1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/FPEnv.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 48 /// markers. 49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 50 const LangOptions &LangOpts) { 51 if (CGOpts.DisableLifetimeMarkers) 52 return false; 53 54 // Sanitizers may use markers. 55 if (CGOpts.SanitizeAddressUseAfterScope || 56 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 57 LangOpts.Sanitize.has(SanitizerKind::Memory)) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 69 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 70 ShouldEmitLifetimeMarkers( 71 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 72 if (!suppressNewContext) 73 CGM.getCXXABI().getMangleContext().startNewFunction(); 74 75 SetFastMathFlags(CurFPFeatures); 76 SetFPModel(); 77 } 78 79 CodeGenFunction::~CodeGenFunction() { 80 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 81 82 // If there are any unclaimed block infos, go ahead and destroy them 83 // now. This can happen if IR-gen gets clever and skips evaluating 84 // something. 85 if (FirstBlockInfo) 86 destroyBlockInfos(FirstBlockInfo); 87 88 if (getLangOpts().OpenMP && CurFn) 89 CGM.getOpenMPRuntime().functionFinished(*this); 90 91 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 92 // outlining etc) at some point. Doing it once the function codegen is done 93 // seems to be a reasonable spot. We do it here, as opposed to the deletion 94 // time of the CodeGenModule, because we have to ensure the IR has not yet 95 // been "emitted" to the outside, thus, modifications are still sensible. 96 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) 97 OMPBuilder->finalize(); 98 } 99 100 // Map the LangOption for exception behavior into 101 // the corresponding enum in the IR. 102 llvm::fp::ExceptionBehavior 103 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 104 105 switch (Kind) { 106 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 107 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 108 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 109 } 110 llvm_unreachable("Unsupported FP Exception Behavior"); 111 } 112 113 void CodeGenFunction::SetFPModel() { 114 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 115 auto fpExceptionBehavior = ToConstrainedExceptMD( 116 getLangOpts().getFPExceptionMode()); 117 118 Builder.setDefaultConstrainedRounding(RM); 119 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 120 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 121 RM != llvm::RoundingMode::NearestTiesToEven); 122 } 123 124 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 125 llvm::FastMathFlags FMF; 126 FMF.setAllowReassoc(FPFeatures.allowAssociativeMath()); 127 FMF.setNoNaNs(FPFeatures.noHonorNaNs()); 128 FMF.setNoInfs(FPFeatures.noHonorInfs()); 129 FMF.setNoSignedZeros(FPFeatures.noSignedZeros()); 130 FMF.setAllowReciprocal(FPFeatures.allowReciprocalMath()); 131 FMF.setApproxFunc(FPFeatures.allowApproximateFunctions()); 132 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 133 Builder.setFastMathFlags(FMF); 134 } 135 136 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 137 FPOptions FPFeatures) 138 : CGF(CGF), OldFPFeatures(CGF.CurFPFeatures) { 139 CGF.CurFPFeatures = FPFeatures; 140 141 if (OldFPFeatures == FPFeatures) 142 return; 143 144 FMFGuard.emplace(CGF.Builder); 145 146 auto NewRoundingBehavior = FPFeatures.getRoundingMode(); 147 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 148 auto NewExceptionBehavior = 149 ToConstrainedExceptMD(FPFeatures.getExceptionMode()); 150 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 151 152 CGF.SetFastMathFlags(FPFeatures); 153 154 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 155 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 156 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 157 (NewExceptionBehavior == llvm::fp::ebIgnore && 158 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 159 "FPConstrained should be enabled on entire function"); 160 161 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 162 auto OldValue = 163 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 164 auto NewValue = OldValue & Value; 165 if (OldValue != NewValue) 166 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 167 }; 168 mergeFnAttrValue("no-infs-fp-math", FPFeatures.noHonorInfs()); 169 mergeFnAttrValue("no-nans-fp-math", FPFeatures.noHonorNaNs()); 170 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.noSignedZeros()); 171 mergeFnAttrValue( 172 "unsafe-fp-math", 173 FPFeatures.allowAssociativeMath() && FPFeatures.allowReciprocalMath() && 174 FPFeatures.allowApproximateFunctions() && FPFeatures.noSignedZeros()); 175 } 176 177 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 178 CGF.CurFPFeatures = OldFPFeatures; 179 } 180 181 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 182 LValueBaseInfo BaseInfo; 183 TBAAAccessInfo TBAAInfo; 184 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 185 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 186 TBAAInfo); 187 } 188 189 /// Given a value of type T* that may not be to a complete object, 190 /// construct an l-value with the natural pointee alignment of T. 191 LValue 192 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 193 LValueBaseInfo BaseInfo; 194 TBAAAccessInfo TBAAInfo; 195 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 196 /* forPointeeType= */ true); 197 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 198 } 199 200 201 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 202 return CGM.getTypes().ConvertTypeForMem(T); 203 } 204 205 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 206 return CGM.getTypes().ConvertType(T); 207 } 208 209 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 210 type = type.getCanonicalType(); 211 while (true) { 212 switch (type->getTypeClass()) { 213 #define TYPE(name, parent) 214 #define ABSTRACT_TYPE(name, parent) 215 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 216 #define DEPENDENT_TYPE(name, parent) case Type::name: 217 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 218 #include "clang/AST/TypeNodes.inc" 219 llvm_unreachable("non-canonical or dependent type in IR-generation"); 220 221 case Type::Auto: 222 case Type::DeducedTemplateSpecialization: 223 llvm_unreachable("undeduced type in IR-generation"); 224 225 // Various scalar types. 226 case Type::Builtin: 227 case Type::Pointer: 228 case Type::BlockPointer: 229 case Type::LValueReference: 230 case Type::RValueReference: 231 case Type::MemberPointer: 232 case Type::Vector: 233 case Type::ExtVector: 234 case Type::ConstantMatrix: 235 case Type::FunctionProto: 236 case Type::FunctionNoProto: 237 case Type::Enum: 238 case Type::ObjCObjectPointer: 239 case Type::Pipe: 240 case Type::ExtInt: 241 return TEK_Scalar; 242 243 // Complexes. 244 case Type::Complex: 245 return TEK_Complex; 246 247 // Arrays, records, and Objective-C objects. 248 case Type::ConstantArray: 249 case Type::IncompleteArray: 250 case Type::VariableArray: 251 case Type::Record: 252 case Type::ObjCObject: 253 case Type::ObjCInterface: 254 return TEK_Aggregate; 255 256 // We operate on atomic values according to their underlying type. 257 case Type::Atomic: 258 type = cast<AtomicType>(type)->getValueType(); 259 continue; 260 } 261 llvm_unreachable("unknown type kind!"); 262 } 263 } 264 265 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 266 // For cleanliness, we try to avoid emitting the return block for 267 // simple cases. 268 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 269 270 if (CurBB) { 271 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 272 273 // We have a valid insert point, reuse it if it is empty or there are no 274 // explicit jumps to the return block. 275 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 276 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 277 delete ReturnBlock.getBlock(); 278 ReturnBlock = JumpDest(); 279 } else 280 EmitBlock(ReturnBlock.getBlock()); 281 return llvm::DebugLoc(); 282 } 283 284 // Otherwise, if the return block is the target of a single direct 285 // branch then we can just put the code in that block instead. This 286 // cleans up functions which started with a unified return block. 287 if (ReturnBlock.getBlock()->hasOneUse()) { 288 llvm::BranchInst *BI = 289 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 290 if (BI && BI->isUnconditional() && 291 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 292 // Record/return the DebugLoc of the simple 'return' expression to be used 293 // later by the actual 'ret' instruction. 294 llvm::DebugLoc Loc = BI->getDebugLoc(); 295 Builder.SetInsertPoint(BI->getParent()); 296 BI->eraseFromParent(); 297 delete ReturnBlock.getBlock(); 298 ReturnBlock = JumpDest(); 299 return Loc; 300 } 301 } 302 303 // FIXME: We are at an unreachable point, there is no reason to emit the block 304 // unless it has uses. However, we still need a place to put the debug 305 // region.end for now. 306 307 EmitBlock(ReturnBlock.getBlock()); 308 return llvm::DebugLoc(); 309 } 310 311 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 312 if (!BB) return; 313 if (!BB->use_empty()) 314 return CGF.CurFn->getBasicBlockList().push_back(BB); 315 delete BB; 316 } 317 318 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 319 assert(BreakContinueStack.empty() && 320 "mismatched push/pop in break/continue stack!"); 321 322 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 323 && NumSimpleReturnExprs == NumReturnExprs 324 && ReturnBlock.getBlock()->use_empty(); 325 // Usually the return expression is evaluated before the cleanup 326 // code. If the function contains only a simple return statement, 327 // such as a constant, the location before the cleanup code becomes 328 // the last useful breakpoint in the function, because the simple 329 // return expression will be evaluated after the cleanup code. To be 330 // safe, set the debug location for cleanup code to the location of 331 // the return statement. Otherwise the cleanup code should be at the 332 // end of the function's lexical scope. 333 // 334 // If there are multiple branches to the return block, the branch 335 // instructions will get the location of the return statements and 336 // all will be fine. 337 if (CGDebugInfo *DI = getDebugInfo()) { 338 if (OnlySimpleReturnStmts) 339 DI->EmitLocation(Builder, LastStopPoint); 340 else 341 DI->EmitLocation(Builder, EndLoc); 342 } 343 344 // Pop any cleanups that might have been associated with the 345 // parameters. Do this in whatever block we're currently in; it's 346 // important to do this before we enter the return block or return 347 // edges will be *really* confused. 348 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 349 bool HasOnlyLifetimeMarkers = 350 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 351 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 352 if (HasCleanups) { 353 // Make sure the line table doesn't jump back into the body for 354 // the ret after it's been at EndLoc. 355 Optional<ApplyDebugLocation> AL; 356 if (CGDebugInfo *DI = getDebugInfo()) { 357 if (OnlySimpleReturnStmts) 358 DI->EmitLocation(Builder, EndLoc); 359 else 360 // We may not have a valid end location. Try to apply it anyway, and 361 // fall back to an artificial location if needed. 362 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 363 } 364 365 PopCleanupBlocks(PrologueCleanupDepth); 366 } 367 368 // Emit function epilog (to return). 369 llvm::DebugLoc Loc = EmitReturnBlock(); 370 371 if (ShouldInstrumentFunction()) { 372 if (CGM.getCodeGenOpts().InstrumentFunctions) 373 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 374 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 375 CurFn->addFnAttr("instrument-function-exit-inlined", 376 "__cyg_profile_func_exit"); 377 } 378 379 // Emit debug descriptor for function end. 380 if (CGDebugInfo *DI = getDebugInfo()) 381 DI->EmitFunctionEnd(Builder, CurFn); 382 383 // Reset the debug location to that of the simple 'return' expression, if any 384 // rather than that of the end of the function's scope '}'. 385 ApplyDebugLocation AL(*this, Loc); 386 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 387 EmitEndEHSpec(CurCodeDecl); 388 389 assert(EHStack.empty() && 390 "did not remove all scopes from cleanup stack!"); 391 392 // If someone did an indirect goto, emit the indirect goto block at the end of 393 // the function. 394 if (IndirectBranch) { 395 EmitBlock(IndirectBranch->getParent()); 396 Builder.ClearInsertionPoint(); 397 } 398 399 // If some of our locals escaped, insert a call to llvm.localescape in the 400 // entry block. 401 if (!EscapedLocals.empty()) { 402 // Invert the map from local to index into a simple vector. There should be 403 // no holes. 404 SmallVector<llvm::Value *, 4> EscapeArgs; 405 EscapeArgs.resize(EscapedLocals.size()); 406 for (auto &Pair : EscapedLocals) 407 EscapeArgs[Pair.second] = Pair.first; 408 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 409 &CGM.getModule(), llvm::Intrinsic::localescape); 410 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 411 } 412 413 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 414 llvm::Instruction *Ptr = AllocaInsertPt; 415 AllocaInsertPt = nullptr; 416 Ptr->eraseFromParent(); 417 418 // If someone took the address of a label but never did an indirect goto, we 419 // made a zero entry PHI node, which is illegal, zap it now. 420 if (IndirectBranch) { 421 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 422 if (PN->getNumIncomingValues() == 0) { 423 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 424 PN->eraseFromParent(); 425 } 426 } 427 428 EmitIfUsed(*this, EHResumeBlock); 429 EmitIfUsed(*this, TerminateLandingPad); 430 EmitIfUsed(*this, TerminateHandler); 431 EmitIfUsed(*this, UnreachableBlock); 432 433 for (const auto &FuncletAndParent : TerminateFunclets) 434 EmitIfUsed(*this, FuncletAndParent.second); 435 436 if (CGM.getCodeGenOpts().EmitDeclMetadata) 437 EmitDeclMetadata(); 438 439 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 440 I = DeferredReplacements.begin(), 441 E = DeferredReplacements.end(); 442 I != E; ++I) { 443 I->first->replaceAllUsesWith(I->second); 444 I->first->eraseFromParent(); 445 } 446 447 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 448 // PHIs if the current function is a coroutine. We don't do it for all 449 // functions as it may result in slight increase in numbers of instructions 450 // if compiled with no optimizations. We do it for coroutine as the lifetime 451 // of CleanupDestSlot alloca make correct coroutine frame building very 452 // difficult. 453 if (NormalCleanupDest.isValid() && isCoroutine()) { 454 llvm::DominatorTree DT(*CurFn); 455 llvm::PromoteMemToReg( 456 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 457 NormalCleanupDest = Address::invalid(); 458 } 459 460 // Scan function arguments for vector width. 461 for (llvm::Argument &A : CurFn->args()) 462 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 463 LargestVectorWidth = 464 std::max((uint64_t)LargestVectorWidth, 465 VT->getPrimitiveSizeInBits().getKnownMinSize()); 466 467 // Update vector width based on return type. 468 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 469 LargestVectorWidth = 470 std::max((uint64_t)LargestVectorWidth, 471 VT->getPrimitiveSizeInBits().getKnownMinSize()); 472 473 // Add the required-vector-width attribute. This contains the max width from: 474 // 1. min-vector-width attribute used in the source program. 475 // 2. Any builtins used that have a vector width specified. 476 // 3. Values passed in and out of inline assembly. 477 // 4. Width of vector arguments and return types for this function. 478 // 5. Width of vector aguments and return types for functions called by this 479 // function. 480 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 481 482 // If we generated an unreachable return block, delete it now. 483 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 484 Builder.ClearInsertionPoint(); 485 ReturnBlock.getBlock()->eraseFromParent(); 486 } 487 if (ReturnValue.isValid()) { 488 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 489 if (RetAlloca && RetAlloca->use_empty()) { 490 RetAlloca->eraseFromParent(); 491 ReturnValue = Address::invalid(); 492 } 493 } 494 } 495 496 /// ShouldInstrumentFunction - Return true if the current function should be 497 /// instrumented with __cyg_profile_func_* calls 498 bool CodeGenFunction::ShouldInstrumentFunction() { 499 if (!CGM.getCodeGenOpts().InstrumentFunctions && 500 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 501 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 502 return false; 503 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 504 return false; 505 return true; 506 } 507 508 /// ShouldXRayInstrument - Return true if the current function should be 509 /// instrumented with XRay nop sleds. 510 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 511 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 512 } 513 514 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 515 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 516 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 517 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 518 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 519 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 520 XRayInstrKind::Custom); 521 } 522 523 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 524 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 525 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 526 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 527 XRayInstrKind::Typed); 528 } 529 530 llvm::Constant * 531 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 532 llvm::Constant *Addr) { 533 // Addresses stored in prologue data can't require run-time fixups and must 534 // be PC-relative. Run-time fixups are undesirable because they necessitate 535 // writable text segments, which are unsafe. And absolute addresses are 536 // undesirable because they break PIE mode. 537 538 // Add a layer of indirection through a private global. Taking its address 539 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 540 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 541 /*isConstant=*/true, 542 llvm::GlobalValue::PrivateLinkage, Addr); 543 544 // Create a PC-relative address. 545 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 546 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 547 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 548 return (IntPtrTy == Int32Ty) 549 ? PCRelAsInt 550 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 551 } 552 553 llvm::Value * 554 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 555 llvm::Value *EncodedAddr) { 556 // Reconstruct the address of the global. 557 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 558 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 559 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 560 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 561 562 // Load the original pointer through the global. 563 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 564 "decoded_addr"); 565 } 566 567 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 568 llvm::Function *Fn) 569 { 570 if (!FD->hasAttr<OpenCLKernelAttr>()) 571 return; 572 573 llvm::LLVMContext &Context = getLLVMContext(); 574 575 CGM.GenOpenCLArgMetadata(Fn, FD, this); 576 577 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 578 QualType HintQTy = A->getTypeHint(); 579 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 580 bool IsSignedInteger = 581 HintQTy->isSignedIntegerType() || 582 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 583 llvm::Metadata *AttrMDArgs[] = { 584 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 585 CGM.getTypes().ConvertType(A->getTypeHint()))), 586 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 587 llvm::IntegerType::get(Context, 32), 588 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 589 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 590 } 591 592 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 593 llvm::Metadata *AttrMDArgs[] = { 594 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 595 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 596 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 597 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 598 } 599 600 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 601 llvm::Metadata *AttrMDArgs[] = { 602 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 603 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 604 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 605 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 606 } 607 608 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 609 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 610 llvm::Metadata *AttrMDArgs[] = { 611 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 612 Fn->setMetadata("intel_reqd_sub_group_size", 613 llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 } 616 617 /// Determine whether the function F ends with a return stmt. 618 static bool endsWithReturn(const Decl* F) { 619 const Stmt *Body = nullptr; 620 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 621 Body = FD->getBody(); 622 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 623 Body = OMD->getBody(); 624 625 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 626 auto LastStmt = CS->body_rbegin(); 627 if (LastStmt != CS->body_rend()) 628 return isa<ReturnStmt>(*LastStmt); 629 } 630 return false; 631 } 632 633 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 634 if (SanOpts.has(SanitizerKind::Thread)) { 635 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 636 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 637 } 638 } 639 640 /// Check if the return value of this function requires sanitization. 641 bool CodeGenFunction::requiresReturnValueCheck() const { 642 return requiresReturnValueNullabilityCheck() || 643 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 644 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 645 } 646 647 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 648 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 649 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 650 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 651 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 652 return false; 653 654 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 655 return false; 656 657 if (MD->getNumParams() == 2) { 658 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 659 if (!PT || !PT->isVoidPointerType() || 660 !PT->getPointeeType().isConstQualified()) 661 return false; 662 } 663 664 return true; 665 } 666 667 /// Return the UBSan prologue signature for \p FD if one is available. 668 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 669 const FunctionDecl *FD) { 670 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 671 if (!MD->isStatic()) 672 return nullptr; 673 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 674 } 675 676 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 677 llvm::Function *Fn, 678 const CGFunctionInfo &FnInfo, 679 const FunctionArgList &Args, 680 SourceLocation Loc, 681 SourceLocation StartLoc) { 682 assert(!CurFn && 683 "Do not use a CodeGenFunction object for more than one function"); 684 685 const Decl *D = GD.getDecl(); 686 687 DidCallStackSave = false; 688 CurCodeDecl = D; 689 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 690 if (FD->usesSEHTry()) 691 CurSEHParent = FD; 692 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 693 FnRetTy = RetTy; 694 CurFn = Fn; 695 CurFnInfo = &FnInfo; 696 assert(CurFn->isDeclaration() && "Function already has body?"); 697 698 // If this function has been blacklisted for any of the enabled sanitizers, 699 // disable the sanitizer for the function. 700 do { 701 #define SANITIZER(NAME, ID) \ 702 if (SanOpts.empty()) \ 703 break; \ 704 if (SanOpts.has(SanitizerKind::ID)) \ 705 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 706 SanOpts.set(SanitizerKind::ID, false); 707 708 #include "clang/Basic/Sanitizers.def" 709 #undef SANITIZER 710 } while (0); 711 712 if (D) { 713 // Apply the no_sanitize* attributes to SanOpts. 714 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 715 SanitizerMask mask = Attr->getMask(); 716 SanOpts.Mask &= ~mask; 717 if (mask & SanitizerKind::Address) 718 SanOpts.set(SanitizerKind::KernelAddress, false); 719 if (mask & SanitizerKind::KernelAddress) 720 SanOpts.set(SanitizerKind::Address, false); 721 if (mask & SanitizerKind::HWAddress) 722 SanOpts.set(SanitizerKind::KernelHWAddress, false); 723 if (mask & SanitizerKind::KernelHWAddress) 724 SanOpts.set(SanitizerKind::HWAddress, false); 725 } 726 } 727 728 // Apply sanitizer attributes to the function. 729 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 730 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 731 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 732 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 733 if (SanOpts.has(SanitizerKind::MemTag)) 734 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 735 if (SanOpts.has(SanitizerKind::Thread)) 736 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 737 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 738 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 739 if (SanOpts.has(SanitizerKind::SafeStack)) 740 Fn->addFnAttr(llvm::Attribute::SafeStack); 741 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 742 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 743 744 // Apply fuzzing attribute to the function. 745 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 746 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 747 748 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 749 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 750 if (SanOpts.has(SanitizerKind::Thread)) { 751 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 752 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 753 if (OMD->getMethodFamily() == OMF_dealloc || 754 OMD->getMethodFamily() == OMF_initialize || 755 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 756 markAsIgnoreThreadCheckingAtRuntime(Fn); 757 } 758 } 759 } 760 761 // Ignore unrelated casts in STL allocate() since the allocator must cast 762 // from void* to T* before object initialization completes. Don't match on the 763 // namespace because not all allocators are in std:: 764 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 765 if (matchesStlAllocatorFn(D, getContext())) 766 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 767 } 768 769 // Ignore null checks in coroutine functions since the coroutines passes 770 // are not aware of how to move the extra UBSan instructions across the split 771 // coroutine boundaries. 772 if (D && SanOpts.has(SanitizerKind::Null)) 773 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 774 if (FD->getBody() && 775 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 776 SanOpts.Mask &= ~SanitizerKind::Null; 777 778 // Apply xray attributes to the function (as a string, for now) 779 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 780 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 781 XRayInstrKind::FunctionEntry) || 782 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 783 XRayInstrKind::FunctionExit)) { 784 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 785 Fn->addFnAttr("function-instrument", "xray-always"); 786 if (XRayAttr->neverXRayInstrument()) 787 Fn->addFnAttr("function-instrument", "xray-never"); 788 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 789 if (ShouldXRayInstrumentFunction()) 790 Fn->addFnAttr("xray-log-args", 791 llvm::utostr(LogArgs->getArgumentCount())); 792 } 793 } else { 794 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 795 Fn->addFnAttr( 796 "xray-instruction-threshold", 797 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 798 } 799 800 if (ShouldXRayInstrumentFunction()) { 801 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 802 Fn->addFnAttr("xray-ignore-loops"); 803 804 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 805 XRayInstrKind::FunctionExit)) 806 Fn->addFnAttr("xray-skip-exit"); 807 808 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 809 XRayInstrKind::FunctionEntry)) 810 Fn->addFnAttr("xray-skip-entry"); 811 } 812 813 unsigned Count, Offset; 814 if (const auto *Attr = 815 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 816 Count = Attr->getCount(); 817 Offset = Attr->getOffset(); 818 } else { 819 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 820 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 821 } 822 if (Count && Offset <= Count) { 823 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 824 if (Offset) 825 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 826 } 827 828 // Add no-jump-tables value. 829 Fn->addFnAttr("no-jump-tables", 830 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 831 832 // Add no-inline-line-tables value. 833 if (CGM.getCodeGenOpts().NoInlineLineTables) 834 Fn->addFnAttr("no-inline-line-tables"); 835 836 // Add profile-sample-accurate value. 837 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 838 Fn->addFnAttr("profile-sample-accurate"); 839 840 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 841 Fn->addFnAttr("use-sample-profile"); 842 843 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 844 Fn->addFnAttr("cfi-canonical-jump-table"); 845 846 if (getLangOpts().OpenCL) { 847 // Add metadata for a kernel function. 848 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 849 EmitOpenCLKernelMetadata(FD, Fn); 850 } 851 852 // If we are checking function types, emit a function type signature as 853 // prologue data. 854 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 855 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 857 // Remove any (C++17) exception specifications, to allow calling e.g. a 858 // noexcept function through a non-noexcept pointer. 859 auto ProtoTy = 860 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 861 EST_None); 862 llvm::Constant *FTRTTIConst = 863 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 864 llvm::Constant *FTRTTIConstEncoded = 865 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 866 llvm::Constant *PrologueStructElems[] = {PrologueSig, 867 FTRTTIConstEncoded}; 868 llvm::Constant *PrologueStructConst = 869 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 870 Fn->setPrologueData(PrologueStructConst); 871 } 872 } 873 } 874 875 // If we're checking nullability, we need to know whether we can check the 876 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 877 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 878 auto Nullability = FnRetTy->getNullability(getContext()); 879 if (Nullability && *Nullability == NullabilityKind::NonNull) { 880 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 881 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 882 RetValNullabilityPrecondition = 883 llvm::ConstantInt::getTrue(getLLVMContext()); 884 } 885 } 886 887 // If we're in C++ mode and the function name is "main", it is guaranteed 888 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 889 // used within a program"). 890 // 891 // OpenCL C 2.0 v2.2-11 s6.9.i: 892 // Recursion is not supported. 893 // 894 // SYCL v1.2.1 s3.10: 895 // kernels cannot include RTTI information, exception classes, 896 // recursive code, virtual functions or make use of C++ libraries that 897 // are not compiled for the device. 898 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 899 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 900 getLangOpts().SYCLIsDevice || 901 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 902 Fn->addFnAttr(llvm::Attribute::NoRecurse); 903 } 904 905 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 906 Builder.setIsFPConstrained(FD->usesFPIntrin()); 907 if (FD->usesFPIntrin()) 908 Fn->addFnAttr(llvm::Attribute::StrictFP); 909 } 910 911 // If a custom alignment is used, force realigning to this alignment on 912 // any main function which certainly will need it. 913 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 914 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 915 CGM.getCodeGenOpts().StackAlignment) 916 Fn->addFnAttr("stackrealign"); 917 918 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 919 920 // Create a marker to make it easy to insert allocas into the entryblock 921 // later. Don't create this with the builder, because we don't want it 922 // folded. 923 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 924 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 925 926 ReturnBlock = getJumpDestInCurrentScope("return"); 927 928 Builder.SetInsertPoint(EntryBB); 929 930 // If we're checking the return value, allocate space for a pointer to a 931 // precise source location of the checked return statement. 932 if (requiresReturnValueCheck()) { 933 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 934 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 935 } 936 937 // Emit subprogram debug descriptor. 938 if (CGDebugInfo *DI = getDebugInfo()) { 939 // Reconstruct the type from the argument list so that implicit parameters, 940 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 941 // convention. 942 CallingConv CC = CallingConv::CC_C; 943 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 944 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 945 CC = SrcFnTy->getCallConv(); 946 SmallVector<QualType, 16> ArgTypes; 947 for (const VarDecl *VD : Args) 948 ArgTypes.push_back(VD->getType()); 949 QualType FnType = getContext().getFunctionType( 950 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 951 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 952 Builder); 953 } 954 955 if (ShouldInstrumentFunction()) { 956 if (CGM.getCodeGenOpts().InstrumentFunctions) 957 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 958 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 959 CurFn->addFnAttr("instrument-function-entry-inlined", 960 "__cyg_profile_func_enter"); 961 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 962 CurFn->addFnAttr("instrument-function-entry-inlined", 963 "__cyg_profile_func_enter_bare"); 964 } 965 966 // Since emitting the mcount call here impacts optimizations such as function 967 // inlining, we just add an attribute to insert a mcount call in backend. 968 // The attribute "counting-function" is set to mcount function name which is 969 // architecture dependent. 970 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 971 // Calls to fentry/mcount should not be generated if function has 972 // the no_instrument_function attribute. 973 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 974 if (CGM.getCodeGenOpts().CallFEntry) 975 Fn->addFnAttr("fentry-call", "true"); 976 else { 977 Fn->addFnAttr("instrument-function-entry-inlined", 978 getTarget().getMCountName()); 979 } 980 if (CGM.getCodeGenOpts().MNopMCount) { 981 if (!CGM.getCodeGenOpts().CallFEntry) 982 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 983 << "-mnop-mcount" << "-mfentry"; 984 Fn->addFnAttr("mnop-mcount"); 985 } 986 987 if (CGM.getCodeGenOpts().RecordMCount) { 988 if (!CGM.getCodeGenOpts().CallFEntry) 989 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 990 << "-mrecord-mcount" << "-mfentry"; 991 Fn->addFnAttr("mrecord-mcount"); 992 } 993 } 994 } 995 996 if (CGM.getCodeGenOpts().PackedStack) { 997 if (getContext().getTargetInfo().getTriple().getArch() != 998 llvm::Triple::systemz) 999 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1000 << "-mpacked-stack"; 1001 Fn->addFnAttr("packed-stack"); 1002 } 1003 1004 if (RetTy->isVoidType()) { 1005 // Void type; nothing to return. 1006 ReturnValue = Address::invalid(); 1007 1008 // Count the implicit return. 1009 if (!endsWithReturn(D)) 1010 ++NumReturnExprs; 1011 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1012 // Indirect return; emit returned value directly into sret slot. 1013 // This reduces code size, and affects correctness in C++. 1014 auto AI = CurFn->arg_begin(); 1015 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1016 ++AI; 1017 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1018 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1019 ReturnValuePointer = 1020 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1021 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1022 ReturnValue.getPointer(), Int8PtrTy), 1023 ReturnValuePointer); 1024 } 1025 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1026 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1027 // Load the sret pointer from the argument struct and return into that. 1028 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1029 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1030 --EI; 1031 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1032 ReturnValuePointer = Address(Addr, getPointerAlign()); 1033 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1034 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1035 } else { 1036 ReturnValue = CreateIRTemp(RetTy, "retval"); 1037 1038 // Tell the epilog emitter to autorelease the result. We do this 1039 // now so that various specialized functions can suppress it 1040 // during their IR-generation. 1041 if (getLangOpts().ObjCAutoRefCount && 1042 !CurFnInfo->isReturnsRetained() && 1043 RetTy->isObjCRetainableType()) 1044 AutoreleaseResult = true; 1045 } 1046 1047 EmitStartEHSpec(CurCodeDecl); 1048 1049 PrologueCleanupDepth = EHStack.stable_begin(); 1050 1051 // Emit OpenMP specific initialization of the device functions. 1052 if (getLangOpts().OpenMP && CurCodeDecl) 1053 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1054 1055 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1056 1057 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1058 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1059 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1060 if (MD->getParent()->isLambda() && 1061 MD->getOverloadedOperator() == OO_Call) { 1062 // We're in a lambda; figure out the captures. 1063 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1064 LambdaThisCaptureField); 1065 if (LambdaThisCaptureField) { 1066 // If the lambda captures the object referred to by '*this' - either by 1067 // value or by reference, make sure CXXThisValue points to the correct 1068 // object. 1069 1070 // Get the lvalue for the field (which is a copy of the enclosing object 1071 // or contains the address of the enclosing object). 1072 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1073 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1074 // If the enclosing object was captured by value, just use its address. 1075 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1076 } else { 1077 // Load the lvalue pointed to by the field, since '*this' was captured 1078 // by reference. 1079 CXXThisValue = 1080 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1081 } 1082 } 1083 for (auto *FD : MD->getParent()->fields()) { 1084 if (FD->hasCapturedVLAType()) { 1085 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1086 SourceLocation()).getScalarVal(); 1087 auto VAT = FD->getCapturedVLAType(); 1088 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1089 } 1090 } 1091 } else { 1092 // Not in a lambda; just use 'this' from the method. 1093 // FIXME: Should we generate a new load for each use of 'this'? The 1094 // fast register allocator would be happier... 1095 CXXThisValue = CXXABIThisValue; 1096 } 1097 1098 // Check the 'this' pointer once per function, if it's available. 1099 if (CXXABIThisValue) { 1100 SanitizerSet SkippedChecks; 1101 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1102 QualType ThisTy = MD->getThisType(); 1103 1104 // If this is the call operator of a lambda with no capture-default, it 1105 // may have a static invoker function, which may call this operator with 1106 // a null 'this' pointer. 1107 if (isLambdaCallOperator(MD) && 1108 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1109 SkippedChecks.set(SanitizerKind::Null, true); 1110 1111 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1112 : TCK_MemberCall, 1113 Loc, CXXABIThisValue, ThisTy, 1114 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1115 SkippedChecks); 1116 } 1117 } 1118 1119 // If any of the arguments have a variably modified type, make sure to 1120 // emit the type size. 1121 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1122 i != e; ++i) { 1123 const VarDecl *VD = *i; 1124 1125 // Dig out the type as written from ParmVarDecls; it's unclear whether 1126 // the standard (C99 6.9.1p10) requires this, but we're following the 1127 // precedent set by gcc. 1128 QualType Ty; 1129 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1130 Ty = PVD->getOriginalType(); 1131 else 1132 Ty = VD->getType(); 1133 1134 if (Ty->isVariablyModifiedType()) 1135 EmitVariablyModifiedType(Ty); 1136 } 1137 // Emit a location at the end of the prologue. 1138 if (CGDebugInfo *DI = getDebugInfo()) 1139 DI->EmitLocation(Builder, StartLoc); 1140 1141 // TODO: Do we need to handle this in two places like we do with 1142 // target-features/target-cpu? 1143 if (CurFuncDecl) 1144 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1145 LargestVectorWidth = VecWidth->getVectorWidth(); 1146 } 1147 1148 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1149 incrementProfileCounter(Body); 1150 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1151 EmitCompoundStmtWithoutScope(*S); 1152 else 1153 EmitStmt(Body); 1154 } 1155 1156 /// When instrumenting to collect profile data, the counts for some blocks 1157 /// such as switch cases need to not include the fall-through counts, so 1158 /// emit a branch around the instrumentation code. When not instrumenting, 1159 /// this just calls EmitBlock(). 1160 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1161 const Stmt *S) { 1162 llvm::BasicBlock *SkipCountBB = nullptr; 1163 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1164 // When instrumenting for profiling, the fallthrough to certain 1165 // statements needs to skip over the instrumentation code so that we 1166 // get an accurate count. 1167 SkipCountBB = createBasicBlock("skipcount"); 1168 EmitBranch(SkipCountBB); 1169 } 1170 EmitBlock(BB); 1171 uint64_t CurrentCount = getCurrentProfileCount(); 1172 incrementProfileCounter(S); 1173 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1174 if (SkipCountBB) 1175 EmitBlock(SkipCountBB); 1176 } 1177 1178 /// Tries to mark the given function nounwind based on the 1179 /// non-existence of any throwing calls within it. We believe this is 1180 /// lightweight enough to do at -O0. 1181 static void TryMarkNoThrow(llvm::Function *F) { 1182 // LLVM treats 'nounwind' on a function as part of the type, so we 1183 // can't do this on functions that can be overwritten. 1184 if (F->isInterposable()) return; 1185 1186 for (llvm::BasicBlock &BB : *F) 1187 for (llvm::Instruction &I : BB) 1188 if (I.mayThrow()) 1189 return; 1190 1191 F->setDoesNotThrow(); 1192 } 1193 1194 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1195 FunctionArgList &Args) { 1196 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1197 QualType ResTy = FD->getReturnType(); 1198 1199 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1200 if (MD && MD->isInstance()) { 1201 if (CGM.getCXXABI().HasThisReturn(GD)) 1202 ResTy = MD->getThisType(); 1203 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1204 ResTy = CGM.getContext().VoidPtrTy; 1205 CGM.getCXXABI().buildThisParam(*this, Args); 1206 } 1207 1208 // The base version of an inheriting constructor whose constructed base is a 1209 // virtual base is not passed any arguments (because it doesn't actually call 1210 // the inherited constructor). 1211 bool PassedParams = true; 1212 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1213 if (auto Inherited = CD->getInheritedConstructor()) 1214 PassedParams = 1215 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1216 1217 if (PassedParams) { 1218 for (auto *Param : FD->parameters()) { 1219 Args.push_back(Param); 1220 if (!Param->hasAttr<PassObjectSizeAttr>()) 1221 continue; 1222 1223 auto *Implicit = ImplicitParamDecl::Create( 1224 getContext(), Param->getDeclContext(), Param->getLocation(), 1225 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1226 SizeArguments[Param] = Implicit; 1227 Args.push_back(Implicit); 1228 } 1229 } 1230 1231 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1232 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1233 1234 return ResTy; 1235 } 1236 1237 static bool 1238 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1239 const ASTContext &Context) { 1240 QualType T = FD->getReturnType(); 1241 // Avoid the optimization for functions that return a record type with a 1242 // trivial destructor or another trivially copyable type. 1243 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1244 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1245 return !ClassDecl->hasTrivialDestructor(); 1246 } 1247 return !T.isTriviallyCopyableType(Context); 1248 } 1249 1250 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1251 const CGFunctionInfo &FnInfo) { 1252 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1253 CurGD = GD; 1254 1255 FunctionArgList Args; 1256 QualType ResTy = BuildFunctionArgList(GD, Args); 1257 1258 // Check if we should generate debug info for this function. 1259 if (FD->hasAttr<NoDebugAttr>()) 1260 DebugInfo = nullptr; // disable debug info indefinitely for this function 1261 1262 // The function might not have a body if we're generating thunks for a 1263 // function declaration. 1264 SourceRange BodyRange; 1265 if (Stmt *Body = FD->getBody()) 1266 BodyRange = Body->getSourceRange(); 1267 else 1268 BodyRange = FD->getLocation(); 1269 CurEHLocation = BodyRange.getEnd(); 1270 1271 // Use the location of the start of the function to determine where 1272 // the function definition is located. By default use the location 1273 // of the declaration as the location for the subprogram. A function 1274 // may lack a declaration in the source code if it is created by code 1275 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1276 SourceLocation Loc = FD->getLocation(); 1277 1278 // If this is a function specialization then use the pattern body 1279 // as the location for the function. 1280 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1281 if (SpecDecl->hasBody(SpecDecl)) 1282 Loc = SpecDecl->getLocation(); 1283 1284 Stmt *Body = FD->getBody(); 1285 1286 // Initialize helper which will detect jumps which can cause invalid lifetime 1287 // markers. 1288 if (Body && ShouldEmitLifetimeMarkers) 1289 Bypasses.Init(Body); 1290 1291 // Emit the standard function prologue. 1292 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1293 1294 // Generate the body of the function. 1295 PGO.assignRegionCounters(GD, CurFn); 1296 if (isa<CXXDestructorDecl>(FD)) 1297 EmitDestructorBody(Args); 1298 else if (isa<CXXConstructorDecl>(FD)) 1299 EmitConstructorBody(Args); 1300 else if (getLangOpts().CUDA && 1301 !getLangOpts().CUDAIsDevice && 1302 FD->hasAttr<CUDAGlobalAttr>()) 1303 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1304 else if (isa<CXXMethodDecl>(FD) && 1305 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1306 // The lambda static invoker function is special, because it forwards or 1307 // clones the body of the function call operator (but is actually static). 1308 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1309 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1310 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1311 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1312 // Implicit copy-assignment gets the same special treatment as implicit 1313 // copy-constructors. 1314 emitImplicitAssignmentOperatorBody(Args); 1315 } else if (Body) { 1316 EmitFunctionBody(Body); 1317 } else 1318 llvm_unreachable("no definition for emitted function"); 1319 1320 // C++11 [stmt.return]p2: 1321 // Flowing off the end of a function [...] results in undefined behavior in 1322 // a value-returning function. 1323 // C11 6.9.1p12: 1324 // If the '}' that terminates a function is reached, and the value of the 1325 // function call is used by the caller, the behavior is undefined. 1326 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1327 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1328 bool ShouldEmitUnreachable = 1329 CGM.getCodeGenOpts().StrictReturn || 1330 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1331 if (SanOpts.has(SanitizerKind::Return)) { 1332 SanitizerScope SanScope(this); 1333 llvm::Value *IsFalse = Builder.getFalse(); 1334 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1335 SanitizerHandler::MissingReturn, 1336 EmitCheckSourceLocation(FD->getLocation()), None); 1337 } else if (ShouldEmitUnreachable) { 1338 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1339 EmitTrapCall(llvm::Intrinsic::trap); 1340 } 1341 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1342 Builder.CreateUnreachable(); 1343 Builder.ClearInsertionPoint(); 1344 } 1345 } 1346 1347 // Emit the standard function epilogue. 1348 FinishFunction(BodyRange.getEnd()); 1349 1350 // If we haven't marked the function nothrow through other means, do 1351 // a quick pass now to see if we can. 1352 if (!CurFn->doesNotThrow()) 1353 TryMarkNoThrow(CurFn); 1354 } 1355 1356 /// ContainsLabel - Return true if the statement contains a label in it. If 1357 /// this statement is not executed normally, it not containing a label means 1358 /// that we can just remove the code. 1359 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1360 // Null statement, not a label! 1361 if (!S) return false; 1362 1363 // If this is a label, we have to emit the code, consider something like: 1364 // if (0) { ... foo: bar(); } goto foo; 1365 // 1366 // TODO: If anyone cared, we could track __label__'s, since we know that you 1367 // can't jump to one from outside their declared region. 1368 if (isa<LabelStmt>(S)) 1369 return true; 1370 1371 // If this is a case/default statement, and we haven't seen a switch, we have 1372 // to emit the code. 1373 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1374 return true; 1375 1376 // If this is a switch statement, we want to ignore cases below it. 1377 if (isa<SwitchStmt>(S)) 1378 IgnoreCaseStmts = true; 1379 1380 // Scan subexpressions for verboten labels. 1381 for (const Stmt *SubStmt : S->children()) 1382 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1383 return true; 1384 1385 return false; 1386 } 1387 1388 /// containsBreak - Return true if the statement contains a break out of it. 1389 /// If the statement (recursively) contains a switch or loop with a break 1390 /// inside of it, this is fine. 1391 bool CodeGenFunction::containsBreak(const Stmt *S) { 1392 // Null statement, not a label! 1393 if (!S) return false; 1394 1395 // If this is a switch or loop that defines its own break scope, then we can 1396 // include it and anything inside of it. 1397 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1398 isa<ForStmt>(S)) 1399 return false; 1400 1401 if (isa<BreakStmt>(S)) 1402 return true; 1403 1404 // Scan subexpressions for verboten breaks. 1405 for (const Stmt *SubStmt : S->children()) 1406 if (containsBreak(SubStmt)) 1407 return true; 1408 1409 return false; 1410 } 1411 1412 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1413 if (!S) return false; 1414 1415 // Some statement kinds add a scope and thus never add a decl to the current 1416 // scope. Note, this list is longer than the list of statements that might 1417 // have an unscoped decl nested within them, but this way is conservatively 1418 // correct even if more statement kinds are added. 1419 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1420 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1421 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1422 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1423 return false; 1424 1425 if (isa<DeclStmt>(S)) 1426 return true; 1427 1428 for (const Stmt *SubStmt : S->children()) 1429 if (mightAddDeclToScope(SubStmt)) 1430 return true; 1431 1432 return false; 1433 } 1434 1435 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1436 /// to a constant, or if it does but contains a label, return false. If it 1437 /// constant folds return true and set the boolean result in Result. 1438 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1439 bool &ResultBool, 1440 bool AllowLabels) { 1441 llvm::APSInt ResultInt; 1442 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1443 return false; 1444 1445 ResultBool = ResultInt.getBoolValue(); 1446 return true; 1447 } 1448 1449 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1450 /// to a constant, or if it does but contains a label, return false. If it 1451 /// constant folds return true and set the folded value. 1452 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1453 llvm::APSInt &ResultInt, 1454 bool AllowLabels) { 1455 // FIXME: Rename and handle conversion of other evaluatable things 1456 // to bool. 1457 Expr::EvalResult Result; 1458 if (!Cond->EvaluateAsInt(Result, getContext())) 1459 return false; // Not foldable, not integer or not fully evaluatable. 1460 1461 llvm::APSInt Int = Result.Val.getInt(); 1462 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1463 return false; // Contains a label. 1464 1465 ResultInt = Int; 1466 return true; 1467 } 1468 1469 1470 1471 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1472 /// statement) to the specified blocks. Based on the condition, this might try 1473 /// to simplify the codegen of the conditional based on the branch. 1474 /// 1475 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1476 llvm::BasicBlock *TrueBlock, 1477 llvm::BasicBlock *FalseBlock, 1478 uint64_t TrueCount) { 1479 Cond = Cond->IgnoreParens(); 1480 1481 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1482 1483 // Handle X && Y in a condition. 1484 if (CondBOp->getOpcode() == BO_LAnd) { 1485 // If we have "1 && X", simplify the code. "0 && X" would have constant 1486 // folded if the case was simple enough. 1487 bool ConstantBool = false; 1488 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1489 ConstantBool) { 1490 // br(1 && X) -> br(X). 1491 incrementProfileCounter(CondBOp); 1492 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1493 TrueCount); 1494 } 1495 1496 // If we have "X && 1", simplify the code to use an uncond branch. 1497 // "X && 0" would have been constant folded to 0. 1498 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1499 ConstantBool) { 1500 // br(X && 1) -> br(X). 1501 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1502 TrueCount); 1503 } 1504 1505 // Emit the LHS as a conditional. If the LHS conditional is false, we 1506 // want to jump to the FalseBlock. 1507 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1508 // The counter tells us how often we evaluate RHS, and all of TrueCount 1509 // can be propagated to that branch. 1510 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1511 1512 ConditionalEvaluation eval(*this); 1513 { 1514 ApplyDebugLocation DL(*this, Cond); 1515 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1516 EmitBlock(LHSTrue); 1517 } 1518 1519 incrementProfileCounter(CondBOp); 1520 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1521 1522 // Any temporaries created here are conditional. 1523 eval.begin(*this); 1524 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1525 eval.end(*this); 1526 1527 return; 1528 } 1529 1530 if (CondBOp->getOpcode() == BO_LOr) { 1531 // If we have "0 || X", simplify the code. "1 || X" would have constant 1532 // folded if the case was simple enough. 1533 bool ConstantBool = false; 1534 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1535 !ConstantBool) { 1536 // br(0 || X) -> br(X). 1537 incrementProfileCounter(CondBOp); 1538 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1539 TrueCount); 1540 } 1541 1542 // If we have "X || 0", simplify the code to use an uncond branch. 1543 // "X || 1" would have been constant folded to 1. 1544 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1545 !ConstantBool) { 1546 // br(X || 0) -> br(X). 1547 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1548 TrueCount); 1549 } 1550 1551 // Emit the LHS as a conditional. If the LHS conditional is true, we 1552 // want to jump to the TrueBlock. 1553 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1554 // We have the count for entry to the RHS and for the whole expression 1555 // being true, so we can divy up True count between the short circuit and 1556 // the RHS. 1557 uint64_t LHSCount = 1558 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1559 uint64_t RHSCount = TrueCount - LHSCount; 1560 1561 ConditionalEvaluation eval(*this); 1562 { 1563 ApplyDebugLocation DL(*this, Cond); 1564 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1565 EmitBlock(LHSFalse); 1566 } 1567 1568 incrementProfileCounter(CondBOp); 1569 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1570 1571 // Any temporaries created here are conditional. 1572 eval.begin(*this); 1573 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1574 1575 eval.end(*this); 1576 1577 return; 1578 } 1579 } 1580 1581 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1582 // br(!x, t, f) -> br(x, f, t) 1583 if (CondUOp->getOpcode() == UO_LNot) { 1584 // Negate the count. 1585 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1586 // Negate the condition and swap the destination blocks. 1587 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1588 FalseCount); 1589 } 1590 } 1591 1592 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1593 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1594 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1595 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1596 1597 ConditionalEvaluation cond(*this); 1598 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1599 getProfileCount(CondOp)); 1600 1601 // When computing PGO branch weights, we only know the overall count for 1602 // the true block. This code is essentially doing tail duplication of the 1603 // naive code-gen, introducing new edges for which counts are not 1604 // available. Divide the counts proportionally between the LHS and RHS of 1605 // the conditional operator. 1606 uint64_t LHSScaledTrueCount = 0; 1607 if (TrueCount) { 1608 double LHSRatio = 1609 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1610 LHSScaledTrueCount = TrueCount * LHSRatio; 1611 } 1612 1613 cond.begin(*this); 1614 EmitBlock(LHSBlock); 1615 incrementProfileCounter(CondOp); 1616 { 1617 ApplyDebugLocation DL(*this, Cond); 1618 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1619 LHSScaledTrueCount); 1620 } 1621 cond.end(*this); 1622 1623 cond.begin(*this); 1624 EmitBlock(RHSBlock); 1625 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1626 TrueCount - LHSScaledTrueCount); 1627 cond.end(*this); 1628 1629 return; 1630 } 1631 1632 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1633 // Conditional operator handling can give us a throw expression as a 1634 // condition for a case like: 1635 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1636 // Fold this to: 1637 // br(c, throw x, br(y, t, f)) 1638 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1639 return; 1640 } 1641 1642 // If the branch has a condition wrapped by __builtin_unpredictable, 1643 // create metadata that specifies that the branch is unpredictable. 1644 // Don't bother if not optimizing because that metadata would not be used. 1645 llvm::MDNode *Unpredictable = nullptr; 1646 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1647 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1648 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1649 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1650 llvm::MDBuilder MDHelper(getLLVMContext()); 1651 Unpredictable = MDHelper.createUnpredictable(); 1652 } 1653 } 1654 1655 // Create branch weights based on the number of times we get here and the 1656 // number of times the condition should be true. 1657 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1658 llvm::MDNode *Weights = 1659 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1660 1661 // Emit the code with the fully general case. 1662 llvm::Value *CondV; 1663 { 1664 ApplyDebugLocation DL(*this, Cond); 1665 CondV = EvaluateExprAsBool(Cond); 1666 } 1667 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1668 } 1669 1670 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1671 /// specified stmt yet. 1672 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1673 CGM.ErrorUnsupported(S, Type); 1674 } 1675 1676 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1677 /// variable-length array whose elements have a non-zero bit-pattern. 1678 /// 1679 /// \param baseType the inner-most element type of the array 1680 /// \param src - a char* pointing to the bit-pattern for a single 1681 /// base element of the array 1682 /// \param sizeInChars - the total size of the VLA, in chars 1683 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1684 Address dest, Address src, 1685 llvm::Value *sizeInChars) { 1686 CGBuilderTy &Builder = CGF.Builder; 1687 1688 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1689 llvm::Value *baseSizeInChars 1690 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1691 1692 Address begin = 1693 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1694 llvm::Value *end = 1695 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1696 1697 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1698 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1699 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1700 1701 // Make a loop over the VLA. C99 guarantees that the VLA element 1702 // count must be nonzero. 1703 CGF.EmitBlock(loopBB); 1704 1705 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1706 cur->addIncoming(begin.getPointer(), originBB); 1707 1708 CharUnits curAlign = 1709 dest.getAlignment().alignmentOfArrayElement(baseSize); 1710 1711 // memcpy the individual element bit-pattern. 1712 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1713 /*volatile*/ false); 1714 1715 // Go to the next element. 1716 llvm::Value *next = 1717 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1718 1719 // Leave if that's the end of the VLA. 1720 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1721 Builder.CreateCondBr(done, contBB, loopBB); 1722 cur->addIncoming(next, loopBB); 1723 1724 CGF.EmitBlock(contBB); 1725 } 1726 1727 void 1728 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1729 // Ignore empty classes in C++. 1730 if (getLangOpts().CPlusPlus) { 1731 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1732 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1733 return; 1734 } 1735 } 1736 1737 // Cast the dest ptr to the appropriate i8 pointer type. 1738 if (DestPtr.getElementType() != Int8Ty) 1739 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1740 1741 // Get size and alignment info for this aggregate. 1742 CharUnits size = getContext().getTypeSizeInChars(Ty); 1743 1744 llvm::Value *SizeVal; 1745 const VariableArrayType *vla; 1746 1747 // Don't bother emitting a zero-byte memset. 1748 if (size.isZero()) { 1749 // But note that getTypeInfo returns 0 for a VLA. 1750 if (const VariableArrayType *vlaType = 1751 dyn_cast_or_null<VariableArrayType>( 1752 getContext().getAsArrayType(Ty))) { 1753 auto VlaSize = getVLASize(vlaType); 1754 SizeVal = VlaSize.NumElts; 1755 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1756 if (!eltSize.isOne()) 1757 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1758 vla = vlaType; 1759 } else { 1760 return; 1761 } 1762 } else { 1763 SizeVal = CGM.getSize(size); 1764 vla = nullptr; 1765 } 1766 1767 // If the type contains a pointer to data member we can't memset it to zero. 1768 // Instead, create a null constant and copy it to the destination. 1769 // TODO: there are other patterns besides zero that we can usefully memset, 1770 // like -1, which happens to be the pattern used by member-pointers. 1771 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1772 // For a VLA, emit a single element, then splat that over the VLA. 1773 if (vla) Ty = getContext().getBaseElementType(vla); 1774 1775 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1776 1777 llvm::GlobalVariable *NullVariable = 1778 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1779 /*isConstant=*/true, 1780 llvm::GlobalVariable::PrivateLinkage, 1781 NullConstant, Twine()); 1782 CharUnits NullAlign = DestPtr.getAlignment(); 1783 NullVariable->setAlignment(NullAlign.getAsAlign()); 1784 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1785 NullAlign); 1786 1787 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1788 1789 // Get and call the appropriate llvm.memcpy overload. 1790 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1791 return; 1792 } 1793 1794 // Otherwise, just memset the whole thing to zero. This is legal 1795 // because in LLVM, all default initializers (other than the ones we just 1796 // handled above) are guaranteed to have a bit pattern of all zeros. 1797 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1798 } 1799 1800 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1801 // Make sure that there is a block for the indirect goto. 1802 if (!IndirectBranch) 1803 GetIndirectGotoBlock(); 1804 1805 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1806 1807 // Make sure the indirect branch includes all of the address-taken blocks. 1808 IndirectBranch->addDestination(BB); 1809 return llvm::BlockAddress::get(CurFn, BB); 1810 } 1811 1812 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1813 // If we already made the indirect branch for indirect goto, return its block. 1814 if (IndirectBranch) return IndirectBranch->getParent(); 1815 1816 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1817 1818 // Create the PHI node that indirect gotos will add entries to. 1819 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1820 "indirect.goto.dest"); 1821 1822 // Create the indirect branch instruction. 1823 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1824 return IndirectBranch->getParent(); 1825 } 1826 1827 /// Computes the length of an array in elements, as well as the base 1828 /// element type and a properly-typed first element pointer. 1829 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1830 QualType &baseType, 1831 Address &addr) { 1832 const ArrayType *arrayType = origArrayType; 1833 1834 // If it's a VLA, we have to load the stored size. Note that 1835 // this is the size of the VLA in bytes, not its size in elements. 1836 llvm::Value *numVLAElements = nullptr; 1837 if (isa<VariableArrayType>(arrayType)) { 1838 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1839 1840 // Walk into all VLAs. This doesn't require changes to addr, 1841 // which has type T* where T is the first non-VLA element type. 1842 do { 1843 QualType elementType = arrayType->getElementType(); 1844 arrayType = getContext().getAsArrayType(elementType); 1845 1846 // If we only have VLA components, 'addr' requires no adjustment. 1847 if (!arrayType) { 1848 baseType = elementType; 1849 return numVLAElements; 1850 } 1851 } while (isa<VariableArrayType>(arrayType)); 1852 1853 // We get out here only if we find a constant array type 1854 // inside the VLA. 1855 } 1856 1857 // We have some number of constant-length arrays, so addr should 1858 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1859 // down to the first element of addr. 1860 SmallVector<llvm::Value*, 8> gepIndices; 1861 1862 // GEP down to the array type. 1863 llvm::ConstantInt *zero = Builder.getInt32(0); 1864 gepIndices.push_back(zero); 1865 1866 uint64_t countFromCLAs = 1; 1867 QualType eltType; 1868 1869 llvm::ArrayType *llvmArrayType = 1870 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1871 while (llvmArrayType) { 1872 assert(isa<ConstantArrayType>(arrayType)); 1873 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1874 == llvmArrayType->getNumElements()); 1875 1876 gepIndices.push_back(zero); 1877 countFromCLAs *= llvmArrayType->getNumElements(); 1878 eltType = arrayType->getElementType(); 1879 1880 llvmArrayType = 1881 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1882 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1883 assert((!llvmArrayType || arrayType) && 1884 "LLVM and Clang types are out-of-synch"); 1885 } 1886 1887 if (arrayType) { 1888 // From this point onwards, the Clang array type has been emitted 1889 // as some other type (probably a packed struct). Compute the array 1890 // size, and just emit the 'begin' expression as a bitcast. 1891 while (arrayType) { 1892 countFromCLAs *= 1893 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1894 eltType = arrayType->getElementType(); 1895 arrayType = getContext().getAsArrayType(eltType); 1896 } 1897 1898 llvm::Type *baseType = ConvertType(eltType); 1899 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1900 } else { 1901 // Create the actual GEP. 1902 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1903 gepIndices, "array.begin"), 1904 addr.getAlignment()); 1905 } 1906 1907 baseType = eltType; 1908 1909 llvm::Value *numElements 1910 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1911 1912 // If we had any VLA dimensions, factor them in. 1913 if (numVLAElements) 1914 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1915 1916 return numElements; 1917 } 1918 1919 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1920 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1921 assert(vla && "type was not a variable array type!"); 1922 return getVLASize(vla); 1923 } 1924 1925 CodeGenFunction::VlaSizePair 1926 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1927 // The number of elements so far; always size_t. 1928 llvm::Value *numElements = nullptr; 1929 1930 QualType elementType; 1931 do { 1932 elementType = type->getElementType(); 1933 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1934 assert(vlaSize && "no size for VLA!"); 1935 assert(vlaSize->getType() == SizeTy); 1936 1937 if (!numElements) { 1938 numElements = vlaSize; 1939 } else { 1940 // It's undefined behavior if this wraps around, so mark it that way. 1941 // FIXME: Teach -fsanitize=undefined to trap this. 1942 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1943 } 1944 } while ((type = getContext().getAsVariableArrayType(elementType))); 1945 1946 return { numElements, elementType }; 1947 } 1948 1949 CodeGenFunction::VlaSizePair 1950 CodeGenFunction::getVLAElements1D(QualType type) { 1951 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1952 assert(vla && "type was not a variable array type!"); 1953 return getVLAElements1D(vla); 1954 } 1955 1956 CodeGenFunction::VlaSizePair 1957 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1958 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1959 assert(VlaSize && "no size for VLA!"); 1960 assert(VlaSize->getType() == SizeTy); 1961 return { VlaSize, Vla->getElementType() }; 1962 } 1963 1964 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1965 assert(type->isVariablyModifiedType() && 1966 "Must pass variably modified type to EmitVLASizes!"); 1967 1968 EnsureInsertPoint(); 1969 1970 // We're going to walk down into the type and look for VLA 1971 // expressions. 1972 do { 1973 assert(type->isVariablyModifiedType()); 1974 1975 const Type *ty = type.getTypePtr(); 1976 switch (ty->getTypeClass()) { 1977 1978 #define TYPE(Class, Base) 1979 #define ABSTRACT_TYPE(Class, Base) 1980 #define NON_CANONICAL_TYPE(Class, Base) 1981 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1982 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1983 #include "clang/AST/TypeNodes.inc" 1984 llvm_unreachable("unexpected dependent type!"); 1985 1986 // These types are never variably-modified. 1987 case Type::Builtin: 1988 case Type::Complex: 1989 case Type::Vector: 1990 case Type::ExtVector: 1991 case Type::ConstantMatrix: 1992 case Type::Record: 1993 case Type::Enum: 1994 case Type::Elaborated: 1995 case Type::TemplateSpecialization: 1996 case Type::ObjCTypeParam: 1997 case Type::ObjCObject: 1998 case Type::ObjCInterface: 1999 case Type::ObjCObjectPointer: 2000 case Type::ExtInt: 2001 llvm_unreachable("type class is never variably-modified!"); 2002 2003 case Type::Adjusted: 2004 type = cast<AdjustedType>(ty)->getAdjustedType(); 2005 break; 2006 2007 case Type::Decayed: 2008 type = cast<DecayedType>(ty)->getPointeeType(); 2009 break; 2010 2011 case Type::Pointer: 2012 type = cast<PointerType>(ty)->getPointeeType(); 2013 break; 2014 2015 case Type::BlockPointer: 2016 type = cast<BlockPointerType>(ty)->getPointeeType(); 2017 break; 2018 2019 case Type::LValueReference: 2020 case Type::RValueReference: 2021 type = cast<ReferenceType>(ty)->getPointeeType(); 2022 break; 2023 2024 case Type::MemberPointer: 2025 type = cast<MemberPointerType>(ty)->getPointeeType(); 2026 break; 2027 2028 case Type::ConstantArray: 2029 case Type::IncompleteArray: 2030 // Losing element qualification here is fine. 2031 type = cast<ArrayType>(ty)->getElementType(); 2032 break; 2033 2034 case Type::VariableArray: { 2035 // Losing element qualification here is fine. 2036 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2037 2038 // Unknown size indication requires no size computation. 2039 // Otherwise, evaluate and record it. 2040 if (const Expr *size = vat->getSizeExpr()) { 2041 // It's possible that we might have emitted this already, 2042 // e.g. with a typedef and a pointer to it. 2043 llvm::Value *&entry = VLASizeMap[size]; 2044 if (!entry) { 2045 llvm::Value *Size = EmitScalarExpr(size); 2046 2047 // C11 6.7.6.2p5: 2048 // If the size is an expression that is not an integer constant 2049 // expression [...] each time it is evaluated it shall have a value 2050 // greater than zero. 2051 if (SanOpts.has(SanitizerKind::VLABound) && 2052 size->getType()->isSignedIntegerType()) { 2053 SanitizerScope SanScope(this); 2054 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2055 llvm::Constant *StaticArgs[] = { 2056 EmitCheckSourceLocation(size->getBeginLoc()), 2057 EmitCheckTypeDescriptor(size->getType())}; 2058 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2059 SanitizerKind::VLABound), 2060 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2061 } 2062 2063 // Always zexting here would be wrong if it weren't 2064 // undefined behavior to have a negative bound. 2065 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2066 } 2067 } 2068 type = vat->getElementType(); 2069 break; 2070 } 2071 2072 case Type::FunctionProto: 2073 case Type::FunctionNoProto: 2074 type = cast<FunctionType>(ty)->getReturnType(); 2075 break; 2076 2077 case Type::Paren: 2078 case Type::TypeOf: 2079 case Type::UnaryTransform: 2080 case Type::Attributed: 2081 case Type::SubstTemplateTypeParm: 2082 case Type::PackExpansion: 2083 case Type::MacroQualified: 2084 // Keep walking after single level desugaring. 2085 type = type.getSingleStepDesugaredType(getContext()); 2086 break; 2087 2088 case Type::Typedef: 2089 case Type::Decltype: 2090 case Type::Auto: 2091 case Type::DeducedTemplateSpecialization: 2092 // Stop walking: nothing to do. 2093 return; 2094 2095 case Type::TypeOfExpr: 2096 // Stop walking: emit typeof expression. 2097 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2098 return; 2099 2100 case Type::Atomic: 2101 type = cast<AtomicType>(ty)->getValueType(); 2102 break; 2103 2104 case Type::Pipe: 2105 type = cast<PipeType>(ty)->getElementType(); 2106 break; 2107 } 2108 } while (type->isVariablyModifiedType()); 2109 } 2110 2111 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2112 if (getContext().getBuiltinVaListType()->isArrayType()) 2113 return EmitPointerWithAlignment(E); 2114 return EmitLValue(E).getAddress(*this); 2115 } 2116 2117 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2118 return EmitLValue(E).getAddress(*this); 2119 } 2120 2121 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2122 const APValue &Init) { 2123 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2124 if (CGDebugInfo *Dbg = getDebugInfo()) 2125 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2126 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2127 } 2128 2129 CodeGenFunction::PeepholeProtection 2130 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2131 // At the moment, the only aggressive peephole we do in IR gen 2132 // is trunc(zext) folding, but if we add more, we can easily 2133 // extend this protection. 2134 2135 if (!rvalue.isScalar()) return PeepholeProtection(); 2136 llvm::Value *value = rvalue.getScalarVal(); 2137 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2138 2139 // Just make an extra bitcast. 2140 assert(HaveInsertPoint()); 2141 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2142 Builder.GetInsertBlock()); 2143 2144 PeepholeProtection protection; 2145 protection.Inst = inst; 2146 return protection; 2147 } 2148 2149 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2150 if (!protection.Inst) return; 2151 2152 // In theory, we could try to duplicate the peepholes now, but whatever. 2153 protection.Inst->eraseFromParent(); 2154 } 2155 2156 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2157 QualType Ty, SourceLocation Loc, 2158 SourceLocation AssumptionLoc, 2159 llvm::Value *Alignment, 2160 llvm::Value *OffsetValue) { 2161 llvm::Value *TheCheck; 2162 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2163 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2164 if (SanOpts.has(SanitizerKind::Alignment)) { 2165 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2166 OffsetValue, TheCheck, Assumption); 2167 } 2168 } 2169 2170 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2171 const Expr *E, 2172 SourceLocation AssumptionLoc, 2173 llvm::Value *Alignment, 2174 llvm::Value *OffsetValue) { 2175 if (auto *CE = dyn_cast<CastExpr>(E)) 2176 E = CE->getSubExprAsWritten(); 2177 QualType Ty = E->getType(); 2178 SourceLocation Loc = E->getExprLoc(); 2179 2180 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2181 OffsetValue); 2182 } 2183 2184 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2185 llvm::Value *AnnotatedVal, 2186 StringRef AnnotationStr, 2187 SourceLocation Location) { 2188 llvm::Value *Args[4] = { 2189 AnnotatedVal, 2190 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2191 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2192 CGM.EmitAnnotationLineNo(Location) 2193 }; 2194 return Builder.CreateCall(AnnotationFn, Args); 2195 } 2196 2197 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2198 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2199 // FIXME We create a new bitcast for every annotation because that's what 2200 // llvm-gcc was doing. 2201 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2202 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2203 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2204 I->getAnnotation(), D->getLocation()); 2205 } 2206 2207 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2208 Address Addr) { 2209 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2210 llvm::Value *V = Addr.getPointer(); 2211 llvm::Type *VTy = V->getType(); 2212 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2213 CGM.Int8PtrTy); 2214 2215 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2216 // FIXME Always emit the cast inst so we can differentiate between 2217 // annotation on the first field of a struct and annotation on the struct 2218 // itself. 2219 if (VTy != CGM.Int8PtrTy) 2220 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2221 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2222 V = Builder.CreateBitCast(V, VTy); 2223 } 2224 2225 return Address(V, Addr.getAlignment()); 2226 } 2227 2228 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2229 2230 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2231 : CGF(CGF) { 2232 assert(!CGF->IsSanitizerScope); 2233 CGF->IsSanitizerScope = true; 2234 } 2235 2236 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2237 CGF->IsSanitizerScope = false; 2238 } 2239 2240 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2241 const llvm::Twine &Name, 2242 llvm::BasicBlock *BB, 2243 llvm::BasicBlock::iterator InsertPt) const { 2244 LoopStack.InsertHelper(I); 2245 if (IsSanitizerScope) 2246 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2247 } 2248 2249 void CGBuilderInserter::InsertHelper( 2250 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2251 llvm::BasicBlock::iterator InsertPt) const { 2252 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2253 if (CGF) 2254 CGF->InsertHelper(I, Name, BB, InsertPt); 2255 } 2256 2257 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2258 CodeGenModule &CGM, const FunctionDecl *FD, 2259 std::string &FirstMissing) { 2260 // If there aren't any required features listed then go ahead and return. 2261 if (ReqFeatures.empty()) 2262 return false; 2263 2264 // Now build up the set of caller features and verify that all the required 2265 // features are there. 2266 llvm::StringMap<bool> CallerFeatureMap; 2267 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2268 2269 // If we have at least one of the features in the feature list return 2270 // true, otherwise return false. 2271 return std::all_of( 2272 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2273 SmallVector<StringRef, 1> OrFeatures; 2274 Feature.split(OrFeatures, '|'); 2275 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2276 if (!CallerFeatureMap.lookup(Feature)) { 2277 FirstMissing = Feature.str(); 2278 return false; 2279 } 2280 return true; 2281 }); 2282 }); 2283 } 2284 2285 // Emits an error if we don't have a valid set of target features for the 2286 // called function. 2287 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2288 const FunctionDecl *TargetDecl) { 2289 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2290 } 2291 2292 // Emits an error if we don't have a valid set of target features for the 2293 // called function. 2294 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2295 const FunctionDecl *TargetDecl) { 2296 // Early exit if this is an indirect call. 2297 if (!TargetDecl) 2298 return; 2299 2300 // Get the current enclosing function if it exists. If it doesn't 2301 // we can't check the target features anyhow. 2302 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2303 if (!FD) 2304 return; 2305 2306 // Grab the required features for the call. For a builtin this is listed in 2307 // the td file with the default cpu, for an always_inline function this is any 2308 // listed cpu and any listed features. 2309 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2310 std::string MissingFeature; 2311 if (BuiltinID) { 2312 SmallVector<StringRef, 1> ReqFeatures; 2313 const char *FeatureList = 2314 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2315 // Return if the builtin doesn't have any required features. 2316 if (!FeatureList || StringRef(FeatureList) == "") 2317 return; 2318 StringRef(FeatureList).split(ReqFeatures, ','); 2319 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2320 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2321 << TargetDecl->getDeclName() 2322 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2323 2324 } else if (!TargetDecl->isMultiVersion() && 2325 TargetDecl->hasAttr<TargetAttr>()) { 2326 // Get the required features for the callee. 2327 2328 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2329 ParsedTargetAttr ParsedAttr = 2330 CGM.getContext().filterFunctionTargetAttrs(TD); 2331 2332 SmallVector<StringRef, 1> ReqFeatures; 2333 llvm::StringMap<bool> CalleeFeatureMap; 2334 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2335 2336 for (const auto &F : ParsedAttr.Features) { 2337 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2338 ReqFeatures.push_back(StringRef(F).substr(1)); 2339 } 2340 2341 for (const auto &F : CalleeFeatureMap) { 2342 // Only positive features are "required". 2343 if (F.getValue()) 2344 ReqFeatures.push_back(F.getKey()); 2345 } 2346 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2347 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2348 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2349 } 2350 } 2351 2352 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2353 if (!CGM.getCodeGenOpts().SanitizeStats) 2354 return; 2355 2356 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2357 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2358 CGM.getSanStats().create(IRB, SSK); 2359 } 2360 2361 llvm::Value * 2362 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2363 llvm::Value *Condition = nullptr; 2364 2365 if (!RO.Conditions.Architecture.empty()) 2366 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2367 2368 if (!RO.Conditions.Features.empty()) { 2369 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2370 Condition = 2371 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2372 } 2373 return Condition; 2374 } 2375 2376 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2377 llvm::Function *Resolver, 2378 CGBuilderTy &Builder, 2379 llvm::Function *FuncToReturn, 2380 bool SupportsIFunc) { 2381 if (SupportsIFunc) { 2382 Builder.CreateRet(FuncToReturn); 2383 return; 2384 } 2385 2386 llvm::SmallVector<llvm::Value *, 10> Args; 2387 llvm::for_each(Resolver->args(), 2388 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2389 2390 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2391 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2392 2393 if (Resolver->getReturnType()->isVoidTy()) 2394 Builder.CreateRetVoid(); 2395 else 2396 Builder.CreateRet(Result); 2397 } 2398 2399 void CodeGenFunction::EmitMultiVersionResolver( 2400 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2401 assert(getContext().getTargetInfo().getTriple().isX86() && 2402 "Only implemented for x86 targets"); 2403 2404 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2405 2406 // Main function's basic block. 2407 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2408 Builder.SetInsertPoint(CurBlock); 2409 EmitX86CpuInit(); 2410 2411 for (const MultiVersionResolverOption &RO : Options) { 2412 Builder.SetInsertPoint(CurBlock); 2413 llvm::Value *Condition = FormResolverCondition(RO); 2414 2415 // The 'default' or 'generic' case. 2416 if (!Condition) { 2417 assert(&RO == Options.end() - 1 && 2418 "Default or Generic case must be last"); 2419 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2420 SupportsIFunc); 2421 return; 2422 } 2423 2424 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2425 CGBuilderTy RetBuilder(*this, RetBlock); 2426 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2427 SupportsIFunc); 2428 CurBlock = createBasicBlock("resolver_else", Resolver); 2429 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2430 } 2431 2432 // If no generic/default, emit an unreachable. 2433 Builder.SetInsertPoint(CurBlock); 2434 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2435 TrapCall->setDoesNotReturn(); 2436 TrapCall->setDoesNotThrow(); 2437 Builder.CreateUnreachable(); 2438 Builder.ClearInsertionPoint(); 2439 } 2440 2441 // Loc - where the diagnostic will point, where in the source code this 2442 // alignment has failed. 2443 // SecondaryLoc - if present (will be present if sufficiently different from 2444 // Loc), the diagnostic will additionally point a "Note:" to this location. 2445 // It should be the location where the __attribute__((assume_aligned)) 2446 // was written e.g. 2447 void CodeGenFunction::emitAlignmentAssumptionCheck( 2448 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2449 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2450 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2451 llvm::Instruction *Assumption) { 2452 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2453 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2454 llvm::Intrinsic::getDeclaration( 2455 Builder.GetInsertBlock()->getParent()->getParent(), 2456 llvm::Intrinsic::assume) && 2457 "Assumption should be a call to llvm.assume()."); 2458 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2459 "Assumption should be the last instruction of the basic block, " 2460 "since the basic block is still being generated."); 2461 2462 if (!SanOpts.has(SanitizerKind::Alignment)) 2463 return; 2464 2465 // Don't check pointers to volatile data. The behavior here is implementation- 2466 // defined. 2467 if (Ty->getPointeeType().isVolatileQualified()) 2468 return; 2469 2470 // We need to temorairly remove the assumption so we can insert the 2471 // sanitizer check before it, else the check will be dropped by optimizations. 2472 Assumption->removeFromParent(); 2473 2474 { 2475 SanitizerScope SanScope(this); 2476 2477 if (!OffsetValue) 2478 OffsetValue = Builder.getInt1(0); // no offset. 2479 2480 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2481 EmitCheckSourceLocation(SecondaryLoc), 2482 EmitCheckTypeDescriptor(Ty)}; 2483 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2484 EmitCheckValue(Alignment), 2485 EmitCheckValue(OffsetValue)}; 2486 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2487 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2488 } 2489 2490 // We are now in the (new, empty) "cont" basic block. 2491 // Reintroduce the assumption. 2492 Builder.Insert(Assumption); 2493 // FIXME: Assumption still has it's original basic block as it's Parent. 2494 } 2495 2496 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2497 if (CGDebugInfo *DI = getDebugInfo()) 2498 return DI->SourceLocToDebugLoc(Location); 2499 2500 return llvm::DebugLoc(); 2501 } 2502