1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Disable lifetime markers in msan builds. 51 // FIXME: Remove this when msan works with lifetime markers. 52 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 53 return false; 54 55 // Asan uses markers for use-after-scope checks. 56 if (CGOpts.SanitizeAddressUseAfterScope) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 } 94 95 CodeGenFunction::~CodeGenFunction() { 96 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 97 98 // If there are any unclaimed block infos, go ahead and destroy them 99 // now. This can happen if IR-gen gets clever and skips evaluating 100 // something. 101 if (FirstBlockInfo) 102 destroyBlockInfos(FirstBlockInfo); 103 104 if (getLangOpts().OpenMP && CurFn) 105 CGM.getOpenMPRuntime().functionFinished(*this); 106 } 107 108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 109 LValueBaseInfo *BaseInfo, 110 TBAAAccessInfo *TBAAInfo) { 111 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 112 /* forPointeeType= */ true); 113 } 114 115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 116 LValueBaseInfo *BaseInfo, 117 TBAAAccessInfo *TBAAInfo, 118 bool forPointeeType) { 119 if (TBAAInfo) 120 *TBAAInfo = CGM.getTBAAAccessInfo(T); 121 122 // Honor alignment typedef attributes even on incomplete types. 123 // We also honor them straight for C++ class types, even as pointees; 124 // there's an expressivity gap here. 125 if (auto TT = T->getAs<TypedefType>()) { 126 if (auto Align = TT->getDecl()->getMaxAlignment()) { 127 if (BaseInfo) 128 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 129 return getContext().toCharUnitsFromBits(Align); 130 } 131 } 132 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 135 136 CharUnits Alignment; 137 if (T->isIncompleteType()) { 138 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 139 } else { 140 // For C++ class pointees, we don't know whether we're pointing at a 141 // base or a complete object, so we generally need to use the 142 // non-virtual alignment. 143 const CXXRecordDecl *RD; 144 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 145 Alignment = CGM.getClassPointerAlignment(RD); 146 } else { 147 Alignment = getContext().getTypeAlignInChars(T); 148 if (T.getQualifiers().hasUnaligned()) 149 Alignment = CharUnits::One(); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 LValueBaseInfo BaseInfo; 165 TBAAAccessInfo TBAAInfo; 166 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 167 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 168 TBAAInfo); 169 } 170 171 /// Given a value of type T* that may not be to a complete object, 172 /// construct an l-value with the natural pointee alignment of T. 173 LValue 174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 175 LValueBaseInfo BaseInfo; 176 TBAAAccessInfo TBAAInfo; 177 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 178 /* forPointeeType= */ true); 179 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 180 } 181 182 183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 184 return CGM.getTypes().ConvertTypeForMem(T); 185 } 186 187 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 188 return CGM.getTypes().ConvertType(T); 189 } 190 191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 192 type = type.getCanonicalType(); 193 while (true) { 194 switch (type->getTypeClass()) { 195 #define TYPE(name, parent) 196 #define ABSTRACT_TYPE(name, parent) 197 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 198 #define DEPENDENT_TYPE(name, parent) case Type::name: 199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 200 #include "clang/AST/TypeNodes.def" 201 llvm_unreachable("non-canonical or dependent type in IR-generation"); 202 203 case Type::Auto: 204 case Type::DeducedTemplateSpecialization: 205 llvm_unreachable("undeduced type in IR-generation"); 206 207 // Various scalar types. 208 case Type::Builtin: 209 case Type::Pointer: 210 case Type::BlockPointer: 211 case Type::LValueReference: 212 case Type::RValueReference: 213 case Type::MemberPointer: 214 case Type::Vector: 215 case Type::ExtVector: 216 case Type::FunctionProto: 217 case Type::FunctionNoProto: 218 case Type::Enum: 219 case Type::ObjCObjectPointer: 220 case Type::Pipe: 221 return TEK_Scalar; 222 223 // Complexes. 224 case Type::Complex: 225 return TEK_Complex; 226 227 // Arrays, records, and Objective-C objects. 228 case Type::ConstantArray: 229 case Type::IncompleteArray: 230 case Type::VariableArray: 231 case Type::Record: 232 case Type::ObjCObject: 233 case Type::ObjCInterface: 234 return TEK_Aggregate; 235 236 // We operate on atomic values according to their underlying type. 237 case Type::Atomic: 238 type = cast<AtomicType>(type)->getValueType(); 239 continue; 240 } 241 llvm_unreachable("unknown type kind!"); 242 } 243 } 244 245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 246 // For cleanliness, we try to avoid emitting the return block for 247 // simple cases. 248 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 249 250 if (CurBB) { 251 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 252 253 // We have a valid insert point, reuse it if it is empty or there are no 254 // explicit jumps to the return block. 255 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 256 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 257 delete ReturnBlock.getBlock(); 258 ReturnBlock = JumpDest(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 ReturnBlock = JumpDest(); 279 return Loc; 280 } 281 } 282 283 // FIXME: We are at an unreachable point, there is no reason to emit the block 284 // unless it has uses. However, we still need a place to put the debug 285 // region.end for now. 286 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 292 if (!BB) return; 293 if (!BB->use_empty()) 294 return CGF.CurFn->getBasicBlockList().push_back(BB); 295 delete BB; 296 } 297 298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 299 assert(BreakContinueStack.empty() && 300 "mismatched push/pop in break/continue stack!"); 301 302 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 303 && NumSimpleReturnExprs == NumReturnExprs 304 && ReturnBlock.getBlock()->use_empty(); 305 // Usually the return expression is evaluated before the cleanup 306 // code. If the function contains only a simple return statement, 307 // such as a constant, the location before the cleanup code becomes 308 // the last useful breakpoint in the function, because the simple 309 // return expression will be evaluated after the cleanup code. To be 310 // safe, set the debug location for cleanup code to the location of 311 // the return statement. Otherwise the cleanup code should be at the 312 // end of the function's lexical scope. 313 // 314 // If there are multiple branches to the return block, the branch 315 // instructions will get the location of the return statements and 316 // all will be fine. 317 if (CGDebugInfo *DI = getDebugInfo()) { 318 if (OnlySimpleReturnStmts) 319 DI->EmitLocation(Builder, LastStopPoint); 320 else 321 DI->EmitLocation(Builder, EndLoc); 322 } 323 324 // Pop any cleanups that might have been associated with the 325 // parameters. Do this in whatever block we're currently in; it's 326 // important to do this before we enter the return block or return 327 // edges will be *really* confused. 328 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 329 bool HasOnlyLifetimeMarkers = 330 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 331 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 332 if (HasCleanups) { 333 // Make sure the line table doesn't jump back into the body for 334 // the ret after it's been at EndLoc. 335 if (CGDebugInfo *DI = getDebugInfo()) 336 if (OnlySimpleReturnStmts) 337 DI->EmitLocation(Builder, EndLoc); 338 339 PopCleanupBlocks(PrologueCleanupDepth); 340 } 341 342 // Emit function epilog (to return). 343 llvm::DebugLoc Loc = EmitReturnBlock(); 344 345 if (ShouldInstrumentFunction()) { 346 if (CGM.getCodeGenOpts().InstrumentFunctions) 347 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 348 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 349 CurFn->addFnAttr("instrument-function-exit-inlined", 350 "__cyg_profile_func_exit"); 351 } 352 353 // Emit debug descriptor for function end. 354 if (CGDebugInfo *DI = getDebugInfo()) 355 DI->EmitFunctionEnd(Builder, CurFn); 356 357 // Reset the debug location to that of the simple 'return' expression, if any 358 // rather than that of the end of the function's scope '}'. 359 ApplyDebugLocation AL(*this, Loc); 360 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 361 EmitEndEHSpec(CurCodeDecl); 362 363 assert(EHStack.empty() && 364 "did not remove all scopes from cleanup stack!"); 365 366 // If someone did an indirect goto, emit the indirect goto block at the end of 367 // the function. 368 if (IndirectBranch) { 369 EmitBlock(IndirectBranch->getParent()); 370 Builder.ClearInsertionPoint(); 371 } 372 373 // If some of our locals escaped, insert a call to llvm.localescape in the 374 // entry block. 375 if (!EscapedLocals.empty()) { 376 // Invert the map from local to index into a simple vector. There should be 377 // no holes. 378 SmallVector<llvm::Value *, 4> EscapeArgs; 379 EscapeArgs.resize(EscapedLocals.size()); 380 for (auto &Pair : EscapedLocals) 381 EscapeArgs[Pair.second] = Pair.first; 382 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 383 &CGM.getModule(), llvm::Intrinsic::localescape); 384 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 385 } 386 387 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 388 llvm::Instruction *Ptr = AllocaInsertPt; 389 AllocaInsertPt = nullptr; 390 Ptr->eraseFromParent(); 391 392 // If someone took the address of a label but never did an indirect goto, we 393 // made a zero entry PHI node, which is illegal, zap it now. 394 if (IndirectBranch) { 395 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 396 if (PN->getNumIncomingValues() == 0) { 397 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 398 PN->eraseFromParent(); 399 } 400 } 401 402 EmitIfUsed(*this, EHResumeBlock); 403 EmitIfUsed(*this, TerminateLandingPad); 404 EmitIfUsed(*this, TerminateHandler); 405 EmitIfUsed(*this, UnreachableBlock); 406 407 for (const auto &FuncletAndParent : TerminateFunclets) 408 EmitIfUsed(*this, FuncletAndParent.second); 409 410 if (CGM.getCodeGenOpts().EmitDeclMetadata) 411 EmitDeclMetadata(); 412 413 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 414 I = DeferredReplacements.begin(), 415 E = DeferredReplacements.end(); 416 I != E; ++I) { 417 I->first->replaceAllUsesWith(I->second); 418 I->first->eraseFromParent(); 419 } 420 421 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 422 // PHIs if the current function is a coroutine. We don't do it for all 423 // functions as it may result in slight increase in numbers of instructions 424 // if compiled with no optimizations. We do it for coroutine as the lifetime 425 // of CleanupDestSlot alloca make correct coroutine frame building very 426 // difficult. 427 if (NormalCleanupDest.isValid() && isCoroutine()) { 428 llvm::DominatorTree DT(*CurFn); 429 llvm::PromoteMemToReg( 430 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 431 NormalCleanupDest = Address::invalid(); 432 } 433 434 // Scan function arguments for vector width. 435 for (llvm::Argument &A : CurFn->args()) 436 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 437 LargestVectorWidth = std::max(LargestVectorWidth, 438 VT->getPrimitiveSizeInBits()); 439 440 // Update vector width based on return type. 441 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 442 LargestVectorWidth = std::max(LargestVectorWidth, 443 VT->getPrimitiveSizeInBits()); 444 445 // Add the required-vector-width attribute. This contains the max width from: 446 // 1. min-vector-width attribute used in the source program. 447 // 2. Any builtins used that have a vector width specified. 448 // 3. Values passed in and out of inline assembly. 449 // 4. Width of vector arguments and return types for this function. 450 // 5. Width of vector aguments and return types for functions called by this 451 // function. 452 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 453 454 // If we generated an unreachable return block, delete it now. 455 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 456 Builder.ClearInsertionPoint(); 457 ReturnBlock.getBlock()->eraseFromParent(); 458 } 459 if (ReturnValue.isValid()) { 460 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 461 if (RetAlloca && RetAlloca->use_empty()) { 462 RetAlloca->eraseFromParent(); 463 ReturnValue = Address::invalid(); 464 } 465 } 466 } 467 468 /// ShouldInstrumentFunction - Return true if the current function should be 469 /// instrumented with __cyg_profile_func_* calls 470 bool CodeGenFunction::ShouldInstrumentFunction() { 471 if (!CGM.getCodeGenOpts().InstrumentFunctions && 472 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 473 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 474 return false; 475 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 476 return false; 477 return true; 478 } 479 480 /// ShouldXRayInstrument - Return true if the current function should be 481 /// instrumented with XRay nop sleds. 482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 483 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 484 } 485 486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 489 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 490 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 491 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 492 XRayInstrKind::Custom); 493 } 494 495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 496 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 497 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 498 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 499 XRayInstrKind::Typed); 500 } 501 502 llvm::Constant * 503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 504 llvm::Constant *Addr) { 505 // Addresses stored in prologue data can't require run-time fixups and must 506 // be PC-relative. Run-time fixups are undesirable because they necessitate 507 // writable text segments, which are unsafe. And absolute addresses are 508 // undesirable because they break PIE mode. 509 510 // Add a layer of indirection through a private global. Taking its address 511 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 512 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 513 /*isConstant=*/true, 514 llvm::GlobalValue::PrivateLinkage, Addr); 515 516 // Create a PC-relative address. 517 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 518 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 519 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 520 return (IntPtrTy == Int32Ty) 521 ? PCRelAsInt 522 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 523 } 524 525 llvm::Value * 526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 527 llvm::Value *EncodedAddr) { 528 // Reconstruct the address of the global. 529 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 530 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 531 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 532 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 533 534 // Load the original pointer through the global. 535 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 536 "decoded_addr"); 537 } 538 539 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 540 llvm::Function *Fn) 541 { 542 if (!FD->hasAttr<OpenCLKernelAttr>()) 543 return; 544 545 llvm::LLVMContext &Context = getLLVMContext(); 546 547 CGM.GenOpenCLArgMetadata(Fn, FD, this); 548 549 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 550 QualType HintQTy = A->getTypeHint(); 551 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 552 bool IsSignedInteger = 553 HintQTy->isSignedIntegerType() || 554 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 555 llvm::Metadata *AttrMDArgs[] = { 556 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 557 CGM.getTypes().ConvertType(A->getTypeHint()))), 558 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 559 llvm::IntegerType::get(Context, 32), 560 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 561 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 562 } 563 564 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 565 llvm::Metadata *AttrMDArgs[] = { 566 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 567 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 568 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 569 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 570 } 571 572 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 573 llvm::Metadata *AttrMDArgs[] = { 574 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 575 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 576 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 577 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 578 } 579 580 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 581 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 582 llvm::Metadata *AttrMDArgs[] = { 583 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 584 Fn->setMetadata("intel_reqd_sub_group_size", 585 llvm::MDNode::get(Context, AttrMDArgs)); 586 } 587 } 588 589 /// Determine whether the function F ends with a return stmt. 590 static bool endsWithReturn(const Decl* F) { 591 const Stmt *Body = nullptr; 592 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 593 Body = FD->getBody(); 594 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 595 Body = OMD->getBody(); 596 597 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 598 auto LastStmt = CS->body_rbegin(); 599 if (LastStmt != CS->body_rend()) 600 return isa<ReturnStmt>(*LastStmt); 601 } 602 return false; 603 } 604 605 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 606 if (SanOpts.has(SanitizerKind::Thread)) { 607 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 608 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 609 } 610 } 611 612 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 613 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 614 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 615 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 616 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 617 return false; 618 619 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 620 return false; 621 622 if (MD->getNumParams() == 2) { 623 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 624 if (!PT || !PT->isVoidPointerType() || 625 !PT->getPointeeType().isConstQualified()) 626 return false; 627 } 628 629 return true; 630 } 631 632 /// Return the UBSan prologue signature for \p FD if one is available. 633 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 634 const FunctionDecl *FD) { 635 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 636 if (!MD->isStatic()) 637 return nullptr; 638 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 639 } 640 641 void CodeGenFunction::StartFunction(GlobalDecl GD, 642 QualType RetTy, 643 llvm::Function *Fn, 644 const CGFunctionInfo &FnInfo, 645 const FunctionArgList &Args, 646 SourceLocation Loc, 647 SourceLocation StartLoc) { 648 assert(!CurFn && 649 "Do not use a CodeGenFunction object for more than one function"); 650 651 const Decl *D = GD.getDecl(); 652 653 DidCallStackSave = false; 654 CurCodeDecl = D; 655 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 656 if (FD->usesSEHTry()) 657 CurSEHParent = FD; 658 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 659 FnRetTy = RetTy; 660 CurFn = Fn; 661 CurFnInfo = &FnInfo; 662 assert(CurFn->isDeclaration() && "Function already has body?"); 663 664 // If this function has been blacklisted for any of the enabled sanitizers, 665 // disable the sanitizer for the function. 666 do { 667 #define SANITIZER(NAME, ID) \ 668 if (SanOpts.empty()) \ 669 break; \ 670 if (SanOpts.has(SanitizerKind::ID)) \ 671 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 672 SanOpts.set(SanitizerKind::ID, false); 673 674 #include "clang/Basic/Sanitizers.def" 675 #undef SANITIZER 676 } while (0); 677 678 if (D) { 679 // Apply the no_sanitize* attributes to SanOpts. 680 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 681 SanitizerMask mask = Attr->getMask(); 682 SanOpts.Mask &= ~mask; 683 if (mask & SanitizerKind::Address) 684 SanOpts.set(SanitizerKind::KernelAddress, false); 685 if (mask & SanitizerKind::KernelAddress) 686 SanOpts.set(SanitizerKind::Address, false); 687 if (mask & SanitizerKind::HWAddress) 688 SanOpts.set(SanitizerKind::KernelHWAddress, false); 689 if (mask & SanitizerKind::KernelHWAddress) 690 SanOpts.set(SanitizerKind::HWAddress, false); 691 } 692 } 693 694 // Apply sanitizer attributes to the function. 695 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 696 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 697 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 698 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 699 if (SanOpts.has(SanitizerKind::Thread)) 700 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 701 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 702 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 703 if (SanOpts.has(SanitizerKind::SafeStack)) 704 Fn->addFnAttr(llvm::Attribute::SafeStack); 705 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 706 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 707 708 // Apply fuzzing attribute to the function. 709 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 710 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 711 712 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 713 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 714 if (SanOpts.has(SanitizerKind::Thread)) { 715 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 716 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 717 if (OMD->getMethodFamily() == OMF_dealloc || 718 OMD->getMethodFamily() == OMF_initialize || 719 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 720 markAsIgnoreThreadCheckingAtRuntime(Fn); 721 } 722 } 723 } 724 725 // Ignore unrelated casts in STL allocate() since the allocator must cast 726 // from void* to T* before object initialization completes. Don't match on the 727 // namespace because not all allocators are in std:: 728 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 729 if (matchesStlAllocatorFn(D, getContext())) 730 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 731 } 732 733 // Apply xray attributes to the function (as a string, for now) 734 if (D) { 735 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 736 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 737 XRayInstrKind::Function)) { 738 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 739 Fn->addFnAttr("function-instrument", "xray-always"); 740 if (XRayAttr->neverXRayInstrument()) 741 Fn->addFnAttr("function-instrument", "xray-never"); 742 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 743 if (ShouldXRayInstrumentFunction()) 744 Fn->addFnAttr("xray-log-args", 745 llvm::utostr(LogArgs->getArgumentCount())); 746 } 747 } else { 748 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 749 Fn->addFnAttr( 750 "xray-instruction-threshold", 751 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 752 } 753 } 754 755 // Add no-jump-tables value. 756 Fn->addFnAttr("no-jump-tables", 757 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 758 759 // Add profile-sample-accurate value. 760 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 761 Fn->addFnAttr("profile-sample-accurate"); 762 763 if (getLangOpts().OpenCL) { 764 // Add metadata for a kernel function. 765 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 766 EmitOpenCLKernelMetadata(FD, Fn); 767 } 768 769 // If we are checking function types, emit a function type signature as 770 // prologue data. 771 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 772 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 773 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 774 // Remove any (C++17) exception specifications, to allow calling e.g. a 775 // noexcept function through a non-noexcept pointer. 776 auto ProtoTy = 777 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 778 EST_None); 779 llvm::Constant *FTRTTIConst = 780 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 781 llvm::Constant *FTRTTIConstEncoded = 782 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 783 llvm::Constant *PrologueStructElems[] = {PrologueSig, 784 FTRTTIConstEncoded}; 785 llvm::Constant *PrologueStructConst = 786 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 787 Fn->setPrologueData(PrologueStructConst); 788 } 789 } 790 } 791 792 // If we're checking nullability, we need to know whether we can check the 793 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 794 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 795 auto Nullability = FnRetTy->getNullability(getContext()); 796 if (Nullability && *Nullability == NullabilityKind::NonNull) { 797 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 798 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 799 RetValNullabilityPrecondition = 800 llvm::ConstantInt::getTrue(getLLVMContext()); 801 } 802 } 803 804 // If we're in C++ mode and the function name is "main", it is guaranteed 805 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 806 // used within a program"). 807 if (getLangOpts().CPlusPlus) 808 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 809 if (FD->isMain()) 810 Fn->addFnAttr(llvm::Attribute::NoRecurse); 811 812 // If a custom alignment is used, force realigning to this alignment on 813 // any main function which certainly will need it. 814 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 815 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 816 CGM.getCodeGenOpts().StackAlignment) 817 Fn->addFnAttr("stackrealign"); 818 819 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 820 821 // Create a marker to make it easy to insert allocas into the entryblock 822 // later. Don't create this with the builder, because we don't want it 823 // folded. 824 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 825 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 826 827 ReturnBlock = getJumpDestInCurrentScope("return"); 828 829 Builder.SetInsertPoint(EntryBB); 830 831 // If we're checking the return value, allocate space for a pointer to a 832 // precise source location of the checked return statement. 833 if (requiresReturnValueCheck()) { 834 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 835 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 836 } 837 838 // Emit subprogram debug descriptor. 839 if (CGDebugInfo *DI = getDebugInfo()) { 840 // Reconstruct the type from the argument list so that implicit parameters, 841 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 842 // convention. 843 CallingConv CC = CallingConv::CC_C; 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 845 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 846 CC = SrcFnTy->getCallConv(); 847 SmallVector<QualType, 16> ArgTypes; 848 for (const VarDecl *VD : Args) 849 ArgTypes.push_back(VD->getType()); 850 QualType FnType = getContext().getFunctionType( 851 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 852 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 853 Builder); 854 } 855 856 if (ShouldInstrumentFunction()) { 857 if (CGM.getCodeGenOpts().InstrumentFunctions) 858 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 859 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 860 CurFn->addFnAttr("instrument-function-entry-inlined", 861 "__cyg_profile_func_enter"); 862 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 863 CurFn->addFnAttr("instrument-function-entry-inlined", 864 "__cyg_profile_func_enter_bare"); 865 } 866 867 // Since emitting the mcount call here impacts optimizations such as function 868 // inlining, we just add an attribute to insert a mcount call in backend. 869 // The attribute "counting-function" is set to mcount function name which is 870 // architecture dependent. 871 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 872 // Calls to fentry/mcount should not be generated if function has 873 // the no_instrument_function attribute. 874 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 875 if (CGM.getCodeGenOpts().CallFEntry) 876 Fn->addFnAttr("fentry-call", "true"); 877 else { 878 Fn->addFnAttr("instrument-function-entry-inlined", 879 getTarget().getMCountName()); 880 } 881 } 882 } 883 884 if (RetTy->isVoidType()) { 885 // Void type; nothing to return. 886 ReturnValue = Address::invalid(); 887 888 // Count the implicit return. 889 if (!endsWithReturn(D)) 890 ++NumReturnExprs; 891 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 892 // Indirect return; emit returned value directly into sret slot. 893 // This reduces code size, and affects correctness in C++. 894 auto AI = CurFn->arg_begin(); 895 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 896 ++AI; 897 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 898 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 899 ReturnValuePointer = 900 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 901 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 902 ReturnValue.getPointer(), Int8PtrTy), 903 ReturnValuePointer); 904 } 905 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 906 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 907 // Load the sret pointer from the argument struct and return into that. 908 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 909 llvm::Function::arg_iterator EI = CurFn->arg_end(); 910 --EI; 911 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 912 ReturnValuePointer = Address(Addr, getPointerAlign()); 913 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 914 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 915 } else { 916 ReturnValue = CreateIRTemp(RetTy, "retval"); 917 918 // Tell the epilog emitter to autorelease the result. We do this 919 // now so that various specialized functions can suppress it 920 // during their IR-generation. 921 if (getLangOpts().ObjCAutoRefCount && 922 !CurFnInfo->isReturnsRetained() && 923 RetTy->isObjCRetainableType()) 924 AutoreleaseResult = true; 925 } 926 927 EmitStartEHSpec(CurCodeDecl); 928 929 PrologueCleanupDepth = EHStack.stable_begin(); 930 931 // Emit OpenMP specific initialization of the device functions. 932 if (getLangOpts().OpenMP && CurCodeDecl) 933 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 934 935 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 936 937 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 938 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 939 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 940 if (MD->getParent()->isLambda() && 941 MD->getOverloadedOperator() == OO_Call) { 942 // We're in a lambda; figure out the captures. 943 MD->getParent()->getCaptureFields(LambdaCaptureFields, 944 LambdaThisCaptureField); 945 if (LambdaThisCaptureField) { 946 // If the lambda captures the object referred to by '*this' - either by 947 // value or by reference, make sure CXXThisValue points to the correct 948 // object. 949 950 // Get the lvalue for the field (which is a copy of the enclosing object 951 // or contains the address of the enclosing object). 952 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 953 if (!LambdaThisCaptureField->getType()->isPointerType()) { 954 // If the enclosing object was captured by value, just use its address. 955 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 956 } else { 957 // Load the lvalue pointed to by the field, since '*this' was captured 958 // by reference. 959 CXXThisValue = 960 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 961 } 962 } 963 for (auto *FD : MD->getParent()->fields()) { 964 if (FD->hasCapturedVLAType()) { 965 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 966 SourceLocation()).getScalarVal(); 967 auto VAT = FD->getCapturedVLAType(); 968 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 969 } 970 } 971 } else { 972 // Not in a lambda; just use 'this' from the method. 973 // FIXME: Should we generate a new load for each use of 'this'? The 974 // fast register allocator would be happier... 975 CXXThisValue = CXXABIThisValue; 976 } 977 978 // Check the 'this' pointer once per function, if it's available. 979 if (CXXABIThisValue) { 980 SanitizerSet SkippedChecks; 981 SkippedChecks.set(SanitizerKind::ObjectSize, true); 982 QualType ThisTy = MD->getThisType(); 983 984 // If this is the call operator of a lambda with no capture-default, it 985 // may have a static invoker function, which may call this operator with 986 // a null 'this' pointer. 987 if (isLambdaCallOperator(MD) && 988 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 989 SkippedChecks.set(SanitizerKind::Null, true); 990 991 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 992 : TCK_MemberCall, 993 Loc, CXXABIThisValue, ThisTy, 994 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 995 SkippedChecks); 996 } 997 } 998 999 // If any of the arguments have a variably modified type, make sure to 1000 // emit the type size. 1001 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1002 i != e; ++i) { 1003 const VarDecl *VD = *i; 1004 1005 // Dig out the type as written from ParmVarDecls; it's unclear whether 1006 // the standard (C99 6.9.1p10) requires this, but we're following the 1007 // precedent set by gcc. 1008 QualType Ty; 1009 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1010 Ty = PVD->getOriginalType(); 1011 else 1012 Ty = VD->getType(); 1013 1014 if (Ty->isVariablyModifiedType()) 1015 EmitVariablyModifiedType(Ty); 1016 } 1017 // Emit a location at the end of the prologue. 1018 if (CGDebugInfo *DI = getDebugInfo()) 1019 DI->EmitLocation(Builder, StartLoc); 1020 1021 // TODO: Do we need to handle this in two places like we do with 1022 // target-features/target-cpu? 1023 if (CurFuncDecl) 1024 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1025 LargestVectorWidth = VecWidth->getVectorWidth(); 1026 } 1027 1028 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1029 incrementProfileCounter(Body); 1030 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1031 EmitCompoundStmtWithoutScope(*S); 1032 else 1033 EmitStmt(Body); 1034 } 1035 1036 /// When instrumenting to collect profile data, the counts for some blocks 1037 /// such as switch cases need to not include the fall-through counts, so 1038 /// emit a branch around the instrumentation code. When not instrumenting, 1039 /// this just calls EmitBlock(). 1040 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1041 const Stmt *S) { 1042 llvm::BasicBlock *SkipCountBB = nullptr; 1043 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1044 // When instrumenting for profiling, the fallthrough to certain 1045 // statements needs to skip over the instrumentation code so that we 1046 // get an accurate count. 1047 SkipCountBB = createBasicBlock("skipcount"); 1048 EmitBranch(SkipCountBB); 1049 } 1050 EmitBlock(BB); 1051 uint64_t CurrentCount = getCurrentProfileCount(); 1052 incrementProfileCounter(S); 1053 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1054 if (SkipCountBB) 1055 EmitBlock(SkipCountBB); 1056 } 1057 1058 /// Tries to mark the given function nounwind based on the 1059 /// non-existence of any throwing calls within it. We believe this is 1060 /// lightweight enough to do at -O0. 1061 static void TryMarkNoThrow(llvm::Function *F) { 1062 // LLVM treats 'nounwind' on a function as part of the type, so we 1063 // can't do this on functions that can be overwritten. 1064 if (F->isInterposable()) return; 1065 1066 for (llvm::BasicBlock &BB : *F) 1067 for (llvm::Instruction &I : BB) 1068 if (I.mayThrow()) 1069 return; 1070 1071 F->setDoesNotThrow(); 1072 } 1073 1074 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1075 FunctionArgList &Args) { 1076 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1077 QualType ResTy = FD->getReturnType(); 1078 1079 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1080 if (MD && MD->isInstance()) { 1081 if (CGM.getCXXABI().HasThisReturn(GD)) 1082 ResTy = MD->getThisType(); 1083 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1084 ResTy = CGM.getContext().VoidPtrTy; 1085 CGM.getCXXABI().buildThisParam(*this, Args); 1086 } 1087 1088 // The base version of an inheriting constructor whose constructed base is a 1089 // virtual base is not passed any arguments (because it doesn't actually call 1090 // the inherited constructor). 1091 bool PassedParams = true; 1092 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1093 if (auto Inherited = CD->getInheritedConstructor()) 1094 PassedParams = 1095 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1096 1097 if (PassedParams) { 1098 for (auto *Param : FD->parameters()) { 1099 Args.push_back(Param); 1100 if (!Param->hasAttr<PassObjectSizeAttr>()) 1101 continue; 1102 1103 auto *Implicit = ImplicitParamDecl::Create( 1104 getContext(), Param->getDeclContext(), Param->getLocation(), 1105 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1106 SizeArguments[Param] = Implicit; 1107 Args.push_back(Implicit); 1108 } 1109 } 1110 1111 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1112 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1113 1114 return ResTy; 1115 } 1116 1117 static bool 1118 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1119 const ASTContext &Context) { 1120 QualType T = FD->getReturnType(); 1121 // Avoid the optimization for functions that return a record type with a 1122 // trivial destructor or another trivially copyable type. 1123 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1124 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1125 return !ClassDecl->hasTrivialDestructor(); 1126 } 1127 return !T.isTriviallyCopyableType(Context); 1128 } 1129 1130 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1131 const CGFunctionInfo &FnInfo) { 1132 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1133 CurGD = GD; 1134 1135 FunctionArgList Args; 1136 QualType ResTy = BuildFunctionArgList(GD, Args); 1137 1138 // Check if we should generate debug info for this function. 1139 if (FD->hasAttr<NoDebugAttr>()) 1140 DebugInfo = nullptr; // disable debug info indefinitely for this function 1141 1142 // The function might not have a body if we're generating thunks for a 1143 // function declaration. 1144 SourceRange BodyRange; 1145 if (Stmt *Body = FD->getBody()) 1146 BodyRange = Body->getSourceRange(); 1147 else 1148 BodyRange = FD->getLocation(); 1149 CurEHLocation = BodyRange.getEnd(); 1150 1151 // Use the location of the start of the function to determine where 1152 // the function definition is located. By default use the location 1153 // of the declaration as the location for the subprogram. A function 1154 // may lack a declaration in the source code if it is created by code 1155 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1156 SourceLocation Loc = FD->getLocation(); 1157 1158 // If this is a function specialization then use the pattern body 1159 // as the location for the function. 1160 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1161 if (SpecDecl->hasBody(SpecDecl)) 1162 Loc = SpecDecl->getLocation(); 1163 1164 Stmt *Body = FD->getBody(); 1165 1166 // Initialize helper which will detect jumps which can cause invalid lifetime 1167 // markers. 1168 if (Body && ShouldEmitLifetimeMarkers) 1169 Bypasses.Init(Body); 1170 1171 // Emit the standard function prologue. 1172 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1173 1174 // Generate the body of the function. 1175 PGO.assignRegionCounters(GD, CurFn); 1176 if (isa<CXXDestructorDecl>(FD)) 1177 EmitDestructorBody(Args); 1178 else if (isa<CXXConstructorDecl>(FD)) 1179 EmitConstructorBody(Args); 1180 else if (getLangOpts().CUDA && 1181 !getLangOpts().CUDAIsDevice && 1182 FD->hasAttr<CUDAGlobalAttr>()) 1183 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1184 else if (isa<CXXMethodDecl>(FD) && 1185 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1186 // The lambda static invoker function is special, because it forwards or 1187 // clones the body of the function call operator (but is actually static). 1188 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1189 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1190 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1191 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1192 // Implicit copy-assignment gets the same special treatment as implicit 1193 // copy-constructors. 1194 emitImplicitAssignmentOperatorBody(Args); 1195 } else if (Body) { 1196 EmitFunctionBody(Body); 1197 } else 1198 llvm_unreachable("no definition for emitted function"); 1199 1200 // C++11 [stmt.return]p2: 1201 // Flowing off the end of a function [...] results in undefined behavior in 1202 // a value-returning function. 1203 // C11 6.9.1p12: 1204 // If the '}' that terminates a function is reached, and the value of the 1205 // function call is used by the caller, the behavior is undefined. 1206 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1207 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1208 bool ShouldEmitUnreachable = 1209 CGM.getCodeGenOpts().StrictReturn || 1210 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1211 if (SanOpts.has(SanitizerKind::Return)) { 1212 SanitizerScope SanScope(this); 1213 llvm::Value *IsFalse = Builder.getFalse(); 1214 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1215 SanitizerHandler::MissingReturn, 1216 EmitCheckSourceLocation(FD->getLocation()), None); 1217 } else if (ShouldEmitUnreachable) { 1218 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1219 EmitTrapCall(llvm::Intrinsic::trap); 1220 } 1221 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1222 Builder.CreateUnreachable(); 1223 Builder.ClearInsertionPoint(); 1224 } 1225 } 1226 1227 // Emit the standard function epilogue. 1228 FinishFunction(BodyRange.getEnd()); 1229 1230 // If we haven't marked the function nothrow through other means, do 1231 // a quick pass now to see if we can. 1232 if (!CurFn->doesNotThrow()) 1233 TryMarkNoThrow(CurFn); 1234 } 1235 1236 /// ContainsLabel - Return true if the statement contains a label in it. If 1237 /// this statement is not executed normally, it not containing a label means 1238 /// that we can just remove the code. 1239 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1240 // Null statement, not a label! 1241 if (!S) return false; 1242 1243 // If this is a label, we have to emit the code, consider something like: 1244 // if (0) { ... foo: bar(); } goto foo; 1245 // 1246 // TODO: If anyone cared, we could track __label__'s, since we know that you 1247 // can't jump to one from outside their declared region. 1248 if (isa<LabelStmt>(S)) 1249 return true; 1250 1251 // If this is a case/default statement, and we haven't seen a switch, we have 1252 // to emit the code. 1253 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1254 return true; 1255 1256 // If this is a switch statement, we want to ignore cases below it. 1257 if (isa<SwitchStmt>(S)) 1258 IgnoreCaseStmts = true; 1259 1260 // Scan subexpressions for verboten labels. 1261 for (const Stmt *SubStmt : S->children()) 1262 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1263 return true; 1264 1265 return false; 1266 } 1267 1268 /// containsBreak - Return true if the statement contains a break out of it. 1269 /// If the statement (recursively) contains a switch or loop with a break 1270 /// inside of it, this is fine. 1271 bool CodeGenFunction::containsBreak(const Stmt *S) { 1272 // Null statement, not a label! 1273 if (!S) return false; 1274 1275 // If this is a switch or loop that defines its own break scope, then we can 1276 // include it and anything inside of it. 1277 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1278 isa<ForStmt>(S)) 1279 return false; 1280 1281 if (isa<BreakStmt>(S)) 1282 return true; 1283 1284 // Scan subexpressions for verboten breaks. 1285 for (const Stmt *SubStmt : S->children()) 1286 if (containsBreak(SubStmt)) 1287 return true; 1288 1289 return false; 1290 } 1291 1292 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1293 if (!S) return false; 1294 1295 // Some statement kinds add a scope and thus never add a decl to the current 1296 // scope. Note, this list is longer than the list of statements that might 1297 // have an unscoped decl nested within them, but this way is conservatively 1298 // correct even if more statement kinds are added. 1299 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1300 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1301 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1302 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1303 return false; 1304 1305 if (isa<DeclStmt>(S)) 1306 return true; 1307 1308 for (const Stmt *SubStmt : S->children()) 1309 if (mightAddDeclToScope(SubStmt)) 1310 return true; 1311 1312 return false; 1313 } 1314 1315 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1316 /// to a constant, or if it does but contains a label, return false. If it 1317 /// constant folds return true and set the boolean result in Result. 1318 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1319 bool &ResultBool, 1320 bool AllowLabels) { 1321 llvm::APSInt ResultInt; 1322 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1323 return false; 1324 1325 ResultBool = ResultInt.getBoolValue(); 1326 return true; 1327 } 1328 1329 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1330 /// to a constant, or if it does but contains a label, return false. If it 1331 /// constant folds return true and set the folded value. 1332 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1333 llvm::APSInt &ResultInt, 1334 bool AllowLabels) { 1335 // FIXME: Rename and handle conversion of other evaluatable things 1336 // to bool. 1337 Expr::EvalResult Result; 1338 if (!Cond->EvaluateAsInt(Result, getContext())) 1339 return false; // Not foldable, not integer or not fully evaluatable. 1340 1341 llvm::APSInt Int = Result.Val.getInt(); 1342 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1343 return false; // Contains a label. 1344 1345 ResultInt = Int; 1346 return true; 1347 } 1348 1349 1350 1351 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1352 /// statement) to the specified blocks. Based on the condition, this might try 1353 /// to simplify the codegen of the conditional based on the branch. 1354 /// 1355 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1356 llvm::BasicBlock *TrueBlock, 1357 llvm::BasicBlock *FalseBlock, 1358 uint64_t TrueCount) { 1359 Cond = Cond->IgnoreParens(); 1360 1361 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1362 1363 // Handle X && Y in a condition. 1364 if (CondBOp->getOpcode() == BO_LAnd) { 1365 // If we have "1 && X", simplify the code. "0 && X" would have constant 1366 // folded if the case was simple enough. 1367 bool ConstantBool = false; 1368 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1369 ConstantBool) { 1370 // br(1 && X) -> br(X). 1371 incrementProfileCounter(CondBOp); 1372 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1373 TrueCount); 1374 } 1375 1376 // If we have "X && 1", simplify the code to use an uncond branch. 1377 // "X && 0" would have been constant folded to 0. 1378 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1379 ConstantBool) { 1380 // br(X && 1) -> br(X). 1381 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1382 TrueCount); 1383 } 1384 1385 // Emit the LHS as a conditional. If the LHS conditional is false, we 1386 // want to jump to the FalseBlock. 1387 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1388 // The counter tells us how often we evaluate RHS, and all of TrueCount 1389 // can be propagated to that branch. 1390 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1391 1392 ConditionalEvaluation eval(*this); 1393 { 1394 ApplyDebugLocation DL(*this, Cond); 1395 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1396 EmitBlock(LHSTrue); 1397 } 1398 1399 incrementProfileCounter(CondBOp); 1400 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1401 1402 // Any temporaries created here are conditional. 1403 eval.begin(*this); 1404 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1405 eval.end(*this); 1406 1407 return; 1408 } 1409 1410 if (CondBOp->getOpcode() == BO_LOr) { 1411 // If we have "0 || X", simplify the code. "1 || X" would have constant 1412 // folded if the case was simple enough. 1413 bool ConstantBool = false; 1414 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1415 !ConstantBool) { 1416 // br(0 || X) -> br(X). 1417 incrementProfileCounter(CondBOp); 1418 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1419 TrueCount); 1420 } 1421 1422 // If we have "X || 0", simplify the code to use an uncond branch. 1423 // "X || 1" would have been constant folded to 1. 1424 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1425 !ConstantBool) { 1426 // br(X || 0) -> br(X). 1427 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1428 TrueCount); 1429 } 1430 1431 // Emit the LHS as a conditional. If the LHS conditional is true, we 1432 // want to jump to the TrueBlock. 1433 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1434 // We have the count for entry to the RHS and for the whole expression 1435 // being true, so we can divy up True count between the short circuit and 1436 // the RHS. 1437 uint64_t LHSCount = 1438 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1439 uint64_t RHSCount = TrueCount - LHSCount; 1440 1441 ConditionalEvaluation eval(*this); 1442 { 1443 ApplyDebugLocation DL(*this, Cond); 1444 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1445 EmitBlock(LHSFalse); 1446 } 1447 1448 incrementProfileCounter(CondBOp); 1449 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1450 1451 // Any temporaries created here are conditional. 1452 eval.begin(*this); 1453 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1454 1455 eval.end(*this); 1456 1457 return; 1458 } 1459 } 1460 1461 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1462 // br(!x, t, f) -> br(x, f, t) 1463 if (CondUOp->getOpcode() == UO_LNot) { 1464 // Negate the count. 1465 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1466 // Negate the condition and swap the destination blocks. 1467 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1468 FalseCount); 1469 } 1470 } 1471 1472 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1473 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1474 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1475 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1476 1477 ConditionalEvaluation cond(*this); 1478 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1479 getProfileCount(CondOp)); 1480 1481 // When computing PGO branch weights, we only know the overall count for 1482 // the true block. This code is essentially doing tail duplication of the 1483 // naive code-gen, introducing new edges for which counts are not 1484 // available. Divide the counts proportionally between the LHS and RHS of 1485 // the conditional operator. 1486 uint64_t LHSScaledTrueCount = 0; 1487 if (TrueCount) { 1488 double LHSRatio = 1489 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1490 LHSScaledTrueCount = TrueCount * LHSRatio; 1491 } 1492 1493 cond.begin(*this); 1494 EmitBlock(LHSBlock); 1495 incrementProfileCounter(CondOp); 1496 { 1497 ApplyDebugLocation DL(*this, Cond); 1498 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1499 LHSScaledTrueCount); 1500 } 1501 cond.end(*this); 1502 1503 cond.begin(*this); 1504 EmitBlock(RHSBlock); 1505 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1506 TrueCount - LHSScaledTrueCount); 1507 cond.end(*this); 1508 1509 return; 1510 } 1511 1512 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1513 // Conditional operator handling can give us a throw expression as a 1514 // condition for a case like: 1515 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1516 // Fold this to: 1517 // br(c, throw x, br(y, t, f)) 1518 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1519 return; 1520 } 1521 1522 // If the branch has a condition wrapped by __builtin_unpredictable, 1523 // create metadata that specifies that the branch is unpredictable. 1524 // Don't bother if not optimizing because that metadata would not be used. 1525 llvm::MDNode *Unpredictable = nullptr; 1526 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1527 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1528 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1529 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1530 llvm::MDBuilder MDHelper(getLLVMContext()); 1531 Unpredictable = MDHelper.createUnpredictable(); 1532 } 1533 } 1534 1535 // Create branch weights based on the number of times we get here and the 1536 // number of times the condition should be true. 1537 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1538 llvm::MDNode *Weights = 1539 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1540 1541 // Emit the code with the fully general case. 1542 llvm::Value *CondV; 1543 { 1544 ApplyDebugLocation DL(*this, Cond); 1545 CondV = EvaluateExprAsBool(Cond); 1546 } 1547 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1548 } 1549 1550 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1551 /// specified stmt yet. 1552 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1553 CGM.ErrorUnsupported(S, Type); 1554 } 1555 1556 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1557 /// variable-length array whose elements have a non-zero bit-pattern. 1558 /// 1559 /// \param baseType the inner-most element type of the array 1560 /// \param src - a char* pointing to the bit-pattern for a single 1561 /// base element of the array 1562 /// \param sizeInChars - the total size of the VLA, in chars 1563 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1564 Address dest, Address src, 1565 llvm::Value *sizeInChars) { 1566 CGBuilderTy &Builder = CGF.Builder; 1567 1568 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1569 llvm::Value *baseSizeInChars 1570 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1571 1572 Address begin = 1573 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1574 llvm::Value *end = 1575 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1576 1577 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1578 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1579 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1580 1581 // Make a loop over the VLA. C99 guarantees that the VLA element 1582 // count must be nonzero. 1583 CGF.EmitBlock(loopBB); 1584 1585 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1586 cur->addIncoming(begin.getPointer(), originBB); 1587 1588 CharUnits curAlign = 1589 dest.getAlignment().alignmentOfArrayElement(baseSize); 1590 1591 // memcpy the individual element bit-pattern. 1592 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1593 /*volatile*/ false); 1594 1595 // Go to the next element. 1596 llvm::Value *next = 1597 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1598 1599 // Leave if that's the end of the VLA. 1600 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1601 Builder.CreateCondBr(done, contBB, loopBB); 1602 cur->addIncoming(next, loopBB); 1603 1604 CGF.EmitBlock(contBB); 1605 } 1606 1607 void 1608 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1609 // Ignore empty classes in C++. 1610 if (getLangOpts().CPlusPlus) { 1611 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1612 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1613 return; 1614 } 1615 } 1616 1617 // Cast the dest ptr to the appropriate i8 pointer type. 1618 if (DestPtr.getElementType() != Int8Ty) 1619 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1620 1621 // Get size and alignment info for this aggregate. 1622 CharUnits size = getContext().getTypeSizeInChars(Ty); 1623 1624 llvm::Value *SizeVal; 1625 const VariableArrayType *vla; 1626 1627 // Don't bother emitting a zero-byte memset. 1628 if (size.isZero()) { 1629 // But note that getTypeInfo returns 0 for a VLA. 1630 if (const VariableArrayType *vlaType = 1631 dyn_cast_or_null<VariableArrayType>( 1632 getContext().getAsArrayType(Ty))) { 1633 auto VlaSize = getVLASize(vlaType); 1634 SizeVal = VlaSize.NumElts; 1635 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1636 if (!eltSize.isOne()) 1637 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1638 vla = vlaType; 1639 } else { 1640 return; 1641 } 1642 } else { 1643 SizeVal = CGM.getSize(size); 1644 vla = nullptr; 1645 } 1646 1647 // If the type contains a pointer to data member we can't memset it to zero. 1648 // Instead, create a null constant and copy it to the destination. 1649 // TODO: there are other patterns besides zero that we can usefully memset, 1650 // like -1, which happens to be the pattern used by member-pointers. 1651 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1652 // For a VLA, emit a single element, then splat that over the VLA. 1653 if (vla) Ty = getContext().getBaseElementType(vla); 1654 1655 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1656 1657 llvm::GlobalVariable *NullVariable = 1658 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1659 /*isConstant=*/true, 1660 llvm::GlobalVariable::PrivateLinkage, 1661 NullConstant, Twine()); 1662 CharUnits NullAlign = DestPtr.getAlignment(); 1663 NullVariable->setAlignment(NullAlign.getQuantity()); 1664 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1665 NullAlign); 1666 1667 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1668 1669 // Get and call the appropriate llvm.memcpy overload. 1670 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1671 return; 1672 } 1673 1674 // Otherwise, just memset the whole thing to zero. This is legal 1675 // because in LLVM, all default initializers (other than the ones we just 1676 // handled above) are guaranteed to have a bit pattern of all zeros. 1677 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1678 } 1679 1680 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1681 // Make sure that there is a block for the indirect goto. 1682 if (!IndirectBranch) 1683 GetIndirectGotoBlock(); 1684 1685 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1686 1687 // Make sure the indirect branch includes all of the address-taken blocks. 1688 IndirectBranch->addDestination(BB); 1689 return llvm::BlockAddress::get(CurFn, BB); 1690 } 1691 1692 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1693 // If we already made the indirect branch for indirect goto, return its block. 1694 if (IndirectBranch) return IndirectBranch->getParent(); 1695 1696 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1697 1698 // Create the PHI node that indirect gotos will add entries to. 1699 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1700 "indirect.goto.dest"); 1701 1702 // Create the indirect branch instruction. 1703 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1704 return IndirectBranch->getParent(); 1705 } 1706 1707 /// Computes the length of an array in elements, as well as the base 1708 /// element type and a properly-typed first element pointer. 1709 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1710 QualType &baseType, 1711 Address &addr) { 1712 const ArrayType *arrayType = origArrayType; 1713 1714 // If it's a VLA, we have to load the stored size. Note that 1715 // this is the size of the VLA in bytes, not its size in elements. 1716 llvm::Value *numVLAElements = nullptr; 1717 if (isa<VariableArrayType>(arrayType)) { 1718 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1719 1720 // Walk into all VLAs. This doesn't require changes to addr, 1721 // which has type T* where T is the first non-VLA element type. 1722 do { 1723 QualType elementType = arrayType->getElementType(); 1724 arrayType = getContext().getAsArrayType(elementType); 1725 1726 // If we only have VLA components, 'addr' requires no adjustment. 1727 if (!arrayType) { 1728 baseType = elementType; 1729 return numVLAElements; 1730 } 1731 } while (isa<VariableArrayType>(arrayType)); 1732 1733 // We get out here only if we find a constant array type 1734 // inside the VLA. 1735 } 1736 1737 // We have some number of constant-length arrays, so addr should 1738 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1739 // down to the first element of addr. 1740 SmallVector<llvm::Value*, 8> gepIndices; 1741 1742 // GEP down to the array type. 1743 llvm::ConstantInt *zero = Builder.getInt32(0); 1744 gepIndices.push_back(zero); 1745 1746 uint64_t countFromCLAs = 1; 1747 QualType eltType; 1748 1749 llvm::ArrayType *llvmArrayType = 1750 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1751 while (llvmArrayType) { 1752 assert(isa<ConstantArrayType>(arrayType)); 1753 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1754 == llvmArrayType->getNumElements()); 1755 1756 gepIndices.push_back(zero); 1757 countFromCLAs *= llvmArrayType->getNumElements(); 1758 eltType = arrayType->getElementType(); 1759 1760 llvmArrayType = 1761 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1762 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1763 assert((!llvmArrayType || arrayType) && 1764 "LLVM and Clang types are out-of-synch"); 1765 } 1766 1767 if (arrayType) { 1768 // From this point onwards, the Clang array type has been emitted 1769 // as some other type (probably a packed struct). Compute the array 1770 // size, and just emit the 'begin' expression as a bitcast. 1771 while (arrayType) { 1772 countFromCLAs *= 1773 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1774 eltType = arrayType->getElementType(); 1775 arrayType = getContext().getAsArrayType(eltType); 1776 } 1777 1778 llvm::Type *baseType = ConvertType(eltType); 1779 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1780 } else { 1781 // Create the actual GEP. 1782 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1783 gepIndices, "array.begin"), 1784 addr.getAlignment()); 1785 } 1786 1787 baseType = eltType; 1788 1789 llvm::Value *numElements 1790 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1791 1792 // If we had any VLA dimensions, factor them in. 1793 if (numVLAElements) 1794 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1795 1796 return numElements; 1797 } 1798 1799 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1800 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1801 assert(vla && "type was not a variable array type!"); 1802 return getVLASize(vla); 1803 } 1804 1805 CodeGenFunction::VlaSizePair 1806 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1807 // The number of elements so far; always size_t. 1808 llvm::Value *numElements = nullptr; 1809 1810 QualType elementType; 1811 do { 1812 elementType = type->getElementType(); 1813 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1814 assert(vlaSize && "no size for VLA!"); 1815 assert(vlaSize->getType() == SizeTy); 1816 1817 if (!numElements) { 1818 numElements = vlaSize; 1819 } else { 1820 // It's undefined behavior if this wraps around, so mark it that way. 1821 // FIXME: Teach -fsanitize=undefined to trap this. 1822 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1823 } 1824 } while ((type = getContext().getAsVariableArrayType(elementType))); 1825 1826 return { numElements, elementType }; 1827 } 1828 1829 CodeGenFunction::VlaSizePair 1830 CodeGenFunction::getVLAElements1D(QualType type) { 1831 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1832 assert(vla && "type was not a variable array type!"); 1833 return getVLAElements1D(vla); 1834 } 1835 1836 CodeGenFunction::VlaSizePair 1837 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1838 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1839 assert(VlaSize && "no size for VLA!"); 1840 assert(VlaSize->getType() == SizeTy); 1841 return { VlaSize, Vla->getElementType() }; 1842 } 1843 1844 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1845 assert(type->isVariablyModifiedType() && 1846 "Must pass variably modified type to EmitVLASizes!"); 1847 1848 EnsureInsertPoint(); 1849 1850 // We're going to walk down into the type and look for VLA 1851 // expressions. 1852 do { 1853 assert(type->isVariablyModifiedType()); 1854 1855 const Type *ty = type.getTypePtr(); 1856 switch (ty->getTypeClass()) { 1857 1858 #define TYPE(Class, Base) 1859 #define ABSTRACT_TYPE(Class, Base) 1860 #define NON_CANONICAL_TYPE(Class, Base) 1861 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1862 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1863 #include "clang/AST/TypeNodes.def" 1864 llvm_unreachable("unexpected dependent type!"); 1865 1866 // These types are never variably-modified. 1867 case Type::Builtin: 1868 case Type::Complex: 1869 case Type::Vector: 1870 case Type::ExtVector: 1871 case Type::Record: 1872 case Type::Enum: 1873 case Type::Elaborated: 1874 case Type::TemplateSpecialization: 1875 case Type::ObjCTypeParam: 1876 case Type::ObjCObject: 1877 case Type::ObjCInterface: 1878 case Type::ObjCObjectPointer: 1879 llvm_unreachable("type class is never variably-modified!"); 1880 1881 case Type::Adjusted: 1882 type = cast<AdjustedType>(ty)->getAdjustedType(); 1883 break; 1884 1885 case Type::Decayed: 1886 type = cast<DecayedType>(ty)->getPointeeType(); 1887 break; 1888 1889 case Type::Pointer: 1890 type = cast<PointerType>(ty)->getPointeeType(); 1891 break; 1892 1893 case Type::BlockPointer: 1894 type = cast<BlockPointerType>(ty)->getPointeeType(); 1895 break; 1896 1897 case Type::LValueReference: 1898 case Type::RValueReference: 1899 type = cast<ReferenceType>(ty)->getPointeeType(); 1900 break; 1901 1902 case Type::MemberPointer: 1903 type = cast<MemberPointerType>(ty)->getPointeeType(); 1904 break; 1905 1906 case Type::ConstantArray: 1907 case Type::IncompleteArray: 1908 // Losing element qualification here is fine. 1909 type = cast<ArrayType>(ty)->getElementType(); 1910 break; 1911 1912 case Type::VariableArray: { 1913 // Losing element qualification here is fine. 1914 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1915 1916 // Unknown size indication requires no size computation. 1917 // Otherwise, evaluate and record it. 1918 if (const Expr *size = vat->getSizeExpr()) { 1919 // It's possible that we might have emitted this already, 1920 // e.g. with a typedef and a pointer to it. 1921 llvm::Value *&entry = VLASizeMap[size]; 1922 if (!entry) { 1923 llvm::Value *Size = EmitScalarExpr(size); 1924 1925 // C11 6.7.6.2p5: 1926 // If the size is an expression that is not an integer constant 1927 // expression [...] each time it is evaluated it shall have a value 1928 // greater than zero. 1929 if (SanOpts.has(SanitizerKind::VLABound) && 1930 size->getType()->isSignedIntegerType()) { 1931 SanitizerScope SanScope(this); 1932 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1933 llvm::Constant *StaticArgs[] = { 1934 EmitCheckSourceLocation(size->getBeginLoc()), 1935 EmitCheckTypeDescriptor(size->getType())}; 1936 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1937 SanitizerKind::VLABound), 1938 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1939 } 1940 1941 // Always zexting here would be wrong if it weren't 1942 // undefined behavior to have a negative bound. 1943 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1944 } 1945 } 1946 type = vat->getElementType(); 1947 break; 1948 } 1949 1950 case Type::FunctionProto: 1951 case Type::FunctionNoProto: 1952 type = cast<FunctionType>(ty)->getReturnType(); 1953 break; 1954 1955 case Type::Paren: 1956 case Type::TypeOf: 1957 case Type::UnaryTransform: 1958 case Type::Attributed: 1959 case Type::SubstTemplateTypeParm: 1960 case Type::PackExpansion: 1961 case Type::MacroQualified: 1962 // Keep walking after single level desugaring. 1963 type = type.getSingleStepDesugaredType(getContext()); 1964 break; 1965 1966 case Type::Typedef: 1967 case Type::Decltype: 1968 case Type::Auto: 1969 case Type::DeducedTemplateSpecialization: 1970 // Stop walking: nothing to do. 1971 return; 1972 1973 case Type::TypeOfExpr: 1974 // Stop walking: emit typeof expression. 1975 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1976 return; 1977 1978 case Type::Atomic: 1979 type = cast<AtomicType>(ty)->getValueType(); 1980 break; 1981 1982 case Type::Pipe: 1983 type = cast<PipeType>(ty)->getElementType(); 1984 break; 1985 } 1986 } while (type->isVariablyModifiedType()); 1987 } 1988 1989 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1990 if (getContext().getBuiltinVaListType()->isArrayType()) 1991 return EmitPointerWithAlignment(E); 1992 return EmitLValue(E).getAddress(); 1993 } 1994 1995 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1996 return EmitLValue(E).getAddress(); 1997 } 1998 1999 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2000 const APValue &Init) { 2001 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2002 if (CGDebugInfo *Dbg = getDebugInfo()) 2003 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2004 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2005 } 2006 2007 CodeGenFunction::PeepholeProtection 2008 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2009 // At the moment, the only aggressive peephole we do in IR gen 2010 // is trunc(zext) folding, but if we add more, we can easily 2011 // extend this protection. 2012 2013 if (!rvalue.isScalar()) return PeepholeProtection(); 2014 llvm::Value *value = rvalue.getScalarVal(); 2015 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2016 2017 // Just make an extra bitcast. 2018 assert(HaveInsertPoint()); 2019 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2020 Builder.GetInsertBlock()); 2021 2022 PeepholeProtection protection; 2023 protection.Inst = inst; 2024 return protection; 2025 } 2026 2027 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2028 if (!protection.Inst) return; 2029 2030 // In theory, we could try to duplicate the peepholes now, but whatever. 2031 protection.Inst->eraseFromParent(); 2032 } 2033 2034 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2035 QualType Ty, SourceLocation Loc, 2036 SourceLocation AssumptionLoc, 2037 llvm::Value *Alignment, 2038 llvm::Value *OffsetValue) { 2039 llvm::Value *TheCheck; 2040 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2041 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2042 if (SanOpts.has(SanitizerKind::Alignment)) { 2043 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2044 OffsetValue, TheCheck, Assumption); 2045 } 2046 } 2047 2048 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2049 QualType Ty, SourceLocation Loc, 2050 SourceLocation AssumptionLoc, 2051 unsigned Alignment, 2052 llvm::Value *OffsetValue) { 2053 llvm::Value *TheCheck; 2054 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2055 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2056 if (SanOpts.has(SanitizerKind::Alignment)) { 2057 llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment); 2058 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal, 2059 OffsetValue, TheCheck, Assumption); 2060 } 2061 } 2062 2063 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2064 const Expr *E, 2065 SourceLocation AssumptionLoc, 2066 unsigned Alignment, 2067 llvm::Value *OffsetValue) { 2068 if (auto *CE = dyn_cast<CastExpr>(E)) 2069 E = CE->getSubExprAsWritten(); 2070 QualType Ty = E->getType(); 2071 SourceLocation Loc = E->getExprLoc(); 2072 2073 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2074 OffsetValue); 2075 } 2076 2077 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2078 llvm::Value *AnnotatedVal, 2079 StringRef AnnotationStr, 2080 SourceLocation Location) { 2081 llvm::Value *Args[4] = { 2082 AnnotatedVal, 2083 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2084 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2085 CGM.EmitAnnotationLineNo(Location) 2086 }; 2087 return Builder.CreateCall(AnnotationFn, Args); 2088 } 2089 2090 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2091 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2092 // FIXME We create a new bitcast for every annotation because that's what 2093 // llvm-gcc was doing. 2094 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2095 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2096 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2097 I->getAnnotation(), D->getLocation()); 2098 } 2099 2100 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2101 Address Addr) { 2102 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2103 llvm::Value *V = Addr.getPointer(); 2104 llvm::Type *VTy = V->getType(); 2105 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2106 CGM.Int8PtrTy); 2107 2108 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2109 // FIXME Always emit the cast inst so we can differentiate between 2110 // annotation on the first field of a struct and annotation on the struct 2111 // itself. 2112 if (VTy != CGM.Int8PtrTy) 2113 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2114 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2115 V = Builder.CreateBitCast(V, VTy); 2116 } 2117 2118 return Address(V, Addr.getAlignment()); 2119 } 2120 2121 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2122 2123 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2124 : CGF(CGF) { 2125 assert(!CGF->IsSanitizerScope); 2126 CGF->IsSanitizerScope = true; 2127 } 2128 2129 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2130 CGF->IsSanitizerScope = false; 2131 } 2132 2133 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2134 const llvm::Twine &Name, 2135 llvm::BasicBlock *BB, 2136 llvm::BasicBlock::iterator InsertPt) const { 2137 LoopStack.InsertHelper(I); 2138 if (IsSanitizerScope) 2139 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2140 } 2141 2142 void CGBuilderInserter::InsertHelper( 2143 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2144 llvm::BasicBlock::iterator InsertPt) const { 2145 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2146 if (CGF) 2147 CGF->InsertHelper(I, Name, BB, InsertPt); 2148 } 2149 2150 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2151 CodeGenModule &CGM, const FunctionDecl *FD, 2152 std::string &FirstMissing) { 2153 // If there aren't any required features listed then go ahead and return. 2154 if (ReqFeatures.empty()) 2155 return false; 2156 2157 // Now build up the set of caller features and verify that all the required 2158 // features are there. 2159 llvm::StringMap<bool> CallerFeatureMap; 2160 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2161 2162 // If we have at least one of the features in the feature list return 2163 // true, otherwise return false. 2164 return std::all_of( 2165 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2166 SmallVector<StringRef, 1> OrFeatures; 2167 Feature.split(OrFeatures, '|'); 2168 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2169 if (!CallerFeatureMap.lookup(Feature)) { 2170 FirstMissing = Feature.str(); 2171 return false; 2172 } 2173 return true; 2174 }); 2175 }); 2176 } 2177 2178 // Emits an error if we don't have a valid set of target features for the 2179 // called function. 2180 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2181 const FunctionDecl *TargetDecl) { 2182 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2183 } 2184 2185 // Emits an error if we don't have a valid set of target features for the 2186 // called function. 2187 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2188 const FunctionDecl *TargetDecl) { 2189 // Early exit if this is an indirect call. 2190 if (!TargetDecl) 2191 return; 2192 2193 // Get the current enclosing function if it exists. If it doesn't 2194 // we can't check the target features anyhow. 2195 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2196 if (!FD) 2197 return; 2198 2199 // Grab the required features for the call. For a builtin this is listed in 2200 // the td file with the default cpu, for an always_inline function this is any 2201 // listed cpu and any listed features. 2202 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2203 std::string MissingFeature; 2204 if (BuiltinID) { 2205 SmallVector<StringRef, 1> ReqFeatures; 2206 const char *FeatureList = 2207 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2208 // Return if the builtin doesn't have any required features. 2209 if (!FeatureList || StringRef(FeatureList) == "") 2210 return; 2211 StringRef(FeatureList).split(ReqFeatures, ','); 2212 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2213 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2214 << TargetDecl->getDeclName() 2215 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2216 2217 } else if (TargetDecl->hasAttr<TargetAttr>() || 2218 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2219 // Get the required features for the callee. 2220 2221 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2222 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2223 2224 SmallVector<StringRef, 1> ReqFeatures; 2225 llvm::StringMap<bool> CalleeFeatureMap; 2226 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2227 2228 for (const auto &F : ParsedAttr.Features) { 2229 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2230 ReqFeatures.push_back(StringRef(F).substr(1)); 2231 } 2232 2233 for (const auto &F : CalleeFeatureMap) { 2234 // Only positive features are "required". 2235 if (F.getValue()) 2236 ReqFeatures.push_back(F.getKey()); 2237 } 2238 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2239 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2240 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2241 } 2242 } 2243 2244 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2245 if (!CGM.getCodeGenOpts().SanitizeStats) 2246 return; 2247 2248 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2249 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2250 CGM.getSanStats().create(IRB, SSK); 2251 } 2252 2253 llvm::Value * 2254 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2255 llvm::Value *Condition = nullptr; 2256 2257 if (!RO.Conditions.Architecture.empty()) 2258 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2259 2260 if (!RO.Conditions.Features.empty()) { 2261 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2262 Condition = 2263 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2264 } 2265 return Condition; 2266 } 2267 2268 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2269 llvm::Function *Resolver, 2270 CGBuilderTy &Builder, 2271 llvm::Function *FuncToReturn, 2272 bool SupportsIFunc) { 2273 if (SupportsIFunc) { 2274 Builder.CreateRet(FuncToReturn); 2275 return; 2276 } 2277 2278 llvm::SmallVector<llvm::Value *, 10> Args; 2279 llvm::for_each(Resolver->args(), 2280 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2281 2282 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2283 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2284 2285 if (Resolver->getReturnType()->isVoidTy()) 2286 Builder.CreateRetVoid(); 2287 else 2288 Builder.CreateRet(Result); 2289 } 2290 2291 void CodeGenFunction::EmitMultiVersionResolver( 2292 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2293 assert((getContext().getTargetInfo().getTriple().getArch() == 2294 llvm::Triple::x86 || 2295 getContext().getTargetInfo().getTriple().getArch() == 2296 llvm::Triple::x86_64) && 2297 "Only implemented for x86 targets"); 2298 2299 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2300 2301 // Main function's basic block. 2302 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2303 Builder.SetInsertPoint(CurBlock); 2304 EmitX86CpuInit(); 2305 2306 for (const MultiVersionResolverOption &RO : Options) { 2307 Builder.SetInsertPoint(CurBlock); 2308 llvm::Value *Condition = FormResolverCondition(RO); 2309 2310 // The 'default' or 'generic' case. 2311 if (!Condition) { 2312 assert(&RO == Options.end() - 1 && 2313 "Default or Generic case must be last"); 2314 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2315 SupportsIFunc); 2316 return; 2317 } 2318 2319 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2320 CGBuilderTy RetBuilder(*this, RetBlock); 2321 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2322 SupportsIFunc); 2323 CurBlock = createBasicBlock("resolver_else", Resolver); 2324 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2325 } 2326 2327 // If no generic/default, emit an unreachable. 2328 Builder.SetInsertPoint(CurBlock); 2329 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2330 TrapCall->setDoesNotReturn(); 2331 TrapCall->setDoesNotThrow(); 2332 Builder.CreateUnreachable(); 2333 Builder.ClearInsertionPoint(); 2334 } 2335 2336 // Loc - where the diagnostic will point, where in the source code this 2337 // alignment has failed. 2338 // SecondaryLoc - if present (will be present if sufficiently different from 2339 // Loc), the diagnostic will additionally point a "Note:" to this location. 2340 // It should be the location where the __attribute__((assume_aligned)) 2341 // was written e.g. 2342 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2343 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2344 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2345 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2346 llvm::Instruction *Assumption) { 2347 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2348 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2349 llvm::Intrinsic::getDeclaration( 2350 Builder.GetInsertBlock()->getParent()->getParent(), 2351 llvm::Intrinsic::assume) && 2352 "Assumption should be a call to llvm.assume()."); 2353 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2354 "Assumption should be the last instruction of the basic block, " 2355 "since the basic block is still being generated."); 2356 2357 if (!SanOpts.has(SanitizerKind::Alignment)) 2358 return; 2359 2360 // Don't check pointers to volatile data. The behavior here is implementation- 2361 // defined. 2362 if (Ty->getPointeeType().isVolatileQualified()) 2363 return; 2364 2365 // We need to temorairly remove the assumption so we can insert the 2366 // sanitizer check before it, else the check will be dropped by optimizations. 2367 Assumption->removeFromParent(); 2368 2369 { 2370 SanitizerScope SanScope(this); 2371 2372 if (!OffsetValue) 2373 OffsetValue = Builder.getInt1(0); // no offset. 2374 2375 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2376 EmitCheckSourceLocation(SecondaryLoc), 2377 EmitCheckTypeDescriptor(Ty)}; 2378 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2379 EmitCheckValue(Alignment), 2380 EmitCheckValue(OffsetValue)}; 2381 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2382 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2383 } 2384 2385 // We are now in the (new, empty) "cont" basic block. 2386 // Reintroduce the assumption. 2387 Builder.Insert(Assumption); 2388 // FIXME: Assumption still has it's original basic block as it's Parent. 2389 } 2390 2391 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2392 if (CGDebugInfo *DI = getDebugInfo()) 2393 return DI->SourceLocToDebugLoc(Location); 2394 2395 return llvm::DebugLoc(); 2396 } 2397