1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Support/MDBuilder.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), 34 Builder(cgm.getModule().getContext()), 35 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 36 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 37 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 38 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 39 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 40 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 41 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 42 TerminateHandler(0), TrapBB(0) { 43 44 CatchUndefined = getContext().getLangOpts().CatchUndefined; 45 if (getContext().getLangOpts().FastMath) { 46 llvm::MDBuilder MDHelper(Builder.getContext()); 47 Builder.SetDefaultFPMathTag(MDHelper.createFastFPMath()); 48 } 49 CGM.getCXXABI().getMangleContext().startNewFunction(); 50 } 51 52 CodeGenFunction::~CodeGenFunction() { 53 // If there are any unclaimed block infos, go ahead and destroy them 54 // now. This can happen if IR-gen gets clever and skips evaluating 55 // something. 56 if (FirstBlockInfo) 57 destroyBlockInfos(FirstBlockInfo); 58 } 59 60 61 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 62 return CGM.getTypes().ConvertTypeForMem(T); 63 } 64 65 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 66 return CGM.getTypes().ConvertType(T); 67 } 68 69 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 70 switch (type.getCanonicalType()->getTypeClass()) { 71 #define TYPE(name, parent) 72 #define ABSTRACT_TYPE(name, parent) 73 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 74 #define DEPENDENT_TYPE(name, parent) case Type::name: 75 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 76 #include "clang/AST/TypeNodes.def" 77 llvm_unreachable("non-canonical or dependent type in IR-generation"); 78 79 case Type::Builtin: 80 case Type::Pointer: 81 case Type::BlockPointer: 82 case Type::LValueReference: 83 case Type::RValueReference: 84 case Type::MemberPointer: 85 case Type::Vector: 86 case Type::ExtVector: 87 case Type::FunctionProto: 88 case Type::FunctionNoProto: 89 case Type::Enum: 90 case Type::ObjCObjectPointer: 91 return false; 92 93 // Complexes, arrays, records, and Objective-C objects. 94 case Type::Complex: 95 case Type::ConstantArray: 96 case Type::IncompleteArray: 97 case Type::VariableArray: 98 case Type::Record: 99 case Type::ObjCObject: 100 case Type::ObjCInterface: 101 return true; 102 103 // In IRGen, atomic types are just the underlying type 104 case Type::Atomic: 105 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 106 } 107 llvm_unreachable("unknown type kind!"); 108 } 109 110 void CodeGenFunction::EmitReturnBlock() { 111 // For cleanliness, we try to avoid emitting the return block for 112 // simple cases. 113 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 114 115 if (CurBB) { 116 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 117 118 // We have a valid insert point, reuse it if it is empty or there are no 119 // explicit jumps to the return block. 120 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 121 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 122 delete ReturnBlock.getBlock(); 123 } else 124 EmitBlock(ReturnBlock.getBlock()); 125 return; 126 } 127 128 // Otherwise, if the return block is the target of a single direct 129 // branch then we can just put the code in that block instead. This 130 // cleans up functions which started with a unified return block. 131 if (ReturnBlock.getBlock()->hasOneUse()) { 132 llvm::BranchInst *BI = 133 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 134 if (BI && BI->isUnconditional() && 135 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 136 // Reset insertion point, including debug location, and delete the branch. 137 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 138 Builder.SetInsertPoint(BI->getParent()); 139 BI->eraseFromParent(); 140 delete ReturnBlock.getBlock(); 141 return; 142 } 143 } 144 145 // FIXME: We are at an unreachable point, there is no reason to emit the block 146 // unless it has uses. However, we still need a place to put the debug 147 // region.end for now. 148 149 EmitBlock(ReturnBlock.getBlock()); 150 } 151 152 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 153 if (!BB) return; 154 if (!BB->use_empty()) 155 return CGF.CurFn->getBasicBlockList().push_back(BB); 156 delete BB; 157 } 158 159 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 160 assert(BreakContinueStack.empty() && 161 "mismatched push/pop in break/continue stack!"); 162 163 // Pop any cleanups that might have been associated with the 164 // parameters. Do this in whatever block we're currently in; it's 165 // important to do this before we enter the return block or return 166 // edges will be *really* confused. 167 if (EHStack.stable_begin() != PrologueCleanupDepth) 168 PopCleanupBlocks(PrologueCleanupDepth); 169 170 // Emit function epilog (to return). 171 EmitReturnBlock(); 172 173 if (ShouldInstrumentFunction()) 174 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 175 176 // Emit debug descriptor for function end. 177 if (CGDebugInfo *DI = getDebugInfo()) { 178 DI->setLocation(EndLoc); 179 DI->EmitFunctionEnd(Builder); 180 } 181 182 EmitFunctionEpilog(*CurFnInfo); 183 EmitEndEHSpec(CurCodeDecl); 184 185 assert(EHStack.empty() && 186 "did not remove all scopes from cleanup stack!"); 187 188 // If someone did an indirect goto, emit the indirect goto block at the end of 189 // the function. 190 if (IndirectBranch) { 191 EmitBlock(IndirectBranch->getParent()); 192 Builder.ClearInsertionPoint(); 193 } 194 195 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 196 llvm::Instruction *Ptr = AllocaInsertPt; 197 AllocaInsertPt = 0; 198 Ptr->eraseFromParent(); 199 200 // If someone took the address of a label but never did an indirect goto, we 201 // made a zero entry PHI node, which is illegal, zap it now. 202 if (IndirectBranch) { 203 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 204 if (PN->getNumIncomingValues() == 0) { 205 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 206 PN->eraseFromParent(); 207 } 208 } 209 210 EmitIfUsed(*this, EHResumeBlock); 211 EmitIfUsed(*this, TerminateLandingPad); 212 EmitIfUsed(*this, TerminateHandler); 213 EmitIfUsed(*this, UnreachableBlock); 214 215 if (CGM.getCodeGenOpts().EmitDeclMetadata) 216 EmitDeclMetadata(); 217 } 218 219 /// ShouldInstrumentFunction - Return true if the current function should be 220 /// instrumented with __cyg_profile_func_* calls 221 bool CodeGenFunction::ShouldInstrumentFunction() { 222 if (!CGM.getCodeGenOpts().InstrumentFunctions) 223 return false; 224 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 225 return false; 226 return true; 227 } 228 229 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 230 /// instrumentation function with the current function and the call site, if 231 /// function instrumentation is enabled. 232 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 233 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 234 llvm::PointerType *PointerTy = Int8PtrTy; 235 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 236 llvm::FunctionType *FunctionTy = 237 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 238 239 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 240 llvm::CallInst *CallSite = Builder.CreateCall( 241 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 242 llvm::ConstantInt::get(Int32Ty, 0), 243 "callsite"); 244 245 Builder.CreateCall2(F, 246 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 247 CallSite); 248 } 249 250 void CodeGenFunction::EmitMCountInstrumentation() { 251 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 252 253 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 254 Target.getMCountName()); 255 Builder.CreateCall(MCountFn); 256 } 257 258 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 259 llvm::Function *Fn, 260 const CGFunctionInfo &FnInfo, 261 const FunctionArgList &Args, 262 SourceLocation StartLoc) { 263 const Decl *D = GD.getDecl(); 264 265 DidCallStackSave = false; 266 CurCodeDecl = CurFuncDecl = D; 267 FnRetTy = RetTy; 268 CurFn = Fn; 269 CurFnInfo = &FnInfo; 270 assert(CurFn->isDeclaration() && "Function already has body?"); 271 272 // Pass inline keyword to optimizer if it appears explicitly on any 273 // declaration. 274 if (!CGM.getCodeGenOpts().NoInline) 275 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 276 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 277 RE = FD->redecls_end(); RI != RE; ++RI) 278 if (RI->isInlineSpecified()) { 279 Fn->addFnAttr(llvm::Attribute::InlineHint); 280 break; 281 } 282 283 if (getContext().getLangOpts().OpenCL) { 284 // Add metadata for a kernel function. 285 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 286 if (FD->hasAttr<OpenCLKernelAttr>()) { 287 llvm::LLVMContext &Context = getLLVMContext(); 288 llvm::NamedMDNode *OpenCLMetadata = 289 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 290 291 llvm::Value *Op = Fn; 292 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 293 } 294 } 295 296 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 297 298 // Create a marker to make it easy to insert allocas into the entryblock 299 // later. Don't create this with the builder, because we don't want it 300 // folded. 301 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 302 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 303 if (Builder.isNamePreserving()) 304 AllocaInsertPt->setName("allocapt"); 305 306 ReturnBlock = getJumpDestInCurrentScope("return"); 307 308 Builder.SetInsertPoint(EntryBB); 309 310 // Emit subprogram debug descriptor. 311 if (CGDebugInfo *DI = getDebugInfo()) { 312 unsigned NumArgs = 0; 313 QualType *ArgsArray = new QualType[Args.size()]; 314 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 315 i != e; ++i) { 316 ArgsArray[NumArgs++] = (*i)->getType(); 317 } 318 319 QualType FnType = 320 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 321 FunctionProtoType::ExtProtoInfo()); 322 323 delete[] ArgsArray; 324 325 DI->setLocation(StartLoc); 326 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 327 } 328 329 if (ShouldInstrumentFunction()) 330 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 331 332 if (CGM.getCodeGenOpts().InstrumentForProfiling) 333 EmitMCountInstrumentation(); 334 335 if (RetTy->isVoidType()) { 336 // Void type; nothing to return. 337 ReturnValue = 0; 338 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 339 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 340 // Indirect aggregate return; emit returned value directly into sret slot. 341 // This reduces code size, and affects correctness in C++. 342 ReturnValue = CurFn->arg_begin(); 343 } else { 344 ReturnValue = CreateIRTemp(RetTy, "retval"); 345 346 // Tell the epilog emitter to autorelease the result. We do this 347 // now so that various specialized functions can suppress it 348 // during their IR-generation. 349 if (getLangOpts().ObjCAutoRefCount && 350 !CurFnInfo->isReturnsRetained() && 351 RetTy->isObjCRetainableType()) 352 AutoreleaseResult = true; 353 } 354 355 EmitStartEHSpec(CurCodeDecl); 356 357 PrologueCleanupDepth = EHStack.stable_begin(); 358 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 359 360 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 361 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 362 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 363 if (MD->getParent()->isLambda() && 364 MD->getOverloadedOperator() == OO_Call) { 365 // We're in a lambda; figure out the captures. 366 MD->getParent()->getCaptureFields(LambdaCaptureFields, 367 LambdaThisCaptureField); 368 if (LambdaThisCaptureField) { 369 // If this lambda captures this, load it. 370 QualType LambdaTagType = 371 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 372 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 373 LambdaTagType); 374 LValue ThisLValue = EmitLValueForField(LambdaLV, 375 LambdaThisCaptureField); 376 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 377 } 378 } else { 379 // Not in a lambda; just use 'this' from the method. 380 // FIXME: Should we generate a new load for each use of 'this'? The 381 // fast register allocator would be happier... 382 CXXThisValue = CXXABIThisValue; 383 } 384 } 385 386 // If any of the arguments have a variably modified type, make sure to 387 // emit the type size. 388 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 389 i != e; ++i) { 390 QualType Ty = (*i)->getType(); 391 392 if (Ty->isVariablyModifiedType()) 393 EmitVariablyModifiedType(Ty); 394 } 395 // Emit a location at the end of the prologue. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitLocation(Builder, StartLoc); 398 } 399 400 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 401 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 402 assert(FD->getBody()); 403 EmitStmt(FD->getBody()); 404 } 405 406 /// Tries to mark the given function nounwind based on the 407 /// non-existence of any throwing calls within it. We believe this is 408 /// lightweight enough to do at -O0. 409 static void TryMarkNoThrow(llvm::Function *F) { 410 // LLVM treats 'nounwind' on a function as part of the type, so we 411 // can't do this on functions that can be overwritten. 412 if (F->mayBeOverridden()) return; 413 414 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 415 for (llvm::BasicBlock::iterator 416 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 417 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 418 if (!Call->doesNotThrow()) 419 return; 420 } else if (isa<llvm::ResumeInst>(&*BI)) { 421 return; 422 } 423 F->setDoesNotThrow(true); 424 } 425 426 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 427 const CGFunctionInfo &FnInfo) { 428 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 429 430 // Check if we should generate debug info for this function. 431 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 432 DebugInfo = CGM.getModuleDebugInfo(); 433 434 FunctionArgList Args; 435 QualType ResTy = FD->getResultType(); 436 437 CurGD = GD; 438 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 439 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 440 441 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 442 Args.push_back(FD->getParamDecl(i)); 443 444 SourceRange BodyRange; 445 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 446 447 // Emit the standard function prologue. 448 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 449 450 // Generate the body of the function. 451 if (isa<CXXDestructorDecl>(FD)) 452 EmitDestructorBody(Args); 453 else if (isa<CXXConstructorDecl>(FD)) 454 EmitConstructorBody(Args); 455 else if (getContext().getLangOpts().CUDA && 456 !CGM.getCodeGenOpts().CUDAIsDevice && 457 FD->hasAttr<CUDAGlobalAttr>()) 458 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 459 else if (isa<CXXConversionDecl>(FD) && 460 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 461 // The lambda conversion to block pointer is special; the semantics can't be 462 // expressed in the AST, so IRGen needs to special-case it. 463 EmitLambdaToBlockPointerBody(Args); 464 } else if (isa<CXXMethodDecl>(FD) && 465 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 466 // The lambda "__invoke" function is special, because it forwards or 467 // clones the body of the function call operator (but is actually static). 468 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 469 } 470 else 471 EmitFunctionBody(Args); 472 473 // Emit the standard function epilogue. 474 FinishFunction(BodyRange.getEnd()); 475 476 // If we haven't marked the function nothrow through other means, do 477 // a quick pass now to see if we can. 478 if (!CurFn->doesNotThrow()) 479 TryMarkNoThrow(CurFn); 480 } 481 482 /// ContainsLabel - Return true if the statement contains a label in it. If 483 /// this statement is not executed normally, it not containing a label means 484 /// that we can just remove the code. 485 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 486 // Null statement, not a label! 487 if (S == 0) return false; 488 489 // If this is a label, we have to emit the code, consider something like: 490 // if (0) { ... foo: bar(); } goto foo; 491 // 492 // TODO: If anyone cared, we could track __label__'s, since we know that you 493 // can't jump to one from outside their declared region. 494 if (isa<LabelStmt>(S)) 495 return true; 496 497 // If this is a case/default statement, and we haven't seen a switch, we have 498 // to emit the code. 499 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 500 return true; 501 502 // If this is a switch statement, we want to ignore cases below it. 503 if (isa<SwitchStmt>(S)) 504 IgnoreCaseStmts = true; 505 506 // Scan subexpressions for verboten labels. 507 for (Stmt::const_child_range I = S->children(); I; ++I) 508 if (ContainsLabel(*I, IgnoreCaseStmts)) 509 return true; 510 511 return false; 512 } 513 514 /// containsBreak - Return true if the statement contains a break out of it. 515 /// If the statement (recursively) contains a switch or loop with a break 516 /// inside of it, this is fine. 517 bool CodeGenFunction::containsBreak(const Stmt *S) { 518 // Null statement, not a label! 519 if (S == 0) return false; 520 521 // If this is a switch or loop that defines its own break scope, then we can 522 // include it and anything inside of it. 523 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 524 isa<ForStmt>(S)) 525 return false; 526 527 if (isa<BreakStmt>(S)) 528 return true; 529 530 // Scan subexpressions for verboten breaks. 531 for (Stmt::const_child_range I = S->children(); I; ++I) 532 if (containsBreak(*I)) 533 return true; 534 535 return false; 536 } 537 538 539 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 540 /// to a constant, or if it does but contains a label, return false. If it 541 /// constant folds return true and set the boolean result in Result. 542 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 543 bool &ResultBool) { 544 llvm::APInt ResultInt; 545 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 546 return false; 547 548 ResultBool = ResultInt.getBoolValue(); 549 return true; 550 } 551 552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 553 /// to a constant, or if it does but contains a label, return false. If it 554 /// constant folds return true and set the folded value. 555 bool CodeGenFunction:: 556 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 557 // FIXME: Rename and handle conversion of other evaluatable things 558 // to bool. 559 llvm::APSInt Int; 560 if (!Cond->EvaluateAsInt(Int, getContext())) 561 return false; // Not foldable, not integer or not fully evaluatable. 562 563 if (CodeGenFunction::ContainsLabel(Cond)) 564 return false; // Contains a label. 565 566 ResultInt = Int; 567 return true; 568 } 569 570 571 572 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 573 /// statement) to the specified blocks. Based on the condition, this might try 574 /// to simplify the codegen of the conditional based on the branch. 575 /// 576 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 577 llvm::BasicBlock *TrueBlock, 578 llvm::BasicBlock *FalseBlock) { 579 Cond = Cond->IgnoreParens(); 580 581 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 582 // Handle X && Y in a condition. 583 if (CondBOp->getOpcode() == BO_LAnd) { 584 // If we have "1 && X", simplify the code. "0 && X" would have constant 585 // folded if the case was simple enough. 586 bool ConstantBool = false; 587 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 588 ConstantBool) { 589 // br(1 && X) -> br(X). 590 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 591 } 592 593 // If we have "X && 1", simplify the code to use an uncond branch. 594 // "X && 0" would have been constant folded to 0. 595 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 596 ConstantBool) { 597 // br(X && 1) -> br(X). 598 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 599 } 600 601 // Emit the LHS as a conditional. If the LHS conditional is false, we 602 // want to jump to the FalseBlock. 603 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 604 605 ConditionalEvaluation eval(*this); 606 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 607 EmitBlock(LHSTrue); 608 609 // Any temporaries created here are conditional. 610 eval.begin(*this); 611 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 612 eval.end(*this); 613 614 return; 615 } 616 617 if (CondBOp->getOpcode() == BO_LOr) { 618 // If we have "0 || X", simplify the code. "1 || X" would have constant 619 // folded if the case was simple enough. 620 bool ConstantBool = false; 621 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 622 !ConstantBool) { 623 // br(0 || X) -> br(X). 624 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 625 } 626 627 // If we have "X || 0", simplify the code to use an uncond branch. 628 // "X || 1" would have been constant folded to 1. 629 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 630 !ConstantBool) { 631 // br(X || 0) -> br(X). 632 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 633 } 634 635 // Emit the LHS as a conditional. If the LHS conditional is true, we 636 // want to jump to the TrueBlock. 637 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 638 639 ConditionalEvaluation eval(*this); 640 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 641 EmitBlock(LHSFalse); 642 643 // Any temporaries created here are conditional. 644 eval.begin(*this); 645 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 646 eval.end(*this); 647 648 return; 649 } 650 } 651 652 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 653 // br(!x, t, f) -> br(x, f, t) 654 if (CondUOp->getOpcode() == UO_LNot) 655 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 656 } 657 658 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 659 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 660 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 661 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 662 663 ConditionalEvaluation cond(*this); 664 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 665 666 cond.begin(*this); 667 EmitBlock(LHSBlock); 668 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 669 cond.end(*this); 670 671 cond.begin(*this); 672 EmitBlock(RHSBlock); 673 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 674 cond.end(*this); 675 676 return; 677 } 678 679 // Emit the code with the fully general case. 680 llvm::Value *CondV = EvaluateExprAsBool(Cond); 681 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 682 } 683 684 /// ErrorUnsupported - Print out an error that codegen doesn't support the 685 /// specified stmt yet. 686 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 687 bool OmitOnError) { 688 CGM.ErrorUnsupported(S, Type, OmitOnError); 689 } 690 691 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 692 /// variable-length array whose elements have a non-zero bit-pattern. 693 /// 694 /// \param src - a char* pointing to the bit-pattern for a single 695 /// base element of the array 696 /// \param sizeInChars - the total size of the VLA, in chars 697 /// \param align - the total alignment of the VLA 698 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 699 llvm::Value *dest, llvm::Value *src, 700 llvm::Value *sizeInChars) { 701 std::pair<CharUnits,CharUnits> baseSizeAndAlign 702 = CGF.getContext().getTypeInfoInChars(baseType); 703 704 CGBuilderTy &Builder = CGF.Builder; 705 706 llvm::Value *baseSizeInChars 707 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 708 709 llvm::Type *i8p = Builder.getInt8PtrTy(); 710 711 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 712 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 713 714 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 715 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 716 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 717 718 // Make a loop over the VLA. C99 guarantees that the VLA element 719 // count must be nonzero. 720 CGF.EmitBlock(loopBB); 721 722 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 723 cur->addIncoming(begin, originBB); 724 725 // memcpy the individual element bit-pattern. 726 Builder.CreateMemCpy(cur, src, baseSizeInChars, 727 baseSizeAndAlign.second.getQuantity(), 728 /*volatile*/ false); 729 730 // Go to the next element. 731 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 732 733 // Leave if that's the end of the VLA. 734 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 735 Builder.CreateCondBr(done, contBB, loopBB); 736 cur->addIncoming(next, loopBB); 737 738 CGF.EmitBlock(contBB); 739 } 740 741 void 742 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 743 // Ignore empty classes in C++. 744 if (getContext().getLangOpts().CPlusPlus) { 745 if (const RecordType *RT = Ty->getAs<RecordType>()) { 746 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 747 return; 748 } 749 } 750 751 // Cast the dest ptr to the appropriate i8 pointer type. 752 unsigned DestAS = 753 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 754 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 755 if (DestPtr->getType() != BP) 756 DestPtr = Builder.CreateBitCast(DestPtr, BP); 757 758 // Get size and alignment info for this aggregate. 759 std::pair<CharUnits, CharUnits> TypeInfo = 760 getContext().getTypeInfoInChars(Ty); 761 CharUnits Size = TypeInfo.first; 762 CharUnits Align = TypeInfo.second; 763 764 llvm::Value *SizeVal; 765 const VariableArrayType *vla; 766 767 // Don't bother emitting a zero-byte memset. 768 if (Size.isZero()) { 769 // But note that getTypeInfo returns 0 for a VLA. 770 if (const VariableArrayType *vlaType = 771 dyn_cast_or_null<VariableArrayType>( 772 getContext().getAsArrayType(Ty))) { 773 QualType eltType; 774 llvm::Value *numElts; 775 llvm::tie(numElts, eltType) = getVLASize(vlaType); 776 777 SizeVal = numElts; 778 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 779 if (!eltSize.isOne()) 780 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 781 vla = vlaType; 782 } else { 783 return; 784 } 785 } else { 786 SizeVal = CGM.getSize(Size); 787 vla = 0; 788 } 789 790 // If the type contains a pointer to data member we can't memset it to zero. 791 // Instead, create a null constant and copy it to the destination. 792 // TODO: there are other patterns besides zero that we can usefully memset, 793 // like -1, which happens to be the pattern used by member-pointers. 794 if (!CGM.getTypes().isZeroInitializable(Ty)) { 795 // For a VLA, emit a single element, then splat that over the VLA. 796 if (vla) Ty = getContext().getBaseElementType(vla); 797 798 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 799 800 llvm::GlobalVariable *NullVariable = 801 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 802 /*isConstant=*/true, 803 llvm::GlobalVariable::PrivateLinkage, 804 NullConstant, Twine()); 805 llvm::Value *SrcPtr = 806 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 807 808 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 809 810 // Get and call the appropriate llvm.memcpy overload. 811 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 812 return; 813 } 814 815 // Otherwise, just memset the whole thing to zero. This is legal 816 // because in LLVM, all default initializers (other than the ones we just 817 // handled above) are guaranteed to have a bit pattern of all zeros. 818 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 819 Align.getQuantity(), false); 820 } 821 822 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 823 // Make sure that there is a block for the indirect goto. 824 if (IndirectBranch == 0) 825 GetIndirectGotoBlock(); 826 827 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 828 829 // Make sure the indirect branch includes all of the address-taken blocks. 830 IndirectBranch->addDestination(BB); 831 return llvm::BlockAddress::get(CurFn, BB); 832 } 833 834 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 835 // If we already made the indirect branch for indirect goto, return its block. 836 if (IndirectBranch) return IndirectBranch->getParent(); 837 838 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 839 840 // Create the PHI node that indirect gotos will add entries to. 841 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 842 "indirect.goto.dest"); 843 844 // Create the indirect branch instruction. 845 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 846 return IndirectBranch->getParent(); 847 } 848 849 /// Computes the length of an array in elements, as well as the base 850 /// element type and a properly-typed first element pointer. 851 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 852 QualType &baseType, 853 llvm::Value *&addr) { 854 const ArrayType *arrayType = origArrayType; 855 856 // If it's a VLA, we have to load the stored size. Note that 857 // this is the size of the VLA in bytes, not its size in elements. 858 llvm::Value *numVLAElements = 0; 859 if (isa<VariableArrayType>(arrayType)) { 860 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 861 862 // Walk into all VLAs. This doesn't require changes to addr, 863 // which has type T* where T is the first non-VLA element type. 864 do { 865 QualType elementType = arrayType->getElementType(); 866 arrayType = getContext().getAsArrayType(elementType); 867 868 // If we only have VLA components, 'addr' requires no adjustment. 869 if (!arrayType) { 870 baseType = elementType; 871 return numVLAElements; 872 } 873 } while (isa<VariableArrayType>(arrayType)); 874 875 // We get out here only if we find a constant array type 876 // inside the VLA. 877 } 878 879 // We have some number of constant-length arrays, so addr should 880 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 881 // down to the first element of addr. 882 SmallVector<llvm::Value*, 8> gepIndices; 883 884 // GEP down to the array type. 885 llvm::ConstantInt *zero = Builder.getInt32(0); 886 gepIndices.push_back(zero); 887 888 // It's more efficient to calculate the count from the LLVM 889 // constant-length arrays than to re-evaluate the array bounds. 890 uint64_t countFromCLAs = 1; 891 892 llvm::ArrayType *llvmArrayType = 893 cast<llvm::ArrayType>( 894 cast<llvm::PointerType>(addr->getType())->getElementType()); 895 while (true) { 896 assert(isa<ConstantArrayType>(arrayType)); 897 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 898 == llvmArrayType->getNumElements()); 899 900 gepIndices.push_back(zero); 901 countFromCLAs *= llvmArrayType->getNumElements(); 902 903 llvmArrayType = 904 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 905 if (!llvmArrayType) break; 906 907 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 908 assert(arrayType && "LLVM and Clang types are out-of-synch"); 909 } 910 911 baseType = arrayType->getElementType(); 912 913 // Create the actual GEP. 914 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 915 916 llvm::Value *numElements 917 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 918 919 // If we had any VLA dimensions, factor them in. 920 if (numVLAElements) 921 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 922 923 return numElements; 924 } 925 926 std::pair<llvm::Value*, QualType> 927 CodeGenFunction::getVLASize(QualType type) { 928 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 929 assert(vla && "type was not a variable array type!"); 930 return getVLASize(vla); 931 } 932 933 std::pair<llvm::Value*, QualType> 934 CodeGenFunction::getVLASize(const VariableArrayType *type) { 935 // The number of elements so far; always size_t. 936 llvm::Value *numElements = 0; 937 938 QualType elementType; 939 do { 940 elementType = type->getElementType(); 941 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 942 assert(vlaSize && "no size for VLA!"); 943 assert(vlaSize->getType() == SizeTy); 944 945 if (!numElements) { 946 numElements = vlaSize; 947 } else { 948 // It's undefined behavior if this wraps around, so mark it that way. 949 numElements = Builder.CreateNUWMul(numElements, vlaSize); 950 } 951 } while ((type = getContext().getAsVariableArrayType(elementType))); 952 953 return std::pair<llvm::Value*,QualType>(numElements, elementType); 954 } 955 956 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 957 assert(type->isVariablyModifiedType() && 958 "Must pass variably modified type to EmitVLASizes!"); 959 960 EnsureInsertPoint(); 961 962 // We're going to walk down into the type and look for VLA 963 // expressions. 964 do { 965 assert(type->isVariablyModifiedType()); 966 967 const Type *ty = type.getTypePtr(); 968 switch (ty->getTypeClass()) { 969 970 #define TYPE(Class, Base) 971 #define ABSTRACT_TYPE(Class, Base) 972 #define NON_CANONICAL_TYPE(Class, Base) 973 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 974 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 975 #include "clang/AST/TypeNodes.def" 976 llvm_unreachable("unexpected dependent type!"); 977 978 // These types are never variably-modified. 979 case Type::Builtin: 980 case Type::Complex: 981 case Type::Vector: 982 case Type::ExtVector: 983 case Type::Record: 984 case Type::Enum: 985 case Type::Elaborated: 986 case Type::TemplateSpecialization: 987 case Type::ObjCObject: 988 case Type::ObjCInterface: 989 case Type::ObjCObjectPointer: 990 llvm_unreachable("type class is never variably-modified!"); 991 992 case Type::Pointer: 993 type = cast<PointerType>(ty)->getPointeeType(); 994 break; 995 996 case Type::BlockPointer: 997 type = cast<BlockPointerType>(ty)->getPointeeType(); 998 break; 999 1000 case Type::LValueReference: 1001 case Type::RValueReference: 1002 type = cast<ReferenceType>(ty)->getPointeeType(); 1003 break; 1004 1005 case Type::MemberPointer: 1006 type = cast<MemberPointerType>(ty)->getPointeeType(); 1007 break; 1008 1009 case Type::ConstantArray: 1010 case Type::IncompleteArray: 1011 // Losing element qualification here is fine. 1012 type = cast<ArrayType>(ty)->getElementType(); 1013 break; 1014 1015 case Type::VariableArray: { 1016 // Losing element qualification here is fine. 1017 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1018 1019 // Unknown size indication requires no size computation. 1020 // Otherwise, evaluate and record it. 1021 if (const Expr *size = vat->getSizeExpr()) { 1022 // It's possible that we might have emitted this already, 1023 // e.g. with a typedef and a pointer to it. 1024 llvm::Value *&entry = VLASizeMap[size]; 1025 if (!entry) { 1026 // Always zexting here would be wrong if it weren't 1027 // undefined behavior to have a negative bound. 1028 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 1029 /*signed*/ false); 1030 } 1031 } 1032 type = vat->getElementType(); 1033 break; 1034 } 1035 1036 case Type::FunctionProto: 1037 case Type::FunctionNoProto: 1038 type = cast<FunctionType>(ty)->getResultType(); 1039 break; 1040 1041 case Type::Paren: 1042 case Type::TypeOf: 1043 case Type::UnaryTransform: 1044 case Type::Attributed: 1045 case Type::SubstTemplateTypeParm: 1046 // Keep walking after single level desugaring. 1047 type = type.getSingleStepDesugaredType(getContext()); 1048 break; 1049 1050 case Type::Typedef: 1051 case Type::Decltype: 1052 case Type::Auto: 1053 // Stop walking: nothing to do. 1054 return; 1055 1056 case Type::TypeOfExpr: 1057 // Stop walking: emit typeof expression. 1058 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1059 return; 1060 1061 case Type::Atomic: 1062 type = cast<AtomicType>(ty)->getValueType(); 1063 break; 1064 } 1065 } while (type->isVariablyModifiedType()); 1066 } 1067 1068 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1069 if (getContext().getBuiltinVaListType()->isArrayType()) 1070 return EmitScalarExpr(E); 1071 return EmitLValue(E).getAddress(); 1072 } 1073 1074 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1075 llvm::Constant *Init) { 1076 assert (Init && "Invalid DeclRefExpr initializer!"); 1077 if (CGDebugInfo *Dbg = getDebugInfo()) 1078 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1079 } 1080 1081 CodeGenFunction::PeepholeProtection 1082 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1083 // At the moment, the only aggressive peephole we do in IR gen 1084 // is trunc(zext) folding, but if we add more, we can easily 1085 // extend this protection. 1086 1087 if (!rvalue.isScalar()) return PeepholeProtection(); 1088 llvm::Value *value = rvalue.getScalarVal(); 1089 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1090 1091 // Just make an extra bitcast. 1092 assert(HaveInsertPoint()); 1093 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1094 Builder.GetInsertBlock()); 1095 1096 PeepholeProtection protection; 1097 protection.Inst = inst; 1098 return protection; 1099 } 1100 1101 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1102 if (!protection.Inst) return; 1103 1104 // In theory, we could try to duplicate the peepholes now, but whatever. 1105 protection.Inst->eraseFromParent(); 1106 } 1107 1108 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1109 llvm::Value *AnnotatedVal, 1110 llvm::StringRef AnnotationStr, 1111 SourceLocation Location) { 1112 llvm::Value *Args[4] = { 1113 AnnotatedVal, 1114 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1115 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1116 CGM.EmitAnnotationLineNo(Location) 1117 }; 1118 return Builder.CreateCall(AnnotationFn, Args); 1119 } 1120 1121 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1122 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1123 // FIXME We create a new bitcast for every annotation because that's what 1124 // llvm-gcc was doing. 1125 for (specific_attr_iterator<AnnotateAttr> 1126 ai = D->specific_attr_begin<AnnotateAttr>(), 1127 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1128 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1129 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1130 (*ai)->getAnnotation(), D->getLocation()); 1131 } 1132 1133 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1134 llvm::Value *V) { 1135 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1136 llvm::Type *VTy = V->getType(); 1137 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1138 CGM.Int8PtrTy); 1139 1140 for (specific_attr_iterator<AnnotateAttr> 1141 ai = D->specific_attr_begin<AnnotateAttr>(), 1142 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1143 // FIXME Always emit the cast inst so we can differentiate between 1144 // annotation on the first field of a struct and annotation on the struct 1145 // itself. 1146 if (VTy != CGM.Int8PtrTy) 1147 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1148 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1149 V = Builder.CreateBitCast(V, VTy); 1150 } 1151 1152 return V; 1153 } 1154