1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
44 /// markers.
45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
46                                       const LangOptions &LangOpts) {
47   if (CGOpts.DisableLifetimeMarkers)
48     return false;
49 
50   // Disable lifetime markers in msan builds.
51   // FIXME: Remove this when msan works with lifetime markers.
52   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
53     return false;
54 
55   // Asan uses markers for use-after-scope checks.
56   if (CGOpts.SanitizeAddressUseAfterScope)
57     return true;
58 
59   // For now, only in optimized builds.
60   return CGOpts.OptimizationLevel != 0;
61 }
62 
63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66               CGBuilderInserterTy(this)),
67       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70   if (!suppressNewContext)
71     CGM.getCXXABI().getMangleContext().startNewFunction();
72 
73   llvm::FastMathFlags FMF;
74   if (CGM.getLangOpts().FastMath)
75     FMF.setFast();
76   if (CGM.getLangOpts().FiniteMathOnly) {
77     FMF.setNoNaNs();
78     FMF.setNoInfs();
79   }
80   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81     FMF.setNoNaNs();
82   }
83   if (CGM.getCodeGenOpts().NoSignedZeros) {
84     FMF.setNoSignedZeros();
85   }
86   if (CGM.getCodeGenOpts().ReciprocalMath) {
87     FMF.setAllowReciprocal();
88   }
89   if (CGM.getCodeGenOpts().Reassociate) {
90     FMF.setAllowReassoc();
91   }
92   Builder.setFastMathFlags(FMF);
93 }
94 
95 CodeGenFunction::~CodeGenFunction() {
96   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
97 
98   // If there are any unclaimed block infos, go ahead and destroy them
99   // now.  This can happen if IR-gen gets clever and skips evaluating
100   // something.
101   if (FirstBlockInfo)
102     destroyBlockInfos(FirstBlockInfo);
103 
104   if (getLangOpts().OpenMP && CurFn)
105     CGM.getOpenMPRuntime().functionFinished(*this);
106 }
107 
108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
109                                                     LValueBaseInfo *BaseInfo,
110                                                     TBAAAccessInfo *TBAAInfo) {
111   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
112                                  /* forPointeeType= */ true);
113 }
114 
115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
116                                                    LValueBaseInfo *BaseInfo,
117                                                    TBAAAccessInfo *TBAAInfo,
118                                                    bool forPointeeType) {
119   if (TBAAInfo)
120     *TBAAInfo = CGM.getTBAAAccessInfo(T);
121 
122   // Honor alignment typedef attributes even on incomplete types.
123   // We also honor them straight for C++ class types, even as pointees;
124   // there's an expressivity gap here.
125   if (auto TT = T->getAs<TypedefType>()) {
126     if (auto Align = TT->getDecl()->getMaxAlignment()) {
127       if (BaseInfo)
128         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
129       return getContext().toCharUnitsFromBits(Align);
130     }
131   }
132 
133   if (BaseInfo)
134     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
135 
136   CharUnits Alignment;
137   if (T->isIncompleteType()) {
138     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
139   } else {
140     // For C++ class pointees, we don't know whether we're pointing at a
141     // base or a complete object, so we generally need to use the
142     // non-virtual alignment.
143     const CXXRecordDecl *RD;
144     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
145       Alignment = CGM.getClassPointerAlignment(RD);
146     } else {
147       Alignment = getContext().getTypeAlignInChars(T);
148       if (T.getQualifiers().hasUnaligned())
149         Alignment = CharUnits::One();
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   LValueBaseInfo BaseInfo;
165   TBAAAccessInfo TBAAInfo;
166   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
167   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
168                           TBAAInfo);
169 }
170 
171 /// Given a value of type T* that may not be to a complete object,
172 /// construct an l-value with the natural pointee alignment of T.
173 LValue
174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
175   LValueBaseInfo BaseInfo;
176   TBAAAccessInfo TBAAInfo;
177   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
178                                             /* forPointeeType= */ true);
179   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
180 }
181 
182 
183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
184   return CGM.getTypes().ConvertTypeForMem(T);
185 }
186 
187 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
188   return CGM.getTypes().ConvertType(T);
189 }
190 
191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
192   type = type.getCanonicalType();
193   while (true) {
194     switch (type->getTypeClass()) {
195 #define TYPE(name, parent)
196 #define ABSTRACT_TYPE(name, parent)
197 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
198 #define DEPENDENT_TYPE(name, parent) case Type::name:
199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
200 #include "clang/AST/TypeNodes.def"
201       llvm_unreachable("non-canonical or dependent type in IR-generation");
202 
203     case Type::Auto:
204     case Type::DeducedTemplateSpecialization:
205       llvm_unreachable("undeduced type in IR-generation");
206 
207     // Various scalar types.
208     case Type::Builtin:
209     case Type::Pointer:
210     case Type::BlockPointer:
211     case Type::LValueReference:
212     case Type::RValueReference:
213     case Type::MemberPointer:
214     case Type::Vector:
215     case Type::ExtVector:
216     case Type::FunctionProto:
217     case Type::FunctionNoProto:
218     case Type::Enum:
219     case Type::ObjCObjectPointer:
220     case Type::Pipe:
221       return TEK_Scalar;
222 
223     // Complexes.
224     case Type::Complex:
225       return TEK_Complex;
226 
227     // Arrays, records, and Objective-C objects.
228     case Type::ConstantArray:
229     case Type::IncompleteArray:
230     case Type::VariableArray:
231     case Type::Record:
232     case Type::ObjCObject:
233     case Type::ObjCInterface:
234       return TEK_Aggregate;
235 
236     // We operate on atomic values according to their underlying type.
237     case Type::Atomic:
238       type = cast<AtomicType>(type)->getValueType();
239       continue;
240     }
241     llvm_unreachable("unknown type kind!");
242   }
243 }
244 
245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
246   // For cleanliness, we try to avoid emitting the return block for
247   // simple cases.
248   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
249 
250   if (CurBB) {
251     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
252 
253     // We have a valid insert point, reuse it if it is empty or there are no
254     // explicit jumps to the return block.
255     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
256       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
257       delete ReturnBlock.getBlock();
258       ReturnBlock = JumpDest();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       ReturnBlock = JumpDest();
279       return Loc;
280     }
281   }
282 
283   // FIXME: We are at an unreachable point, there is no reason to emit the block
284   // unless it has uses. However, we still need a place to put the debug
285   // region.end for now.
286 
287   EmitBlock(ReturnBlock.getBlock());
288   return llvm::DebugLoc();
289 }
290 
291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
292   if (!BB) return;
293   if (!BB->use_empty())
294     return CGF.CurFn->getBasicBlockList().push_back(BB);
295   delete BB;
296 }
297 
298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
299   assert(BreakContinueStack.empty() &&
300          "mismatched push/pop in break/continue stack!");
301 
302   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
303     && NumSimpleReturnExprs == NumReturnExprs
304     && ReturnBlock.getBlock()->use_empty();
305   // Usually the return expression is evaluated before the cleanup
306   // code.  If the function contains only a simple return statement,
307   // such as a constant, the location before the cleanup code becomes
308   // the last useful breakpoint in the function, because the simple
309   // return expression will be evaluated after the cleanup code. To be
310   // safe, set the debug location for cleanup code to the location of
311   // the return statement.  Otherwise the cleanup code should be at the
312   // end of the function's lexical scope.
313   //
314   // If there are multiple branches to the return block, the branch
315   // instructions will get the location of the return statements and
316   // all will be fine.
317   if (CGDebugInfo *DI = getDebugInfo()) {
318     if (OnlySimpleReturnStmts)
319       DI->EmitLocation(Builder, LastStopPoint);
320     else
321       DI->EmitLocation(Builder, EndLoc);
322   }
323 
324   // Pop any cleanups that might have been associated with the
325   // parameters.  Do this in whatever block we're currently in; it's
326   // important to do this before we enter the return block or return
327   // edges will be *really* confused.
328   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
329   bool HasOnlyLifetimeMarkers =
330       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
331   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
332   if (HasCleanups) {
333     // Make sure the line table doesn't jump back into the body for
334     // the ret after it's been at EndLoc.
335     if (CGDebugInfo *DI = getDebugInfo())
336       if (OnlySimpleReturnStmts)
337         DI->EmitLocation(Builder, EndLoc);
338 
339     PopCleanupBlocks(PrologueCleanupDepth);
340   }
341 
342   // Emit function epilog (to return).
343   llvm::DebugLoc Loc = EmitReturnBlock();
344 
345   if (ShouldInstrumentFunction()) {
346     if (CGM.getCodeGenOpts().InstrumentFunctions)
347       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
348     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
349       CurFn->addFnAttr("instrument-function-exit-inlined",
350                        "__cyg_profile_func_exit");
351   }
352 
353   // Emit debug descriptor for function end.
354   if (CGDebugInfo *DI = getDebugInfo())
355     DI->EmitFunctionEnd(Builder, CurFn);
356 
357   // Reset the debug location to that of the simple 'return' expression, if any
358   // rather than that of the end of the function's scope '}'.
359   ApplyDebugLocation AL(*this, Loc);
360   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
361   EmitEndEHSpec(CurCodeDecl);
362 
363   assert(EHStack.empty() &&
364          "did not remove all scopes from cleanup stack!");
365 
366   // If someone did an indirect goto, emit the indirect goto block at the end of
367   // the function.
368   if (IndirectBranch) {
369     EmitBlock(IndirectBranch->getParent());
370     Builder.ClearInsertionPoint();
371   }
372 
373   // If some of our locals escaped, insert a call to llvm.localescape in the
374   // entry block.
375   if (!EscapedLocals.empty()) {
376     // Invert the map from local to index into a simple vector. There should be
377     // no holes.
378     SmallVector<llvm::Value *, 4> EscapeArgs;
379     EscapeArgs.resize(EscapedLocals.size());
380     for (auto &Pair : EscapedLocals)
381       EscapeArgs[Pair.second] = Pair.first;
382     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
383         &CGM.getModule(), llvm::Intrinsic::localescape);
384     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
385   }
386 
387   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
388   llvm::Instruction *Ptr = AllocaInsertPt;
389   AllocaInsertPt = nullptr;
390   Ptr->eraseFromParent();
391 
392   // If someone took the address of a label but never did an indirect goto, we
393   // made a zero entry PHI node, which is illegal, zap it now.
394   if (IndirectBranch) {
395     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
396     if (PN->getNumIncomingValues() == 0) {
397       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
398       PN->eraseFromParent();
399     }
400   }
401 
402   EmitIfUsed(*this, EHResumeBlock);
403   EmitIfUsed(*this, TerminateLandingPad);
404   EmitIfUsed(*this, TerminateHandler);
405   EmitIfUsed(*this, UnreachableBlock);
406 
407   for (const auto &FuncletAndParent : TerminateFunclets)
408     EmitIfUsed(*this, FuncletAndParent.second);
409 
410   if (CGM.getCodeGenOpts().EmitDeclMetadata)
411     EmitDeclMetadata();
412 
413   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
414            I = DeferredReplacements.begin(),
415            E = DeferredReplacements.end();
416        I != E; ++I) {
417     I->first->replaceAllUsesWith(I->second);
418     I->first->eraseFromParent();
419   }
420 
421   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
422   // PHIs if the current function is a coroutine. We don't do it for all
423   // functions as it may result in slight increase in numbers of instructions
424   // if compiled with no optimizations. We do it for coroutine as the lifetime
425   // of CleanupDestSlot alloca make correct coroutine frame building very
426   // difficult.
427   if (NormalCleanupDest.isValid() && isCoroutine()) {
428     llvm::DominatorTree DT(*CurFn);
429     llvm::PromoteMemToReg(
430         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
431     NormalCleanupDest = Address::invalid();
432   }
433 
434   // Scan function arguments for vector width.
435   for (llvm::Argument &A : CurFn->args())
436     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
437       LargestVectorWidth = std::max(LargestVectorWidth,
438                                     VT->getPrimitiveSizeInBits());
439 
440   // Update vector width based on return type.
441   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
442     LargestVectorWidth = std::max(LargestVectorWidth,
443                                   VT->getPrimitiveSizeInBits());
444 
445   // Add the required-vector-width attribute. This contains the max width from:
446   // 1. min-vector-width attribute used in the source program.
447   // 2. Any builtins used that have a vector width specified.
448   // 3. Values passed in and out of inline assembly.
449   // 4. Width of vector arguments and return types for this function.
450   // 5. Width of vector aguments and return types for functions called by this
451   //    function.
452   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
453 
454   // If we generated an unreachable return block, delete it now.
455   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
456     Builder.ClearInsertionPoint();
457     ReturnBlock.getBlock()->eraseFromParent();
458   }
459   if (ReturnValue.isValid()) {
460     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
461     if (RetAlloca && RetAlloca->use_empty()) {
462       RetAlloca->eraseFromParent();
463       ReturnValue = Address::invalid();
464     }
465   }
466 }
467 
468 /// ShouldInstrumentFunction - Return true if the current function should be
469 /// instrumented with __cyg_profile_func_* calls
470 bool CodeGenFunction::ShouldInstrumentFunction() {
471   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
472       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
473       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
474     return false;
475   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
476     return false;
477   return true;
478 }
479 
480 /// ShouldXRayInstrument - Return true if the current function should be
481 /// instrumented with XRay nop sleds.
482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
483   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
484 }
485 
486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
489   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
490          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
491           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
492               XRayInstrKind::Custom);
493 }
494 
495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
496   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
497          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
498           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
499               XRayInstrKind::Typed);
500 }
501 
502 llvm::Constant *
503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
504                                             llvm::Constant *Addr) {
505   // Addresses stored in prologue data can't require run-time fixups and must
506   // be PC-relative. Run-time fixups are undesirable because they necessitate
507   // writable text segments, which are unsafe. And absolute addresses are
508   // undesirable because they break PIE mode.
509 
510   // Add a layer of indirection through a private global. Taking its address
511   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
512   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
513                                       /*isConstant=*/true,
514                                       llvm::GlobalValue::PrivateLinkage, Addr);
515 
516   // Create a PC-relative address.
517   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
518   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
519   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
520   return (IntPtrTy == Int32Ty)
521              ? PCRelAsInt
522              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
523 }
524 
525 llvm::Value *
526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
527                                           llvm::Value *EncodedAddr) {
528   // Reconstruct the address of the global.
529   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
530   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
531   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
532   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
533 
534   // Load the original pointer through the global.
535   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
536                             "decoded_addr");
537 }
538 
539 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
540                                                llvm::Function *Fn)
541 {
542   if (!FD->hasAttr<OpenCLKernelAttr>())
543     return;
544 
545   llvm::LLVMContext &Context = getLLVMContext();
546 
547   CGM.GenOpenCLArgMetadata(Fn, FD, this);
548 
549   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
550     QualType HintQTy = A->getTypeHint();
551     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
552     bool IsSignedInteger =
553         HintQTy->isSignedIntegerType() ||
554         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
555     llvm::Metadata *AttrMDArgs[] = {
556         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
557             CGM.getTypes().ConvertType(A->getTypeHint()))),
558         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559             llvm::IntegerType::get(Context, 32),
560             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
561     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
562   }
563 
564   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
565     llvm::Metadata *AttrMDArgs[] = {
566         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
567         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
568         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
569     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
570   }
571 
572   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
573     llvm::Metadata *AttrMDArgs[] = {
574         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
575         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
576         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
577     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
578   }
579 
580   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
581           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
582     llvm::Metadata *AttrMDArgs[] = {
583         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
584     Fn->setMetadata("intel_reqd_sub_group_size",
585                     llvm::MDNode::get(Context, AttrMDArgs));
586   }
587 }
588 
589 /// Determine whether the function F ends with a return stmt.
590 static bool endsWithReturn(const Decl* F) {
591   const Stmt *Body = nullptr;
592   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
593     Body = FD->getBody();
594   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
595     Body = OMD->getBody();
596 
597   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
598     auto LastStmt = CS->body_rbegin();
599     if (LastStmt != CS->body_rend())
600       return isa<ReturnStmt>(*LastStmt);
601   }
602   return false;
603 }
604 
605 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
606   if (SanOpts.has(SanitizerKind::Thread)) {
607     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
608     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
609   }
610 }
611 
612 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
613   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
614   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
615       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
616       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
617     return false;
618 
619   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
620     return false;
621 
622   if (MD->getNumParams() == 2) {
623     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
624     if (!PT || !PT->isVoidPointerType() ||
625         !PT->getPointeeType().isConstQualified())
626       return false;
627   }
628 
629   return true;
630 }
631 
632 /// Return the UBSan prologue signature for \p FD if one is available.
633 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
634                                             const FunctionDecl *FD) {
635   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
636     if (!MD->isStatic())
637       return nullptr;
638   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
639 }
640 
641 void CodeGenFunction::StartFunction(GlobalDecl GD,
642                                     QualType RetTy,
643                                     llvm::Function *Fn,
644                                     const CGFunctionInfo &FnInfo,
645                                     const FunctionArgList &Args,
646                                     SourceLocation Loc,
647                                     SourceLocation StartLoc) {
648   assert(!CurFn &&
649          "Do not use a CodeGenFunction object for more than one function");
650 
651   const Decl *D = GD.getDecl();
652 
653   DidCallStackSave = false;
654   CurCodeDecl = D;
655   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
656     if (FD->usesSEHTry())
657       CurSEHParent = FD;
658   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
659   FnRetTy = RetTy;
660   CurFn = Fn;
661   CurFnInfo = &FnInfo;
662   assert(CurFn->isDeclaration() && "Function already has body?");
663 
664   // If this function has been blacklisted for any of the enabled sanitizers,
665   // disable the sanitizer for the function.
666   do {
667 #define SANITIZER(NAME, ID)                                                    \
668   if (SanOpts.empty())                                                         \
669     break;                                                                     \
670   if (SanOpts.has(SanitizerKind::ID))                                          \
671     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
672       SanOpts.set(SanitizerKind::ID, false);
673 
674 #include "clang/Basic/Sanitizers.def"
675 #undef SANITIZER
676   } while (0);
677 
678   if (D) {
679     // Apply the no_sanitize* attributes to SanOpts.
680     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
681       SanitizerMask mask = Attr->getMask();
682       SanOpts.Mask &= ~mask;
683       if (mask & SanitizerKind::Address)
684         SanOpts.set(SanitizerKind::KernelAddress, false);
685       if (mask & SanitizerKind::KernelAddress)
686         SanOpts.set(SanitizerKind::Address, false);
687       if (mask & SanitizerKind::HWAddress)
688         SanOpts.set(SanitizerKind::KernelHWAddress, false);
689       if (mask & SanitizerKind::KernelHWAddress)
690         SanOpts.set(SanitizerKind::HWAddress, false);
691     }
692   }
693 
694   // Apply sanitizer attributes to the function.
695   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
696     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
697   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
698     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
699   if (SanOpts.has(SanitizerKind::Thread))
700     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
701   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
702     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
703   if (SanOpts.has(SanitizerKind::SafeStack))
704     Fn->addFnAttr(llvm::Attribute::SafeStack);
705   if (SanOpts.has(SanitizerKind::ShadowCallStack))
706     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
707 
708   // Apply fuzzing attribute to the function.
709   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
710     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
711 
712   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
713   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
714   if (SanOpts.has(SanitizerKind::Thread)) {
715     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
716       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
717       if (OMD->getMethodFamily() == OMF_dealloc ||
718           OMD->getMethodFamily() == OMF_initialize ||
719           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
720         markAsIgnoreThreadCheckingAtRuntime(Fn);
721       }
722     }
723   }
724 
725   // Ignore unrelated casts in STL allocate() since the allocator must cast
726   // from void* to T* before object initialization completes. Don't match on the
727   // namespace because not all allocators are in std::
728   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
729     if (matchesStlAllocatorFn(D, getContext()))
730       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
731   }
732 
733   // Apply xray attributes to the function (as a string, for now)
734   if (D) {
735     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
736       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
737               XRayInstrKind::Function)) {
738         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
739           Fn->addFnAttr("function-instrument", "xray-always");
740         if (XRayAttr->neverXRayInstrument())
741           Fn->addFnAttr("function-instrument", "xray-never");
742         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
743           if (ShouldXRayInstrumentFunction())
744             Fn->addFnAttr("xray-log-args",
745                           llvm::utostr(LogArgs->getArgumentCount()));
746       }
747     } else {
748       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
749         Fn->addFnAttr(
750             "xray-instruction-threshold",
751             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
752     }
753   }
754 
755   // Add no-jump-tables value.
756   Fn->addFnAttr("no-jump-tables",
757                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
758 
759   // Add profile-sample-accurate value.
760   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
761     Fn->addFnAttr("profile-sample-accurate");
762 
763   if (getLangOpts().OpenCL) {
764     // Add metadata for a kernel function.
765     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
766       EmitOpenCLKernelMetadata(FD, Fn);
767   }
768 
769   // If we are checking function types, emit a function type signature as
770   // prologue data.
771   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
772     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
773       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
774         // Remove any (C++17) exception specifications, to allow calling e.g. a
775         // noexcept function through a non-noexcept pointer.
776         auto ProtoTy =
777           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
778                                                         EST_None);
779         llvm::Constant *FTRTTIConst =
780             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
781         llvm::Constant *FTRTTIConstEncoded =
782             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
783         llvm::Constant *PrologueStructElems[] = {PrologueSig,
784                                                  FTRTTIConstEncoded};
785         llvm::Constant *PrologueStructConst =
786             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
787         Fn->setPrologueData(PrologueStructConst);
788       }
789     }
790   }
791 
792   // If we're checking nullability, we need to know whether we can check the
793   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
794   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
795     auto Nullability = FnRetTy->getNullability(getContext());
796     if (Nullability && *Nullability == NullabilityKind::NonNull) {
797       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
798             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
799         RetValNullabilityPrecondition =
800             llvm::ConstantInt::getTrue(getLLVMContext());
801     }
802   }
803 
804   // If we're in C++ mode and the function name is "main", it is guaranteed
805   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
806   // used within a program").
807   if (getLangOpts().CPlusPlus)
808     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
809       if (FD->isMain())
810         Fn->addFnAttr(llvm::Attribute::NoRecurse);
811 
812   // If a custom alignment is used, force realigning to this alignment on
813   // any main function which certainly will need it.
814   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
815     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
816         CGM.getCodeGenOpts().StackAlignment)
817       Fn->addFnAttr("stackrealign");
818 
819   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
820 
821   // Create a marker to make it easy to insert allocas into the entryblock
822   // later.  Don't create this with the builder, because we don't want it
823   // folded.
824   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
825   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
826 
827   ReturnBlock = getJumpDestInCurrentScope("return");
828 
829   Builder.SetInsertPoint(EntryBB);
830 
831   // If we're checking the return value, allocate space for a pointer to a
832   // precise source location of the checked return statement.
833   if (requiresReturnValueCheck()) {
834     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
835     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
836   }
837 
838   // Emit subprogram debug descriptor.
839   if (CGDebugInfo *DI = getDebugInfo()) {
840     // Reconstruct the type from the argument list so that implicit parameters,
841     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
842     // convention.
843     CallingConv CC = CallingConv::CC_C;
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
845       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
846         CC = SrcFnTy->getCallConv();
847     SmallVector<QualType, 16> ArgTypes;
848     for (const VarDecl *VD : Args)
849       ArgTypes.push_back(VD->getType());
850     QualType FnType = getContext().getFunctionType(
851         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
852     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
853                           Builder);
854   }
855 
856   if (ShouldInstrumentFunction()) {
857     if (CGM.getCodeGenOpts().InstrumentFunctions)
858       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
859     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
860       CurFn->addFnAttr("instrument-function-entry-inlined",
861                        "__cyg_profile_func_enter");
862     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
863       CurFn->addFnAttr("instrument-function-entry-inlined",
864                        "__cyg_profile_func_enter_bare");
865   }
866 
867   // Since emitting the mcount call here impacts optimizations such as function
868   // inlining, we just add an attribute to insert a mcount call in backend.
869   // The attribute "counting-function" is set to mcount function name which is
870   // architecture dependent.
871   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
872     // Calls to fentry/mcount should not be generated if function has
873     // the no_instrument_function attribute.
874     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
875       if (CGM.getCodeGenOpts().CallFEntry)
876         Fn->addFnAttr("fentry-call", "true");
877       else {
878         Fn->addFnAttr("instrument-function-entry-inlined",
879                       getTarget().getMCountName());
880       }
881     }
882   }
883 
884   if (RetTy->isVoidType()) {
885     // Void type; nothing to return.
886     ReturnValue = Address::invalid();
887 
888     // Count the implicit return.
889     if (!endsWithReturn(D))
890       ++NumReturnExprs;
891   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
892     // Indirect return; emit returned value directly into sret slot.
893     // This reduces code size, and affects correctness in C++.
894     auto AI = CurFn->arg_begin();
895     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
896       ++AI;
897     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
898     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
899       ReturnValuePointer =
900           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
901       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
902                               ReturnValue.getPointer(), Int8PtrTy),
903                           ReturnValuePointer);
904     }
905   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
906              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
907     // Load the sret pointer from the argument struct and return into that.
908     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
909     llvm::Function::arg_iterator EI = CurFn->arg_end();
910     --EI;
911     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
912     ReturnValuePointer = Address(Addr, getPointerAlign());
913     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
914     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
915   } else {
916     ReturnValue = CreateIRTemp(RetTy, "retval");
917 
918     // Tell the epilog emitter to autorelease the result.  We do this
919     // now so that various specialized functions can suppress it
920     // during their IR-generation.
921     if (getLangOpts().ObjCAutoRefCount &&
922         !CurFnInfo->isReturnsRetained() &&
923         RetTy->isObjCRetainableType())
924       AutoreleaseResult = true;
925   }
926 
927   EmitStartEHSpec(CurCodeDecl);
928 
929   PrologueCleanupDepth = EHStack.stable_begin();
930 
931   // Emit OpenMP specific initialization of the device functions.
932   if (getLangOpts().OpenMP && CurCodeDecl)
933     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
934 
935   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
936 
937   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
938     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
939     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
940     if (MD->getParent()->isLambda() &&
941         MD->getOverloadedOperator() == OO_Call) {
942       // We're in a lambda; figure out the captures.
943       MD->getParent()->getCaptureFields(LambdaCaptureFields,
944                                         LambdaThisCaptureField);
945       if (LambdaThisCaptureField) {
946         // If the lambda captures the object referred to by '*this' - either by
947         // value or by reference, make sure CXXThisValue points to the correct
948         // object.
949 
950         // Get the lvalue for the field (which is a copy of the enclosing object
951         // or contains the address of the enclosing object).
952         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
953         if (!LambdaThisCaptureField->getType()->isPointerType()) {
954           // If the enclosing object was captured by value, just use its address.
955           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
956         } else {
957           // Load the lvalue pointed to by the field, since '*this' was captured
958           // by reference.
959           CXXThisValue =
960               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
961         }
962       }
963       for (auto *FD : MD->getParent()->fields()) {
964         if (FD->hasCapturedVLAType()) {
965           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
966                                            SourceLocation()).getScalarVal();
967           auto VAT = FD->getCapturedVLAType();
968           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
969         }
970       }
971     } else {
972       // Not in a lambda; just use 'this' from the method.
973       // FIXME: Should we generate a new load for each use of 'this'?  The
974       // fast register allocator would be happier...
975       CXXThisValue = CXXABIThisValue;
976     }
977 
978     // Check the 'this' pointer once per function, if it's available.
979     if (CXXABIThisValue) {
980       SanitizerSet SkippedChecks;
981       SkippedChecks.set(SanitizerKind::ObjectSize, true);
982       QualType ThisTy = MD->getThisType();
983 
984       // If this is the call operator of a lambda with no capture-default, it
985       // may have a static invoker function, which may call this operator with
986       // a null 'this' pointer.
987       if (isLambdaCallOperator(MD) &&
988           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
989         SkippedChecks.set(SanitizerKind::Null, true);
990 
991       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
992                                                 : TCK_MemberCall,
993                     Loc, CXXABIThisValue, ThisTy,
994                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
995                     SkippedChecks);
996     }
997   }
998 
999   // If any of the arguments have a variably modified type, make sure to
1000   // emit the type size.
1001   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1002        i != e; ++i) {
1003     const VarDecl *VD = *i;
1004 
1005     // Dig out the type as written from ParmVarDecls; it's unclear whether
1006     // the standard (C99 6.9.1p10) requires this, but we're following the
1007     // precedent set by gcc.
1008     QualType Ty;
1009     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1010       Ty = PVD->getOriginalType();
1011     else
1012       Ty = VD->getType();
1013 
1014     if (Ty->isVariablyModifiedType())
1015       EmitVariablyModifiedType(Ty);
1016   }
1017   // Emit a location at the end of the prologue.
1018   if (CGDebugInfo *DI = getDebugInfo())
1019     DI->EmitLocation(Builder, StartLoc);
1020 
1021   // TODO: Do we need to handle this in two places like we do with
1022   // target-features/target-cpu?
1023   if (CurFuncDecl)
1024     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1025       LargestVectorWidth = VecWidth->getVectorWidth();
1026 }
1027 
1028 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1029   incrementProfileCounter(Body);
1030   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1031     EmitCompoundStmtWithoutScope(*S);
1032   else
1033     EmitStmt(Body);
1034 }
1035 
1036 /// When instrumenting to collect profile data, the counts for some blocks
1037 /// such as switch cases need to not include the fall-through counts, so
1038 /// emit a branch around the instrumentation code. When not instrumenting,
1039 /// this just calls EmitBlock().
1040 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1041                                                const Stmt *S) {
1042   llvm::BasicBlock *SkipCountBB = nullptr;
1043   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1044     // When instrumenting for profiling, the fallthrough to certain
1045     // statements needs to skip over the instrumentation code so that we
1046     // get an accurate count.
1047     SkipCountBB = createBasicBlock("skipcount");
1048     EmitBranch(SkipCountBB);
1049   }
1050   EmitBlock(BB);
1051   uint64_t CurrentCount = getCurrentProfileCount();
1052   incrementProfileCounter(S);
1053   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1054   if (SkipCountBB)
1055     EmitBlock(SkipCountBB);
1056 }
1057 
1058 /// Tries to mark the given function nounwind based on the
1059 /// non-existence of any throwing calls within it.  We believe this is
1060 /// lightweight enough to do at -O0.
1061 static void TryMarkNoThrow(llvm::Function *F) {
1062   // LLVM treats 'nounwind' on a function as part of the type, so we
1063   // can't do this on functions that can be overwritten.
1064   if (F->isInterposable()) return;
1065 
1066   for (llvm::BasicBlock &BB : *F)
1067     for (llvm::Instruction &I : BB)
1068       if (I.mayThrow())
1069         return;
1070 
1071   F->setDoesNotThrow();
1072 }
1073 
1074 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1075                                                FunctionArgList &Args) {
1076   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1077   QualType ResTy = FD->getReturnType();
1078 
1079   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1080   if (MD && MD->isInstance()) {
1081     if (CGM.getCXXABI().HasThisReturn(GD))
1082       ResTy = MD->getThisType();
1083     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1084       ResTy = CGM.getContext().VoidPtrTy;
1085     CGM.getCXXABI().buildThisParam(*this, Args);
1086   }
1087 
1088   // The base version of an inheriting constructor whose constructed base is a
1089   // virtual base is not passed any arguments (because it doesn't actually call
1090   // the inherited constructor).
1091   bool PassedParams = true;
1092   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1093     if (auto Inherited = CD->getInheritedConstructor())
1094       PassedParams =
1095           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1096 
1097   if (PassedParams) {
1098     for (auto *Param : FD->parameters()) {
1099       Args.push_back(Param);
1100       if (!Param->hasAttr<PassObjectSizeAttr>())
1101         continue;
1102 
1103       auto *Implicit = ImplicitParamDecl::Create(
1104           getContext(), Param->getDeclContext(), Param->getLocation(),
1105           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1106       SizeArguments[Param] = Implicit;
1107       Args.push_back(Implicit);
1108     }
1109   }
1110 
1111   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1112     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1113 
1114   return ResTy;
1115 }
1116 
1117 static bool
1118 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1119                                              const ASTContext &Context) {
1120   QualType T = FD->getReturnType();
1121   // Avoid the optimization for functions that return a record type with a
1122   // trivial destructor or another trivially copyable type.
1123   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1124     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1125       return !ClassDecl->hasTrivialDestructor();
1126   }
1127   return !T.isTriviallyCopyableType(Context);
1128 }
1129 
1130 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1131                                    const CGFunctionInfo &FnInfo) {
1132   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1133   CurGD = GD;
1134 
1135   FunctionArgList Args;
1136   QualType ResTy = BuildFunctionArgList(GD, Args);
1137 
1138   // Check if we should generate debug info for this function.
1139   if (FD->hasAttr<NoDebugAttr>())
1140     DebugInfo = nullptr; // disable debug info indefinitely for this function
1141 
1142   // The function might not have a body if we're generating thunks for a
1143   // function declaration.
1144   SourceRange BodyRange;
1145   if (Stmt *Body = FD->getBody())
1146     BodyRange = Body->getSourceRange();
1147   else
1148     BodyRange = FD->getLocation();
1149   CurEHLocation = BodyRange.getEnd();
1150 
1151   // Use the location of the start of the function to determine where
1152   // the function definition is located. By default use the location
1153   // of the declaration as the location for the subprogram. A function
1154   // may lack a declaration in the source code if it is created by code
1155   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1156   SourceLocation Loc = FD->getLocation();
1157 
1158   // If this is a function specialization then use the pattern body
1159   // as the location for the function.
1160   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1161     if (SpecDecl->hasBody(SpecDecl))
1162       Loc = SpecDecl->getLocation();
1163 
1164   Stmt *Body = FD->getBody();
1165 
1166   // Initialize helper which will detect jumps which can cause invalid lifetime
1167   // markers.
1168   if (Body && ShouldEmitLifetimeMarkers)
1169     Bypasses.Init(Body);
1170 
1171   // Emit the standard function prologue.
1172   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1173 
1174   // Generate the body of the function.
1175   PGO.assignRegionCounters(GD, CurFn);
1176   if (isa<CXXDestructorDecl>(FD))
1177     EmitDestructorBody(Args);
1178   else if (isa<CXXConstructorDecl>(FD))
1179     EmitConstructorBody(Args);
1180   else if (getLangOpts().CUDA &&
1181            !getLangOpts().CUDAIsDevice &&
1182            FD->hasAttr<CUDAGlobalAttr>())
1183     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1184   else if (isa<CXXMethodDecl>(FD) &&
1185            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1186     // The lambda static invoker function is special, because it forwards or
1187     // clones the body of the function call operator (but is actually static).
1188     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1189   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1190              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1191               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1192     // Implicit copy-assignment gets the same special treatment as implicit
1193     // copy-constructors.
1194     emitImplicitAssignmentOperatorBody(Args);
1195   } else if (Body) {
1196     EmitFunctionBody(Body);
1197   } else
1198     llvm_unreachable("no definition for emitted function");
1199 
1200   // C++11 [stmt.return]p2:
1201   //   Flowing off the end of a function [...] results in undefined behavior in
1202   //   a value-returning function.
1203   // C11 6.9.1p12:
1204   //   If the '}' that terminates a function is reached, and the value of the
1205   //   function call is used by the caller, the behavior is undefined.
1206   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1207       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1208     bool ShouldEmitUnreachable =
1209         CGM.getCodeGenOpts().StrictReturn ||
1210         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1211     if (SanOpts.has(SanitizerKind::Return)) {
1212       SanitizerScope SanScope(this);
1213       llvm::Value *IsFalse = Builder.getFalse();
1214       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1215                 SanitizerHandler::MissingReturn,
1216                 EmitCheckSourceLocation(FD->getLocation()), None);
1217     } else if (ShouldEmitUnreachable) {
1218       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1219         EmitTrapCall(llvm::Intrinsic::trap);
1220     }
1221     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1222       Builder.CreateUnreachable();
1223       Builder.ClearInsertionPoint();
1224     }
1225   }
1226 
1227   // Emit the standard function epilogue.
1228   FinishFunction(BodyRange.getEnd());
1229 
1230   // If we haven't marked the function nothrow through other means, do
1231   // a quick pass now to see if we can.
1232   if (!CurFn->doesNotThrow())
1233     TryMarkNoThrow(CurFn);
1234 }
1235 
1236 /// ContainsLabel - Return true if the statement contains a label in it.  If
1237 /// this statement is not executed normally, it not containing a label means
1238 /// that we can just remove the code.
1239 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1240   // Null statement, not a label!
1241   if (!S) return false;
1242 
1243   // If this is a label, we have to emit the code, consider something like:
1244   // if (0) {  ...  foo:  bar(); }  goto foo;
1245   //
1246   // TODO: If anyone cared, we could track __label__'s, since we know that you
1247   // can't jump to one from outside their declared region.
1248   if (isa<LabelStmt>(S))
1249     return true;
1250 
1251   // If this is a case/default statement, and we haven't seen a switch, we have
1252   // to emit the code.
1253   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1254     return true;
1255 
1256   // If this is a switch statement, we want to ignore cases below it.
1257   if (isa<SwitchStmt>(S))
1258     IgnoreCaseStmts = true;
1259 
1260   // Scan subexpressions for verboten labels.
1261   for (const Stmt *SubStmt : S->children())
1262     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1263       return true;
1264 
1265   return false;
1266 }
1267 
1268 /// containsBreak - Return true if the statement contains a break out of it.
1269 /// If the statement (recursively) contains a switch or loop with a break
1270 /// inside of it, this is fine.
1271 bool CodeGenFunction::containsBreak(const Stmt *S) {
1272   // Null statement, not a label!
1273   if (!S) return false;
1274 
1275   // If this is a switch or loop that defines its own break scope, then we can
1276   // include it and anything inside of it.
1277   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1278       isa<ForStmt>(S))
1279     return false;
1280 
1281   if (isa<BreakStmt>(S))
1282     return true;
1283 
1284   // Scan subexpressions for verboten breaks.
1285   for (const Stmt *SubStmt : S->children())
1286     if (containsBreak(SubStmt))
1287       return true;
1288 
1289   return false;
1290 }
1291 
1292 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1293   if (!S) return false;
1294 
1295   // Some statement kinds add a scope and thus never add a decl to the current
1296   // scope. Note, this list is longer than the list of statements that might
1297   // have an unscoped decl nested within them, but this way is conservatively
1298   // correct even if more statement kinds are added.
1299   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1300       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1301       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1302       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1303     return false;
1304 
1305   if (isa<DeclStmt>(S))
1306     return true;
1307 
1308   for (const Stmt *SubStmt : S->children())
1309     if (mightAddDeclToScope(SubStmt))
1310       return true;
1311 
1312   return false;
1313 }
1314 
1315 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1316 /// to a constant, or if it does but contains a label, return false.  If it
1317 /// constant folds return true and set the boolean result in Result.
1318 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1319                                                    bool &ResultBool,
1320                                                    bool AllowLabels) {
1321   llvm::APSInt ResultInt;
1322   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1323     return false;
1324 
1325   ResultBool = ResultInt.getBoolValue();
1326   return true;
1327 }
1328 
1329 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1330 /// to a constant, or if it does but contains a label, return false.  If it
1331 /// constant folds return true and set the folded value.
1332 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1333                                                    llvm::APSInt &ResultInt,
1334                                                    bool AllowLabels) {
1335   // FIXME: Rename and handle conversion of other evaluatable things
1336   // to bool.
1337   Expr::EvalResult Result;
1338   if (!Cond->EvaluateAsInt(Result, getContext()))
1339     return false;  // Not foldable, not integer or not fully evaluatable.
1340 
1341   llvm::APSInt Int = Result.Val.getInt();
1342   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1343     return false;  // Contains a label.
1344 
1345   ResultInt = Int;
1346   return true;
1347 }
1348 
1349 
1350 
1351 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1352 /// statement) to the specified blocks.  Based on the condition, this might try
1353 /// to simplify the codegen of the conditional based on the branch.
1354 ///
1355 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1356                                            llvm::BasicBlock *TrueBlock,
1357                                            llvm::BasicBlock *FalseBlock,
1358                                            uint64_t TrueCount) {
1359   Cond = Cond->IgnoreParens();
1360 
1361   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1362 
1363     // Handle X && Y in a condition.
1364     if (CondBOp->getOpcode() == BO_LAnd) {
1365       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1366       // folded if the case was simple enough.
1367       bool ConstantBool = false;
1368       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1369           ConstantBool) {
1370         // br(1 && X) -> br(X).
1371         incrementProfileCounter(CondBOp);
1372         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1373                                     TrueCount);
1374       }
1375 
1376       // If we have "X && 1", simplify the code to use an uncond branch.
1377       // "X && 0" would have been constant folded to 0.
1378       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1379           ConstantBool) {
1380         // br(X && 1) -> br(X).
1381         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1382                                     TrueCount);
1383       }
1384 
1385       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1386       // want to jump to the FalseBlock.
1387       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1388       // The counter tells us how often we evaluate RHS, and all of TrueCount
1389       // can be propagated to that branch.
1390       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1391 
1392       ConditionalEvaluation eval(*this);
1393       {
1394         ApplyDebugLocation DL(*this, Cond);
1395         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1396         EmitBlock(LHSTrue);
1397       }
1398 
1399       incrementProfileCounter(CondBOp);
1400       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1401 
1402       // Any temporaries created here are conditional.
1403       eval.begin(*this);
1404       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1405       eval.end(*this);
1406 
1407       return;
1408     }
1409 
1410     if (CondBOp->getOpcode() == BO_LOr) {
1411       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1412       // folded if the case was simple enough.
1413       bool ConstantBool = false;
1414       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1415           !ConstantBool) {
1416         // br(0 || X) -> br(X).
1417         incrementProfileCounter(CondBOp);
1418         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1419                                     TrueCount);
1420       }
1421 
1422       // If we have "X || 0", simplify the code to use an uncond branch.
1423       // "X || 1" would have been constant folded to 1.
1424       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1425           !ConstantBool) {
1426         // br(X || 0) -> br(X).
1427         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1428                                     TrueCount);
1429       }
1430 
1431       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1432       // want to jump to the TrueBlock.
1433       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1434       // We have the count for entry to the RHS and for the whole expression
1435       // being true, so we can divy up True count between the short circuit and
1436       // the RHS.
1437       uint64_t LHSCount =
1438           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1439       uint64_t RHSCount = TrueCount - LHSCount;
1440 
1441       ConditionalEvaluation eval(*this);
1442       {
1443         ApplyDebugLocation DL(*this, Cond);
1444         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1445         EmitBlock(LHSFalse);
1446       }
1447 
1448       incrementProfileCounter(CondBOp);
1449       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1450 
1451       // Any temporaries created here are conditional.
1452       eval.begin(*this);
1453       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1454 
1455       eval.end(*this);
1456 
1457       return;
1458     }
1459   }
1460 
1461   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1462     // br(!x, t, f) -> br(x, f, t)
1463     if (CondUOp->getOpcode() == UO_LNot) {
1464       // Negate the count.
1465       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1466       // Negate the condition and swap the destination blocks.
1467       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1468                                   FalseCount);
1469     }
1470   }
1471 
1472   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1473     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1474     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1475     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1476 
1477     ConditionalEvaluation cond(*this);
1478     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1479                          getProfileCount(CondOp));
1480 
1481     // When computing PGO branch weights, we only know the overall count for
1482     // the true block. This code is essentially doing tail duplication of the
1483     // naive code-gen, introducing new edges for which counts are not
1484     // available. Divide the counts proportionally between the LHS and RHS of
1485     // the conditional operator.
1486     uint64_t LHSScaledTrueCount = 0;
1487     if (TrueCount) {
1488       double LHSRatio =
1489           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1490       LHSScaledTrueCount = TrueCount * LHSRatio;
1491     }
1492 
1493     cond.begin(*this);
1494     EmitBlock(LHSBlock);
1495     incrementProfileCounter(CondOp);
1496     {
1497       ApplyDebugLocation DL(*this, Cond);
1498       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1499                            LHSScaledTrueCount);
1500     }
1501     cond.end(*this);
1502 
1503     cond.begin(*this);
1504     EmitBlock(RHSBlock);
1505     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1506                          TrueCount - LHSScaledTrueCount);
1507     cond.end(*this);
1508 
1509     return;
1510   }
1511 
1512   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1513     // Conditional operator handling can give us a throw expression as a
1514     // condition for a case like:
1515     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1516     // Fold this to:
1517     //   br(c, throw x, br(y, t, f))
1518     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1519     return;
1520   }
1521 
1522   // If the branch has a condition wrapped by __builtin_unpredictable,
1523   // create metadata that specifies that the branch is unpredictable.
1524   // Don't bother if not optimizing because that metadata would not be used.
1525   llvm::MDNode *Unpredictable = nullptr;
1526   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1527   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1528     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1529     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1530       llvm::MDBuilder MDHelper(getLLVMContext());
1531       Unpredictable = MDHelper.createUnpredictable();
1532     }
1533   }
1534 
1535   // Create branch weights based on the number of times we get here and the
1536   // number of times the condition should be true.
1537   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1538   llvm::MDNode *Weights =
1539       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1540 
1541   // Emit the code with the fully general case.
1542   llvm::Value *CondV;
1543   {
1544     ApplyDebugLocation DL(*this, Cond);
1545     CondV = EvaluateExprAsBool(Cond);
1546   }
1547   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1548 }
1549 
1550 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1551 /// specified stmt yet.
1552 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1553   CGM.ErrorUnsupported(S, Type);
1554 }
1555 
1556 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1557 /// variable-length array whose elements have a non-zero bit-pattern.
1558 ///
1559 /// \param baseType the inner-most element type of the array
1560 /// \param src - a char* pointing to the bit-pattern for a single
1561 /// base element of the array
1562 /// \param sizeInChars - the total size of the VLA, in chars
1563 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1564                                Address dest, Address src,
1565                                llvm::Value *sizeInChars) {
1566   CGBuilderTy &Builder = CGF.Builder;
1567 
1568   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1569   llvm::Value *baseSizeInChars
1570     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1571 
1572   Address begin =
1573     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1574   llvm::Value *end =
1575     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1576 
1577   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1578   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1579   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1580 
1581   // Make a loop over the VLA.  C99 guarantees that the VLA element
1582   // count must be nonzero.
1583   CGF.EmitBlock(loopBB);
1584 
1585   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1586   cur->addIncoming(begin.getPointer(), originBB);
1587 
1588   CharUnits curAlign =
1589     dest.getAlignment().alignmentOfArrayElement(baseSize);
1590 
1591   // memcpy the individual element bit-pattern.
1592   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1593                        /*volatile*/ false);
1594 
1595   // Go to the next element.
1596   llvm::Value *next =
1597     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1598 
1599   // Leave if that's the end of the VLA.
1600   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1601   Builder.CreateCondBr(done, contBB, loopBB);
1602   cur->addIncoming(next, loopBB);
1603 
1604   CGF.EmitBlock(contBB);
1605 }
1606 
1607 void
1608 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1609   // Ignore empty classes in C++.
1610   if (getLangOpts().CPlusPlus) {
1611     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1612       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1613         return;
1614     }
1615   }
1616 
1617   // Cast the dest ptr to the appropriate i8 pointer type.
1618   if (DestPtr.getElementType() != Int8Ty)
1619     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1620 
1621   // Get size and alignment info for this aggregate.
1622   CharUnits size = getContext().getTypeSizeInChars(Ty);
1623 
1624   llvm::Value *SizeVal;
1625   const VariableArrayType *vla;
1626 
1627   // Don't bother emitting a zero-byte memset.
1628   if (size.isZero()) {
1629     // But note that getTypeInfo returns 0 for a VLA.
1630     if (const VariableArrayType *vlaType =
1631           dyn_cast_or_null<VariableArrayType>(
1632                                           getContext().getAsArrayType(Ty))) {
1633       auto VlaSize = getVLASize(vlaType);
1634       SizeVal = VlaSize.NumElts;
1635       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1636       if (!eltSize.isOne())
1637         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1638       vla = vlaType;
1639     } else {
1640       return;
1641     }
1642   } else {
1643     SizeVal = CGM.getSize(size);
1644     vla = nullptr;
1645   }
1646 
1647   // If the type contains a pointer to data member we can't memset it to zero.
1648   // Instead, create a null constant and copy it to the destination.
1649   // TODO: there are other patterns besides zero that we can usefully memset,
1650   // like -1, which happens to be the pattern used by member-pointers.
1651   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1652     // For a VLA, emit a single element, then splat that over the VLA.
1653     if (vla) Ty = getContext().getBaseElementType(vla);
1654 
1655     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1656 
1657     llvm::GlobalVariable *NullVariable =
1658       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1659                                /*isConstant=*/true,
1660                                llvm::GlobalVariable::PrivateLinkage,
1661                                NullConstant, Twine());
1662     CharUnits NullAlign = DestPtr.getAlignment();
1663     NullVariable->setAlignment(NullAlign.getQuantity());
1664     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1665                    NullAlign);
1666 
1667     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1668 
1669     // Get and call the appropriate llvm.memcpy overload.
1670     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1671     return;
1672   }
1673 
1674   // Otherwise, just memset the whole thing to zero.  This is legal
1675   // because in LLVM, all default initializers (other than the ones we just
1676   // handled above) are guaranteed to have a bit pattern of all zeros.
1677   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1678 }
1679 
1680 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1681   // Make sure that there is a block for the indirect goto.
1682   if (!IndirectBranch)
1683     GetIndirectGotoBlock();
1684 
1685   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1686 
1687   // Make sure the indirect branch includes all of the address-taken blocks.
1688   IndirectBranch->addDestination(BB);
1689   return llvm::BlockAddress::get(CurFn, BB);
1690 }
1691 
1692 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1693   // If we already made the indirect branch for indirect goto, return its block.
1694   if (IndirectBranch) return IndirectBranch->getParent();
1695 
1696   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1697 
1698   // Create the PHI node that indirect gotos will add entries to.
1699   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1700                                               "indirect.goto.dest");
1701 
1702   // Create the indirect branch instruction.
1703   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1704   return IndirectBranch->getParent();
1705 }
1706 
1707 /// Computes the length of an array in elements, as well as the base
1708 /// element type and a properly-typed first element pointer.
1709 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1710                                               QualType &baseType,
1711                                               Address &addr) {
1712   const ArrayType *arrayType = origArrayType;
1713 
1714   // If it's a VLA, we have to load the stored size.  Note that
1715   // this is the size of the VLA in bytes, not its size in elements.
1716   llvm::Value *numVLAElements = nullptr;
1717   if (isa<VariableArrayType>(arrayType)) {
1718     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1719 
1720     // Walk into all VLAs.  This doesn't require changes to addr,
1721     // which has type T* where T is the first non-VLA element type.
1722     do {
1723       QualType elementType = arrayType->getElementType();
1724       arrayType = getContext().getAsArrayType(elementType);
1725 
1726       // If we only have VLA components, 'addr' requires no adjustment.
1727       if (!arrayType) {
1728         baseType = elementType;
1729         return numVLAElements;
1730       }
1731     } while (isa<VariableArrayType>(arrayType));
1732 
1733     // We get out here only if we find a constant array type
1734     // inside the VLA.
1735   }
1736 
1737   // We have some number of constant-length arrays, so addr should
1738   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1739   // down to the first element of addr.
1740   SmallVector<llvm::Value*, 8> gepIndices;
1741 
1742   // GEP down to the array type.
1743   llvm::ConstantInt *zero = Builder.getInt32(0);
1744   gepIndices.push_back(zero);
1745 
1746   uint64_t countFromCLAs = 1;
1747   QualType eltType;
1748 
1749   llvm::ArrayType *llvmArrayType =
1750     dyn_cast<llvm::ArrayType>(addr.getElementType());
1751   while (llvmArrayType) {
1752     assert(isa<ConstantArrayType>(arrayType));
1753     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1754              == llvmArrayType->getNumElements());
1755 
1756     gepIndices.push_back(zero);
1757     countFromCLAs *= llvmArrayType->getNumElements();
1758     eltType = arrayType->getElementType();
1759 
1760     llvmArrayType =
1761       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1762     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1763     assert((!llvmArrayType || arrayType) &&
1764            "LLVM and Clang types are out-of-synch");
1765   }
1766 
1767   if (arrayType) {
1768     // From this point onwards, the Clang array type has been emitted
1769     // as some other type (probably a packed struct). Compute the array
1770     // size, and just emit the 'begin' expression as a bitcast.
1771     while (arrayType) {
1772       countFromCLAs *=
1773           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1774       eltType = arrayType->getElementType();
1775       arrayType = getContext().getAsArrayType(eltType);
1776     }
1777 
1778     llvm::Type *baseType = ConvertType(eltType);
1779     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1780   } else {
1781     // Create the actual GEP.
1782     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1783                                              gepIndices, "array.begin"),
1784                    addr.getAlignment());
1785   }
1786 
1787   baseType = eltType;
1788 
1789   llvm::Value *numElements
1790     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1791 
1792   // If we had any VLA dimensions, factor them in.
1793   if (numVLAElements)
1794     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1795 
1796   return numElements;
1797 }
1798 
1799 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1800   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1801   assert(vla && "type was not a variable array type!");
1802   return getVLASize(vla);
1803 }
1804 
1805 CodeGenFunction::VlaSizePair
1806 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1807   // The number of elements so far; always size_t.
1808   llvm::Value *numElements = nullptr;
1809 
1810   QualType elementType;
1811   do {
1812     elementType = type->getElementType();
1813     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1814     assert(vlaSize && "no size for VLA!");
1815     assert(vlaSize->getType() == SizeTy);
1816 
1817     if (!numElements) {
1818       numElements = vlaSize;
1819     } else {
1820       // It's undefined behavior if this wraps around, so mark it that way.
1821       // FIXME: Teach -fsanitize=undefined to trap this.
1822       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1823     }
1824   } while ((type = getContext().getAsVariableArrayType(elementType)));
1825 
1826   return { numElements, elementType };
1827 }
1828 
1829 CodeGenFunction::VlaSizePair
1830 CodeGenFunction::getVLAElements1D(QualType type) {
1831   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1832   assert(vla && "type was not a variable array type!");
1833   return getVLAElements1D(vla);
1834 }
1835 
1836 CodeGenFunction::VlaSizePair
1837 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1838   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1839   assert(VlaSize && "no size for VLA!");
1840   assert(VlaSize->getType() == SizeTy);
1841   return { VlaSize, Vla->getElementType() };
1842 }
1843 
1844 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1845   assert(type->isVariablyModifiedType() &&
1846          "Must pass variably modified type to EmitVLASizes!");
1847 
1848   EnsureInsertPoint();
1849 
1850   // We're going to walk down into the type and look for VLA
1851   // expressions.
1852   do {
1853     assert(type->isVariablyModifiedType());
1854 
1855     const Type *ty = type.getTypePtr();
1856     switch (ty->getTypeClass()) {
1857 
1858 #define TYPE(Class, Base)
1859 #define ABSTRACT_TYPE(Class, Base)
1860 #define NON_CANONICAL_TYPE(Class, Base)
1861 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1862 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1863 #include "clang/AST/TypeNodes.def"
1864       llvm_unreachable("unexpected dependent type!");
1865 
1866     // These types are never variably-modified.
1867     case Type::Builtin:
1868     case Type::Complex:
1869     case Type::Vector:
1870     case Type::ExtVector:
1871     case Type::Record:
1872     case Type::Enum:
1873     case Type::Elaborated:
1874     case Type::TemplateSpecialization:
1875     case Type::ObjCTypeParam:
1876     case Type::ObjCObject:
1877     case Type::ObjCInterface:
1878     case Type::ObjCObjectPointer:
1879       llvm_unreachable("type class is never variably-modified!");
1880 
1881     case Type::Adjusted:
1882       type = cast<AdjustedType>(ty)->getAdjustedType();
1883       break;
1884 
1885     case Type::Decayed:
1886       type = cast<DecayedType>(ty)->getPointeeType();
1887       break;
1888 
1889     case Type::Pointer:
1890       type = cast<PointerType>(ty)->getPointeeType();
1891       break;
1892 
1893     case Type::BlockPointer:
1894       type = cast<BlockPointerType>(ty)->getPointeeType();
1895       break;
1896 
1897     case Type::LValueReference:
1898     case Type::RValueReference:
1899       type = cast<ReferenceType>(ty)->getPointeeType();
1900       break;
1901 
1902     case Type::MemberPointer:
1903       type = cast<MemberPointerType>(ty)->getPointeeType();
1904       break;
1905 
1906     case Type::ConstantArray:
1907     case Type::IncompleteArray:
1908       // Losing element qualification here is fine.
1909       type = cast<ArrayType>(ty)->getElementType();
1910       break;
1911 
1912     case Type::VariableArray: {
1913       // Losing element qualification here is fine.
1914       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1915 
1916       // Unknown size indication requires no size computation.
1917       // Otherwise, evaluate and record it.
1918       if (const Expr *size = vat->getSizeExpr()) {
1919         // It's possible that we might have emitted this already,
1920         // e.g. with a typedef and a pointer to it.
1921         llvm::Value *&entry = VLASizeMap[size];
1922         if (!entry) {
1923           llvm::Value *Size = EmitScalarExpr(size);
1924 
1925           // C11 6.7.6.2p5:
1926           //   If the size is an expression that is not an integer constant
1927           //   expression [...] each time it is evaluated it shall have a value
1928           //   greater than zero.
1929           if (SanOpts.has(SanitizerKind::VLABound) &&
1930               size->getType()->isSignedIntegerType()) {
1931             SanitizerScope SanScope(this);
1932             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1933             llvm::Constant *StaticArgs[] = {
1934                 EmitCheckSourceLocation(size->getBeginLoc()),
1935                 EmitCheckTypeDescriptor(size->getType())};
1936             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1937                                      SanitizerKind::VLABound),
1938                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1939           }
1940 
1941           // Always zexting here would be wrong if it weren't
1942           // undefined behavior to have a negative bound.
1943           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1944         }
1945       }
1946       type = vat->getElementType();
1947       break;
1948     }
1949 
1950     case Type::FunctionProto:
1951     case Type::FunctionNoProto:
1952       type = cast<FunctionType>(ty)->getReturnType();
1953       break;
1954 
1955     case Type::Paren:
1956     case Type::TypeOf:
1957     case Type::UnaryTransform:
1958     case Type::Attributed:
1959     case Type::SubstTemplateTypeParm:
1960     case Type::PackExpansion:
1961     case Type::MacroQualified:
1962       // Keep walking after single level desugaring.
1963       type = type.getSingleStepDesugaredType(getContext());
1964       break;
1965 
1966     case Type::Typedef:
1967     case Type::Decltype:
1968     case Type::Auto:
1969     case Type::DeducedTemplateSpecialization:
1970       // Stop walking: nothing to do.
1971       return;
1972 
1973     case Type::TypeOfExpr:
1974       // Stop walking: emit typeof expression.
1975       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1976       return;
1977 
1978     case Type::Atomic:
1979       type = cast<AtomicType>(ty)->getValueType();
1980       break;
1981 
1982     case Type::Pipe:
1983       type = cast<PipeType>(ty)->getElementType();
1984       break;
1985     }
1986   } while (type->isVariablyModifiedType());
1987 }
1988 
1989 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1990   if (getContext().getBuiltinVaListType()->isArrayType())
1991     return EmitPointerWithAlignment(E);
1992   return EmitLValue(E).getAddress();
1993 }
1994 
1995 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1996   return EmitLValue(E).getAddress();
1997 }
1998 
1999 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2000                                               const APValue &Init) {
2001   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2002   if (CGDebugInfo *Dbg = getDebugInfo())
2003     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2004       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2005 }
2006 
2007 CodeGenFunction::PeepholeProtection
2008 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2009   // At the moment, the only aggressive peephole we do in IR gen
2010   // is trunc(zext) folding, but if we add more, we can easily
2011   // extend this protection.
2012 
2013   if (!rvalue.isScalar()) return PeepholeProtection();
2014   llvm::Value *value = rvalue.getScalarVal();
2015   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2016 
2017   // Just make an extra bitcast.
2018   assert(HaveInsertPoint());
2019   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2020                                                   Builder.GetInsertBlock());
2021 
2022   PeepholeProtection protection;
2023   protection.Inst = inst;
2024   return protection;
2025 }
2026 
2027 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2028   if (!protection.Inst) return;
2029 
2030   // In theory, we could try to duplicate the peepholes now, but whatever.
2031   protection.Inst->eraseFromParent();
2032 }
2033 
2034 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2035                                               QualType Ty, SourceLocation Loc,
2036                                               SourceLocation AssumptionLoc,
2037                                               llvm::Value *Alignment,
2038                                               llvm::Value *OffsetValue) {
2039   llvm::Value *TheCheck;
2040   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2041       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2042   if (SanOpts.has(SanitizerKind::Alignment)) {
2043     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2044                                  OffsetValue, TheCheck, Assumption);
2045   }
2046 }
2047 
2048 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2049                                               QualType Ty, SourceLocation Loc,
2050                                               SourceLocation AssumptionLoc,
2051                                               unsigned Alignment,
2052                                               llvm::Value *OffsetValue) {
2053   llvm::Value *TheCheck;
2054   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2055       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2056   if (SanOpts.has(SanitizerKind::Alignment)) {
2057     llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment);
2058     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal,
2059                                  OffsetValue, TheCheck, Assumption);
2060   }
2061 }
2062 
2063 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2064                                               const Expr *E,
2065                                               SourceLocation AssumptionLoc,
2066                                               unsigned Alignment,
2067                                               llvm::Value *OffsetValue) {
2068   if (auto *CE = dyn_cast<CastExpr>(E))
2069     E = CE->getSubExprAsWritten();
2070   QualType Ty = E->getType();
2071   SourceLocation Loc = E->getExprLoc();
2072 
2073   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2074                           OffsetValue);
2075 }
2076 
2077 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2078                                                  llvm::Value *AnnotatedVal,
2079                                                  StringRef AnnotationStr,
2080                                                  SourceLocation Location) {
2081   llvm::Value *Args[4] = {
2082     AnnotatedVal,
2083     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2084     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2085     CGM.EmitAnnotationLineNo(Location)
2086   };
2087   return Builder.CreateCall(AnnotationFn, Args);
2088 }
2089 
2090 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2091   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2092   // FIXME We create a new bitcast for every annotation because that's what
2093   // llvm-gcc was doing.
2094   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2095     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2096                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2097                        I->getAnnotation(), D->getLocation());
2098 }
2099 
2100 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2101                                               Address Addr) {
2102   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2103   llvm::Value *V = Addr.getPointer();
2104   llvm::Type *VTy = V->getType();
2105   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2106                                     CGM.Int8PtrTy);
2107 
2108   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2109     // FIXME Always emit the cast inst so we can differentiate between
2110     // annotation on the first field of a struct and annotation on the struct
2111     // itself.
2112     if (VTy != CGM.Int8PtrTy)
2113       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2114     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2115     V = Builder.CreateBitCast(V, VTy);
2116   }
2117 
2118   return Address(V, Addr.getAlignment());
2119 }
2120 
2121 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2122 
2123 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2124     : CGF(CGF) {
2125   assert(!CGF->IsSanitizerScope);
2126   CGF->IsSanitizerScope = true;
2127 }
2128 
2129 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2130   CGF->IsSanitizerScope = false;
2131 }
2132 
2133 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2134                                    const llvm::Twine &Name,
2135                                    llvm::BasicBlock *BB,
2136                                    llvm::BasicBlock::iterator InsertPt) const {
2137   LoopStack.InsertHelper(I);
2138   if (IsSanitizerScope)
2139     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2140 }
2141 
2142 void CGBuilderInserter::InsertHelper(
2143     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2144     llvm::BasicBlock::iterator InsertPt) const {
2145   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2146   if (CGF)
2147     CGF->InsertHelper(I, Name, BB, InsertPt);
2148 }
2149 
2150 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2151                                 CodeGenModule &CGM, const FunctionDecl *FD,
2152                                 std::string &FirstMissing) {
2153   // If there aren't any required features listed then go ahead and return.
2154   if (ReqFeatures.empty())
2155     return false;
2156 
2157   // Now build up the set of caller features and verify that all the required
2158   // features are there.
2159   llvm::StringMap<bool> CallerFeatureMap;
2160   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2161 
2162   // If we have at least one of the features in the feature list return
2163   // true, otherwise return false.
2164   return std::all_of(
2165       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2166         SmallVector<StringRef, 1> OrFeatures;
2167         Feature.split(OrFeatures, '|');
2168         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2169           if (!CallerFeatureMap.lookup(Feature)) {
2170             FirstMissing = Feature.str();
2171             return false;
2172           }
2173           return true;
2174         });
2175       });
2176 }
2177 
2178 // Emits an error if we don't have a valid set of target features for the
2179 // called function.
2180 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2181                                           const FunctionDecl *TargetDecl) {
2182   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2183 }
2184 
2185 // Emits an error if we don't have a valid set of target features for the
2186 // called function.
2187 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2188                                           const FunctionDecl *TargetDecl) {
2189   // Early exit if this is an indirect call.
2190   if (!TargetDecl)
2191     return;
2192 
2193   // Get the current enclosing function if it exists. If it doesn't
2194   // we can't check the target features anyhow.
2195   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2196   if (!FD)
2197     return;
2198 
2199   // Grab the required features for the call. For a builtin this is listed in
2200   // the td file with the default cpu, for an always_inline function this is any
2201   // listed cpu and any listed features.
2202   unsigned BuiltinID = TargetDecl->getBuiltinID();
2203   std::string MissingFeature;
2204   if (BuiltinID) {
2205     SmallVector<StringRef, 1> ReqFeatures;
2206     const char *FeatureList =
2207         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2208     // Return if the builtin doesn't have any required features.
2209     if (!FeatureList || StringRef(FeatureList) == "")
2210       return;
2211     StringRef(FeatureList).split(ReqFeatures, ',');
2212     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2213       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2214           << TargetDecl->getDeclName()
2215           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2216 
2217   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2218              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2219     // Get the required features for the callee.
2220 
2221     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2222     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2223 
2224     SmallVector<StringRef, 1> ReqFeatures;
2225     llvm::StringMap<bool> CalleeFeatureMap;
2226     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2227 
2228     for (const auto &F : ParsedAttr.Features) {
2229       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2230         ReqFeatures.push_back(StringRef(F).substr(1));
2231     }
2232 
2233     for (const auto &F : CalleeFeatureMap) {
2234       // Only positive features are "required".
2235       if (F.getValue())
2236         ReqFeatures.push_back(F.getKey());
2237     }
2238     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2239       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2240           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2241   }
2242 }
2243 
2244 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2245   if (!CGM.getCodeGenOpts().SanitizeStats)
2246     return;
2247 
2248   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2249   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2250   CGM.getSanStats().create(IRB, SSK);
2251 }
2252 
2253 llvm::Value *
2254 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2255   llvm::Value *Condition = nullptr;
2256 
2257   if (!RO.Conditions.Architecture.empty())
2258     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2259 
2260   if (!RO.Conditions.Features.empty()) {
2261     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2262     Condition =
2263         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2264   }
2265   return Condition;
2266 }
2267 
2268 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2269                                              llvm::Function *Resolver,
2270                                              CGBuilderTy &Builder,
2271                                              llvm::Function *FuncToReturn,
2272                                              bool SupportsIFunc) {
2273   if (SupportsIFunc) {
2274     Builder.CreateRet(FuncToReturn);
2275     return;
2276   }
2277 
2278   llvm::SmallVector<llvm::Value *, 10> Args;
2279   llvm::for_each(Resolver->args(),
2280                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2281 
2282   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2283   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2284 
2285   if (Resolver->getReturnType()->isVoidTy())
2286     Builder.CreateRetVoid();
2287   else
2288     Builder.CreateRet(Result);
2289 }
2290 
2291 void CodeGenFunction::EmitMultiVersionResolver(
2292     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2293   assert((getContext().getTargetInfo().getTriple().getArch() ==
2294               llvm::Triple::x86 ||
2295           getContext().getTargetInfo().getTriple().getArch() ==
2296               llvm::Triple::x86_64) &&
2297          "Only implemented for x86 targets");
2298 
2299   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2300 
2301   // Main function's basic block.
2302   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2303   Builder.SetInsertPoint(CurBlock);
2304   EmitX86CpuInit();
2305 
2306   for (const MultiVersionResolverOption &RO : Options) {
2307     Builder.SetInsertPoint(CurBlock);
2308     llvm::Value *Condition = FormResolverCondition(RO);
2309 
2310     // The 'default' or 'generic' case.
2311     if (!Condition) {
2312       assert(&RO == Options.end() - 1 &&
2313              "Default or Generic case must be last");
2314       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2315                                        SupportsIFunc);
2316       return;
2317     }
2318 
2319     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2320     CGBuilderTy RetBuilder(*this, RetBlock);
2321     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2322                                      SupportsIFunc);
2323     CurBlock = createBasicBlock("resolver_else", Resolver);
2324     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2325   }
2326 
2327   // If no generic/default, emit an unreachable.
2328   Builder.SetInsertPoint(CurBlock);
2329   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2330   TrapCall->setDoesNotReturn();
2331   TrapCall->setDoesNotThrow();
2332   Builder.CreateUnreachable();
2333   Builder.ClearInsertionPoint();
2334 }
2335 
2336 // Loc - where the diagnostic will point, where in the source code this
2337 //  alignment has failed.
2338 // SecondaryLoc - if present (will be present if sufficiently different from
2339 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2340 //  It should be the location where the __attribute__((assume_aligned))
2341 //  was written e.g.
2342 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2343     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2344     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2345     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2346     llvm::Instruction *Assumption) {
2347   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2348          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2349              llvm::Intrinsic::getDeclaration(
2350                  Builder.GetInsertBlock()->getParent()->getParent(),
2351                  llvm::Intrinsic::assume) &&
2352          "Assumption should be a call to llvm.assume().");
2353   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2354          "Assumption should be the last instruction of the basic block, "
2355          "since the basic block is still being generated.");
2356 
2357   if (!SanOpts.has(SanitizerKind::Alignment))
2358     return;
2359 
2360   // Don't check pointers to volatile data. The behavior here is implementation-
2361   // defined.
2362   if (Ty->getPointeeType().isVolatileQualified())
2363     return;
2364 
2365   // We need to temorairly remove the assumption so we can insert the
2366   // sanitizer check before it, else the check will be dropped by optimizations.
2367   Assumption->removeFromParent();
2368 
2369   {
2370     SanitizerScope SanScope(this);
2371 
2372     if (!OffsetValue)
2373       OffsetValue = Builder.getInt1(0); // no offset.
2374 
2375     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2376                                     EmitCheckSourceLocation(SecondaryLoc),
2377                                     EmitCheckTypeDescriptor(Ty)};
2378     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2379                                   EmitCheckValue(Alignment),
2380                                   EmitCheckValue(OffsetValue)};
2381     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2382               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2383   }
2384 
2385   // We are now in the (new, empty) "cont" basic block.
2386   // Reintroduce the assumption.
2387   Builder.Insert(Assumption);
2388   // FIXME: Assumption still has it's original basic block as it's Parent.
2389 }
2390 
2391 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2392   if (CGDebugInfo *DI = getDebugInfo())
2393     return DI->SourceLocToDebugLoc(Location);
2394 
2395   return llvm::DebugLoc();
2396 }
2397