1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Disable lifetime markers in msan builds. 51 // FIXME: Remove this when msan works with lifetime markers. 52 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 53 return false; 54 55 // Asan uses markers for use-after-scope checks. 56 if (CGOpts.SanitizeAddressUseAfterScope) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 } 94 95 CodeGenFunction::~CodeGenFunction() { 96 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 97 98 // If there are any unclaimed block infos, go ahead and destroy them 99 // now. This can happen if IR-gen gets clever and skips evaluating 100 // something. 101 if (FirstBlockInfo) 102 destroyBlockInfos(FirstBlockInfo); 103 104 if (getLangOpts().OpenMP && CurFn) 105 CGM.getOpenMPRuntime().functionFinished(*this); 106 } 107 108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 109 LValueBaseInfo *BaseInfo, 110 TBAAAccessInfo *TBAAInfo) { 111 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 112 /* forPointeeType= */ true); 113 } 114 115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 116 LValueBaseInfo *BaseInfo, 117 TBAAAccessInfo *TBAAInfo, 118 bool forPointeeType) { 119 if (TBAAInfo) 120 *TBAAInfo = CGM.getTBAAAccessInfo(T); 121 122 // Honor alignment typedef attributes even on incomplete types. 123 // We also honor them straight for C++ class types, even as pointees; 124 // there's an expressivity gap here. 125 if (auto TT = T->getAs<TypedefType>()) { 126 if (auto Align = TT->getDecl()->getMaxAlignment()) { 127 if (BaseInfo) 128 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 129 return getContext().toCharUnitsFromBits(Align); 130 } 131 } 132 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 135 136 CharUnits Alignment; 137 if (T->isIncompleteType()) { 138 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 139 } else { 140 // For C++ class pointees, we don't know whether we're pointing at a 141 // base or a complete object, so we generally need to use the 142 // non-virtual alignment. 143 const CXXRecordDecl *RD; 144 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 145 Alignment = CGM.getClassPointerAlignment(RD); 146 } else { 147 Alignment = getContext().getTypeAlignInChars(T); 148 if (T.getQualifiers().hasUnaligned()) 149 Alignment = CharUnits::One(); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 LValueBaseInfo BaseInfo; 165 TBAAAccessInfo TBAAInfo; 166 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 167 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 168 TBAAInfo); 169 } 170 171 /// Given a value of type T* that may not be to a complete object, 172 /// construct an l-value with the natural pointee alignment of T. 173 LValue 174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 175 LValueBaseInfo BaseInfo; 176 TBAAAccessInfo TBAAInfo; 177 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 178 /* forPointeeType= */ true); 179 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 180 } 181 182 183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 184 return CGM.getTypes().ConvertTypeForMem(T); 185 } 186 187 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 188 return CGM.getTypes().ConvertType(T); 189 } 190 191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 192 type = type.getCanonicalType(); 193 while (true) { 194 switch (type->getTypeClass()) { 195 #define TYPE(name, parent) 196 #define ABSTRACT_TYPE(name, parent) 197 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 198 #define DEPENDENT_TYPE(name, parent) case Type::name: 199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 200 #include "clang/AST/TypeNodes.def" 201 llvm_unreachable("non-canonical or dependent type in IR-generation"); 202 203 case Type::Auto: 204 case Type::DeducedTemplateSpecialization: 205 llvm_unreachable("undeduced type in IR-generation"); 206 207 // Various scalar types. 208 case Type::Builtin: 209 case Type::Pointer: 210 case Type::BlockPointer: 211 case Type::LValueReference: 212 case Type::RValueReference: 213 case Type::MemberPointer: 214 case Type::Vector: 215 case Type::ExtVector: 216 case Type::FunctionProto: 217 case Type::FunctionNoProto: 218 case Type::Enum: 219 case Type::ObjCObjectPointer: 220 case Type::Pipe: 221 return TEK_Scalar; 222 223 // Complexes. 224 case Type::Complex: 225 return TEK_Complex; 226 227 // Arrays, records, and Objective-C objects. 228 case Type::ConstantArray: 229 case Type::IncompleteArray: 230 case Type::VariableArray: 231 case Type::Record: 232 case Type::ObjCObject: 233 case Type::ObjCInterface: 234 return TEK_Aggregate; 235 236 // We operate on atomic values according to their underlying type. 237 case Type::Atomic: 238 type = cast<AtomicType>(type)->getValueType(); 239 continue; 240 } 241 llvm_unreachable("unknown type kind!"); 242 } 243 } 244 245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 246 // For cleanliness, we try to avoid emitting the return block for 247 // simple cases. 248 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 249 250 if (CurBB) { 251 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 252 253 // We have a valid insert point, reuse it if it is empty or there are no 254 // explicit jumps to the return block. 255 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 256 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 257 delete ReturnBlock.getBlock(); 258 ReturnBlock = JumpDest(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 ReturnBlock = JumpDest(); 279 return Loc; 280 } 281 } 282 283 // FIXME: We are at an unreachable point, there is no reason to emit the block 284 // unless it has uses. However, we still need a place to put the debug 285 // region.end for now. 286 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 292 if (!BB) return; 293 if (!BB->use_empty()) 294 return CGF.CurFn->getBasicBlockList().push_back(BB); 295 delete BB; 296 } 297 298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 299 assert(BreakContinueStack.empty() && 300 "mismatched push/pop in break/continue stack!"); 301 302 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 303 && NumSimpleReturnExprs == NumReturnExprs 304 && ReturnBlock.getBlock()->use_empty(); 305 // Usually the return expression is evaluated before the cleanup 306 // code. If the function contains only a simple return statement, 307 // such as a constant, the location before the cleanup code becomes 308 // the last useful breakpoint in the function, because the simple 309 // return expression will be evaluated after the cleanup code. To be 310 // safe, set the debug location for cleanup code to the location of 311 // the return statement. Otherwise the cleanup code should be at the 312 // end of the function's lexical scope. 313 // 314 // If there are multiple branches to the return block, the branch 315 // instructions will get the location of the return statements and 316 // all will be fine. 317 if (CGDebugInfo *DI = getDebugInfo()) { 318 if (OnlySimpleReturnStmts) 319 DI->EmitLocation(Builder, LastStopPoint); 320 else 321 DI->EmitLocation(Builder, EndLoc); 322 } 323 324 // Pop any cleanups that might have been associated with the 325 // parameters. Do this in whatever block we're currently in; it's 326 // important to do this before we enter the return block or return 327 // edges will be *really* confused. 328 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 329 bool HasOnlyLifetimeMarkers = 330 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 331 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 332 if (HasCleanups) { 333 // Make sure the line table doesn't jump back into the body for 334 // the ret after it's been at EndLoc. 335 if (CGDebugInfo *DI = getDebugInfo()) 336 if (OnlySimpleReturnStmts) 337 DI->EmitLocation(Builder, EndLoc); 338 339 PopCleanupBlocks(PrologueCleanupDepth); 340 } 341 342 // Emit function epilog (to return). 343 llvm::DebugLoc Loc = EmitReturnBlock(); 344 345 if (ShouldInstrumentFunction()) { 346 if (CGM.getCodeGenOpts().InstrumentFunctions) 347 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 348 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 349 CurFn->addFnAttr("instrument-function-exit-inlined", 350 "__cyg_profile_func_exit"); 351 } 352 353 // Emit debug descriptor for function end. 354 if (CGDebugInfo *DI = getDebugInfo()) 355 DI->EmitFunctionEnd(Builder, CurFn); 356 357 // Reset the debug location to that of the simple 'return' expression, if any 358 // rather than that of the end of the function's scope '}'. 359 ApplyDebugLocation AL(*this, Loc); 360 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 361 EmitEndEHSpec(CurCodeDecl); 362 363 assert(EHStack.empty() && 364 "did not remove all scopes from cleanup stack!"); 365 366 // If someone did an indirect goto, emit the indirect goto block at the end of 367 // the function. 368 if (IndirectBranch) { 369 EmitBlock(IndirectBranch->getParent()); 370 Builder.ClearInsertionPoint(); 371 } 372 373 // If some of our locals escaped, insert a call to llvm.localescape in the 374 // entry block. 375 if (!EscapedLocals.empty()) { 376 // Invert the map from local to index into a simple vector. There should be 377 // no holes. 378 SmallVector<llvm::Value *, 4> EscapeArgs; 379 EscapeArgs.resize(EscapedLocals.size()); 380 for (auto &Pair : EscapedLocals) 381 EscapeArgs[Pair.second] = Pair.first; 382 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 383 &CGM.getModule(), llvm::Intrinsic::localescape); 384 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 385 } 386 387 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 388 llvm::Instruction *Ptr = AllocaInsertPt; 389 AllocaInsertPt = nullptr; 390 Ptr->eraseFromParent(); 391 392 // If someone took the address of a label but never did an indirect goto, we 393 // made a zero entry PHI node, which is illegal, zap it now. 394 if (IndirectBranch) { 395 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 396 if (PN->getNumIncomingValues() == 0) { 397 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 398 PN->eraseFromParent(); 399 } 400 } 401 402 EmitIfUsed(*this, EHResumeBlock); 403 EmitIfUsed(*this, TerminateLandingPad); 404 EmitIfUsed(*this, TerminateHandler); 405 EmitIfUsed(*this, UnreachableBlock); 406 407 for (const auto &FuncletAndParent : TerminateFunclets) 408 EmitIfUsed(*this, FuncletAndParent.second); 409 410 if (CGM.getCodeGenOpts().EmitDeclMetadata) 411 EmitDeclMetadata(); 412 413 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 414 I = DeferredReplacements.begin(), 415 E = DeferredReplacements.end(); 416 I != E; ++I) { 417 I->first->replaceAllUsesWith(I->second); 418 I->first->eraseFromParent(); 419 } 420 421 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 422 // PHIs if the current function is a coroutine. We don't do it for all 423 // functions as it may result in slight increase in numbers of instructions 424 // if compiled with no optimizations. We do it for coroutine as the lifetime 425 // of CleanupDestSlot alloca make correct coroutine frame building very 426 // difficult. 427 if (NormalCleanupDest.isValid() && isCoroutine()) { 428 llvm::DominatorTree DT(*CurFn); 429 llvm::PromoteMemToReg( 430 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 431 NormalCleanupDest = Address::invalid(); 432 } 433 434 // Scan function arguments for vector width. 435 for (llvm::Argument &A : CurFn->args()) 436 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 437 LargestVectorWidth = std::max(LargestVectorWidth, 438 VT->getPrimitiveSizeInBits()); 439 440 // Update vector width based on return type. 441 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 442 LargestVectorWidth = std::max(LargestVectorWidth, 443 VT->getPrimitiveSizeInBits()); 444 445 // Add the required-vector-width attribute. This contains the max width from: 446 // 1. min-vector-width attribute used in the source program. 447 // 2. Any builtins used that have a vector width specified. 448 // 3. Values passed in and out of inline assembly. 449 // 4. Width of vector arguments and return types for this function. 450 // 5. Width of vector aguments and return types for functions called by this 451 // function. 452 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 453 454 // If we generated an unreachable return block, delete it now. 455 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 456 Builder.ClearInsertionPoint(); 457 ReturnBlock.getBlock()->eraseFromParent(); 458 } 459 if (ReturnValue.isValid()) { 460 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 461 if (RetAlloca && RetAlloca->use_empty()) { 462 RetAlloca->eraseFromParent(); 463 ReturnValue = Address::invalid(); 464 } 465 } 466 } 467 468 /// ShouldInstrumentFunction - Return true if the current function should be 469 /// instrumented with __cyg_profile_func_* calls 470 bool CodeGenFunction::ShouldInstrumentFunction() { 471 if (!CGM.getCodeGenOpts().InstrumentFunctions && 472 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 473 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 474 return false; 475 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 476 return false; 477 return true; 478 } 479 480 /// ShouldXRayInstrument - Return true if the current function should be 481 /// instrumented with XRay nop sleds. 482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 483 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 484 } 485 486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 489 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 490 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 491 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 492 XRayInstrKind::Custom); 493 } 494 495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 496 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 497 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 498 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 499 XRayInstrKind::Typed); 500 } 501 502 llvm::Constant * 503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 504 llvm::Constant *Addr) { 505 // Addresses stored in prologue data can't require run-time fixups and must 506 // be PC-relative. Run-time fixups are undesirable because they necessitate 507 // writable text segments, which are unsafe. And absolute addresses are 508 // undesirable because they break PIE mode. 509 510 // Add a layer of indirection through a private global. Taking its address 511 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 512 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 513 /*isConstant=*/true, 514 llvm::GlobalValue::PrivateLinkage, Addr); 515 516 // Create a PC-relative address. 517 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 518 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 519 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 520 return (IntPtrTy == Int32Ty) 521 ? PCRelAsInt 522 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 523 } 524 525 llvm::Value * 526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 527 llvm::Value *EncodedAddr) { 528 // Reconstruct the address of the global. 529 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 530 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 531 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 532 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 533 534 // Load the original pointer through the global. 535 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 536 "decoded_addr"); 537 } 538 539 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 540 llvm::Function *Fn) 541 { 542 if (!FD->hasAttr<OpenCLKernelAttr>()) 543 return; 544 545 llvm::LLVMContext &Context = getLLVMContext(); 546 547 CGM.GenOpenCLArgMetadata(Fn, FD, this); 548 549 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 550 QualType HintQTy = A->getTypeHint(); 551 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 552 bool IsSignedInteger = 553 HintQTy->isSignedIntegerType() || 554 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 555 llvm::Metadata *AttrMDArgs[] = { 556 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 557 CGM.getTypes().ConvertType(A->getTypeHint()))), 558 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 559 llvm::IntegerType::get(Context, 32), 560 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 561 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 562 } 563 564 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 565 llvm::Metadata *AttrMDArgs[] = { 566 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 567 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 568 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 569 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 570 } 571 572 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 573 llvm::Metadata *AttrMDArgs[] = { 574 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 575 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 576 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 577 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 578 } 579 580 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 581 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 582 llvm::Metadata *AttrMDArgs[] = { 583 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 584 Fn->setMetadata("intel_reqd_sub_group_size", 585 llvm::MDNode::get(Context, AttrMDArgs)); 586 } 587 } 588 589 /// Determine whether the function F ends with a return stmt. 590 static bool endsWithReturn(const Decl* F) { 591 const Stmt *Body = nullptr; 592 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 593 Body = FD->getBody(); 594 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 595 Body = OMD->getBody(); 596 597 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 598 auto LastStmt = CS->body_rbegin(); 599 if (LastStmt != CS->body_rend()) 600 return isa<ReturnStmt>(*LastStmt); 601 } 602 return false; 603 } 604 605 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 606 if (SanOpts.has(SanitizerKind::Thread)) { 607 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 608 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 609 } 610 } 611 612 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 613 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 614 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 615 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 616 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 617 return false; 618 619 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 620 return false; 621 622 if (MD->getNumParams() == 2) { 623 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 624 if (!PT || !PT->isVoidPointerType() || 625 !PT->getPointeeType().isConstQualified()) 626 return false; 627 } 628 629 return true; 630 } 631 632 /// Return the UBSan prologue signature for \p FD if one is available. 633 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 634 const FunctionDecl *FD) { 635 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 636 if (!MD->isStatic()) 637 return nullptr; 638 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 639 } 640 641 void CodeGenFunction::StartFunction(GlobalDecl GD, 642 QualType RetTy, 643 llvm::Function *Fn, 644 const CGFunctionInfo &FnInfo, 645 const FunctionArgList &Args, 646 SourceLocation Loc, 647 SourceLocation StartLoc) { 648 assert(!CurFn && 649 "Do not use a CodeGenFunction object for more than one function"); 650 651 const Decl *D = GD.getDecl(); 652 653 DidCallStackSave = false; 654 CurCodeDecl = D; 655 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 656 if (FD->usesSEHTry()) 657 CurSEHParent = FD; 658 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 659 FnRetTy = RetTy; 660 CurFn = Fn; 661 CurFnInfo = &FnInfo; 662 assert(CurFn->isDeclaration() && "Function already has body?"); 663 664 // If this function has been blacklisted for any of the enabled sanitizers, 665 // disable the sanitizer for the function. 666 do { 667 #define SANITIZER(NAME, ID) \ 668 if (SanOpts.empty()) \ 669 break; \ 670 if (SanOpts.has(SanitizerKind::ID)) \ 671 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 672 SanOpts.set(SanitizerKind::ID, false); 673 674 #include "clang/Basic/Sanitizers.def" 675 #undef SANITIZER 676 } while (0); 677 678 if (D) { 679 // Apply the no_sanitize* attributes to SanOpts. 680 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 681 SanitizerMask mask = Attr->getMask(); 682 SanOpts.Mask &= ~mask; 683 if (mask & SanitizerKind::Address) 684 SanOpts.set(SanitizerKind::KernelAddress, false); 685 if (mask & SanitizerKind::KernelAddress) 686 SanOpts.set(SanitizerKind::Address, false); 687 if (mask & SanitizerKind::HWAddress) 688 SanOpts.set(SanitizerKind::KernelHWAddress, false); 689 if (mask & SanitizerKind::KernelHWAddress) 690 SanOpts.set(SanitizerKind::HWAddress, false); 691 } 692 } 693 694 // Apply sanitizer attributes to the function. 695 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 696 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 697 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 698 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 699 if (SanOpts.has(SanitizerKind::Thread)) 700 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 701 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 702 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 703 if (SanOpts.has(SanitizerKind::SafeStack)) 704 Fn->addFnAttr(llvm::Attribute::SafeStack); 705 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 706 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 707 708 // Apply fuzzing attribute to the function. 709 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 710 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 711 712 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 713 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 714 if (SanOpts.has(SanitizerKind::Thread)) { 715 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 716 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 717 if (OMD->getMethodFamily() == OMF_dealloc || 718 OMD->getMethodFamily() == OMF_initialize || 719 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 720 markAsIgnoreThreadCheckingAtRuntime(Fn); 721 } 722 } 723 } 724 725 // Ignore unrelated casts in STL allocate() since the allocator must cast 726 // from void* to T* before object initialization completes. Don't match on the 727 // namespace because not all allocators are in std:: 728 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 729 if (matchesStlAllocatorFn(D, getContext())) 730 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 731 } 732 733 // Apply xray attributes to the function (as a string, for now) 734 if (D) { 735 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 736 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 737 XRayInstrKind::Function)) { 738 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 739 Fn->addFnAttr("function-instrument", "xray-always"); 740 if (XRayAttr->neverXRayInstrument()) 741 Fn->addFnAttr("function-instrument", "xray-never"); 742 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 743 if (ShouldXRayInstrumentFunction()) 744 Fn->addFnAttr("xray-log-args", 745 llvm::utostr(LogArgs->getArgumentCount())); 746 } 747 } else { 748 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 749 Fn->addFnAttr( 750 "xray-instruction-threshold", 751 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 752 } 753 } 754 755 // Add no-jump-tables value. 756 Fn->addFnAttr("no-jump-tables", 757 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 758 759 // Add profile-sample-accurate value. 760 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 761 Fn->addFnAttr("profile-sample-accurate"); 762 763 if (getLangOpts().OpenCL) { 764 // Add metadata for a kernel function. 765 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 766 EmitOpenCLKernelMetadata(FD, Fn); 767 } 768 769 // If we are checking function types, emit a function type signature as 770 // prologue data. 771 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 772 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 773 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 774 // Remove any (C++17) exception specifications, to allow calling e.g. a 775 // noexcept function through a non-noexcept pointer. 776 auto ProtoTy = 777 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 778 EST_None); 779 llvm::Constant *FTRTTIConst = 780 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 781 llvm::Constant *FTRTTIConstEncoded = 782 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 783 llvm::Constant *PrologueStructElems[] = {PrologueSig, 784 FTRTTIConstEncoded}; 785 llvm::Constant *PrologueStructConst = 786 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 787 Fn->setPrologueData(PrologueStructConst); 788 } 789 } 790 } 791 792 // If we're checking nullability, we need to know whether we can check the 793 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 794 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 795 auto Nullability = FnRetTy->getNullability(getContext()); 796 if (Nullability && *Nullability == NullabilityKind::NonNull) { 797 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 798 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 799 RetValNullabilityPrecondition = 800 llvm::ConstantInt::getTrue(getLLVMContext()); 801 } 802 } 803 804 // If we're in C++ mode and the function name is "main", it is guaranteed 805 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 806 // used within a program"). 807 if (getLangOpts().CPlusPlus) 808 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 809 if (FD->isMain()) 810 Fn->addFnAttr(llvm::Attribute::NoRecurse); 811 812 // If a custom alignment is used, force realigning to this alignment on 813 // any main function which certainly will need it. 814 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 815 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 816 CGM.getCodeGenOpts().StackAlignment) 817 Fn->addFnAttr("stackrealign"); 818 819 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 820 821 // Create a marker to make it easy to insert allocas into the entryblock 822 // later. Don't create this with the builder, because we don't want it 823 // folded. 824 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 825 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 826 827 ReturnBlock = getJumpDestInCurrentScope("return"); 828 829 Builder.SetInsertPoint(EntryBB); 830 831 // If we're checking the return value, allocate space for a pointer to a 832 // precise source location of the checked return statement. 833 if (requiresReturnValueCheck()) { 834 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 835 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 836 } 837 838 // Emit subprogram debug descriptor. 839 if (CGDebugInfo *DI = getDebugInfo()) { 840 // Reconstruct the type from the argument list so that implicit parameters, 841 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 842 // convention. 843 CallingConv CC = CallingConv::CC_C; 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 845 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 846 CC = SrcFnTy->getCallConv(); 847 SmallVector<QualType, 16> ArgTypes; 848 for (const VarDecl *VD : Args) 849 ArgTypes.push_back(VD->getType()); 850 QualType FnType = getContext().getFunctionType( 851 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 852 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 853 Builder); 854 } 855 856 if (ShouldInstrumentFunction()) { 857 if (CGM.getCodeGenOpts().InstrumentFunctions) 858 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 859 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 860 CurFn->addFnAttr("instrument-function-entry-inlined", 861 "__cyg_profile_func_enter"); 862 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 863 CurFn->addFnAttr("instrument-function-entry-inlined", 864 "__cyg_profile_func_enter_bare"); 865 } 866 867 // Since emitting the mcount call here impacts optimizations such as function 868 // inlining, we just add an attribute to insert a mcount call in backend. 869 // The attribute "counting-function" is set to mcount function name which is 870 // architecture dependent. 871 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 872 // Calls to fentry/mcount should not be generated if function has 873 // the no_instrument_function attribute. 874 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 875 if (CGM.getCodeGenOpts().CallFEntry) 876 Fn->addFnAttr("fentry-call", "true"); 877 else { 878 Fn->addFnAttr("instrument-function-entry-inlined", 879 getTarget().getMCountName()); 880 } 881 } 882 } 883 884 if (RetTy->isVoidType()) { 885 // Void type; nothing to return. 886 ReturnValue = Address::invalid(); 887 888 // Count the implicit return. 889 if (!endsWithReturn(D)) 890 ++NumReturnExprs; 891 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 892 // Indirect return; emit returned value directly into sret slot. 893 // This reduces code size, and affects correctness in C++. 894 auto AI = CurFn->arg_begin(); 895 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 896 ++AI; 897 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 898 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 899 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 900 // Load the sret pointer from the argument struct and return into that. 901 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 902 llvm::Function::arg_iterator EI = CurFn->arg_end(); 903 --EI; 904 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 905 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 906 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 907 } else { 908 ReturnValue = CreateIRTemp(RetTy, "retval"); 909 910 // Tell the epilog emitter to autorelease the result. We do this 911 // now so that various specialized functions can suppress it 912 // during their IR-generation. 913 if (getLangOpts().ObjCAutoRefCount && 914 !CurFnInfo->isReturnsRetained() && 915 RetTy->isObjCRetainableType()) 916 AutoreleaseResult = true; 917 } 918 919 EmitStartEHSpec(CurCodeDecl); 920 921 PrologueCleanupDepth = EHStack.stable_begin(); 922 923 // Emit OpenMP specific initialization of the device functions. 924 if (getLangOpts().OpenMP && CurCodeDecl) 925 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 926 927 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 928 929 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 930 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 931 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 932 if (MD->getParent()->isLambda() && 933 MD->getOverloadedOperator() == OO_Call) { 934 // We're in a lambda; figure out the captures. 935 MD->getParent()->getCaptureFields(LambdaCaptureFields, 936 LambdaThisCaptureField); 937 if (LambdaThisCaptureField) { 938 // If the lambda captures the object referred to by '*this' - either by 939 // value or by reference, make sure CXXThisValue points to the correct 940 // object. 941 942 // Get the lvalue for the field (which is a copy of the enclosing object 943 // or contains the address of the enclosing object). 944 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 945 if (!LambdaThisCaptureField->getType()->isPointerType()) { 946 // If the enclosing object was captured by value, just use its address. 947 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 948 } else { 949 // Load the lvalue pointed to by the field, since '*this' was captured 950 // by reference. 951 CXXThisValue = 952 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 953 } 954 } 955 for (auto *FD : MD->getParent()->fields()) { 956 if (FD->hasCapturedVLAType()) { 957 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 958 SourceLocation()).getScalarVal(); 959 auto VAT = FD->getCapturedVLAType(); 960 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 961 } 962 } 963 } else { 964 // Not in a lambda; just use 'this' from the method. 965 // FIXME: Should we generate a new load for each use of 'this'? The 966 // fast register allocator would be happier... 967 CXXThisValue = CXXABIThisValue; 968 } 969 970 // Check the 'this' pointer once per function, if it's available. 971 if (CXXABIThisValue) { 972 SanitizerSet SkippedChecks; 973 SkippedChecks.set(SanitizerKind::ObjectSize, true); 974 QualType ThisTy = MD->getThisType(); 975 976 // If this is the call operator of a lambda with no capture-default, it 977 // may have a static invoker function, which may call this operator with 978 // a null 'this' pointer. 979 if (isLambdaCallOperator(MD) && 980 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 981 SkippedChecks.set(SanitizerKind::Null, true); 982 983 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 984 : TCK_MemberCall, 985 Loc, CXXABIThisValue, ThisTy, 986 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 987 SkippedChecks); 988 } 989 } 990 991 // If any of the arguments have a variably modified type, make sure to 992 // emit the type size. 993 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 994 i != e; ++i) { 995 const VarDecl *VD = *i; 996 997 // Dig out the type as written from ParmVarDecls; it's unclear whether 998 // the standard (C99 6.9.1p10) requires this, but we're following the 999 // precedent set by gcc. 1000 QualType Ty; 1001 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1002 Ty = PVD->getOriginalType(); 1003 else 1004 Ty = VD->getType(); 1005 1006 if (Ty->isVariablyModifiedType()) 1007 EmitVariablyModifiedType(Ty); 1008 } 1009 // Emit a location at the end of the prologue. 1010 if (CGDebugInfo *DI = getDebugInfo()) 1011 DI->EmitLocation(Builder, StartLoc); 1012 1013 // TODO: Do we need to handle this in two places like we do with 1014 // target-features/target-cpu? 1015 if (CurFuncDecl) 1016 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1017 LargestVectorWidth = VecWidth->getVectorWidth(); 1018 } 1019 1020 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1021 incrementProfileCounter(Body); 1022 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1023 EmitCompoundStmtWithoutScope(*S); 1024 else 1025 EmitStmt(Body); 1026 } 1027 1028 /// When instrumenting to collect profile data, the counts for some blocks 1029 /// such as switch cases need to not include the fall-through counts, so 1030 /// emit a branch around the instrumentation code. When not instrumenting, 1031 /// this just calls EmitBlock(). 1032 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1033 const Stmt *S) { 1034 llvm::BasicBlock *SkipCountBB = nullptr; 1035 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1036 // When instrumenting for profiling, the fallthrough to certain 1037 // statements needs to skip over the instrumentation code so that we 1038 // get an accurate count. 1039 SkipCountBB = createBasicBlock("skipcount"); 1040 EmitBranch(SkipCountBB); 1041 } 1042 EmitBlock(BB); 1043 uint64_t CurrentCount = getCurrentProfileCount(); 1044 incrementProfileCounter(S); 1045 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1046 if (SkipCountBB) 1047 EmitBlock(SkipCountBB); 1048 } 1049 1050 /// Tries to mark the given function nounwind based on the 1051 /// non-existence of any throwing calls within it. We believe this is 1052 /// lightweight enough to do at -O0. 1053 static void TryMarkNoThrow(llvm::Function *F) { 1054 // LLVM treats 'nounwind' on a function as part of the type, so we 1055 // can't do this on functions that can be overwritten. 1056 if (F->isInterposable()) return; 1057 1058 for (llvm::BasicBlock &BB : *F) 1059 for (llvm::Instruction &I : BB) 1060 if (I.mayThrow()) 1061 return; 1062 1063 F->setDoesNotThrow(); 1064 } 1065 1066 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1067 FunctionArgList &Args) { 1068 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1069 QualType ResTy = FD->getReturnType(); 1070 1071 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1072 if (MD && MD->isInstance()) { 1073 if (CGM.getCXXABI().HasThisReturn(GD)) 1074 ResTy = MD->getThisType(); 1075 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1076 ResTy = CGM.getContext().VoidPtrTy; 1077 CGM.getCXXABI().buildThisParam(*this, Args); 1078 } 1079 1080 // The base version of an inheriting constructor whose constructed base is a 1081 // virtual base is not passed any arguments (because it doesn't actually call 1082 // the inherited constructor). 1083 bool PassedParams = true; 1084 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1085 if (auto Inherited = CD->getInheritedConstructor()) 1086 PassedParams = 1087 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1088 1089 if (PassedParams) { 1090 for (auto *Param : FD->parameters()) { 1091 Args.push_back(Param); 1092 if (!Param->hasAttr<PassObjectSizeAttr>()) 1093 continue; 1094 1095 auto *Implicit = ImplicitParamDecl::Create( 1096 getContext(), Param->getDeclContext(), Param->getLocation(), 1097 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1098 SizeArguments[Param] = Implicit; 1099 Args.push_back(Implicit); 1100 } 1101 } 1102 1103 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1104 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1105 1106 return ResTy; 1107 } 1108 1109 static bool 1110 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1111 const ASTContext &Context) { 1112 QualType T = FD->getReturnType(); 1113 // Avoid the optimization for functions that return a record type with a 1114 // trivial destructor or another trivially copyable type. 1115 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1116 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1117 return !ClassDecl->hasTrivialDestructor(); 1118 } 1119 return !T.isTriviallyCopyableType(Context); 1120 } 1121 1122 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1123 const CGFunctionInfo &FnInfo) { 1124 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1125 CurGD = GD; 1126 1127 FunctionArgList Args; 1128 QualType ResTy = BuildFunctionArgList(GD, Args); 1129 1130 // Check if we should generate debug info for this function. 1131 if (FD->hasAttr<NoDebugAttr>()) 1132 DebugInfo = nullptr; // disable debug info indefinitely for this function 1133 1134 // The function might not have a body if we're generating thunks for a 1135 // function declaration. 1136 SourceRange BodyRange; 1137 if (Stmt *Body = FD->getBody()) 1138 BodyRange = Body->getSourceRange(); 1139 else 1140 BodyRange = FD->getLocation(); 1141 CurEHLocation = BodyRange.getEnd(); 1142 1143 // Use the location of the start of the function to determine where 1144 // the function definition is located. By default use the location 1145 // of the declaration as the location for the subprogram. A function 1146 // may lack a declaration in the source code if it is created by code 1147 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1148 SourceLocation Loc = FD->getLocation(); 1149 1150 // If this is a function specialization then use the pattern body 1151 // as the location for the function. 1152 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1153 if (SpecDecl->hasBody(SpecDecl)) 1154 Loc = SpecDecl->getLocation(); 1155 1156 Stmt *Body = FD->getBody(); 1157 1158 // Initialize helper which will detect jumps which can cause invalid lifetime 1159 // markers. 1160 if (Body && ShouldEmitLifetimeMarkers) 1161 Bypasses.Init(Body); 1162 1163 // Emit the standard function prologue. 1164 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1165 1166 // Generate the body of the function. 1167 PGO.assignRegionCounters(GD, CurFn); 1168 if (isa<CXXDestructorDecl>(FD)) 1169 EmitDestructorBody(Args); 1170 else if (isa<CXXConstructorDecl>(FD)) 1171 EmitConstructorBody(Args); 1172 else if (getLangOpts().CUDA && 1173 !getLangOpts().CUDAIsDevice && 1174 FD->hasAttr<CUDAGlobalAttr>()) 1175 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1176 else if (isa<CXXMethodDecl>(FD) && 1177 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1178 // The lambda static invoker function is special, because it forwards or 1179 // clones the body of the function call operator (but is actually static). 1180 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1181 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1182 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1183 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1184 // Implicit copy-assignment gets the same special treatment as implicit 1185 // copy-constructors. 1186 emitImplicitAssignmentOperatorBody(Args); 1187 } else if (Body) { 1188 EmitFunctionBody(Body); 1189 } else 1190 llvm_unreachable("no definition for emitted function"); 1191 1192 // C++11 [stmt.return]p2: 1193 // Flowing off the end of a function [...] results in undefined behavior in 1194 // a value-returning function. 1195 // C11 6.9.1p12: 1196 // If the '}' that terminates a function is reached, and the value of the 1197 // function call is used by the caller, the behavior is undefined. 1198 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1199 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1200 bool ShouldEmitUnreachable = 1201 CGM.getCodeGenOpts().StrictReturn || 1202 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1203 if (SanOpts.has(SanitizerKind::Return)) { 1204 SanitizerScope SanScope(this); 1205 llvm::Value *IsFalse = Builder.getFalse(); 1206 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1207 SanitizerHandler::MissingReturn, 1208 EmitCheckSourceLocation(FD->getLocation()), None); 1209 } else if (ShouldEmitUnreachable) { 1210 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1211 EmitTrapCall(llvm::Intrinsic::trap); 1212 } 1213 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1214 Builder.CreateUnreachable(); 1215 Builder.ClearInsertionPoint(); 1216 } 1217 } 1218 1219 // Emit the standard function epilogue. 1220 FinishFunction(BodyRange.getEnd()); 1221 1222 // If we haven't marked the function nothrow through other means, do 1223 // a quick pass now to see if we can. 1224 if (!CurFn->doesNotThrow()) 1225 TryMarkNoThrow(CurFn); 1226 } 1227 1228 /// ContainsLabel - Return true if the statement contains a label in it. If 1229 /// this statement is not executed normally, it not containing a label means 1230 /// that we can just remove the code. 1231 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1232 // Null statement, not a label! 1233 if (!S) return false; 1234 1235 // If this is a label, we have to emit the code, consider something like: 1236 // if (0) { ... foo: bar(); } goto foo; 1237 // 1238 // TODO: If anyone cared, we could track __label__'s, since we know that you 1239 // can't jump to one from outside their declared region. 1240 if (isa<LabelStmt>(S)) 1241 return true; 1242 1243 // If this is a case/default statement, and we haven't seen a switch, we have 1244 // to emit the code. 1245 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1246 return true; 1247 1248 // If this is a switch statement, we want to ignore cases below it. 1249 if (isa<SwitchStmt>(S)) 1250 IgnoreCaseStmts = true; 1251 1252 // Scan subexpressions for verboten labels. 1253 for (const Stmt *SubStmt : S->children()) 1254 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1255 return true; 1256 1257 return false; 1258 } 1259 1260 /// containsBreak - Return true if the statement contains a break out of it. 1261 /// If the statement (recursively) contains a switch or loop with a break 1262 /// inside of it, this is fine. 1263 bool CodeGenFunction::containsBreak(const Stmt *S) { 1264 // Null statement, not a label! 1265 if (!S) return false; 1266 1267 // If this is a switch or loop that defines its own break scope, then we can 1268 // include it and anything inside of it. 1269 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1270 isa<ForStmt>(S)) 1271 return false; 1272 1273 if (isa<BreakStmt>(S)) 1274 return true; 1275 1276 // Scan subexpressions for verboten breaks. 1277 for (const Stmt *SubStmt : S->children()) 1278 if (containsBreak(SubStmt)) 1279 return true; 1280 1281 return false; 1282 } 1283 1284 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1285 if (!S) return false; 1286 1287 // Some statement kinds add a scope and thus never add a decl to the current 1288 // scope. Note, this list is longer than the list of statements that might 1289 // have an unscoped decl nested within them, but this way is conservatively 1290 // correct even if more statement kinds are added. 1291 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1292 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1293 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1294 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1295 return false; 1296 1297 if (isa<DeclStmt>(S)) 1298 return true; 1299 1300 for (const Stmt *SubStmt : S->children()) 1301 if (mightAddDeclToScope(SubStmt)) 1302 return true; 1303 1304 return false; 1305 } 1306 1307 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1308 /// to a constant, or if it does but contains a label, return false. If it 1309 /// constant folds return true and set the boolean result in Result. 1310 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1311 bool &ResultBool, 1312 bool AllowLabels) { 1313 llvm::APSInt ResultInt; 1314 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1315 return false; 1316 1317 ResultBool = ResultInt.getBoolValue(); 1318 return true; 1319 } 1320 1321 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1322 /// to a constant, or if it does but contains a label, return false. If it 1323 /// constant folds return true and set the folded value. 1324 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1325 llvm::APSInt &ResultInt, 1326 bool AllowLabels) { 1327 // FIXME: Rename and handle conversion of other evaluatable things 1328 // to bool. 1329 Expr::EvalResult Result; 1330 if (!Cond->EvaluateAsInt(Result, getContext())) 1331 return false; // Not foldable, not integer or not fully evaluatable. 1332 1333 llvm::APSInt Int = Result.Val.getInt(); 1334 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1335 return false; // Contains a label. 1336 1337 ResultInt = Int; 1338 return true; 1339 } 1340 1341 1342 1343 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1344 /// statement) to the specified blocks. Based on the condition, this might try 1345 /// to simplify the codegen of the conditional based on the branch. 1346 /// 1347 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1348 llvm::BasicBlock *TrueBlock, 1349 llvm::BasicBlock *FalseBlock, 1350 uint64_t TrueCount) { 1351 Cond = Cond->IgnoreParens(); 1352 1353 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1354 1355 // Handle X && Y in a condition. 1356 if (CondBOp->getOpcode() == BO_LAnd) { 1357 // If we have "1 && X", simplify the code. "0 && X" would have constant 1358 // folded if the case was simple enough. 1359 bool ConstantBool = false; 1360 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1361 ConstantBool) { 1362 // br(1 && X) -> br(X). 1363 incrementProfileCounter(CondBOp); 1364 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1365 TrueCount); 1366 } 1367 1368 // If we have "X && 1", simplify the code to use an uncond branch. 1369 // "X && 0" would have been constant folded to 0. 1370 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1371 ConstantBool) { 1372 // br(X && 1) -> br(X). 1373 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1374 TrueCount); 1375 } 1376 1377 // Emit the LHS as a conditional. If the LHS conditional is false, we 1378 // want to jump to the FalseBlock. 1379 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1380 // The counter tells us how often we evaluate RHS, and all of TrueCount 1381 // can be propagated to that branch. 1382 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1383 1384 ConditionalEvaluation eval(*this); 1385 { 1386 ApplyDebugLocation DL(*this, Cond); 1387 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1388 EmitBlock(LHSTrue); 1389 } 1390 1391 incrementProfileCounter(CondBOp); 1392 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1393 1394 // Any temporaries created here are conditional. 1395 eval.begin(*this); 1396 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1397 eval.end(*this); 1398 1399 return; 1400 } 1401 1402 if (CondBOp->getOpcode() == BO_LOr) { 1403 // If we have "0 || X", simplify the code. "1 || X" would have constant 1404 // folded if the case was simple enough. 1405 bool ConstantBool = false; 1406 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1407 !ConstantBool) { 1408 // br(0 || X) -> br(X). 1409 incrementProfileCounter(CondBOp); 1410 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1411 TrueCount); 1412 } 1413 1414 // If we have "X || 0", simplify the code to use an uncond branch. 1415 // "X || 1" would have been constant folded to 1. 1416 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1417 !ConstantBool) { 1418 // br(X || 0) -> br(X). 1419 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1420 TrueCount); 1421 } 1422 1423 // Emit the LHS as a conditional. If the LHS conditional is true, we 1424 // want to jump to the TrueBlock. 1425 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1426 // We have the count for entry to the RHS and for the whole expression 1427 // being true, so we can divy up True count between the short circuit and 1428 // the RHS. 1429 uint64_t LHSCount = 1430 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1431 uint64_t RHSCount = TrueCount - LHSCount; 1432 1433 ConditionalEvaluation eval(*this); 1434 { 1435 ApplyDebugLocation DL(*this, Cond); 1436 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1437 EmitBlock(LHSFalse); 1438 } 1439 1440 incrementProfileCounter(CondBOp); 1441 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1442 1443 // Any temporaries created here are conditional. 1444 eval.begin(*this); 1445 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1446 1447 eval.end(*this); 1448 1449 return; 1450 } 1451 } 1452 1453 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1454 // br(!x, t, f) -> br(x, f, t) 1455 if (CondUOp->getOpcode() == UO_LNot) { 1456 // Negate the count. 1457 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1458 // Negate the condition and swap the destination blocks. 1459 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1460 FalseCount); 1461 } 1462 } 1463 1464 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1465 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1466 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1467 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1468 1469 ConditionalEvaluation cond(*this); 1470 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1471 getProfileCount(CondOp)); 1472 1473 // When computing PGO branch weights, we only know the overall count for 1474 // the true block. This code is essentially doing tail duplication of the 1475 // naive code-gen, introducing new edges for which counts are not 1476 // available. Divide the counts proportionally between the LHS and RHS of 1477 // the conditional operator. 1478 uint64_t LHSScaledTrueCount = 0; 1479 if (TrueCount) { 1480 double LHSRatio = 1481 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1482 LHSScaledTrueCount = TrueCount * LHSRatio; 1483 } 1484 1485 cond.begin(*this); 1486 EmitBlock(LHSBlock); 1487 incrementProfileCounter(CondOp); 1488 { 1489 ApplyDebugLocation DL(*this, Cond); 1490 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1491 LHSScaledTrueCount); 1492 } 1493 cond.end(*this); 1494 1495 cond.begin(*this); 1496 EmitBlock(RHSBlock); 1497 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1498 TrueCount - LHSScaledTrueCount); 1499 cond.end(*this); 1500 1501 return; 1502 } 1503 1504 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1505 // Conditional operator handling can give us a throw expression as a 1506 // condition for a case like: 1507 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1508 // Fold this to: 1509 // br(c, throw x, br(y, t, f)) 1510 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1511 return; 1512 } 1513 1514 // If the branch has a condition wrapped by __builtin_unpredictable, 1515 // create metadata that specifies that the branch is unpredictable. 1516 // Don't bother if not optimizing because that metadata would not be used. 1517 llvm::MDNode *Unpredictable = nullptr; 1518 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1519 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1520 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1521 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1522 llvm::MDBuilder MDHelper(getLLVMContext()); 1523 Unpredictable = MDHelper.createUnpredictable(); 1524 } 1525 } 1526 1527 // Create branch weights based on the number of times we get here and the 1528 // number of times the condition should be true. 1529 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1530 llvm::MDNode *Weights = 1531 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1532 1533 // Emit the code with the fully general case. 1534 llvm::Value *CondV; 1535 { 1536 ApplyDebugLocation DL(*this, Cond); 1537 CondV = EvaluateExprAsBool(Cond); 1538 } 1539 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1540 } 1541 1542 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1543 /// specified stmt yet. 1544 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1545 CGM.ErrorUnsupported(S, Type); 1546 } 1547 1548 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1549 /// variable-length array whose elements have a non-zero bit-pattern. 1550 /// 1551 /// \param baseType the inner-most element type of the array 1552 /// \param src - a char* pointing to the bit-pattern for a single 1553 /// base element of the array 1554 /// \param sizeInChars - the total size of the VLA, in chars 1555 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1556 Address dest, Address src, 1557 llvm::Value *sizeInChars) { 1558 CGBuilderTy &Builder = CGF.Builder; 1559 1560 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1561 llvm::Value *baseSizeInChars 1562 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1563 1564 Address begin = 1565 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1566 llvm::Value *end = 1567 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1568 1569 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1570 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1571 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1572 1573 // Make a loop over the VLA. C99 guarantees that the VLA element 1574 // count must be nonzero. 1575 CGF.EmitBlock(loopBB); 1576 1577 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1578 cur->addIncoming(begin.getPointer(), originBB); 1579 1580 CharUnits curAlign = 1581 dest.getAlignment().alignmentOfArrayElement(baseSize); 1582 1583 // memcpy the individual element bit-pattern. 1584 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1585 /*volatile*/ false); 1586 1587 // Go to the next element. 1588 llvm::Value *next = 1589 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1590 1591 // Leave if that's the end of the VLA. 1592 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1593 Builder.CreateCondBr(done, contBB, loopBB); 1594 cur->addIncoming(next, loopBB); 1595 1596 CGF.EmitBlock(contBB); 1597 } 1598 1599 void 1600 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1601 // Ignore empty classes in C++. 1602 if (getLangOpts().CPlusPlus) { 1603 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1604 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1605 return; 1606 } 1607 } 1608 1609 // Cast the dest ptr to the appropriate i8 pointer type. 1610 if (DestPtr.getElementType() != Int8Ty) 1611 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1612 1613 // Get size and alignment info for this aggregate. 1614 CharUnits size = getContext().getTypeSizeInChars(Ty); 1615 1616 llvm::Value *SizeVal; 1617 const VariableArrayType *vla; 1618 1619 // Don't bother emitting a zero-byte memset. 1620 if (size.isZero()) { 1621 // But note that getTypeInfo returns 0 for a VLA. 1622 if (const VariableArrayType *vlaType = 1623 dyn_cast_or_null<VariableArrayType>( 1624 getContext().getAsArrayType(Ty))) { 1625 auto VlaSize = getVLASize(vlaType); 1626 SizeVal = VlaSize.NumElts; 1627 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1628 if (!eltSize.isOne()) 1629 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1630 vla = vlaType; 1631 } else { 1632 return; 1633 } 1634 } else { 1635 SizeVal = CGM.getSize(size); 1636 vla = nullptr; 1637 } 1638 1639 // If the type contains a pointer to data member we can't memset it to zero. 1640 // Instead, create a null constant and copy it to the destination. 1641 // TODO: there are other patterns besides zero that we can usefully memset, 1642 // like -1, which happens to be the pattern used by member-pointers. 1643 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1644 // For a VLA, emit a single element, then splat that over the VLA. 1645 if (vla) Ty = getContext().getBaseElementType(vla); 1646 1647 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1648 1649 llvm::GlobalVariable *NullVariable = 1650 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1651 /*isConstant=*/true, 1652 llvm::GlobalVariable::PrivateLinkage, 1653 NullConstant, Twine()); 1654 CharUnits NullAlign = DestPtr.getAlignment(); 1655 NullVariable->setAlignment(NullAlign.getQuantity()); 1656 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1657 NullAlign); 1658 1659 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1660 1661 // Get and call the appropriate llvm.memcpy overload. 1662 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1663 return; 1664 } 1665 1666 // Otherwise, just memset the whole thing to zero. This is legal 1667 // because in LLVM, all default initializers (other than the ones we just 1668 // handled above) are guaranteed to have a bit pattern of all zeros. 1669 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1670 } 1671 1672 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1673 // Make sure that there is a block for the indirect goto. 1674 if (!IndirectBranch) 1675 GetIndirectGotoBlock(); 1676 1677 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1678 1679 // Make sure the indirect branch includes all of the address-taken blocks. 1680 IndirectBranch->addDestination(BB); 1681 return llvm::BlockAddress::get(CurFn, BB); 1682 } 1683 1684 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1685 // If we already made the indirect branch for indirect goto, return its block. 1686 if (IndirectBranch) return IndirectBranch->getParent(); 1687 1688 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1689 1690 // Create the PHI node that indirect gotos will add entries to. 1691 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1692 "indirect.goto.dest"); 1693 1694 // Create the indirect branch instruction. 1695 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1696 return IndirectBranch->getParent(); 1697 } 1698 1699 /// Computes the length of an array in elements, as well as the base 1700 /// element type and a properly-typed first element pointer. 1701 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1702 QualType &baseType, 1703 Address &addr) { 1704 const ArrayType *arrayType = origArrayType; 1705 1706 // If it's a VLA, we have to load the stored size. Note that 1707 // this is the size of the VLA in bytes, not its size in elements. 1708 llvm::Value *numVLAElements = nullptr; 1709 if (isa<VariableArrayType>(arrayType)) { 1710 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1711 1712 // Walk into all VLAs. This doesn't require changes to addr, 1713 // which has type T* where T is the first non-VLA element type. 1714 do { 1715 QualType elementType = arrayType->getElementType(); 1716 arrayType = getContext().getAsArrayType(elementType); 1717 1718 // If we only have VLA components, 'addr' requires no adjustment. 1719 if (!arrayType) { 1720 baseType = elementType; 1721 return numVLAElements; 1722 } 1723 } while (isa<VariableArrayType>(arrayType)); 1724 1725 // We get out here only if we find a constant array type 1726 // inside the VLA. 1727 } 1728 1729 // We have some number of constant-length arrays, so addr should 1730 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1731 // down to the first element of addr. 1732 SmallVector<llvm::Value*, 8> gepIndices; 1733 1734 // GEP down to the array type. 1735 llvm::ConstantInt *zero = Builder.getInt32(0); 1736 gepIndices.push_back(zero); 1737 1738 uint64_t countFromCLAs = 1; 1739 QualType eltType; 1740 1741 llvm::ArrayType *llvmArrayType = 1742 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1743 while (llvmArrayType) { 1744 assert(isa<ConstantArrayType>(arrayType)); 1745 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1746 == llvmArrayType->getNumElements()); 1747 1748 gepIndices.push_back(zero); 1749 countFromCLAs *= llvmArrayType->getNumElements(); 1750 eltType = arrayType->getElementType(); 1751 1752 llvmArrayType = 1753 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1754 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1755 assert((!llvmArrayType || arrayType) && 1756 "LLVM and Clang types are out-of-synch"); 1757 } 1758 1759 if (arrayType) { 1760 // From this point onwards, the Clang array type has been emitted 1761 // as some other type (probably a packed struct). Compute the array 1762 // size, and just emit the 'begin' expression as a bitcast. 1763 while (arrayType) { 1764 countFromCLAs *= 1765 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1766 eltType = arrayType->getElementType(); 1767 arrayType = getContext().getAsArrayType(eltType); 1768 } 1769 1770 llvm::Type *baseType = ConvertType(eltType); 1771 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1772 } else { 1773 // Create the actual GEP. 1774 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1775 gepIndices, "array.begin"), 1776 addr.getAlignment()); 1777 } 1778 1779 baseType = eltType; 1780 1781 llvm::Value *numElements 1782 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1783 1784 // If we had any VLA dimensions, factor them in. 1785 if (numVLAElements) 1786 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1787 1788 return numElements; 1789 } 1790 1791 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1792 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1793 assert(vla && "type was not a variable array type!"); 1794 return getVLASize(vla); 1795 } 1796 1797 CodeGenFunction::VlaSizePair 1798 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1799 // The number of elements so far; always size_t. 1800 llvm::Value *numElements = nullptr; 1801 1802 QualType elementType; 1803 do { 1804 elementType = type->getElementType(); 1805 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1806 assert(vlaSize && "no size for VLA!"); 1807 assert(vlaSize->getType() == SizeTy); 1808 1809 if (!numElements) { 1810 numElements = vlaSize; 1811 } else { 1812 // It's undefined behavior if this wraps around, so mark it that way. 1813 // FIXME: Teach -fsanitize=undefined to trap this. 1814 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1815 } 1816 } while ((type = getContext().getAsVariableArrayType(elementType))); 1817 1818 return { numElements, elementType }; 1819 } 1820 1821 CodeGenFunction::VlaSizePair 1822 CodeGenFunction::getVLAElements1D(QualType type) { 1823 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1824 assert(vla && "type was not a variable array type!"); 1825 return getVLAElements1D(vla); 1826 } 1827 1828 CodeGenFunction::VlaSizePair 1829 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1830 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1831 assert(VlaSize && "no size for VLA!"); 1832 assert(VlaSize->getType() == SizeTy); 1833 return { VlaSize, Vla->getElementType() }; 1834 } 1835 1836 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1837 assert(type->isVariablyModifiedType() && 1838 "Must pass variably modified type to EmitVLASizes!"); 1839 1840 EnsureInsertPoint(); 1841 1842 // We're going to walk down into the type and look for VLA 1843 // expressions. 1844 do { 1845 assert(type->isVariablyModifiedType()); 1846 1847 const Type *ty = type.getTypePtr(); 1848 switch (ty->getTypeClass()) { 1849 1850 #define TYPE(Class, Base) 1851 #define ABSTRACT_TYPE(Class, Base) 1852 #define NON_CANONICAL_TYPE(Class, Base) 1853 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1854 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1855 #include "clang/AST/TypeNodes.def" 1856 llvm_unreachable("unexpected dependent type!"); 1857 1858 // These types are never variably-modified. 1859 case Type::Builtin: 1860 case Type::Complex: 1861 case Type::Vector: 1862 case Type::ExtVector: 1863 case Type::Record: 1864 case Type::Enum: 1865 case Type::Elaborated: 1866 case Type::TemplateSpecialization: 1867 case Type::ObjCTypeParam: 1868 case Type::ObjCObject: 1869 case Type::ObjCInterface: 1870 case Type::ObjCObjectPointer: 1871 llvm_unreachable("type class is never variably-modified!"); 1872 1873 case Type::Adjusted: 1874 type = cast<AdjustedType>(ty)->getAdjustedType(); 1875 break; 1876 1877 case Type::Decayed: 1878 type = cast<DecayedType>(ty)->getPointeeType(); 1879 break; 1880 1881 case Type::Pointer: 1882 type = cast<PointerType>(ty)->getPointeeType(); 1883 break; 1884 1885 case Type::BlockPointer: 1886 type = cast<BlockPointerType>(ty)->getPointeeType(); 1887 break; 1888 1889 case Type::LValueReference: 1890 case Type::RValueReference: 1891 type = cast<ReferenceType>(ty)->getPointeeType(); 1892 break; 1893 1894 case Type::MemberPointer: 1895 type = cast<MemberPointerType>(ty)->getPointeeType(); 1896 break; 1897 1898 case Type::ConstantArray: 1899 case Type::IncompleteArray: 1900 // Losing element qualification here is fine. 1901 type = cast<ArrayType>(ty)->getElementType(); 1902 break; 1903 1904 case Type::VariableArray: { 1905 // Losing element qualification here is fine. 1906 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1907 1908 // Unknown size indication requires no size computation. 1909 // Otherwise, evaluate and record it. 1910 if (const Expr *size = vat->getSizeExpr()) { 1911 // It's possible that we might have emitted this already, 1912 // e.g. with a typedef and a pointer to it. 1913 llvm::Value *&entry = VLASizeMap[size]; 1914 if (!entry) { 1915 llvm::Value *Size = EmitScalarExpr(size); 1916 1917 // C11 6.7.6.2p5: 1918 // If the size is an expression that is not an integer constant 1919 // expression [...] each time it is evaluated it shall have a value 1920 // greater than zero. 1921 if (SanOpts.has(SanitizerKind::VLABound) && 1922 size->getType()->isSignedIntegerType()) { 1923 SanitizerScope SanScope(this); 1924 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1925 llvm::Constant *StaticArgs[] = { 1926 EmitCheckSourceLocation(size->getBeginLoc()), 1927 EmitCheckTypeDescriptor(size->getType())}; 1928 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1929 SanitizerKind::VLABound), 1930 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1931 } 1932 1933 // Always zexting here would be wrong if it weren't 1934 // undefined behavior to have a negative bound. 1935 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1936 } 1937 } 1938 type = vat->getElementType(); 1939 break; 1940 } 1941 1942 case Type::FunctionProto: 1943 case Type::FunctionNoProto: 1944 type = cast<FunctionType>(ty)->getReturnType(); 1945 break; 1946 1947 case Type::Paren: 1948 case Type::TypeOf: 1949 case Type::UnaryTransform: 1950 case Type::Attributed: 1951 case Type::SubstTemplateTypeParm: 1952 case Type::PackExpansion: 1953 case Type::MacroQualified: 1954 // Keep walking after single level desugaring. 1955 type = type.getSingleStepDesugaredType(getContext()); 1956 break; 1957 1958 case Type::Typedef: 1959 case Type::Decltype: 1960 case Type::Auto: 1961 case Type::DeducedTemplateSpecialization: 1962 // Stop walking: nothing to do. 1963 return; 1964 1965 case Type::TypeOfExpr: 1966 // Stop walking: emit typeof expression. 1967 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1968 return; 1969 1970 case Type::Atomic: 1971 type = cast<AtomicType>(ty)->getValueType(); 1972 break; 1973 1974 case Type::Pipe: 1975 type = cast<PipeType>(ty)->getElementType(); 1976 break; 1977 } 1978 } while (type->isVariablyModifiedType()); 1979 } 1980 1981 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1982 if (getContext().getBuiltinVaListType()->isArrayType()) 1983 return EmitPointerWithAlignment(E); 1984 return EmitLValue(E).getAddress(); 1985 } 1986 1987 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1988 return EmitLValue(E).getAddress(); 1989 } 1990 1991 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1992 const APValue &Init) { 1993 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 1994 if (CGDebugInfo *Dbg = getDebugInfo()) 1995 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1996 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1997 } 1998 1999 CodeGenFunction::PeepholeProtection 2000 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2001 // At the moment, the only aggressive peephole we do in IR gen 2002 // is trunc(zext) folding, but if we add more, we can easily 2003 // extend this protection. 2004 2005 if (!rvalue.isScalar()) return PeepholeProtection(); 2006 llvm::Value *value = rvalue.getScalarVal(); 2007 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2008 2009 // Just make an extra bitcast. 2010 assert(HaveInsertPoint()); 2011 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2012 Builder.GetInsertBlock()); 2013 2014 PeepholeProtection protection; 2015 protection.Inst = inst; 2016 return protection; 2017 } 2018 2019 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2020 if (!protection.Inst) return; 2021 2022 // In theory, we could try to duplicate the peepholes now, but whatever. 2023 protection.Inst->eraseFromParent(); 2024 } 2025 2026 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2027 QualType Ty, SourceLocation Loc, 2028 SourceLocation AssumptionLoc, 2029 llvm::Value *Alignment, 2030 llvm::Value *OffsetValue) { 2031 llvm::Value *TheCheck; 2032 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2033 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2034 if (SanOpts.has(SanitizerKind::Alignment)) { 2035 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2036 OffsetValue, TheCheck, Assumption); 2037 } 2038 } 2039 2040 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2041 QualType Ty, SourceLocation Loc, 2042 SourceLocation AssumptionLoc, 2043 unsigned Alignment, 2044 llvm::Value *OffsetValue) { 2045 llvm::Value *TheCheck; 2046 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2047 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2048 if (SanOpts.has(SanitizerKind::Alignment)) { 2049 llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment); 2050 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal, 2051 OffsetValue, TheCheck, Assumption); 2052 } 2053 } 2054 2055 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2056 const Expr *E, 2057 SourceLocation AssumptionLoc, 2058 unsigned Alignment, 2059 llvm::Value *OffsetValue) { 2060 if (auto *CE = dyn_cast<CastExpr>(E)) 2061 E = CE->getSubExprAsWritten(); 2062 QualType Ty = E->getType(); 2063 SourceLocation Loc = E->getExprLoc(); 2064 2065 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2066 OffsetValue); 2067 } 2068 2069 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2070 llvm::Value *AnnotatedVal, 2071 StringRef AnnotationStr, 2072 SourceLocation Location) { 2073 llvm::Value *Args[4] = { 2074 AnnotatedVal, 2075 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2076 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2077 CGM.EmitAnnotationLineNo(Location) 2078 }; 2079 return Builder.CreateCall(AnnotationFn, Args); 2080 } 2081 2082 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2083 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2084 // FIXME We create a new bitcast for every annotation because that's what 2085 // llvm-gcc was doing. 2086 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2087 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2088 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2089 I->getAnnotation(), D->getLocation()); 2090 } 2091 2092 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2093 Address Addr) { 2094 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2095 llvm::Value *V = Addr.getPointer(); 2096 llvm::Type *VTy = V->getType(); 2097 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2098 CGM.Int8PtrTy); 2099 2100 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2101 // FIXME Always emit the cast inst so we can differentiate between 2102 // annotation on the first field of a struct and annotation on the struct 2103 // itself. 2104 if (VTy != CGM.Int8PtrTy) 2105 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2106 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2107 V = Builder.CreateBitCast(V, VTy); 2108 } 2109 2110 return Address(V, Addr.getAlignment()); 2111 } 2112 2113 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2114 2115 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2116 : CGF(CGF) { 2117 assert(!CGF->IsSanitizerScope); 2118 CGF->IsSanitizerScope = true; 2119 } 2120 2121 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2122 CGF->IsSanitizerScope = false; 2123 } 2124 2125 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2126 const llvm::Twine &Name, 2127 llvm::BasicBlock *BB, 2128 llvm::BasicBlock::iterator InsertPt) const { 2129 LoopStack.InsertHelper(I); 2130 if (IsSanitizerScope) 2131 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2132 } 2133 2134 void CGBuilderInserter::InsertHelper( 2135 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2136 llvm::BasicBlock::iterator InsertPt) const { 2137 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2138 if (CGF) 2139 CGF->InsertHelper(I, Name, BB, InsertPt); 2140 } 2141 2142 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2143 CodeGenModule &CGM, const FunctionDecl *FD, 2144 std::string &FirstMissing) { 2145 // If there aren't any required features listed then go ahead and return. 2146 if (ReqFeatures.empty()) 2147 return false; 2148 2149 // Now build up the set of caller features and verify that all the required 2150 // features are there. 2151 llvm::StringMap<bool> CallerFeatureMap; 2152 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2153 2154 // If we have at least one of the features in the feature list return 2155 // true, otherwise return false. 2156 return std::all_of( 2157 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2158 SmallVector<StringRef, 1> OrFeatures; 2159 Feature.split(OrFeatures, '|'); 2160 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2161 if (!CallerFeatureMap.lookup(Feature)) { 2162 FirstMissing = Feature.str(); 2163 return false; 2164 } 2165 return true; 2166 }); 2167 }); 2168 } 2169 2170 // Emits an error if we don't have a valid set of target features for the 2171 // called function. 2172 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2173 const FunctionDecl *TargetDecl) { 2174 // Early exit if this is an indirect call. 2175 if (!TargetDecl) 2176 return; 2177 2178 // Get the current enclosing function if it exists. If it doesn't 2179 // we can't check the target features anyhow. 2180 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2181 if (!FD) 2182 return; 2183 2184 // Grab the required features for the call. For a builtin this is listed in 2185 // the td file with the default cpu, for an always_inline function this is any 2186 // listed cpu and any listed features. 2187 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2188 std::string MissingFeature; 2189 if (BuiltinID) { 2190 SmallVector<StringRef, 1> ReqFeatures; 2191 const char *FeatureList = 2192 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2193 // Return if the builtin doesn't have any required features. 2194 if (!FeatureList || StringRef(FeatureList) == "") 2195 return; 2196 StringRef(FeatureList).split(ReqFeatures, ','); 2197 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2198 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2199 << TargetDecl->getDeclName() 2200 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2201 2202 } else if (TargetDecl->hasAttr<TargetAttr>() || 2203 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2204 // Get the required features for the callee. 2205 2206 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2207 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2208 2209 SmallVector<StringRef, 1> ReqFeatures; 2210 llvm::StringMap<bool> CalleeFeatureMap; 2211 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2212 2213 for (const auto &F : ParsedAttr.Features) { 2214 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2215 ReqFeatures.push_back(StringRef(F).substr(1)); 2216 } 2217 2218 for (const auto &F : CalleeFeatureMap) { 2219 // Only positive features are "required". 2220 if (F.getValue()) 2221 ReqFeatures.push_back(F.getKey()); 2222 } 2223 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2224 CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature) 2225 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2226 } 2227 } 2228 2229 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2230 if (!CGM.getCodeGenOpts().SanitizeStats) 2231 return; 2232 2233 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2234 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2235 CGM.getSanStats().create(IRB, SSK); 2236 } 2237 2238 llvm::Value * 2239 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2240 llvm::Value *Condition = nullptr; 2241 2242 if (!RO.Conditions.Architecture.empty()) 2243 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2244 2245 if (!RO.Conditions.Features.empty()) { 2246 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2247 Condition = 2248 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2249 } 2250 return Condition; 2251 } 2252 2253 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2254 llvm::Function *Resolver, 2255 CGBuilderTy &Builder, 2256 llvm::Function *FuncToReturn, 2257 bool SupportsIFunc) { 2258 if (SupportsIFunc) { 2259 Builder.CreateRet(FuncToReturn); 2260 return; 2261 } 2262 2263 llvm::SmallVector<llvm::Value *, 10> Args; 2264 llvm::for_each(Resolver->args(), 2265 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2266 2267 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2268 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2269 2270 if (Resolver->getReturnType()->isVoidTy()) 2271 Builder.CreateRetVoid(); 2272 else 2273 Builder.CreateRet(Result); 2274 } 2275 2276 void CodeGenFunction::EmitMultiVersionResolver( 2277 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2278 assert((getContext().getTargetInfo().getTriple().getArch() == 2279 llvm::Triple::x86 || 2280 getContext().getTargetInfo().getTriple().getArch() == 2281 llvm::Triple::x86_64) && 2282 "Only implemented for x86 targets"); 2283 2284 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2285 2286 // Main function's basic block. 2287 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2288 Builder.SetInsertPoint(CurBlock); 2289 EmitX86CpuInit(); 2290 2291 for (const MultiVersionResolverOption &RO : Options) { 2292 Builder.SetInsertPoint(CurBlock); 2293 llvm::Value *Condition = FormResolverCondition(RO); 2294 2295 // The 'default' or 'generic' case. 2296 if (!Condition) { 2297 assert(&RO == Options.end() - 1 && 2298 "Default or Generic case must be last"); 2299 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2300 SupportsIFunc); 2301 return; 2302 } 2303 2304 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2305 CGBuilderTy RetBuilder(*this, RetBlock); 2306 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2307 SupportsIFunc); 2308 CurBlock = createBasicBlock("resolver_else", Resolver); 2309 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2310 } 2311 2312 // If no generic/default, emit an unreachable. 2313 Builder.SetInsertPoint(CurBlock); 2314 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2315 TrapCall->setDoesNotReturn(); 2316 TrapCall->setDoesNotThrow(); 2317 Builder.CreateUnreachable(); 2318 Builder.ClearInsertionPoint(); 2319 } 2320 2321 // Loc - where the diagnostic will point, where in the source code this 2322 // alignment has failed. 2323 // SecondaryLoc - if present (will be present if sufficiently different from 2324 // Loc), the diagnostic will additionally point a "Note:" to this location. 2325 // It should be the location where the __attribute__((assume_aligned)) 2326 // was written e.g. 2327 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2328 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2329 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2330 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2331 llvm::Instruction *Assumption) { 2332 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2333 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2334 llvm::Intrinsic::getDeclaration( 2335 Builder.GetInsertBlock()->getParent()->getParent(), 2336 llvm::Intrinsic::assume) && 2337 "Assumption should be a call to llvm.assume()."); 2338 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2339 "Assumption should be the last instruction of the basic block, " 2340 "since the basic block is still being generated."); 2341 2342 if (!SanOpts.has(SanitizerKind::Alignment)) 2343 return; 2344 2345 // Don't check pointers to volatile data. The behavior here is implementation- 2346 // defined. 2347 if (Ty->getPointeeType().isVolatileQualified()) 2348 return; 2349 2350 // We need to temorairly remove the assumption so we can insert the 2351 // sanitizer check before it, else the check will be dropped by optimizations. 2352 Assumption->removeFromParent(); 2353 2354 { 2355 SanitizerScope SanScope(this); 2356 2357 if (!OffsetValue) 2358 OffsetValue = Builder.getInt1(0); // no offset. 2359 2360 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2361 EmitCheckSourceLocation(SecondaryLoc), 2362 EmitCheckTypeDescriptor(Ty)}; 2363 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2364 EmitCheckValue(Alignment), 2365 EmitCheckValue(OffsetValue)}; 2366 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2367 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2368 } 2369 2370 // We are now in the (new, empty) "cont" basic block. 2371 // Reintroduce the assumption. 2372 Builder.Insert(Assumption); 2373 // FIXME: Assumption still has it's original basic block as it's Parent. 2374 } 2375 2376 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2377 if (CGDebugInfo *DI = getDebugInfo()) 2378 return DI->SourceLocToDebugLoc(Location); 2379 2380 return llvm::DebugLoc(); 2381 } 2382