();
218 
219   DidCallStackSave = false;
220   CurCodeDecl = CurFuncDecl = D;
221   FnRetTy = RetTy;
222   CurFn = Fn;
223   assert(CurFn->isDeclaration() && "Function already has body?");
224 
225   // Pass inline keyword to optimizer if it appears explicitly on any
226   // declaration.
227   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
228     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
229            RE = FD->redecls_end(); RI != RE; ++RI)
230       if (RI->isInlineSpecified()) {
231         Fn->addFnAttr(llvm::Attribute::InlineHint);
232         break;
233       }
234 
235   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
236 
237   // Create a marker to make it easy to insert allocas into the entryblock
238   // later.  Don't create this with the builder, because we don't want it
239   // folded.
240   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
241   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
242   if (Builder.isNamePreserving())
243     AllocaInsertPt->setName("allocapt");
244 
245   ReturnBlock = getJumpDestInCurrentScope("return");
246 
247   Builder.SetInsertPoint(EntryBB);
248 
249   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
250                                                  false, false, 0, 0,
251                                                  /*FIXME?*/
252                                                  FunctionType::ExtInfo());
253 
254   // Emit subprogram debug descriptor.
255   if (CGDebugInfo *DI = getDebugInfo()) {
256     DI->setLocation(StartLoc);
257     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
258   }
259 
260   EmitFunctionInstrumentation("__cyg_profile_func_enter");
261 
262   // FIXME: Leaked.
263   // CC info is ignored, hopefully?
264   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
265                                               FunctionType::ExtInfo());
266 
267   if (RetTy->isVoidType()) {
268     // Void type; nothing to return.
269     ReturnValue = 0;
270   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
271              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
272     // Indirect aggregate return; emit returned value directly into sret slot.
273     // This reduces code size, and affects correctness in C++.
274     ReturnValue = CurFn->arg_begin();
275   } else {
276     ReturnValue = CreateIRTemp(RetTy, "retval");
277   }
278 
279   EmitStartEHSpec(CurCodeDecl);
280   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
281 
282   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
283     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
284 
285   // If any of the arguments have a variably modified type, make sure to
286   // emit the type size.
287   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
288        i != e; ++i) {
289     QualType Ty = i->second;
290 
291     if (Ty->isVariablyModifiedType())
292       EmitVLASize(Ty);
293   }
294 }
295 
296 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
297   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
298   assert(FD->getBody());
299   EmitStmt(FD->getBody());
300 }
301 
302 /// Tries to mark the given function nounwind based on the
303 /// non-existence of any throwing calls within it.  We believe this is
304 /// lightweight enough to do at -O0.
305 static void TryMarkNoThrow(llvm::Function *F) {
306   // LLVM treats 'nounwind' on a function as part of the type, so we
307   // can't do this on functions that can be overwritten.
308   if (F->mayBeOverridden()) return;
309 
310   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
311     for (llvm::BasicBlock::iterator
312            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
313       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
314         if (!Call->doesNotThrow())
315           return;
316   F->setDoesNotThrow(true);
317 }
318 
319 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
320   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
321 
322   // Check if we should generate debug info for this function.
323   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
324     DebugInfo = CGM.getDebugInfo();
325 
326   FunctionArgList Args;
327   QualType ResTy = FD->getResultType();
328 
329   CurGD = GD;
330   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
331     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
332 
333   if (FD->getNumParams()) {
334     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
335     assert(FProto && "Function def must have prototype!");
336 
337     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
338       Args.push_back(std::make_pair(FD->getParamDecl(i),
339                                     FProto->getArgType(i)));
340   }
341 
342   SourceRange BodyRange;
343   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
344 
345   // Emit the standard function prologue.
346   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
347 
348   // Generate the body of the function.
349   if (isa<CXXDestructorDecl>(FD))
350     EmitDestructorBody(Args);
351   else if (isa<CXXConstructorDecl>(FD))
352     EmitConstructorBody(Args);
353   else
354     EmitFunctionBody(Args);
355 
356   // Emit the standard function epilogue.
357   FinishFunction(BodyRange.getEnd());
358 
359   // If we haven't marked the function nothrow through other means, do
360   // a quick pass now to see if we can.
361   if (!CurFn->doesNotThrow())
362     TryMarkNoThrow(CurFn);
363 }
364 
365 /// ContainsLabel - Return true if the statement contains a label in it.  If
366 /// this statement is not executed normally, it not containing a label means
367 /// that we can just remove the code.
368 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
369   // Null statement, not a label!
370   if (S == 0) return false;
371 
372   // If this is a label, we have to emit the code, consider something like:
373   // if (0) {  ...  foo:  bar(); }  goto foo;
374   if (isa<LabelStmt>(S))
375     return true;
376 
377   // If this is a case/default statement, and we haven't seen a switch, we have
378   // to emit the code.
379   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
380     return true;
381 
382   // If this is a switch statement, we want to ignore cases below it.
383   if (isa<SwitchStmt>(S))
384     IgnoreCaseStmts = true;
385 
386   // Scan subexpressions for verboten labels.
387   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
388        I != E; ++I)
389     if (ContainsLabel(*I, IgnoreCaseStmts))
390       return true;
391 
392   return false;
393 }
394 
395 
396 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
397 /// a constant, or if it does but contains a label, return 0.  If it constant
398 /// folds to 'true' and does not contain a label, return 1, if it constant folds
399 /// to 'false' and does not contain a label, return -1.
400 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
401   // FIXME: Rename and handle conversion of other evaluatable things
402   // to bool.
403   Expr::EvalResult Result;
404   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
405       Result.HasSideEffects)
406     return 0;  // Not foldable, not integer or not fully evaluatable.
407 
408   if (CodeGenFunction::ContainsLabel(Cond))
409     return 0;  // Contains a label.
410 
411   return Result.Val.getInt().getBoolValue() ? 1 : -1;
412 }
413 
414 
415 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
416 /// statement) to the specified blocks.  Based on the condition, this might try
417 /// to simplify the codegen of the conditional based on the branch.
418 ///
419 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
420                                            llvm::BasicBlock *TrueBlock,
421                                            llvm::BasicBlock *FalseBlock) {
422   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
423     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
424 
425   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
426     // Handle X && Y in a condition.
427     if (CondBOp->getOpcode() == BO_LAnd) {
428       // If we have "1 && X", simplify the code.  "0 && X" would have constant
429       // folded if the case was simple enough.
430       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
431         // br(1 && X) -> br(X).
432         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
433       }
434 
435       // If we have "X && 1", simplify the code to use an uncond branch.
436       // "X && 0" would have been constant folded to 0.
437       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
438         // br(X && 1) -> br(X).
439         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
440       }
441 
442       // Emit the LHS as a conditional.  If the LHS conditional is false, we
443       // want to jump to the FalseBlock.
444       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
445       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
446       EmitBlock(LHSTrue);
447 
448       // Any temporaries created here are conditional.
449       BeginConditionalBranch();
450       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
451       EndConditionalBranch();
452 
453       return;
454     } else if (CondBOp->getOpcode() == BO_LOr) {
455       // If we have "0 || X", simplify the code.  "1 || X" would have constant
456       // folded if the case was simple enough.
457       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
458         // br(0 || X) -> br(X).
459         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
460       }
461 
462       // If we have "X || 0", simplify the code to use an uncond branch.
463       // "X || 1" would have been constant folded to 1.
464       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
465         // br(X || 0) -> br(X).
466         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
467       }
468 
469       // Emit the LHS as a conditional.  If the LHS conditional is true, we
470       // want to jump to the TrueBlock.
471       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
472       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
473       EmitBlock(LHSFalse);
474 
475       // Any temporaries created here are conditional.
476       BeginConditionalBranch();
477       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
478       EndConditionalBranch();
479 
480       return;
481     }
482   }
483 
484   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
485     // br(!x, t, f) -> br(x, f, t)
486     if (CondUOp->getOpcode() == UO_LNot)
487       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
488   }
489 
490   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
491     // Handle ?: operator.
492 
493     // Just ignore GNU ?: extension.
494     if (CondOp->getLHS()) {
495       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
496       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
497       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
498       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
499       EmitBlock(LHSBlock);
500       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
501       EmitBlock(RHSBlock);
502       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
503       return;
504     }
505   }
506 
507   // Emit the code with the fully general case.
508   llvm::Value *CondV = EvaluateExprAsBool(Cond);
509   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
510 }
511 
512 /// ErrorUnsupported - Print out an error that codegen doesn't support the
513 /// specified stmt yet.
514 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
515                                        bool OmitOnError) {
516   CGM.ErrorUnsupported(S, Type, OmitOnError);
517 }
518 
519 void
520 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
521   // Ignore empty classes in C++.
522   if (getContext().getLangOptions().CPlusPlus) {
523     if (const RecordType *RT = Ty->getAs<RecordType>()) {
524       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
525         return;
526     }
527   }
528 
529   // Cast the dest ptr to the appropriate i8 pointer type.
530   unsigned DestAS =
531     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
532   const llvm::Type *BP =
533     llvm::Type::getInt8PtrTy(VMContext, DestAS);
534   if (DestPtr->getType() != BP)
535     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
536 
537   // Get size and alignment info for this aggregate.
538   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
539   uint64_t Size = TypeInfo.first;
540   unsigned Align = TypeInfo.second;
541 
542   // Don't bother emitting a zero-byte memset.
543   if (Size == 0)
544     return;
545 
546   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
547   llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
548 
549   // If the type contains a pointer to data member we can't memset it to zero.
550   // Instead, create a null constant and copy it to the destination.
551   if (!CGM.getTypes().isZeroInitializable(Ty)) {
552     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
553 
554     llvm::GlobalVariable *NullVariable =
555       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
556                                /*isConstant=*/true,
557                                llvm::GlobalVariable::PrivateLinkage,
558                                NullConstant, llvm::Twine());
559     llvm::Value *SrcPtr =
560       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
561 
562     // FIXME: variable-size types?
563 
564     // Get and call the appropriate llvm.memcpy overload.
565     llvm::Constant *Memcpy =
566       CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
567     Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
568                         /*volatile*/ Builder.getFalse());
569     return;
570   }
571 
572   // Otherwise, just memset the whole thing to zero.  This is legal
573   // because in LLVM, all default initializers (other than the ones we just
574   // handled above) are guaranteed to have a bit pattern of all zeros.
575 
576   // FIXME: Handle variable sized types.
577   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
578                       Builder.getInt8(0),
579                       SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
580 }
581 
582 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
583   // Make sure that there is a block for the indirect goto.
584   if (IndirectBranch == 0)
585     GetIndirectGotoBlock();
586 
587   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
588 
589   // Make sure the indirect branch includes all of the address-taken blocks.
590   IndirectBranch->addDestination(BB);
591   return llvm::BlockAddress::get(CurFn, BB);
592 }
593 
594 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
595   // If we already made the indirect branch for indirect goto, return its block.
596   if (IndirectBranch) return IndirectBranch->getParent();
597 
598   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
599 
600   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
601 
602   // Create the PHI node that indirect gotos will add entries to.
603   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
604 
605   // Create the indirect branch instruction.
606   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
607   return IndirectBranch->getParent();
608 }
609 
610 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
611   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
612 
613   assert(SizeEntry && "Did not emit size for type");
614   return SizeEntry;
615 }
616 
617 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
618   assert(Ty->isVariablyModifiedType() &&
619          "Must pass variably modified type to EmitVLASizes!");
620 
621   EnsureInsertPoint();
622 
623   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
624     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
625 
626     if (!SizeEntry) {
627       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
628 
629       // Get the element size;
630       QualType ElemTy = VAT->getElementType();
631       llvm::Value *ElemSize;
632       if (ElemTy->isVariableArrayType())
633         ElemSize = EmitVLASize(ElemTy);
634       else
635         ElemSize = llvm::ConstantInt::get(SizeTy,
636             getContext().getTypeSizeInChars(ElemTy).getQuantity());
637 
638       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
639       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
640 
641       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
642     }
643 
644     return SizeEntry;
645   }
646 
647   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
648     EmitVLASize(AT->getElementType());
649     return 0;
650   }
651 
652   const PointerType *PT = Ty->getAs<PointerType>();
653   assert(PT && "unknown VM type!");
654   EmitVLASize(PT->getPointeeType());
655   return 0;
656 }
657 
658 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
659   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
660     return EmitScalarExpr(E);
661   return EmitLValue(E).getAddress();
662 }
663 
664 /// Pops cleanup blocks until the given savepoint is reached.
665 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
666   assert(Old.isValid());
667 
668   while (EHStack.stable_begin() != Old) {
669     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
670 
671     // As long as Old strictly encloses the scope's enclosing normal
672     // cleanup, we're going to emit another normal cleanup which
673     // fallthrough can propagate through.
674     bool FallThroughIsBranchThrough =
675       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
676 
677     PopCleanupBlock(FallThroughIsBranchThrough);
678   }
679 }
680 
681 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
682                                            EHCleanupScope &Scope) {
683   assert(Scope.isNormalCleanup());
684   llvm::BasicBlock *Entry = Scope.getNormalBlock();
685   if (!Entry) {
686     Entry = CGF.createBasicBlock("cleanup");
687     Scope.setNormalBlock(Entry);
688   }
689   return Entry;
690 }
691 
692 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
693                                        EHCleanupScope &Scope) {
694   assert(Scope.isEHCleanup());
695   llvm::BasicBlock *Entry = Scope.getEHBlock();
696   if (!Entry) {
697     Entry = CGF.createBasicBlock("eh.cleanup");
698     Scope.setEHBlock(Entry);
699   }
700   return Entry;
701 }
702 
703 /// Transitions the terminator of the given exit-block of a cleanup to
704 /// be a cleanup switch.
705 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
706                                                    llvm::BasicBlock *Block) {
707   // If it's a branch, turn it into a switch whose default
708   // destination is its original target.
709   llvm::TerminatorInst *Term = Block->getTerminator();
710   assert(Term && "can't transition block without terminator");
711 
712   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
713     assert(Br->isUnconditional());
714     llvm::LoadInst *Load =
715       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
716     llvm::SwitchInst *Switch =
717       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
718     Br->eraseFromParent();
719     return Switch;
720   } else {
721     return cast<llvm::SwitchInst>(Term);
722   }
723 }
724 
725 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
726 /// is basically llvm::MergeBlockIntoPredecessor, except
727 /// simplified/optimized for the tighter constraints on cleanup blocks.
728 ///
729 /// Returns the new block, whatever it is.
730 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
731                                               llvm::BasicBlock *Entry) {
732   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
733   if (!Pred) return Entry;
734 
735   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
736   if (!Br || Br->isConditional()) return Entry;
737   assert(Br->getSuccessor(0) == Entry);
738 
739   // If we were previously inserting at the end of the cleanup entry
740   // block, we'll need to continue inserting at the end of the
741   // predecessor.
742   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
743   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
744 
745   // Kill the branch.
746   Br->eraseFromParent();
747 
748   // Merge the blocks.
749   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
750 
751   // Kill the entry block.
752   Entry->eraseFromParent();
753 
754   if (WasInsertBlock)
755     CGF.Builder.SetInsertPoint(Pred);
756 
757   return Pred;
758 }
759 
760 static void EmitCleanup(CodeGenFunction &CGF,
761                         EHScopeStack::Cleanup *Fn,
762                         bool ForEH,
763                         llvm::Value *ActiveFlag) {
764   // EH cleanups always occur within a terminate scope.
765   if (ForEH) CGF.EHStack.pushTerminate();
766 
767   // If there's an active flag, load it and skip the cleanup if it's
768   // false.
769   llvm::BasicBlock *ContBB = 0;
770   if (ActiveFlag) {
771     ContBB = CGF.createBasicBlock("cleanup.done");
772     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
773     llvm::Value *IsActive
774       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
775     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
776     CGF.EmitBlock(CleanupBB);
777   }
778 
779   // Ask the cleanup to emit itself.
780   Fn->Emit(CGF, ForEH);
781   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
782 
783   // Emit the continuation block if there was an active flag.
784   if (ActiveFlag)
785     CGF.EmitBlock(ContBB);
786 
787   // Leave the terminate scope.
788   if (ForEH) CGF.EHStack.popTerminate();
789 }
790 
791 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
792                                           llvm::BasicBlock *From,
793                                           llvm::BasicBlock *To) {
794   // Exit is the exit block of a cleanup, so it always terminates in
795   // an unconditional branch or a switch.
796   llvm::TerminatorInst *Term = Exit->getTerminator();
797 
798   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
799     assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
800     Br->setSuccessor(0, To);
801   } else {
802     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
803     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
804       if (Switch->getSuccessor(I) == From)
805         Switch->setSuccessor(I, To);
806   }
807 }
808 
809 /// Pops a cleanup block.  If the block includes a normal cleanup, the
810 /// current insertion point is threaded through the cleanup, as are
811 /// any branch fixups on the cleanup.
812 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
813   assert(!EHStack.empty() && "cleanup stack is empty!");
814   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
815   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
816   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
817 
818   // Remember activation information.
819   bool IsActive = Scope.isActive();
820   llvm::Value *NormalActiveFlag =
821     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
822   llvm::Value *EHActiveFlag =
823     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
824 
825   // Check whether we need an EH cleanup.  This is only true if we've
826   // generated a lazy EH cleanup block.
827   bool RequiresEHCleanup = Scope.hasEHBranches();
828 
829   // Check the three conditions which might require a normal cleanup:
830 
831   // - whether there are branch fix-ups through this cleanup
832   unsigned FixupDepth = Scope.getFixupDepth();
833   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
834 
835   // - whether there are branch-throughs or branch-afters
836   bool HasExistingBranches = Scope.hasBranches();
837 
838   // - whether there's a fallthrough
839   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
840   bool HasFallthrough = (FallthroughSource != 0 && IsActive);
841 
842   // As a kindof crazy internal case, branch-through fall-throughs
843   // leave the insertion point set to the end of the last cleanup.
844   bool HasPrebranchedFallthrough =
845     (FallthroughSource && FallthroughSource->getTerminator());
846 
847   bool RequiresNormalCleanup = false;
848   if (Scope.isNormalCleanup() &&
849       (HasFixups || HasExistingBranches || HasFallthrough)) {
850     RequiresNormalCleanup = true;
851   }
852 
853   assert(!HasPrebranchedFallthrough || RequiresNormalCleanup || !IsActive);
854   assert(!HasPrebranchedFallthrough ||
855          (Scope.isNormalCleanup() && Scope.getNormalBlock() &&
856           FallthroughSource->getTerminator()->getSuccessor(0)
857             == Scope.getNormalBlock()));
858 
859   // Even if we don't need the normal cleanup, we might still have
860   // prebranched fallthrough to worry about.
861   if (!RequiresNormalCleanup && HasPrebranchedFallthrough) {
862     assert(!IsActive);
863 
864     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
865 
866     // If we're branching through this cleanup, just forward the
867     // prebranched fallthrough to the next cleanup, leaving the insert
868     // point in the old block.
869     if (FallthroughIsBranchThrough) {
870       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
871       llvm::BasicBlock *EnclosingEntry =
872         CreateNormalEntry(*this, cast<EHCleanupScope>(S));
873 
874       ForwardPrebranchedFallthrough(FallthroughSource,
875                                     NormalEntry, EnclosingEntry);
876       assert(NormalEntry->use_empty() &&
877              "uses of entry remain after forwarding?");
878       delete NormalEntry;
879 
880     // Otherwise, we're branching out;  just emit the next block.
881     } else {
882       EmitBlock(NormalEntry);
883       SimplifyCleanupEntry(*this, NormalEntry);
884     }
885   }
886 
887   // If we don't need the cleanup at all, we're done.
888   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
889     EHStack.popCleanup(); // safe because there are no fixups
890     assert(EHStack.getNumBranchFixups() == 0 ||
891            EHStack.hasNormalCleanups());
892     return;
893   }
894 
895   // Copy the cleanup emission data out.  Note that SmallVector
896   // guarantees maximal alignment for its buffer regardless of its
897   // type parameter.
898   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
899   CleanupBuffer.reserve(Scope.getCleanupSize());
900   memcpy(CleanupBuffer.data(),
901          Scope.getCleanupBuffer(), Scope.getCleanupSize());
902   CleanupBuffer.set_size(Scope.getCleanupSize());
903   EHScopeStack::Cleanup *Fn =
904     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
905 
906   // We want to emit the EH cleanup after the normal cleanup, but go
907   // ahead and do the setup for the EH cleanup while the scope is still
908   // alive.
909   llvm::BasicBlock *EHEntry = 0;
910   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
911   if (RequiresEHCleanup) {
912     EHEntry = CreateEHEntry(*this, Scope);
913 
914     // Figure out the branch-through dest if necessary.
915     llvm::BasicBlock *EHBranchThroughDest = 0;
916     if (Scope.hasEHBranchThroughs()) {
917       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
918       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
919       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
920     }
921 
922     // If we have exactly one branch-after and no branch-throughs, we
923     // can dispatch it without a switch.
924     if (!Scope.hasEHBranchThroughs() &&
925         Scope.getNumEHBranchAfters() == 1) {
926       assert(!EHBranchThroughDest);
927 
928       // TODO: remove the spurious eh.cleanup.dest stores if this edge
929       // never went through any switches.
930       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
931       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
932 
933     // Otherwise, if we have any branch-afters, we need a switch.
934     } else if (Scope.getNumEHBranchAfters()) {
935       // The default of the switch belongs to the branch-throughs if
936       // they exist.
937       llvm::BasicBlock *Default =
938         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
939 
940       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
941 
942       llvm::LoadInst *Load =
943         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
944       llvm::SwitchInst *Switch =
945         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
946 
947       EHInstsToAppend.push_back(Load);
948       EHInstsToAppend.push_back(Switch);
949 
950       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
951         Switch->addCase(Scope.getEHBranchAfterIndex(I),
952                         Scope.getEHBranchAfterBlock(I));
953 
954     // Otherwise, we have only branch-throughs; jump to the next EH
955     // cleanup.
956     } else {
957       assert(EHBranchThroughDest);
958       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
959     }
960   }
961 
962   if (!RequiresNormalCleanup) {
963     EHStack.popCleanup();
964   } else {
965     // If we have a fallthrough and no other need for the cleanup,
966     // emit it directly.
967     if (HasFallthrough && !HasPrebranchedFallthrough &&
968         !HasFixups && !HasExistingBranches) {
969 
970       // Fixups can cause us to optimistically create a normal block,
971       // only to later have no real uses for it.  Just delete it in
972       // this case.
973       // TODO: we can potentially simplify all the uses after this.
974       if (Scope.getNormalBlock()) {
975         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
976         delete Scope.getNormalBlock();
977       }
978 
979       EHStack.popCleanup();
980 
981       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
982 
983     // Otherwise, the best approach is to thread everything through
984     // the cleanup block and then try to clean up after ourselves.
985     } else {
986       // Force the entry block to exist.
987       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
988 
989       // I.  Set up the fallthrough edge in.
990 
991       // If there's a fallthrough, we need to store the cleanup
992       // destination index.  For fall-throughs this is always zero.
993       if (HasFallthrough) {
994         if (!HasPrebranchedFallthrough)
995           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
996 
997       // Otherwise, clear the IP if we don't have fallthrough because
998       // the cleanup is inactive.  We don't need to save it because
999       // it's still just FallthroughSource.
1000       } else if (FallthroughSource) {
1001         assert(!IsActive && "source without fallthrough for active cleanup");
1002         Builder.ClearInsertionPoint();
1003       }
1004 
1005       // II.  Emit the entry block.  This implicitly branches to it if
1006       // we have fallthrough.  All the fixups and existing branches
1007       // should already be branched to it.
1008       EmitBlock(NormalEntry);
1009 
1010       // III.  Figure out where we're going and build the cleanup
1011       // epilogue.
1012 
1013       bool HasEnclosingCleanups =
1014         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1015 
1016       // Compute the branch-through dest if we need it:
1017       //   - if there are branch-throughs threaded through the scope
1018       //   - if fall-through is a branch-through
1019       //   - if there are fixups that will be optimistically forwarded
1020       //     to the enclosing cleanup
1021       llvm::BasicBlock *BranchThroughDest = 0;
1022       if (Scope.hasBranchThroughs() ||
1023           (FallthroughSource && FallthroughIsBranchThrough) ||
1024           (HasFixups && HasEnclosingCleanups)) {
1025         assert(HasEnclosingCleanups);
1026         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1027         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1028       }
1029 
1030       llvm::BasicBlock *FallthroughDest = 0;
1031       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1032 
1033       // If there's exactly one branch-after and no other threads,
1034       // we can route it without a switch.
1035       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1036           Scope.getNumBranchAfters() == 1) {
1037         assert(!BranchThroughDest || !IsActive);
1038 
1039         // TODO: clean up the possibly dead stores to the cleanup dest slot.
1040         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1041         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1042 
1043       // Build a switch-out if we need it:
1044       //   - if there are branch-afters threaded through the scope
1045       //   - if fall-through is a branch-after
1046       //   - if there are fixups that have nowhere left to go and
1047       //     so must be immediately resolved
1048       } else if (Scope.getNumBranchAfters() ||
1049                  (HasFallthrough && !FallthroughIsBranchThrough) ||
1050                  (HasFixups && !HasEnclosingCleanups)) {
1051 
1052         llvm::BasicBlock *Default =
1053           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1054 
1055         // TODO: base this on the number of branch-afters and fixups
1056         const unsigned SwitchCapacity = 10;
1057 
1058         llvm::LoadInst *Load =
1059           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1060         llvm::SwitchInst *Switch =
1061           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1062 
1063         InstsToAppend.push_back(Load);
1064         InstsToAppend.push_back(Switch);
1065 
1066         // Branch-after fallthrough.
1067         if (FallthroughSource && !FallthroughIsBranchThrough) {
1068           FallthroughDest = createBasicBlock("cleanup.cont");
1069           if (HasFallthrough)
1070             Switch->addCase(Builder.getInt32(0), FallthroughDest);
1071         }
1072 
1073         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1074           Switch->addCase(Scope.getBranchAfterIndex(I),
1075                           Scope.getBranchAfterBlock(I));
1076         }
1077 
1078         if (HasFixups && !HasEnclosingCleanups)
1079           ResolveAllBranchFixups(Switch);
1080       } else {
1081         // We should always have a branch-through destination in this case.
1082         assert(BranchThroughDest);
1083         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1084       }
1085 
1086       // IV.  Pop the cleanup and emit it.
1087       EHStack.popCleanup();
1088       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1089 
1090       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1091 
1092       // Append the prepared cleanup prologue from above.
1093       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1094       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1095         NormalExit->getInstList().push_back(InstsToAppend[I]);
1096 
1097       // Optimistically hope that any fixups will continue falling through.
1098       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1099            I < E; ++I) {
1100         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1101         if (!Fixup.Destination) continue;
1102         if (!Fixup.OptimisticBranchBlock) {
1103           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1104                               getNormalCleanupDestSlot(),
1105                               Fixup.InitialBranch);
1106           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1107         }
1108         Fixup.OptimisticBranchBlock = NormalExit;
1109       }
1110 
1111       // V.  Set up the fallthrough edge out.
1112 
1113       // Case 1: a fallthrough source exists but shouldn't branch to
1114       // the cleanup because the cleanup is inactive.
1115       if (!HasFallthrough && FallthroughSource) {
1116         assert(!IsActive);
1117 
1118         // If we have a prebranched fallthrough, that needs to be
1119         // forwarded to the right block.
1120         if (HasPrebranchedFallthrough) {
1121           llvm::BasicBlock *Next;
1122           if (FallthroughIsBranchThrough) {
1123             Next = BranchThroughDest;
1124             assert(!FallthroughDest);
1125           } else {
1126             Next = FallthroughDest;
1127           }
1128 
1129           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1130         }
1131         Builder.SetInsertPoint(FallthroughSource);
1132 
1133       // Case 2: a fallthrough source exists and should branch to the
1134       // cleanup, but we're not supposed to branch through to the next
1135       // cleanup.
1136       } else if (HasFallthrough && FallthroughDest) {
1137         assert(!FallthroughIsBranchThrough);
1138         EmitBlock(FallthroughDest);
1139 
1140       // Case 3: a fallthrough source exists and should branch to the
1141       // cleanup and then through to the next.
1142       } else if (HasFallthrough) {
1143         // Everything is already set up for this.
1144 
1145       // Case 4: no fallthrough source exists.
1146       } else {
1147         Builder.ClearInsertionPoint();
1148       }
1149 
1150       // VI.  Assorted cleaning.
1151 
1152       // Check whether we can merge NormalEntry into a single predecessor.
1153       // This might invalidate (non-IR) pointers to NormalEntry.
1154       llvm::BasicBlock *NewNormalEntry =
1155         SimplifyCleanupEntry(*this, NormalEntry);
1156 
1157       // If it did invalidate those pointers, and NormalEntry was the same
1158       // as NormalExit, go back and patch up the fixups.
1159       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1160         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1161                I < E; ++I)
1162           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1163     }
1164   }
1165 
1166   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1167 
1168   // Emit the EH cleanup if required.
1169   if (RequiresEHCleanup) {
1170     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1171 
1172     EmitBlock(EHEntry);
1173     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1174 
1175     // Append the prepared cleanup prologue from above.
1176     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1177     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1178       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1179 
1180     Builder.restoreIP(SavedIP);
1181 
1182     SimplifyCleanupEntry(*this, EHEntry);
1183   }
1184 }
1185 
1186 /// Terminate the current block by emitting a branch which might leave
1187 /// the current cleanup-protected scope.  The target scope may not yet
1188 /// be known, in which case this will require a fixup.
1189 ///
1190 /// As a side-effect, this method clears the insertion point.
1191 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1192   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1193          && "stale jump destination");
1194 
1195   if (!HaveInsertPoint())
1196     return;
1197 
1198   // Create the branch.
1199   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1200 
1201   // Calculate the innermost active normal cleanup.
1202   EHScopeStack::stable_iterator
1203     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1204 
1205   // If we're not in an active normal cleanup scope, or if the
1206   // destination scope is within the innermost active normal cleanup
1207   // scope, we don't need to worry about fixups.
1208   if (TopCleanup == EHStack.stable_end() ||
1209       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1210     Builder.ClearInsertionPoint();
1211     return;
1212   }
1213 
1214   // If we can't resolve the destination cleanup scope, just add this
1215   // to the current cleanup scope as a branch fixup.
1216   if (!Dest.getScopeDepth().isValid()) {
1217     BranchFixup &Fixup = EHStack.addBranchFixup();
1218     Fixup.Destination = Dest.getBlock();
1219     Fixup.DestinationIndex = Dest.getDestIndex();
1220     Fixup.InitialBranch = BI;
1221     Fixup.OptimisticBranchBlock = 0;
1222 
1223     Builder.ClearInsertionPoint();
1224     return;
1225   }
1226 
1227   // Otherwise, thread through all the normal cleanups in scope.
1228 
1229   // Store the index at the start.
1230   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1231   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1232 
1233   // Adjust BI to point to the first cleanup block.
1234   {
1235     EHCleanupScope &Scope =
1236       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1237     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1238   }
1239 
1240   // Add this destination to all the scopes involved.
1241   EHScopeStack::stable_iterator I = TopCleanup;
1242   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1243   if (E.strictlyEncloses(I)) {
1244     while (true) {
1245       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1246       assert(Scope.isNormalCleanup());
1247       I = Scope.getEnclosingNormalCleanup();
1248 
1249       // If this is the last cleanup we're propagating through, tell it
1250       // that there's a resolved jump moving through it.
1251       if (!E.strictlyEncloses(I)) {
1252         Scope.addBranchAfter(Index, Dest.getBlock());
1253         break;
1254       }
1255 
1256       // Otherwise, tell the scope that there's a jump propoagating
1257       // through it.  If this isn't new information, all the rest of
1258       // the work has been done before.
1259       if (!Scope.addBranchThrough(Dest.getBlock()))
1260         break;
1261     }
1262   }
1263 
1264   Builder.ClearInsertionPoint();
1265 }
1266 
1267 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1268   // We should never get invalid scope depths for an UnwindDest; that
1269   // implies that the destination wasn't set up correctly.
1270   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1271 
1272   if (!HaveInsertPoint())
1273     return;
1274 
1275   // Create the branch.
1276   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1277 
1278   // Calculate the innermost active cleanup.
1279   EHScopeStack::stable_iterator
1280     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1281 
1282   // If the destination is in the same EH cleanup scope as us, we
1283   // don't need to thread through anything.
1284   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1285     Builder.ClearInsertionPoint();
1286     return;
1287   }
1288   assert(InnermostCleanup != EHStack.stable_end());
1289 
1290   // Store the index at the start.
1291   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1292   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1293 
1294   // Adjust BI to point to the first cleanup block.
1295   {
1296     EHCleanupScope &Scope =
1297       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1298     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1299   }
1300 
1301   // Add this destination to all the scopes involved.
1302   for (EHScopeStack::stable_iterator
1303          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1304     assert(E.strictlyEncloses(I));
1305     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1306     assert(Scope.isEHCleanup());
1307     I = Scope.getEnclosingEHCleanup();
1308 
1309     // If this is the last cleanup we're propagating through, add this
1310     // as a branch-after.
1311     if (I == E) {
1312       Scope.addEHBranchAfter(Index, Dest.getBlock());
1313       break;
1314     }
1315 
1316     // Otherwise, add it as a branch-through.  If this isn't new
1317     // information, all the rest of the work has been done before.
1318     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1319       break;
1320   }
1321 
1322   Builder.ClearInsertionPoint();
1323 }
1324 
1325 /// All the branch fixups on the EH stack have propagated out past the
1326 /// outermost normal cleanup; resolve them all by adding cases to the
1327 /// given switch instruction.
1328 void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) {
1329   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1330 
1331   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1332     // Skip this fixup if its destination isn't set or if we've
1333     // already treated it.
1334     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1335     if (Fixup.Destination == 0) continue;
1336     if (!CasesAdded.insert(Fixup.Destination)) continue;
1337 
1338     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex),
1339                     Fixup.Destination);
1340   }
1341 
1342   EHStack.clearFixups();
1343 }
1344 
1345 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1346   assert(Block && "resolving a null target block");
1347   if (!EHStack.getNumBranchFixups()) return;
1348 
1349   assert(EHStack.hasNormalCleanups() &&
1350          "branch fixups exist with no normal cleanups on stack");
1351 
1352   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1353   bool ResolvedAny = false;
1354 
1355   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1356     // Skip this fixup if its destination doesn't match.
1357     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1358     if (Fixup.Destination != Block) continue;
1359 
1360     Fixup.Destination = 0;
1361     ResolvedAny = true;
1362 
1363     // If it doesn't have an optimistic branch block, LatestBranch is
1364     // already pointing to the right place.
1365     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1366     if (!BranchBB)
1367       continue;
1368 
1369     // Don't process the same optimistic branch block twice.
1370     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1371       continue;
1372 
1373     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1374 
1375     // Add a case to the switch.
1376     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1377   }
1378 
1379   if (ResolvedAny)
1380     EHStack.popNullFixups();
1381 }
1382 
1383 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1384                                   EHScopeStack::stable_iterator C) {
1385   // If we needed a normal block for any reason, that counts.
1386   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1387     return true;
1388 
1389   // Check whether any enclosed cleanups were needed.
1390   for (EHScopeStack::stable_iterator
1391          I = EHStack.getInnermostNormalCleanup();
1392          I != C; ) {
1393     assert(C.strictlyEncloses(I));
1394     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1395     if (S.getNormalBlock()) return true;
1396     I = S.getEnclosingNormalCleanup();
1397   }
1398 
1399   return false;
1400 }
1401 
1402 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1403                               EHScopeStack::stable_iterator C) {
1404   // If we needed an EH block for any reason, that counts.
1405   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1406     return true;
1407 
1408   // Check whether any enclosed cleanups were needed.
1409   for (EHScopeStack::stable_iterator
1410          I = EHStack.getInnermostEHCleanup(); I != C; ) {
1411     assert(C.strictlyEncloses(I));
1412     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1413     if (S.getEHBlock()) return true;
1414     I = S.getEnclosingEHCleanup();
1415   }
1416 
1417   return false;
1418 }
1419 
1420 enum ForActivation_t {
1421   ForActivation,
1422   ForDeactivation
1423 };
1424 
1425 /// The given cleanup block is changing activation state.  Configure a
1426 /// cleanup variable if necessary.
1427 ///
1428 /// It would be good if we had some way of determining if there were
1429 /// extra uses *after* the change-over point.
1430 static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1431                                         EHScopeStack::stable_iterator C,
1432                                         ForActivation_t Kind) {
1433   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1434   assert(!Scope.getActiveFlag() && "scope already has activation flag");
1435 
1436   bool NeedFlag = false;
1437 
1438   // Calculate whether the cleanup was used:
1439 
1440   //   - as a normal cleanup
1441   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1442     Scope.setTestFlagInNormalCleanup();
1443     NeedFlag = true;
1444   }
1445 
1446   //  - as an EH cleanup
1447   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1448     Scope.setTestFlagInEHCleanup();
1449     NeedFlag = true;
1450   }
1451 
1452   // If it hasn't yet been used as either, we're done.
1453   if (!NeedFlag) return;
1454 
1455   llvm::AllocaInst *Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty());
1456   Scope.setActiveFlag(Var);
1457 
1458   if (Kind == ForActivation) {
1459     CGF.InitTempAlloca(Var, CGF.Builder.getFalse());
1460     CGF.Builder.CreateStore(CGF.Builder.getTrue(), Var);
1461   } else {
1462     CGF.InitTempAlloca(Var, CGF.Builder.getTrue());
1463     CGF.Builder.CreateStore(CGF.Builder.getFalse(), Var);
1464   }
1465 }
1466 
1467 /// Activate a cleanup that was created in an inactivated state.
1468 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1469   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1470   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1471   assert(!Scope.isActive() && "double activation");
1472 
1473   SetupCleanupBlockActivation(*this, C, ForActivation);
1474 
1475   Scope.setActive(true);
1476 }
1477 
1478 /// Deactive a cleanup that was created in an active state.
1479 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1480   assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1481   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1482   assert(Scope.isActive() && "double activation");
1483 
1484   // If it's the top of the stack, just pop it.
1485   if (C == EHStack.stable_begin()) {
1486     // If it's a normal cleanup, we need to pretend that the
1487     // fallthrough is unreachable.
1488     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1489     PopCleanupBlock();
1490     Builder.restoreIP(SavedIP);
1491     return;
1492   }
1493 
1494   // Otherwise, follow the general case.
1495   SetupCleanupBlockActivation(*this, C, ForDeactivation);
1496 
1497   Scope.setActive(false);
1498 }
1499 
1500 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1501   if (!NormalCleanupDest)
1502     NormalCleanupDest =
1503       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1504   return NormalCleanupDest;
1505 }
1506 
1507 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1508   if (!EHCleanupDest)
1509     EHCleanupDest =
1510       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1511   return EHCleanupDest;
1512 }
1513 
1514 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1515                                               llvm::ConstantInt *Init) {
1516   assert (Init && "Invalid DeclRefExpr initializer!");
1517   if (CGDebugInfo *Dbg = getDebugInfo())
1518     Dbg->EmitGlobalVariable(E->getDecl(), Init, Builder);
1519 }
1520