1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   Builder.setFastMathFlags(FMF);
107 }
108 
109 CodeGenFunction::~CodeGenFunction() {
110   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
111 
112   // If there are any unclaimed block infos, go ahead and destroy them
113   // now.  This can happen if IR-gen gets clever and skips evaluating
114   // something.
115   if (FirstBlockInfo)
116     destroyBlockInfos(FirstBlockInfo);
117 
118   if (getLangOpts().OpenMP && CurFn)
119     CGM.getOpenMPRuntime().functionFinished(*this);
120 }
121 
122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
123                                                     LValueBaseInfo *BaseInfo,
124                                                     TBAAAccessInfo *TBAAInfo) {
125   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
126                                  /* forPointeeType= */ true);
127 }
128 
129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
130                                                    LValueBaseInfo *BaseInfo,
131                                                    TBAAAccessInfo *TBAAInfo,
132                                                    bool forPointeeType) {
133   if (TBAAInfo)
134     *TBAAInfo = CGM.getTBAAAccessInfo(T);
135 
136   // Honor alignment typedef attributes even on incomplete types.
137   // We also honor them straight for C++ class types, even as pointees;
138   // there's an expressivity gap here.
139   if (auto TT = T->getAs<TypedefType>()) {
140     if (auto Align = TT->getDecl()->getMaxAlignment()) {
141       if (BaseInfo)
142         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
143       return getContext().toCharUnitsFromBits(Align);
144     }
145   }
146 
147   if (BaseInfo)
148     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
149 
150   CharUnits Alignment;
151   if (T->isIncompleteType()) {
152     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
153   } else {
154     // For C++ class pointees, we don't know whether we're pointing at a
155     // base or a complete object, so we generally need to use the
156     // non-virtual alignment.
157     const CXXRecordDecl *RD;
158     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
159       Alignment = CGM.getClassPointerAlignment(RD);
160     } else {
161       Alignment = getContext().getTypeAlignInChars(T);
162       if (T.getQualifiers().hasUnaligned())
163         Alignment = CharUnits::One();
164     }
165 
166     // Cap to the global maximum type alignment unless the alignment
167     // was somehow explicit on the type.
168     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
169       if (Alignment.getQuantity() > MaxAlign &&
170           !getContext().isAlignmentRequired(T))
171         Alignment = CharUnits::fromQuantity(MaxAlign);
172     }
173   }
174   return Alignment;
175 }
176 
177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
178   LValueBaseInfo BaseInfo;
179   TBAAAccessInfo TBAAInfo;
180   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
181   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
182                           TBAAInfo);
183 }
184 
185 /// Given a value of type T* that may not be to a complete object,
186 /// construct an l-value with the natural pointee alignment of T.
187 LValue
188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
189   LValueBaseInfo BaseInfo;
190   TBAAAccessInfo TBAAInfo;
191   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
192                                             /* forPointeeType= */ true);
193   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
194 }
195 
196 
197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
198   return CGM.getTypes().ConvertTypeForMem(T);
199 }
200 
201 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
202   return CGM.getTypes().ConvertType(T);
203 }
204 
205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
206   type = type.getCanonicalType();
207   while (true) {
208     switch (type->getTypeClass()) {
209 #define TYPE(name, parent)
210 #define ABSTRACT_TYPE(name, parent)
211 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
212 #define DEPENDENT_TYPE(name, parent) case Type::name:
213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
214 #include "clang/AST/TypeNodes.def"
215       llvm_unreachable("non-canonical or dependent type in IR-generation");
216 
217     case Type::Auto:
218     case Type::DeducedTemplateSpecialization:
219       llvm_unreachable("undeduced type in IR-generation");
220 
221     // Various scalar types.
222     case Type::Builtin:
223     case Type::Pointer:
224     case Type::BlockPointer:
225     case Type::LValueReference:
226     case Type::RValueReference:
227     case Type::MemberPointer:
228     case Type::Vector:
229     case Type::ExtVector:
230     case Type::FunctionProto:
231     case Type::FunctionNoProto:
232     case Type::Enum:
233     case Type::ObjCObjectPointer:
234     case Type::Pipe:
235       return TEK_Scalar;
236 
237     // Complexes.
238     case Type::Complex:
239       return TEK_Complex;
240 
241     // Arrays, records, and Objective-C objects.
242     case Type::ConstantArray:
243     case Type::IncompleteArray:
244     case Type::VariableArray:
245     case Type::Record:
246     case Type::ObjCObject:
247     case Type::ObjCInterface:
248       return TEK_Aggregate;
249 
250     // We operate on atomic values according to their underlying type.
251     case Type::Atomic:
252       type = cast<AtomicType>(type)->getValueType();
253       continue;
254     }
255     llvm_unreachable("unknown type kind!");
256   }
257 }
258 
259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
260   // For cleanliness, we try to avoid emitting the return block for
261   // simple cases.
262   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
263 
264   if (CurBB) {
265     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
266 
267     // We have a valid insert point, reuse it if it is empty or there are no
268     // explicit jumps to the return block.
269     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
270       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
271       delete ReturnBlock.getBlock();
272     } else
273       EmitBlock(ReturnBlock.getBlock());
274     return llvm::DebugLoc();
275   }
276 
277   // Otherwise, if the return block is the target of a single direct
278   // branch then we can just put the code in that block instead. This
279   // cleans up functions which started with a unified return block.
280   if (ReturnBlock.getBlock()->hasOneUse()) {
281     llvm::BranchInst *BI =
282       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
283     if (BI && BI->isUnconditional() &&
284         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
285       // Record/return the DebugLoc of the simple 'return' expression to be used
286       // later by the actual 'ret' instruction.
287       llvm::DebugLoc Loc = BI->getDebugLoc();
288       Builder.SetInsertPoint(BI->getParent());
289       BI->eraseFromParent();
290       delete ReturnBlock.getBlock();
291       return Loc;
292     }
293   }
294 
295   // FIXME: We are at an unreachable point, there is no reason to emit the block
296   // unless it has uses. However, we still need a place to put the debug
297   // region.end for now.
298 
299   EmitBlock(ReturnBlock.getBlock());
300   return llvm::DebugLoc();
301 }
302 
303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
304   if (!BB) return;
305   if (!BB->use_empty())
306     return CGF.CurFn->getBasicBlockList().push_back(BB);
307   delete BB;
308 }
309 
310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
311   assert(BreakContinueStack.empty() &&
312          "mismatched push/pop in break/continue stack!");
313 
314   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
315     && NumSimpleReturnExprs == NumReturnExprs
316     && ReturnBlock.getBlock()->use_empty();
317   // Usually the return expression is evaluated before the cleanup
318   // code.  If the function contains only a simple return statement,
319   // such as a constant, the location before the cleanup code becomes
320   // the last useful breakpoint in the function, because the simple
321   // return expression will be evaluated after the cleanup code. To be
322   // safe, set the debug location for cleanup code to the location of
323   // the return statement.  Otherwise the cleanup code should be at the
324   // end of the function's lexical scope.
325   //
326   // If there are multiple branches to the return block, the branch
327   // instructions will get the location of the return statements and
328   // all will be fine.
329   if (CGDebugInfo *DI = getDebugInfo()) {
330     if (OnlySimpleReturnStmts)
331       DI->EmitLocation(Builder, LastStopPoint);
332     else
333       DI->EmitLocation(Builder, EndLoc);
334   }
335 
336   // Pop any cleanups that might have been associated with the
337   // parameters.  Do this in whatever block we're currently in; it's
338   // important to do this before we enter the return block or return
339   // edges will be *really* confused.
340   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
341   bool HasOnlyLifetimeMarkers =
342       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
343   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
344   if (HasCleanups) {
345     // Make sure the line table doesn't jump back into the body for
346     // the ret after it's been at EndLoc.
347     if (CGDebugInfo *DI = getDebugInfo())
348       if (OnlySimpleReturnStmts)
349         DI->EmitLocation(Builder, EndLoc);
350 
351     PopCleanupBlocks(PrologueCleanupDepth);
352   }
353 
354   // Emit function epilog (to return).
355   llvm::DebugLoc Loc = EmitReturnBlock();
356 
357   if (ShouldInstrumentFunction()) {
358     if (CGM.getCodeGenOpts().InstrumentFunctions)
359       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
360     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
361       CurFn->addFnAttr("instrument-function-exit-inlined",
362                        "__cyg_profile_func_exit");
363   }
364 
365   // Emit debug descriptor for function end.
366   if (CGDebugInfo *DI = getDebugInfo())
367     DI->EmitFunctionEnd(Builder, CurFn);
368 
369   // Reset the debug location to that of the simple 'return' expression, if any
370   // rather than that of the end of the function's scope '}'.
371   ApplyDebugLocation AL(*this, Loc);
372   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
373   EmitEndEHSpec(CurCodeDecl);
374 
375   assert(EHStack.empty() &&
376          "did not remove all scopes from cleanup stack!");
377 
378   // If someone did an indirect goto, emit the indirect goto block at the end of
379   // the function.
380   if (IndirectBranch) {
381     EmitBlock(IndirectBranch->getParent());
382     Builder.ClearInsertionPoint();
383   }
384 
385   // If some of our locals escaped, insert a call to llvm.localescape in the
386   // entry block.
387   if (!EscapedLocals.empty()) {
388     // Invert the map from local to index into a simple vector. There should be
389     // no holes.
390     SmallVector<llvm::Value *, 4> EscapeArgs;
391     EscapeArgs.resize(EscapedLocals.size());
392     for (auto &Pair : EscapedLocals)
393       EscapeArgs[Pair.second] = Pair.first;
394     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
395         &CGM.getModule(), llvm::Intrinsic::localescape);
396     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
397   }
398 
399   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
400   llvm::Instruction *Ptr = AllocaInsertPt;
401   AllocaInsertPt = nullptr;
402   Ptr->eraseFromParent();
403 
404   // If someone took the address of a label but never did an indirect goto, we
405   // made a zero entry PHI node, which is illegal, zap it now.
406   if (IndirectBranch) {
407     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
408     if (PN->getNumIncomingValues() == 0) {
409       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
410       PN->eraseFromParent();
411     }
412   }
413 
414   EmitIfUsed(*this, EHResumeBlock);
415   EmitIfUsed(*this, TerminateLandingPad);
416   EmitIfUsed(*this, TerminateHandler);
417   EmitIfUsed(*this, UnreachableBlock);
418 
419   if (CGM.getCodeGenOpts().EmitDeclMetadata)
420     EmitDeclMetadata();
421 
422   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
423            I = DeferredReplacements.begin(),
424            E = DeferredReplacements.end();
425        I != E; ++I) {
426     I->first->replaceAllUsesWith(I->second);
427     I->first->eraseFromParent();
428   }
429 
430   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
431   // PHIs if the current function is a coroutine. We don't do it for all
432   // functions as it may result in slight increase in numbers of instructions
433   // if compiled with no optimizations. We do it for coroutine as the lifetime
434   // of CleanupDestSlot alloca make correct coroutine frame building very
435   // difficult.
436   if (NormalCleanupDest && isCoroutine()) {
437     llvm::DominatorTree DT(*CurFn);
438     llvm::PromoteMemToReg(NormalCleanupDest, DT);
439     NormalCleanupDest = nullptr;
440   }
441 }
442 
443 /// ShouldInstrumentFunction - Return true if the current function should be
444 /// instrumented with __cyg_profile_func_* calls
445 bool CodeGenFunction::ShouldInstrumentFunction() {
446   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
447       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
448       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
449     return false;
450   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
451     return false;
452   return true;
453 }
454 
455 /// ShouldXRayInstrument - Return true if the current function should be
456 /// instrumented with XRay nop sleds.
457 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
458   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
459 }
460 
461 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
462 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation.
463 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
464   return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents;
465 }
466 
467 llvm::Constant *
468 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
469                                             llvm::Constant *Addr) {
470   // Addresses stored in prologue data can't require run-time fixups and must
471   // be PC-relative. Run-time fixups are undesirable because they necessitate
472   // writable text segments, which are unsafe. And absolute addresses are
473   // undesirable because they break PIE mode.
474 
475   // Add a layer of indirection through a private global. Taking its address
476   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
477   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
478                                       /*isConstant=*/true,
479                                       llvm::GlobalValue::PrivateLinkage, Addr);
480 
481   // Create a PC-relative address.
482   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
483   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
484   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
485   return (IntPtrTy == Int32Ty)
486              ? PCRelAsInt
487              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
488 }
489 
490 llvm::Value *
491 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
492                                           llvm::Value *EncodedAddr) {
493   // Reconstruct the address of the global.
494   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
495   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
496   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
497   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
498 
499   // Load the original pointer through the global.
500   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
501                             "decoded_addr");
502 }
503 
504 static void removeImageAccessQualifier(std::string& TyName) {
505   std::string ReadOnlyQual("__read_only");
506   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
507   if (ReadOnlyPos != std::string::npos)
508     // "+ 1" for the space after access qualifier.
509     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
510   else {
511     std::string WriteOnlyQual("__write_only");
512     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
513     if (WriteOnlyPos != std::string::npos)
514       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
515     else {
516       std::string ReadWriteQual("__read_write");
517       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
518       if (ReadWritePos != std::string::npos)
519         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
520     }
521   }
522 }
523 
524 // Returns the address space id that should be produced to the
525 // kernel_arg_addr_space metadata. This is always fixed to the ids
526 // as specified in the SPIR 2.0 specification in order to differentiate
527 // for example in clGetKernelArgInfo() implementation between the address
528 // spaces with targets without unique mapping to the OpenCL address spaces
529 // (basically all single AS CPUs).
530 static unsigned ArgInfoAddressSpace(LangAS AS) {
531   switch (AS) {
532   case LangAS::opencl_global:   return 1;
533   case LangAS::opencl_constant: return 2;
534   case LangAS::opencl_local:    return 3;
535   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
536   default:
537     return 0; // Assume private.
538   }
539 }
540 
541 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
542 // information in the program executable. The argument information stored
543 // includes the argument name, its type, the address and access qualifiers used.
544 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
545                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
546                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
547   // Create MDNodes that represent the kernel arg metadata.
548   // Each MDNode is a list in the form of "key", N number of values which is
549   // the same number of values as their are kernel arguments.
550 
551   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
552 
553   // MDNode for the kernel argument address space qualifiers.
554   SmallVector<llvm::Metadata *, 8> addressQuals;
555 
556   // MDNode for the kernel argument access qualifiers (images only).
557   SmallVector<llvm::Metadata *, 8> accessQuals;
558 
559   // MDNode for the kernel argument type names.
560   SmallVector<llvm::Metadata *, 8> argTypeNames;
561 
562   // MDNode for the kernel argument base type names.
563   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
564 
565   // MDNode for the kernel argument type qualifiers.
566   SmallVector<llvm::Metadata *, 8> argTypeQuals;
567 
568   // MDNode for the kernel argument names.
569   SmallVector<llvm::Metadata *, 8> argNames;
570 
571   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
572     const ParmVarDecl *parm = FD->getParamDecl(i);
573     QualType ty = parm->getType();
574     std::string typeQuals;
575 
576     if (ty->isPointerType()) {
577       QualType pointeeTy = ty->getPointeeType();
578 
579       // Get address qualifier.
580       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
581         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
582 
583       // Get argument type name.
584       std::string typeName =
585           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
586 
587       // Turn "unsigned type" to "utype"
588       std::string::size_type pos = typeName.find("unsigned");
589       if (pointeeTy.isCanonical() && pos != std::string::npos)
590         typeName.erase(pos+1, 8);
591 
592       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
593 
594       std::string baseTypeName =
595           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
596               Policy) +
597           "*";
598 
599       // Turn "unsigned type" to "utype"
600       pos = baseTypeName.find("unsigned");
601       if (pos != std::string::npos)
602         baseTypeName.erase(pos+1, 8);
603 
604       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
605 
606       // Get argument type qualifiers:
607       if (ty.isRestrictQualified())
608         typeQuals = "restrict";
609       if (pointeeTy.isConstQualified() ||
610           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
611         typeQuals += typeQuals.empty() ? "const" : " const";
612       if (pointeeTy.isVolatileQualified())
613         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
614     } else {
615       uint32_t AddrSpc = 0;
616       bool isPipe = ty->isPipeType();
617       if (ty->isImageType() || isPipe)
618         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
619 
620       addressQuals.push_back(
621           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
622 
623       // Get argument type name.
624       std::string typeName;
625       if (isPipe)
626         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
627                      .getAsString(Policy);
628       else
629         typeName = ty.getUnqualifiedType().getAsString(Policy);
630 
631       // Turn "unsigned type" to "utype"
632       std::string::size_type pos = typeName.find("unsigned");
633       if (ty.isCanonical() && pos != std::string::npos)
634         typeName.erase(pos+1, 8);
635 
636       std::string baseTypeName;
637       if (isPipe)
638         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
639                           ->getElementType().getCanonicalType()
640                           .getAsString(Policy);
641       else
642         baseTypeName =
643           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
644 
645       // Remove access qualifiers on images
646       // (as they are inseparable from type in clang implementation,
647       // but OpenCL spec provides a special query to get access qualifier
648       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
649       if (ty->isImageType()) {
650         removeImageAccessQualifier(typeName);
651         removeImageAccessQualifier(baseTypeName);
652       }
653 
654       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
655 
656       // Turn "unsigned type" to "utype"
657       pos = baseTypeName.find("unsigned");
658       if (pos != std::string::npos)
659         baseTypeName.erase(pos+1, 8);
660 
661       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
662 
663       if (isPipe)
664         typeQuals = "pipe";
665     }
666 
667     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
668 
669     // Get image and pipe access qualifier:
670     if (ty->isImageType()|| ty->isPipeType()) {
671       const Decl *PDecl = parm;
672       if (auto *TD = dyn_cast<TypedefType>(ty))
673         PDecl = TD->getDecl();
674       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
675       if (A && A->isWriteOnly())
676         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
677       else if (A && A->isReadWrite())
678         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
679       else
680         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
681     } else
682       accessQuals.push_back(llvm::MDString::get(Context, "none"));
683 
684     // Get argument name.
685     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
686   }
687 
688   Fn->setMetadata("kernel_arg_addr_space",
689                   llvm::MDNode::get(Context, addressQuals));
690   Fn->setMetadata("kernel_arg_access_qual",
691                   llvm::MDNode::get(Context, accessQuals));
692   Fn->setMetadata("kernel_arg_type",
693                   llvm::MDNode::get(Context, argTypeNames));
694   Fn->setMetadata("kernel_arg_base_type",
695                   llvm::MDNode::get(Context, argBaseTypeNames));
696   Fn->setMetadata("kernel_arg_type_qual",
697                   llvm::MDNode::get(Context, argTypeQuals));
698   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
699     Fn->setMetadata("kernel_arg_name",
700                     llvm::MDNode::get(Context, argNames));
701 }
702 
703 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
704                                                llvm::Function *Fn)
705 {
706   if (!FD->hasAttr<OpenCLKernelAttr>())
707     return;
708 
709   llvm::LLVMContext &Context = getLLVMContext();
710 
711   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
712 
713   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
714     QualType HintQTy = A->getTypeHint();
715     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
716     bool IsSignedInteger =
717         HintQTy->isSignedIntegerType() ||
718         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
719     llvm::Metadata *AttrMDArgs[] = {
720         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
721             CGM.getTypes().ConvertType(A->getTypeHint()))),
722         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
723             llvm::IntegerType::get(Context, 32),
724             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
725     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
726   }
727 
728   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
729     llvm::Metadata *AttrMDArgs[] = {
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
731         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
732         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
733     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
734   }
735 
736   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
737     llvm::Metadata *AttrMDArgs[] = {
738         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
739         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
740         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
741     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
742   }
743 
744   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
745           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
746     llvm::Metadata *AttrMDArgs[] = {
747         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
748     Fn->setMetadata("intel_reqd_sub_group_size",
749                     llvm::MDNode::get(Context, AttrMDArgs));
750   }
751 }
752 
753 /// Determine whether the function F ends with a return stmt.
754 static bool endsWithReturn(const Decl* F) {
755   const Stmt *Body = nullptr;
756   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
757     Body = FD->getBody();
758   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
759     Body = OMD->getBody();
760 
761   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
762     auto LastStmt = CS->body_rbegin();
763     if (LastStmt != CS->body_rend())
764       return isa<ReturnStmt>(*LastStmt);
765   }
766   return false;
767 }
768 
769 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
770   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
771   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
772 }
773 
774 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
775   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
776   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
777       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
778       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
779     return false;
780 
781   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
782     return false;
783 
784   if (MD->getNumParams() == 2) {
785     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
786     if (!PT || !PT->isVoidPointerType() ||
787         !PT->getPointeeType().isConstQualified())
788       return false;
789   }
790 
791   return true;
792 }
793 
794 /// Return the UBSan prologue signature for \p FD if one is available.
795 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
796                                             const FunctionDecl *FD) {
797   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
798     if (!MD->isStatic())
799       return nullptr;
800   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
801 }
802 
803 void CodeGenFunction::StartFunction(GlobalDecl GD,
804                                     QualType RetTy,
805                                     llvm::Function *Fn,
806                                     const CGFunctionInfo &FnInfo,
807                                     const FunctionArgList &Args,
808                                     SourceLocation Loc,
809                                     SourceLocation StartLoc) {
810   assert(!CurFn &&
811          "Do not use a CodeGenFunction object for more than one function");
812 
813   const Decl *D = GD.getDecl();
814 
815   DidCallStackSave = false;
816   CurCodeDecl = D;
817   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
818     if (FD->usesSEHTry())
819       CurSEHParent = FD;
820   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
821   FnRetTy = RetTy;
822   CurFn = Fn;
823   CurFnInfo = &FnInfo;
824   assert(CurFn->isDeclaration() && "Function already has body?");
825 
826   // If this function has been blacklisted for any of the enabled sanitizers,
827   // disable the sanitizer for the function.
828   do {
829 #define SANITIZER(NAME, ID)                                                    \
830   if (SanOpts.empty())                                                         \
831     break;                                                                     \
832   if (SanOpts.has(SanitizerKind::ID))                                          \
833     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
834       SanOpts.set(SanitizerKind::ID, false);
835 
836 #include "clang/Basic/Sanitizers.def"
837 #undef SANITIZER
838   } while (0);
839 
840   if (D) {
841     // Apply the no_sanitize* attributes to SanOpts.
842     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
843       SanOpts.Mask &= ~Attr->getMask();
844   }
845 
846   // Apply sanitizer attributes to the function.
847   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
848     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
849   if (SanOpts.has(SanitizerKind::Thread))
850     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
851   if (SanOpts.has(SanitizerKind::Memory))
852     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
853   if (SanOpts.has(SanitizerKind::SafeStack))
854     Fn->addFnAttr(llvm::Attribute::SafeStack);
855 
856   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
857   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
858   if (SanOpts.has(SanitizerKind::Thread)) {
859     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
860       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
861       if (OMD->getMethodFamily() == OMF_dealloc ||
862           OMD->getMethodFamily() == OMF_initialize ||
863           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
864         markAsIgnoreThreadCheckingAtRuntime(Fn);
865       }
866     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
867       IdentifierInfo *II = FD->getIdentifier();
868       if (II && II->isStr("__destroy_helper_block_"))
869         markAsIgnoreThreadCheckingAtRuntime(Fn);
870     }
871   }
872 
873   // Ignore unrelated casts in STL allocate() since the allocator must cast
874   // from void* to T* before object initialization completes. Don't match on the
875   // namespace because not all allocators are in std::
876   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
877     if (matchesStlAllocatorFn(D, getContext()))
878       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
879   }
880 
881   // Apply xray attributes to the function (as a string, for now)
882   if (D && ShouldXRayInstrumentFunction()) {
883     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
884       if (XRayAttr->alwaysXRayInstrument())
885         Fn->addFnAttr("function-instrument", "xray-always");
886       if (XRayAttr->neverXRayInstrument())
887         Fn->addFnAttr("function-instrument", "xray-never");
888       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
889         Fn->addFnAttr("xray-log-args",
890                       llvm::utostr(LogArgs->getArgumentCount()));
891       }
892     } else {
893       if (!CGM.imbueXRayAttrs(Fn, Loc))
894         Fn->addFnAttr(
895             "xray-instruction-threshold",
896             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
897     }
898   }
899 
900   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
901     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
902       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
903 
904   // Add no-jump-tables value.
905   Fn->addFnAttr("no-jump-tables",
906                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
907 
908   // Add profile-sample-accurate value.
909   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
910     Fn->addFnAttr("profile-sample-accurate");
911 
912   if (getLangOpts().OpenCL) {
913     // Add metadata for a kernel function.
914     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
915       EmitOpenCLKernelMetadata(FD, Fn);
916   }
917 
918   // If we are checking function types, emit a function type signature as
919   // prologue data.
920   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
921     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
922       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
923         llvm::Constant *FTRTTIConst =
924             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
925         llvm::Constant *FTRTTIConstEncoded =
926             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
927         llvm::Constant *PrologueStructElems[] = {PrologueSig,
928                                                  FTRTTIConstEncoded};
929         llvm::Constant *PrologueStructConst =
930             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
931         Fn->setPrologueData(PrologueStructConst);
932       }
933     }
934   }
935 
936   // If we're checking nullability, we need to know whether we can check the
937   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
938   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
939     auto Nullability = FnRetTy->getNullability(getContext());
940     if (Nullability && *Nullability == NullabilityKind::NonNull) {
941       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
942             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
943         RetValNullabilityPrecondition =
944             llvm::ConstantInt::getTrue(getLLVMContext());
945     }
946   }
947 
948   // If we're in C++ mode and the function name is "main", it is guaranteed
949   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
950   // used within a program").
951   if (getLangOpts().CPlusPlus)
952     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
953       if (FD->isMain())
954         Fn->addFnAttr(llvm::Attribute::NoRecurse);
955 
956   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
957 
958   // Create a marker to make it easy to insert allocas into the entryblock
959   // later.  Don't create this with the builder, because we don't want it
960   // folded.
961   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
962   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
963 
964   ReturnBlock = getJumpDestInCurrentScope("return");
965 
966   Builder.SetInsertPoint(EntryBB);
967 
968   // If we're checking the return value, allocate space for a pointer to a
969   // precise source location of the checked return statement.
970   if (requiresReturnValueCheck()) {
971     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
972     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
973   }
974 
975   // Emit subprogram debug descriptor.
976   if (CGDebugInfo *DI = getDebugInfo()) {
977     // Reconstruct the type from the argument list so that implicit parameters,
978     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
979     // convention.
980     CallingConv CC = CallingConv::CC_C;
981     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
982       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
983         CC = SrcFnTy->getCallConv();
984     SmallVector<QualType, 16> ArgTypes;
985     for (const VarDecl *VD : Args)
986       ArgTypes.push_back(VD->getType());
987     QualType FnType = getContext().getFunctionType(
988         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
989     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
990   }
991 
992   if (ShouldInstrumentFunction()) {
993     if (CGM.getCodeGenOpts().InstrumentFunctions)
994       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
995     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
996       CurFn->addFnAttr("instrument-function-entry-inlined",
997                        "__cyg_profile_func_enter");
998     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
999       CurFn->addFnAttr("instrument-function-entry-inlined",
1000                        "__cyg_profile_func_enter_bare");
1001   }
1002 
1003   // Since emitting the mcount call here impacts optimizations such as function
1004   // inlining, we just add an attribute to insert a mcount call in backend.
1005   // The attribute "counting-function" is set to mcount function name which is
1006   // architecture dependent.
1007   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1008     if (CGM.getCodeGenOpts().CallFEntry)
1009       Fn->addFnAttr("fentry-call", "true");
1010     else {
1011       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1012         Fn->addFnAttr("instrument-function-entry-inlined",
1013                       getTarget().getMCountName());
1014       }
1015     }
1016   }
1017 
1018   if (RetTy->isVoidType()) {
1019     // Void type; nothing to return.
1020     ReturnValue = Address::invalid();
1021 
1022     // Count the implicit return.
1023     if (!endsWithReturn(D))
1024       ++NumReturnExprs;
1025   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1026              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1027     // Indirect aggregate return; emit returned value directly into sret slot.
1028     // This reduces code size, and affects correctness in C++.
1029     auto AI = CurFn->arg_begin();
1030     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1031       ++AI;
1032     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1033   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1034              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1035     // Load the sret pointer from the argument struct and return into that.
1036     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1037     llvm::Function::arg_iterator EI = CurFn->arg_end();
1038     --EI;
1039     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1040     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1041     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1042   } else {
1043     ReturnValue = CreateIRTemp(RetTy, "retval");
1044 
1045     // Tell the epilog emitter to autorelease the result.  We do this
1046     // now so that various specialized functions can suppress it
1047     // during their IR-generation.
1048     if (getLangOpts().ObjCAutoRefCount &&
1049         !CurFnInfo->isReturnsRetained() &&
1050         RetTy->isObjCRetainableType())
1051       AutoreleaseResult = true;
1052   }
1053 
1054   EmitStartEHSpec(CurCodeDecl);
1055 
1056   PrologueCleanupDepth = EHStack.stable_begin();
1057   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1058 
1059   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1060     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1061     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1062     if (MD->getParent()->isLambda() &&
1063         MD->getOverloadedOperator() == OO_Call) {
1064       // We're in a lambda; figure out the captures.
1065       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1066                                         LambdaThisCaptureField);
1067       if (LambdaThisCaptureField) {
1068         // If the lambda captures the object referred to by '*this' - either by
1069         // value or by reference, make sure CXXThisValue points to the correct
1070         // object.
1071 
1072         // Get the lvalue for the field (which is a copy of the enclosing object
1073         // or contains the address of the enclosing object).
1074         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1075         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1076           // If the enclosing object was captured by value, just use its address.
1077           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1078         } else {
1079           // Load the lvalue pointed to by the field, since '*this' was captured
1080           // by reference.
1081           CXXThisValue =
1082               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1083         }
1084       }
1085       for (auto *FD : MD->getParent()->fields()) {
1086         if (FD->hasCapturedVLAType()) {
1087           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1088                                            SourceLocation()).getScalarVal();
1089           auto VAT = FD->getCapturedVLAType();
1090           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1091         }
1092       }
1093     } else {
1094       // Not in a lambda; just use 'this' from the method.
1095       // FIXME: Should we generate a new load for each use of 'this'?  The
1096       // fast register allocator would be happier...
1097       CXXThisValue = CXXABIThisValue;
1098     }
1099 
1100     // Check the 'this' pointer once per function, if it's available.
1101     if (CXXABIThisValue) {
1102       SanitizerSet SkippedChecks;
1103       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1104       QualType ThisTy = MD->getThisType(getContext());
1105 
1106       // If this is the call operator of a lambda with no capture-default, it
1107       // may have a static invoker function, which may call this operator with
1108       // a null 'this' pointer.
1109       if (isLambdaCallOperator(MD) &&
1110           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1111               LCD_None)
1112         SkippedChecks.set(SanitizerKind::Null, true);
1113 
1114       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1115                                                 : TCK_MemberCall,
1116                     Loc, CXXABIThisValue, ThisTy,
1117                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1118                     SkippedChecks);
1119     }
1120   }
1121 
1122   // If any of the arguments have a variably modified type, make sure to
1123   // emit the type size.
1124   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1125        i != e; ++i) {
1126     const VarDecl *VD = *i;
1127 
1128     // Dig out the type as written from ParmVarDecls; it's unclear whether
1129     // the standard (C99 6.9.1p10) requires this, but we're following the
1130     // precedent set by gcc.
1131     QualType Ty;
1132     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1133       Ty = PVD->getOriginalType();
1134     else
1135       Ty = VD->getType();
1136 
1137     if (Ty->isVariablyModifiedType())
1138       EmitVariablyModifiedType(Ty);
1139   }
1140   // Emit a location at the end of the prologue.
1141   if (CGDebugInfo *DI = getDebugInfo())
1142     DI->EmitLocation(Builder, StartLoc);
1143 }
1144 
1145 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1146                                        const Stmt *Body) {
1147   incrementProfileCounter(Body);
1148   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1149     EmitCompoundStmtWithoutScope(*S);
1150   else
1151     EmitStmt(Body);
1152 }
1153 
1154 /// When instrumenting to collect profile data, the counts for some blocks
1155 /// such as switch cases need to not include the fall-through counts, so
1156 /// emit a branch around the instrumentation code. When not instrumenting,
1157 /// this just calls EmitBlock().
1158 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1159                                                const Stmt *S) {
1160   llvm::BasicBlock *SkipCountBB = nullptr;
1161   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1162     // When instrumenting for profiling, the fallthrough to certain
1163     // statements needs to skip over the instrumentation code so that we
1164     // get an accurate count.
1165     SkipCountBB = createBasicBlock("skipcount");
1166     EmitBranch(SkipCountBB);
1167   }
1168   EmitBlock(BB);
1169   uint64_t CurrentCount = getCurrentProfileCount();
1170   incrementProfileCounter(S);
1171   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1172   if (SkipCountBB)
1173     EmitBlock(SkipCountBB);
1174 }
1175 
1176 /// Tries to mark the given function nounwind based on the
1177 /// non-existence of any throwing calls within it.  We believe this is
1178 /// lightweight enough to do at -O0.
1179 static void TryMarkNoThrow(llvm::Function *F) {
1180   // LLVM treats 'nounwind' on a function as part of the type, so we
1181   // can't do this on functions that can be overwritten.
1182   if (F->isInterposable()) return;
1183 
1184   for (llvm::BasicBlock &BB : *F)
1185     for (llvm::Instruction &I : BB)
1186       if (I.mayThrow())
1187         return;
1188 
1189   F->setDoesNotThrow();
1190 }
1191 
1192 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1193                                                FunctionArgList &Args) {
1194   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1195   QualType ResTy = FD->getReturnType();
1196 
1197   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1198   if (MD && MD->isInstance()) {
1199     if (CGM.getCXXABI().HasThisReturn(GD))
1200       ResTy = MD->getThisType(getContext());
1201     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1202       ResTy = CGM.getContext().VoidPtrTy;
1203     CGM.getCXXABI().buildThisParam(*this, Args);
1204   }
1205 
1206   // The base version of an inheriting constructor whose constructed base is a
1207   // virtual base is not passed any arguments (because it doesn't actually call
1208   // the inherited constructor).
1209   bool PassedParams = true;
1210   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1211     if (auto Inherited = CD->getInheritedConstructor())
1212       PassedParams =
1213           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1214 
1215   if (PassedParams) {
1216     for (auto *Param : FD->parameters()) {
1217       Args.push_back(Param);
1218       if (!Param->hasAttr<PassObjectSizeAttr>())
1219         continue;
1220 
1221       auto *Implicit = ImplicitParamDecl::Create(
1222           getContext(), Param->getDeclContext(), Param->getLocation(),
1223           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1224       SizeArguments[Param] = Implicit;
1225       Args.push_back(Implicit);
1226     }
1227   }
1228 
1229   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1230     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1231 
1232   return ResTy;
1233 }
1234 
1235 static bool
1236 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1237                                              const ASTContext &Context) {
1238   QualType T = FD->getReturnType();
1239   // Avoid the optimization for functions that return a record type with a
1240   // trivial destructor or another trivially copyable type.
1241   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1242     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1243       return !ClassDecl->hasTrivialDestructor();
1244   }
1245   return !T.isTriviallyCopyableType(Context);
1246 }
1247 
1248 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1249                                    const CGFunctionInfo &FnInfo) {
1250   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1251   CurGD = GD;
1252 
1253   FunctionArgList Args;
1254   QualType ResTy = BuildFunctionArgList(GD, Args);
1255 
1256   // Check if we should generate debug info for this function.
1257   if (FD->hasAttr<NoDebugAttr>())
1258     DebugInfo = nullptr; // disable debug info indefinitely for this function
1259 
1260   // The function might not have a body if we're generating thunks for a
1261   // function declaration.
1262   SourceRange BodyRange;
1263   if (Stmt *Body = FD->getBody())
1264     BodyRange = Body->getSourceRange();
1265   else
1266     BodyRange = FD->getLocation();
1267   CurEHLocation = BodyRange.getEnd();
1268 
1269   // Use the location of the start of the function to determine where
1270   // the function definition is located. By default use the location
1271   // of the declaration as the location for the subprogram. A function
1272   // may lack a declaration in the source code if it is created by code
1273   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1274   SourceLocation Loc = FD->getLocation();
1275 
1276   // If this is a function specialization then use the pattern body
1277   // as the location for the function.
1278   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1279     if (SpecDecl->hasBody(SpecDecl))
1280       Loc = SpecDecl->getLocation();
1281 
1282   Stmt *Body = FD->getBody();
1283 
1284   // Initialize helper which will detect jumps which can cause invalid lifetime
1285   // markers.
1286   if (Body && ShouldEmitLifetimeMarkers)
1287     Bypasses.Init(Body);
1288 
1289   // Emit the standard function prologue.
1290   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1291 
1292   // Generate the body of the function.
1293   PGO.assignRegionCounters(GD, CurFn);
1294   if (isa<CXXDestructorDecl>(FD))
1295     EmitDestructorBody(Args);
1296   else if (isa<CXXConstructorDecl>(FD))
1297     EmitConstructorBody(Args);
1298   else if (getLangOpts().CUDA &&
1299            !getLangOpts().CUDAIsDevice &&
1300            FD->hasAttr<CUDAGlobalAttr>())
1301     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1302   else if (isa<CXXMethodDecl>(FD) &&
1303            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1304     // The lambda static invoker function is special, because it forwards or
1305     // clones the body of the function call operator (but is actually static).
1306     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1307   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1308              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1309               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1310     // Implicit copy-assignment gets the same special treatment as implicit
1311     // copy-constructors.
1312     emitImplicitAssignmentOperatorBody(Args);
1313   } else if (Body) {
1314     EmitFunctionBody(Args, Body);
1315   } else
1316     llvm_unreachable("no definition for emitted function");
1317 
1318   // C++11 [stmt.return]p2:
1319   //   Flowing off the end of a function [...] results in undefined behavior in
1320   //   a value-returning function.
1321   // C11 6.9.1p12:
1322   //   If the '}' that terminates a function is reached, and the value of the
1323   //   function call is used by the caller, the behavior is undefined.
1324   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1325       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1326     bool ShouldEmitUnreachable =
1327         CGM.getCodeGenOpts().StrictReturn ||
1328         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1329     if (SanOpts.has(SanitizerKind::Return)) {
1330       SanitizerScope SanScope(this);
1331       llvm::Value *IsFalse = Builder.getFalse();
1332       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1333                 SanitizerHandler::MissingReturn,
1334                 EmitCheckSourceLocation(FD->getLocation()), None);
1335     } else if (ShouldEmitUnreachable) {
1336       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1337         EmitTrapCall(llvm::Intrinsic::trap);
1338     }
1339     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1340       Builder.CreateUnreachable();
1341       Builder.ClearInsertionPoint();
1342     }
1343   }
1344 
1345   // Emit the standard function epilogue.
1346   FinishFunction(BodyRange.getEnd());
1347 
1348   // If we haven't marked the function nothrow through other means, do
1349   // a quick pass now to see if we can.
1350   if (!CurFn->doesNotThrow())
1351     TryMarkNoThrow(CurFn);
1352 }
1353 
1354 /// ContainsLabel - Return true if the statement contains a label in it.  If
1355 /// this statement is not executed normally, it not containing a label means
1356 /// that we can just remove the code.
1357 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1358   // Null statement, not a label!
1359   if (!S) return false;
1360 
1361   // If this is a label, we have to emit the code, consider something like:
1362   // if (0) {  ...  foo:  bar(); }  goto foo;
1363   //
1364   // TODO: If anyone cared, we could track __label__'s, since we know that you
1365   // can't jump to one from outside their declared region.
1366   if (isa<LabelStmt>(S))
1367     return true;
1368 
1369   // If this is a case/default statement, and we haven't seen a switch, we have
1370   // to emit the code.
1371   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1372     return true;
1373 
1374   // If this is a switch statement, we want to ignore cases below it.
1375   if (isa<SwitchStmt>(S))
1376     IgnoreCaseStmts = true;
1377 
1378   // Scan subexpressions for verboten labels.
1379   for (const Stmt *SubStmt : S->children())
1380     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1381       return true;
1382 
1383   return false;
1384 }
1385 
1386 /// containsBreak - Return true if the statement contains a break out of it.
1387 /// If the statement (recursively) contains a switch or loop with a break
1388 /// inside of it, this is fine.
1389 bool CodeGenFunction::containsBreak(const Stmt *S) {
1390   // Null statement, not a label!
1391   if (!S) return false;
1392 
1393   // If this is a switch or loop that defines its own break scope, then we can
1394   // include it and anything inside of it.
1395   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1396       isa<ForStmt>(S))
1397     return false;
1398 
1399   if (isa<BreakStmt>(S))
1400     return true;
1401 
1402   // Scan subexpressions for verboten breaks.
1403   for (const Stmt *SubStmt : S->children())
1404     if (containsBreak(SubStmt))
1405       return true;
1406 
1407   return false;
1408 }
1409 
1410 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1411   if (!S) return false;
1412 
1413   // Some statement kinds add a scope and thus never add a decl to the current
1414   // scope. Note, this list is longer than the list of statements that might
1415   // have an unscoped decl nested within them, but this way is conservatively
1416   // correct even if more statement kinds are added.
1417   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1418       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1419       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1420       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1421     return false;
1422 
1423   if (isa<DeclStmt>(S))
1424     return true;
1425 
1426   for (const Stmt *SubStmt : S->children())
1427     if (mightAddDeclToScope(SubStmt))
1428       return true;
1429 
1430   return false;
1431 }
1432 
1433 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1434 /// to a constant, or if it does but contains a label, return false.  If it
1435 /// constant folds return true and set the boolean result in Result.
1436 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1437                                                    bool &ResultBool,
1438                                                    bool AllowLabels) {
1439   llvm::APSInt ResultInt;
1440   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1441     return false;
1442 
1443   ResultBool = ResultInt.getBoolValue();
1444   return true;
1445 }
1446 
1447 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1448 /// to a constant, or if it does but contains a label, return false.  If it
1449 /// constant folds return true and set the folded value.
1450 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1451                                                    llvm::APSInt &ResultInt,
1452                                                    bool AllowLabels) {
1453   // FIXME: Rename and handle conversion of other evaluatable things
1454   // to bool.
1455   llvm::APSInt Int;
1456   if (!Cond->EvaluateAsInt(Int, getContext()))
1457     return false;  // Not foldable, not integer or not fully evaluatable.
1458 
1459   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1460     return false;  // Contains a label.
1461 
1462   ResultInt = Int;
1463   return true;
1464 }
1465 
1466 
1467 
1468 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1469 /// statement) to the specified blocks.  Based on the condition, this might try
1470 /// to simplify the codegen of the conditional based on the branch.
1471 ///
1472 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1473                                            llvm::BasicBlock *TrueBlock,
1474                                            llvm::BasicBlock *FalseBlock,
1475                                            uint64_t TrueCount) {
1476   Cond = Cond->IgnoreParens();
1477 
1478   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1479 
1480     // Handle X && Y in a condition.
1481     if (CondBOp->getOpcode() == BO_LAnd) {
1482       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1483       // folded if the case was simple enough.
1484       bool ConstantBool = false;
1485       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1486           ConstantBool) {
1487         // br(1 && X) -> br(X).
1488         incrementProfileCounter(CondBOp);
1489         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1490                                     TrueCount);
1491       }
1492 
1493       // If we have "X && 1", simplify the code to use an uncond branch.
1494       // "X && 0" would have been constant folded to 0.
1495       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1496           ConstantBool) {
1497         // br(X && 1) -> br(X).
1498         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1499                                     TrueCount);
1500       }
1501 
1502       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1503       // want to jump to the FalseBlock.
1504       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1505       // The counter tells us how often we evaluate RHS, and all of TrueCount
1506       // can be propagated to that branch.
1507       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1508 
1509       ConditionalEvaluation eval(*this);
1510       {
1511         ApplyDebugLocation DL(*this, Cond);
1512         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1513         EmitBlock(LHSTrue);
1514       }
1515 
1516       incrementProfileCounter(CondBOp);
1517       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1518 
1519       // Any temporaries created here are conditional.
1520       eval.begin(*this);
1521       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1522       eval.end(*this);
1523 
1524       return;
1525     }
1526 
1527     if (CondBOp->getOpcode() == BO_LOr) {
1528       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1529       // folded if the case was simple enough.
1530       bool ConstantBool = false;
1531       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1532           !ConstantBool) {
1533         // br(0 || X) -> br(X).
1534         incrementProfileCounter(CondBOp);
1535         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1536                                     TrueCount);
1537       }
1538 
1539       // If we have "X || 0", simplify the code to use an uncond branch.
1540       // "X || 1" would have been constant folded to 1.
1541       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1542           !ConstantBool) {
1543         // br(X || 0) -> br(X).
1544         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1545                                     TrueCount);
1546       }
1547 
1548       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1549       // want to jump to the TrueBlock.
1550       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1551       // We have the count for entry to the RHS and for the whole expression
1552       // being true, so we can divy up True count between the short circuit and
1553       // the RHS.
1554       uint64_t LHSCount =
1555           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1556       uint64_t RHSCount = TrueCount - LHSCount;
1557 
1558       ConditionalEvaluation eval(*this);
1559       {
1560         ApplyDebugLocation DL(*this, Cond);
1561         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1562         EmitBlock(LHSFalse);
1563       }
1564 
1565       incrementProfileCounter(CondBOp);
1566       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1567 
1568       // Any temporaries created here are conditional.
1569       eval.begin(*this);
1570       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1571 
1572       eval.end(*this);
1573 
1574       return;
1575     }
1576   }
1577 
1578   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1579     // br(!x, t, f) -> br(x, f, t)
1580     if (CondUOp->getOpcode() == UO_LNot) {
1581       // Negate the count.
1582       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1583       // Negate the condition and swap the destination blocks.
1584       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1585                                   FalseCount);
1586     }
1587   }
1588 
1589   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1590     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1591     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1592     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1593 
1594     ConditionalEvaluation cond(*this);
1595     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1596                          getProfileCount(CondOp));
1597 
1598     // When computing PGO branch weights, we only know the overall count for
1599     // the true block. This code is essentially doing tail duplication of the
1600     // naive code-gen, introducing new edges for which counts are not
1601     // available. Divide the counts proportionally between the LHS and RHS of
1602     // the conditional operator.
1603     uint64_t LHSScaledTrueCount = 0;
1604     if (TrueCount) {
1605       double LHSRatio =
1606           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1607       LHSScaledTrueCount = TrueCount * LHSRatio;
1608     }
1609 
1610     cond.begin(*this);
1611     EmitBlock(LHSBlock);
1612     incrementProfileCounter(CondOp);
1613     {
1614       ApplyDebugLocation DL(*this, Cond);
1615       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1616                            LHSScaledTrueCount);
1617     }
1618     cond.end(*this);
1619 
1620     cond.begin(*this);
1621     EmitBlock(RHSBlock);
1622     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1623                          TrueCount - LHSScaledTrueCount);
1624     cond.end(*this);
1625 
1626     return;
1627   }
1628 
1629   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1630     // Conditional operator handling can give us a throw expression as a
1631     // condition for a case like:
1632     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1633     // Fold this to:
1634     //   br(c, throw x, br(y, t, f))
1635     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1636     return;
1637   }
1638 
1639   // If the branch has a condition wrapped by __builtin_unpredictable,
1640   // create metadata that specifies that the branch is unpredictable.
1641   // Don't bother if not optimizing because that metadata would not be used.
1642   llvm::MDNode *Unpredictable = nullptr;
1643   auto *Call = dyn_cast<CallExpr>(Cond);
1644   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1645     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1646     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1647       llvm::MDBuilder MDHelper(getLLVMContext());
1648       Unpredictable = MDHelper.createUnpredictable();
1649     }
1650   }
1651 
1652   // Create branch weights based on the number of times we get here and the
1653   // number of times the condition should be true.
1654   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1655   llvm::MDNode *Weights =
1656       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1657 
1658   // Emit the code with the fully general case.
1659   llvm::Value *CondV;
1660   {
1661     ApplyDebugLocation DL(*this, Cond);
1662     CondV = EvaluateExprAsBool(Cond);
1663   }
1664   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1665 }
1666 
1667 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1668 /// specified stmt yet.
1669 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1670   CGM.ErrorUnsupported(S, Type);
1671 }
1672 
1673 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1674 /// variable-length array whose elements have a non-zero bit-pattern.
1675 ///
1676 /// \param baseType the inner-most element type of the array
1677 /// \param src - a char* pointing to the bit-pattern for a single
1678 /// base element of the array
1679 /// \param sizeInChars - the total size of the VLA, in chars
1680 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1681                                Address dest, Address src,
1682                                llvm::Value *sizeInChars) {
1683   CGBuilderTy &Builder = CGF.Builder;
1684 
1685   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1686   llvm::Value *baseSizeInChars
1687     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1688 
1689   Address begin =
1690     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1691   llvm::Value *end =
1692     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1693 
1694   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1695   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1696   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1697 
1698   // Make a loop over the VLA.  C99 guarantees that the VLA element
1699   // count must be nonzero.
1700   CGF.EmitBlock(loopBB);
1701 
1702   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1703   cur->addIncoming(begin.getPointer(), originBB);
1704 
1705   CharUnits curAlign =
1706     dest.getAlignment().alignmentOfArrayElement(baseSize);
1707 
1708   // memcpy the individual element bit-pattern.
1709   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1710                        /*volatile*/ false);
1711 
1712   // Go to the next element.
1713   llvm::Value *next =
1714     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1715 
1716   // Leave if that's the end of the VLA.
1717   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1718   Builder.CreateCondBr(done, contBB, loopBB);
1719   cur->addIncoming(next, loopBB);
1720 
1721   CGF.EmitBlock(contBB);
1722 }
1723 
1724 void
1725 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1726   // Ignore empty classes in C++.
1727   if (getLangOpts().CPlusPlus) {
1728     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1729       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1730         return;
1731     }
1732   }
1733 
1734   // Cast the dest ptr to the appropriate i8 pointer type.
1735   if (DestPtr.getElementType() != Int8Ty)
1736     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1737 
1738   // Get size and alignment info for this aggregate.
1739   CharUnits size = getContext().getTypeSizeInChars(Ty);
1740 
1741   llvm::Value *SizeVal;
1742   const VariableArrayType *vla;
1743 
1744   // Don't bother emitting a zero-byte memset.
1745   if (size.isZero()) {
1746     // But note that getTypeInfo returns 0 for a VLA.
1747     if (const VariableArrayType *vlaType =
1748           dyn_cast_or_null<VariableArrayType>(
1749                                           getContext().getAsArrayType(Ty))) {
1750       QualType eltType;
1751       llvm::Value *numElts;
1752       std::tie(numElts, eltType) = getVLASize(vlaType);
1753 
1754       SizeVal = numElts;
1755       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1756       if (!eltSize.isOne())
1757         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1758       vla = vlaType;
1759     } else {
1760       return;
1761     }
1762   } else {
1763     SizeVal = CGM.getSize(size);
1764     vla = nullptr;
1765   }
1766 
1767   // If the type contains a pointer to data member we can't memset it to zero.
1768   // Instead, create a null constant and copy it to the destination.
1769   // TODO: there are other patterns besides zero that we can usefully memset,
1770   // like -1, which happens to be the pattern used by member-pointers.
1771   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1772     // For a VLA, emit a single element, then splat that over the VLA.
1773     if (vla) Ty = getContext().getBaseElementType(vla);
1774 
1775     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1776 
1777     llvm::GlobalVariable *NullVariable =
1778       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1779                                /*isConstant=*/true,
1780                                llvm::GlobalVariable::PrivateLinkage,
1781                                NullConstant, Twine());
1782     CharUnits NullAlign = DestPtr.getAlignment();
1783     NullVariable->setAlignment(NullAlign.getQuantity());
1784     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1785                    NullAlign);
1786 
1787     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1788 
1789     // Get and call the appropriate llvm.memcpy overload.
1790     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1791     return;
1792   }
1793 
1794   // Otherwise, just memset the whole thing to zero.  This is legal
1795   // because in LLVM, all default initializers (other than the ones we just
1796   // handled above) are guaranteed to have a bit pattern of all zeros.
1797   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1798 }
1799 
1800 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1801   // Make sure that there is a block for the indirect goto.
1802   if (!IndirectBranch)
1803     GetIndirectGotoBlock();
1804 
1805   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1806 
1807   // Make sure the indirect branch includes all of the address-taken blocks.
1808   IndirectBranch->addDestination(BB);
1809   return llvm::BlockAddress::get(CurFn, BB);
1810 }
1811 
1812 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1813   // If we already made the indirect branch for indirect goto, return its block.
1814   if (IndirectBranch) return IndirectBranch->getParent();
1815 
1816   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1817 
1818   // Create the PHI node that indirect gotos will add entries to.
1819   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1820                                               "indirect.goto.dest");
1821 
1822   // Create the indirect branch instruction.
1823   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1824   return IndirectBranch->getParent();
1825 }
1826 
1827 /// Computes the length of an array in elements, as well as the base
1828 /// element type and a properly-typed first element pointer.
1829 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1830                                               QualType &baseType,
1831                                               Address &addr) {
1832   const ArrayType *arrayType = origArrayType;
1833 
1834   // If it's a VLA, we have to load the stored size.  Note that
1835   // this is the size of the VLA in bytes, not its size in elements.
1836   llvm::Value *numVLAElements = nullptr;
1837   if (isa<VariableArrayType>(arrayType)) {
1838     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1839 
1840     // Walk into all VLAs.  This doesn't require changes to addr,
1841     // which has type T* where T is the first non-VLA element type.
1842     do {
1843       QualType elementType = arrayType->getElementType();
1844       arrayType = getContext().getAsArrayType(elementType);
1845 
1846       // If we only have VLA components, 'addr' requires no adjustment.
1847       if (!arrayType) {
1848         baseType = elementType;
1849         return numVLAElements;
1850       }
1851     } while (isa<VariableArrayType>(arrayType));
1852 
1853     // We get out here only if we find a constant array type
1854     // inside the VLA.
1855   }
1856 
1857   // We have some number of constant-length arrays, so addr should
1858   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1859   // down to the first element of addr.
1860   SmallVector<llvm::Value*, 8> gepIndices;
1861 
1862   // GEP down to the array type.
1863   llvm::ConstantInt *zero = Builder.getInt32(0);
1864   gepIndices.push_back(zero);
1865 
1866   uint64_t countFromCLAs = 1;
1867   QualType eltType;
1868 
1869   llvm::ArrayType *llvmArrayType =
1870     dyn_cast<llvm::ArrayType>(addr.getElementType());
1871   while (llvmArrayType) {
1872     assert(isa<ConstantArrayType>(arrayType));
1873     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1874              == llvmArrayType->getNumElements());
1875 
1876     gepIndices.push_back(zero);
1877     countFromCLAs *= llvmArrayType->getNumElements();
1878     eltType = arrayType->getElementType();
1879 
1880     llvmArrayType =
1881       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1882     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1883     assert((!llvmArrayType || arrayType) &&
1884            "LLVM and Clang types are out-of-synch");
1885   }
1886 
1887   if (arrayType) {
1888     // From this point onwards, the Clang array type has been emitted
1889     // as some other type (probably a packed struct). Compute the array
1890     // size, and just emit the 'begin' expression as a bitcast.
1891     while (arrayType) {
1892       countFromCLAs *=
1893           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1894       eltType = arrayType->getElementType();
1895       arrayType = getContext().getAsArrayType(eltType);
1896     }
1897 
1898     llvm::Type *baseType = ConvertType(eltType);
1899     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1900   } else {
1901     // Create the actual GEP.
1902     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1903                                              gepIndices, "array.begin"),
1904                    addr.getAlignment());
1905   }
1906 
1907   baseType = eltType;
1908 
1909   llvm::Value *numElements
1910     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1911 
1912   // If we had any VLA dimensions, factor them in.
1913   if (numVLAElements)
1914     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1915 
1916   return numElements;
1917 }
1918 
1919 std::pair<llvm::Value*, QualType>
1920 CodeGenFunction::getVLASize(QualType type) {
1921   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1922   assert(vla && "type was not a variable array type!");
1923   return getVLASize(vla);
1924 }
1925 
1926 std::pair<llvm::Value*, QualType>
1927 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1928   // The number of elements so far; always size_t.
1929   llvm::Value *numElements = nullptr;
1930 
1931   QualType elementType;
1932   do {
1933     elementType = type->getElementType();
1934     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1935     assert(vlaSize && "no size for VLA!");
1936     assert(vlaSize->getType() == SizeTy);
1937 
1938     if (!numElements) {
1939       numElements = vlaSize;
1940     } else {
1941       // It's undefined behavior if this wraps around, so mark it that way.
1942       // FIXME: Teach -fsanitize=undefined to trap this.
1943       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1944     }
1945   } while ((type = getContext().getAsVariableArrayType(elementType)));
1946 
1947   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1948 }
1949 
1950 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1951   assert(type->isVariablyModifiedType() &&
1952          "Must pass variably modified type to EmitVLASizes!");
1953 
1954   EnsureInsertPoint();
1955 
1956   // We're going to walk down into the type and look for VLA
1957   // expressions.
1958   do {
1959     assert(type->isVariablyModifiedType());
1960 
1961     const Type *ty = type.getTypePtr();
1962     switch (ty->getTypeClass()) {
1963 
1964 #define TYPE(Class, Base)
1965 #define ABSTRACT_TYPE(Class, Base)
1966 #define NON_CANONICAL_TYPE(Class, Base)
1967 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1968 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1969 #include "clang/AST/TypeNodes.def"
1970       llvm_unreachable("unexpected dependent type!");
1971 
1972     // These types are never variably-modified.
1973     case Type::Builtin:
1974     case Type::Complex:
1975     case Type::Vector:
1976     case Type::ExtVector:
1977     case Type::Record:
1978     case Type::Enum:
1979     case Type::Elaborated:
1980     case Type::TemplateSpecialization:
1981     case Type::ObjCTypeParam:
1982     case Type::ObjCObject:
1983     case Type::ObjCInterface:
1984     case Type::ObjCObjectPointer:
1985       llvm_unreachable("type class is never variably-modified!");
1986 
1987     case Type::Adjusted:
1988       type = cast<AdjustedType>(ty)->getAdjustedType();
1989       break;
1990 
1991     case Type::Decayed:
1992       type = cast<DecayedType>(ty)->getPointeeType();
1993       break;
1994 
1995     case Type::Pointer:
1996       type = cast<PointerType>(ty)->getPointeeType();
1997       break;
1998 
1999     case Type::BlockPointer:
2000       type = cast<BlockPointerType>(ty)->getPointeeType();
2001       break;
2002 
2003     case Type::LValueReference:
2004     case Type::RValueReference:
2005       type = cast<ReferenceType>(ty)->getPointeeType();
2006       break;
2007 
2008     case Type::MemberPointer:
2009       type = cast<MemberPointerType>(ty)->getPointeeType();
2010       break;
2011 
2012     case Type::ConstantArray:
2013     case Type::IncompleteArray:
2014       // Losing element qualification here is fine.
2015       type = cast<ArrayType>(ty)->getElementType();
2016       break;
2017 
2018     case Type::VariableArray: {
2019       // Losing element qualification here is fine.
2020       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2021 
2022       // Unknown size indication requires no size computation.
2023       // Otherwise, evaluate and record it.
2024       if (const Expr *size = vat->getSizeExpr()) {
2025         // It's possible that we might have emitted this already,
2026         // e.g. with a typedef and a pointer to it.
2027         llvm::Value *&entry = VLASizeMap[size];
2028         if (!entry) {
2029           llvm::Value *Size = EmitScalarExpr(size);
2030 
2031           // C11 6.7.6.2p5:
2032           //   If the size is an expression that is not an integer constant
2033           //   expression [...] each time it is evaluated it shall have a value
2034           //   greater than zero.
2035           if (SanOpts.has(SanitizerKind::VLABound) &&
2036               size->getType()->isSignedIntegerType()) {
2037             SanitizerScope SanScope(this);
2038             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2039             llvm::Constant *StaticArgs[] = {
2040               EmitCheckSourceLocation(size->getLocStart()),
2041               EmitCheckTypeDescriptor(size->getType())
2042             };
2043             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2044                                      SanitizerKind::VLABound),
2045                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2046           }
2047 
2048           // Always zexting here would be wrong if it weren't
2049           // undefined behavior to have a negative bound.
2050           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2051         }
2052       }
2053       type = vat->getElementType();
2054       break;
2055     }
2056 
2057     case Type::FunctionProto:
2058     case Type::FunctionNoProto:
2059       type = cast<FunctionType>(ty)->getReturnType();
2060       break;
2061 
2062     case Type::Paren:
2063     case Type::TypeOf:
2064     case Type::UnaryTransform:
2065     case Type::Attributed:
2066     case Type::SubstTemplateTypeParm:
2067     case Type::PackExpansion:
2068       // Keep walking after single level desugaring.
2069       type = type.getSingleStepDesugaredType(getContext());
2070       break;
2071 
2072     case Type::Typedef:
2073     case Type::Decltype:
2074     case Type::Auto:
2075     case Type::DeducedTemplateSpecialization:
2076       // Stop walking: nothing to do.
2077       return;
2078 
2079     case Type::TypeOfExpr:
2080       // Stop walking: emit typeof expression.
2081       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2082       return;
2083 
2084     case Type::Atomic:
2085       type = cast<AtomicType>(ty)->getValueType();
2086       break;
2087 
2088     case Type::Pipe:
2089       type = cast<PipeType>(ty)->getElementType();
2090       break;
2091     }
2092   } while (type->isVariablyModifiedType());
2093 }
2094 
2095 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2096   if (getContext().getBuiltinVaListType()->isArrayType())
2097     return EmitPointerWithAlignment(E);
2098   return EmitLValue(E).getAddress();
2099 }
2100 
2101 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2102   return EmitLValue(E).getAddress();
2103 }
2104 
2105 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2106                                               const APValue &Init) {
2107   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2108   if (CGDebugInfo *Dbg = getDebugInfo())
2109     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2110       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2111 }
2112 
2113 CodeGenFunction::PeepholeProtection
2114 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2115   // At the moment, the only aggressive peephole we do in IR gen
2116   // is trunc(zext) folding, but if we add more, we can easily
2117   // extend this protection.
2118 
2119   if (!rvalue.isScalar()) return PeepholeProtection();
2120   llvm::Value *value = rvalue.getScalarVal();
2121   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2122 
2123   // Just make an extra bitcast.
2124   assert(HaveInsertPoint());
2125   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2126                                                   Builder.GetInsertBlock());
2127 
2128   PeepholeProtection protection;
2129   protection.Inst = inst;
2130   return protection;
2131 }
2132 
2133 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2134   if (!protection.Inst) return;
2135 
2136   // In theory, we could try to duplicate the peepholes now, but whatever.
2137   protection.Inst->eraseFromParent();
2138 }
2139 
2140 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2141                                                  llvm::Value *AnnotatedVal,
2142                                                  StringRef AnnotationStr,
2143                                                  SourceLocation Location) {
2144   llvm::Value *Args[4] = {
2145     AnnotatedVal,
2146     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2147     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2148     CGM.EmitAnnotationLineNo(Location)
2149   };
2150   return Builder.CreateCall(AnnotationFn, Args);
2151 }
2152 
2153 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2154   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2155   // FIXME We create a new bitcast for every annotation because that's what
2156   // llvm-gcc was doing.
2157   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2158     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2159                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2160                        I->getAnnotation(), D->getLocation());
2161 }
2162 
2163 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2164                                               Address Addr) {
2165   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2166   llvm::Value *V = Addr.getPointer();
2167   llvm::Type *VTy = V->getType();
2168   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2169                                     CGM.Int8PtrTy);
2170 
2171   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2172     // FIXME Always emit the cast inst so we can differentiate between
2173     // annotation on the first field of a struct and annotation on the struct
2174     // itself.
2175     if (VTy != CGM.Int8PtrTy)
2176       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2177     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2178     V = Builder.CreateBitCast(V, VTy);
2179   }
2180 
2181   return Address(V, Addr.getAlignment());
2182 }
2183 
2184 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2185 
2186 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2187     : CGF(CGF) {
2188   assert(!CGF->IsSanitizerScope);
2189   CGF->IsSanitizerScope = true;
2190 }
2191 
2192 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2193   CGF->IsSanitizerScope = false;
2194 }
2195 
2196 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2197                                    const llvm::Twine &Name,
2198                                    llvm::BasicBlock *BB,
2199                                    llvm::BasicBlock::iterator InsertPt) const {
2200   LoopStack.InsertHelper(I);
2201   if (IsSanitizerScope)
2202     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2203 }
2204 
2205 void CGBuilderInserter::InsertHelper(
2206     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2207     llvm::BasicBlock::iterator InsertPt) const {
2208   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2209   if (CGF)
2210     CGF->InsertHelper(I, Name, BB, InsertPt);
2211 }
2212 
2213 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2214                                 CodeGenModule &CGM, const FunctionDecl *FD,
2215                                 std::string &FirstMissing) {
2216   // If there aren't any required features listed then go ahead and return.
2217   if (ReqFeatures.empty())
2218     return false;
2219 
2220   // Now build up the set of caller features and verify that all the required
2221   // features are there.
2222   llvm::StringMap<bool> CallerFeatureMap;
2223   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2224 
2225   // If we have at least one of the features in the feature list return
2226   // true, otherwise return false.
2227   return std::all_of(
2228       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2229         SmallVector<StringRef, 1> OrFeatures;
2230         Feature.split(OrFeatures, "|");
2231         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2232                            [&](StringRef Feature) {
2233                              if (!CallerFeatureMap.lookup(Feature)) {
2234                                FirstMissing = Feature.str();
2235                                return false;
2236                              }
2237                              return true;
2238                            });
2239       });
2240 }
2241 
2242 // Emits an error if we don't have a valid set of target features for the
2243 // called function.
2244 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2245                                           const FunctionDecl *TargetDecl) {
2246   // Early exit if this is an indirect call.
2247   if (!TargetDecl)
2248     return;
2249 
2250   // Get the current enclosing function if it exists. If it doesn't
2251   // we can't check the target features anyhow.
2252   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2253   if (!FD)
2254     return;
2255 
2256   // Grab the required features for the call. For a builtin this is listed in
2257   // the td file with the default cpu, for an always_inline function this is any
2258   // listed cpu and any listed features.
2259   unsigned BuiltinID = TargetDecl->getBuiltinID();
2260   std::string MissingFeature;
2261   if (BuiltinID) {
2262     SmallVector<StringRef, 1> ReqFeatures;
2263     const char *FeatureList =
2264         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2265     // Return if the builtin doesn't have any required features.
2266     if (!FeatureList || StringRef(FeatureList) == "")
2267       return;
2268     StringRef(FeatureList).split(ReqFeatures, ",");
2269     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2270       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2271           << TargetDecl->getDeclName()
2272           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2273 
2274   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2275     // Get the required features for the callee.
2276     SmallVector<StringRef, 1> ReqFeatures;
2277     llvm::StringMap<bool> CalleeFeatureMap;
2278     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2279     for (const auto &F : CalleeFeatureMap) {
2280       // Only positive features are "required".
2281       if (F.getValue())
2282         ReqFeatures.push_back(F.getKey());
2283     }
2284     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2285       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2286           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2287   }
2288 }
2289 
2290 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2291   if (!CGM.getCodeGenOpts().SanitizeStats)
2292     return;
2293 
2294   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2295   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2296   CGM.getSanStats().create(IRB, SSK);
2297 }
2298 
2299 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2300   if (CGDebugInfo *DI = getDebugInfo())
2301     return DI->SourceLocToDebugLoc(Location);
2302 
2303   return llvm::DebugLoc();
2304 }
2305