1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : CodeGenTypeCache(cgm), CGM(cgm),
32     Target(CGM.getContext().getTargetInfo()),
33     Builder(cgm.getModule().getContext()),
34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
36     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
40     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
41     TerminateHandler(0), TrapBB(0) {
42 
43   CatchUndefined = getContext().getLangOpts().CatchUndefined;
44   CGM.getCXXABI().getMangleContext().startNewFunction();
45 }
46 
47 CodeGenFunction::~CodeGenFunction() {
48   // If there are any unclaimed block infos, go ahead and destroy them
49   // now.  This can happen if IR-gen gets clever and skips evaluating
50   // something.
51   if (FirstBlockInfo)
52     destroyBlockInfos(FirstBlockInfo);
53 }
54 
55 
56 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57   return CGM.getTypes().ConvertTypeForMem(T);
58 }
59 
60 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61   return CGM.getTypes().ConvertType(T);
62 }
63 
64 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65   switch (type.getCanonicalType()->getTypeClass()) {
66 #define TYPE(name, parent)
67 #define ABSTRACT_TYPE(name, parent)
68 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
69 #define DEPENDENT_TYPE(name, parent) case Type::name:
70 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71 #include "clang/AST/TypeNodes.def"
72     llvm_unreachable("non-canonical or dependent type in IR-generation");
73 
74   case Type::Builtin:
75   case Type::Pointer:
76   case Type::BlockPointer:
77   case Type::LValueReference:
78   case Type::RValueReference:
79   case Type::MemberPointer:
80   case Type::Vector:
81   case Type::ExtVector:
82   case Type::FunctionProto:
83   case Type::FunctionNoProto:
84   case Type::Enum:
85   case Type::ObjCObjectPointer:
86     return false;
87 
88   // Complexes, arrays, records, and Objective-C objects.
89   case Type::Complex:
90   case Type::ConstantArray:
91   case Type::IncompleteArray:
92   case Type::VariableArray:
93   case Type::Record:
94   case Type::ObjCObject:
95   case Type::ObjCInterface:
96     return true;
97 
98   // In IRGen, atomic types are just the underlying type
99   case Type::Atomic:
100     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101   }
102   llvm_unreachable("unknown type kind!");
103 }
104 
105 void CodeGenFunction::EmitReturnBlock() {
106   // For cleanliness, we try to avoid emitting the return block for
107   // simple cases.
108   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109 
110   if (CurBB) {
111     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112 
113     // We have a valid insert point, reuse it if it is empty or there are no
114     // explicit jumps to the return block.
115     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117       delete ReturnBlock.getBlock();
118     } else
119       EmitBlock(ReturnBlock.getBlock());
120     return;
121   }
122 
123   // Otherwise, if the return block is the target of a single direct
124   // branch then we can just put the code in that block instead. This
125   // cleans up functions which started with a unified return block.
126   if (ReturnBlock.getBlock()->hasOneUse()) {
127     llvm::BranchInst *BI =
128       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129     if (BI && BI->isUnconditional() &&
130         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131       // Reset insertion point, including debug location, and delete the branch.
132       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133       Builder.SetInsertPoint(BI->getParent());
134       BI->eraseFromParent();
135       delete ReturnBlock.getBlock();
136       return;
137     }
138   }
139 
140   // FIXME: We are at an unreachable point, there is no reason to emit the block
141   // unless it has uses. However, we still need a place to put the debug
142   // region.end for now.
143 
144   EmitBlock(ReturnBlock.getBlock());
145 }
146 
147 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148   if (!BB) return;
149   if (!BB->use_empty())
150     return CGF.CurFn->getBasicBlockList().push_back(BB);
151   delete BB;
152 }
153 
154 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155   assert(BreakContinueStack.empty() &&
156          "mismatched push/pop in break/continue stack!");
157 
158   // Pop any cleanups that might have been associated with the
159   // parameters.  Do this in whatever block we're currently in; it's
160   // important to do this before we enter the return block or return
161   // edges will be *really* confused.
162   if (EHStack.stable_begin() != PrologueCleanupDepth)
163     PopCleanupBlocks(PrologueCleanupDepth);
164 
165   // Emit function epilog (to return).
166   EmitReturnBlock();
167 
168   if (ShouldInstrumentFunction())
169     EmitFunctionInstrumentation("__cyg_profile_func_exit");
170 
171   // Emit debug descriptor for function end.
172   if (CGDebugInfo *DI = getDebugInfo()) {
173     DI->setLocation(EndLoc);
174     DI->EmitFunctionEnd(Builder);
175   }
176 
177   EmitFunctionEpilog(*CurFnInfo);
178   EmitEndEHSpec(CurCodeDecl);
179 
180   assert(EHStack.empty() &&
181          "did not remove all scopes from cleanup stack!");
182 
183   // If someone did an indirect goto, emit the indirect goto block at the end of
184   // the function.
185   if (IndirectBranch) {
186     EmitBlock(IndirectBranch->getParent());
187     Builder.ClearInsertionPoint();
188   }
189 
190   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191   llvm::Instruction *Ptr = AllocaInsertPt;
192   AllocaInsertPt = 0;
193   Ptr->eraseFromParent();
194 
195   // If someone took the address of a label but never did an indirect goto, we
196   // made a zero entry PHI node, which is illegal, zap it now.
197   if (IndirectBranch) {
198     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199     if (PN->getNumIncomingValues() == 0) {
200       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201       PN->eraseFromParent();
202     }
203   }
204 
205   EmitIfUsed(*this, EHResumeBlock);
206   EmitIfUsed(*this, TerminateLandingPad);
207   EmitIfUsed(*this, TerminateHandler);
208   EmitIfUsed(*this, UnreachableBlock);
209 
210   if (CGM.getCodeGenOpts().EmitDeclMetadata)
211     EmitDeclMetadata();
212 }
213 
214 /// ShouldInstrumentFunction - Return true if the current function should be
215 /// instrumented with __cyg_profile_func_* calls
216 bool CodeGenFunction::ShouldInstrumentFunction() {
217   if (!CGM.getCodeGenOpts().InstrumentFunctions)
218     return false;
219   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220     return false;
221   return true;
222 }
223 
224 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225 /// instrumentation function with the current function and the call site, if
226 /// function instrumentation is enabled.
227 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229   llvm::PointerType *PointerTy = Int8PtrTy;
230   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231   llvm::FunctionType *FunctionTy =
232     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
233 
234   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
235   llvm::CallInst *CallSite = Builder.CreateCall(
236     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
237     llvm::ConstantInt::get(Int32Ty, 0),
238     "callsite");
239 
240   Builder.CreateCall2(F,
241                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
242                       CallSite);
243 }
244 
245 void CodeGenFunction::EmitMCountInstrumentation() {
246   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
247 
248   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
249                                                        Target.getMCountName());
250   Builder.CreateCall(MCountFn);
251 }
252 
253 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
254                                     llvm::Function *Fn,
255                                     const CGFunctionInfo &FnInfo,
256                                     const FunctionArgList &Args,
257                                     SourceLocation StartLoc) {
258   const Decl *D = GD.getDecl();
259 
260   DidCallStackSave = false;
261   CurCodeDecl = CurFuncDecl = D;
262   FnRetTy = RetTy;
263   CurFn = Fn;
264   CurFnInfo = &FnInfo;
265   assert(CurFn->isDeclaration() && "Function already has body?");
266 
267   // Pass inline keyword to optimizer if it appears explicitly on any
268   // declaration.
269   if (!CGM.getCodeGenOpts().NoInline)
270     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
271       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
272              RE = FD->redecls_end(); RI != RE; ++RI)
273         if (RI->isInlineSpecified()) {
274           Fn->addFnAttr(llvm::Attribute::InlineHint);
275           break;
276         }
277 
278   if (getContext().getLangOpts().OpenCL) {
279     // Add metadata for a kernel function.
280     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
281       if (FD->hasAttr<OpenCLKernelAttr>()) {
282         llvm::LLVMContext &Context = getLLVMContext();
283         llvm::NamedMDNode *OpenCLMetadata =
284           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
285 
286         llvm::Value *Op = Fn;
287         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
288       }
289   }
290 
291   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
292 
293   // Create a marker to make it easy to insert allocas into the entryblock
294   // later.  Don't create this with the builder, because we don't want it
295   // folded.
296   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
297   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
298   if (Builder.isNamePreserving())
299     AllocaInsertPt->setName("allocapt");
300 
301   ReturnBlock = getJumpDestInCurrentScope("return");
302 
303   Builder.SetInsertPoint(EntryBB);
304 
305   // Emit subprogram debug descriptor.
306   if (CGDebugInfo *DI = getDebugInfo()) {
307     unsigned NumArgs = 0;
308     QualType *ArgsArray = new QualType[Args.size()];
309     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
310 	 i != e; ++i) {
311       ArgsArray[NumArgs++] = (*i)->getType();
312     }
313 
314     QualType FnType =
315       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
316                                    FunctionProtoType::ExtProtoInfo());
317 
318     delete[] ArgsArray;
319 
320     DI->setLocation(StartLoc);
321     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
322   }
323 
324   if (ShouldInstrumentFunction())
325     EmitFunctionInstrumentation("__cyg_profile_func_enter");
326 
327   if (CGM.getCodeGenOpts().InstrumentForProfiling)
328     EmitMCountInstrumentation();
329 
330   if (RetTy->isVoidType()) {
331     // Void type; nothing to return.
332     ReturnValue = 0;
333   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
334              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
335     // Indirect aggregate return; emit returned value directly into sret slot.
336     // This reduces code size, and affects correctness in C++.
337     ReturnValue = CurFn->arg_begin();
338   } else {
339     ReturnValue = CreateIRTemp(RetTy, "retval");
340 
341     // Tell the epilog emitter to autorelease the result.  We do this
342     // now so that various specialized functions can suppress it
343     // during their IR-generation.
344     if (getLangOpts().ObjCAutoRefCount &&
345         !CurFnInfo->isReturnsRetained() &&
346         RetTy->isObjCRetainableType())
347       AutoreleaseResult = true;
348   }
349 
350   EmitStartEHSpec(CurCodeDecl);
351 
352   PrologueCleanupDepth = EHStack.stable_begin();
353   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
354 
355   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
356     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
357     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
358     if (MD->getParent()->isLambda() &&
359         MD->getOverloadedOperator() == OO_Call) {
360       // We're in a lambda; figure out the captures.
361       MD->getParent()->getCaptureFields(LambdaCaptureFields,
362                                         LambdaThisCaptureField);
363       if (LambdaThisCaptureField) {
364         // If this lambda captures this, load it.
365         QualType LambdaTagType =
366             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
367         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
368                                                      LambdaTagType);
369         LValue ThisLValue = EmitLValueForField(LambdaLV,
370                                                LambdaThisCaptureField);
371         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
372       }
373     } else {
374       // Not in a lambda; just use 'this' from the method.
375       // FIXME: Should we generate a new load for each use of 'this'?  The
376       // fast register allocator would be happier...
377       CXXThisValue = CXXABIThisValue;
378     }
379   }
380 
381   // If any of the arguments have a variably modified type, make sure to
382   // emit the type size.
383   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
384        i != e; ++i) {
385     QualType Ty = (*i)->getType();
386 
387     if (Ty->isVariablyModifiedType())
388       EmitVariablyModifiedType(Ty);
389   }
390   // Emit a location at the end of the prologue.
391   if (CGDebugInfo *DI = getDebugInfo())
392     DI->EmitLocation(Builder, StartLoc);
393 }
394 
395 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
396   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
397   assert(FD->getBody());
398   EmitStmt(FD->getBody());
399 }
400 
401 /// Tries to mark the given function nounwind based on the
402 /// non-existence of any throwing calls within it.  We believe this is
403 /// lightweight enough to do at -O0.
404 static void TryMarkNoThrow(llvm::Function *F) {
405   // LLVM treats 'nounwind' on a function as part of the type, so we
406   // can't do this on functions that can be overwritten.
407   if (F->mayBeOverridden()) return;
408 
409   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
410     for (llvm::BasicBlock::iterator
411            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
412       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
413         if (!Call->doesNotThrow())
414           return;
415       } else if (isa<llvm::ResumeInst>(&*BI)) {
416         return;
417       }
418   F->setDoesNotThrow(true);
419 }
420 
421 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
422                                    const CGFunctionInfo &FnInfo) {
423   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
424 
425   // Check if we should generate debug info for this function.
426   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
427     DebugInfo = CGM.getModuleDebugInfo();
428 
429   FunctionArgList Args;
430   QualType ResTy = FD->getResultType();
431 
432   CurGD = GD;
433   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
434     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
435 
436   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
437     Args.push_back(FD->getParamDecl(i));
438 
439   SourceRange BodyRange;
440   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
441 
442   // Emit the standard function prologue.
443   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
444 
445   // Generate the body of the function.
446   if (isa<CXXDestructorDecl>(FD))
447     EmitDestructorBody(Args);
448   else if (isa<CXXConstructorDecl>(FD))
449     EmitConstructorBody(Args);
450   else if (getContext().getLangOpts().CUDA &&
451            !CGM.getCodeGenOpts().CUDAIsDevice &&
452            FD->hasAttr<CUDAGlobalAttr>())
453     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
454   else if (isa<CXXConversionDecl>(FD) &&
455            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
456     // The lambda conversion to block pointer is special; the semantics can't be
457     // expressed in the AST, so IRGen needs to special-case it.
458     EmitLambdaToBlockPointerBody(Args);
459   } else if (isa<CXXMethodDecl>(FD) &&
460              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
461     // The lambda "__invoke" function is special, because it forwards or
462     // clones the body of the function call operator (but is actually static).
463     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
464   }
465   else
466     EmitFunctionBody(Args);
467 
468   // Emit the standard function epilogue.
469   FinishFunction(BodyRange.getEnd());
470 
471   // If we haven't marked the function nothrow through other means, do
472   // a quick pass now to see if we can.
473   if (!CurFn->doesNotThrow())
474     TryMarkNoThrow(CurFn);
475 }
476 
477 /// ContainsLabel - Return true if the statement contains a label in it.  If
478 /// this statement is not executed normally, it not containing a label means
479 /// that we can just remove the code.
480 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
481   // Null statement, not a label!
482   if (S == 0) return false;
483 
484   // If this is a label, we have to emit the code, consider something like:
485   // if (0) {  ...  foo:  bar(); }  goto foo;
486   //
487   // TODO: If anyone cared, we could track __label__'s, since we know that you
488   // can't jump to one from outside their declared region.
489   if (isa<LabelStmt>(S))
490     return true;
491 
492   // If this is a case/default statement, and we haven't seen a switch, we have
493   // to emit the code.
494   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
495     return true;
496 
497   // If this is a switch statement, we want to ignore cases below it.
498   if (isa<SwitchStmt>(S))
499     IgnoreCaseStmts = true;
500 
501   // Scan subexpressions for verboten labels.
502   for (Stmt::const_child_range I = S->children(); I; ++I)
503     if (ContainsLabel(*I, IgnoreCaseStmts))
504       return true;
505 
506   return false;
507 }
508 
509 /// containsBreak - Return true if the statement contains a break out of it.
510 /// If the statement (recursively) contains a switch or loop with a break
511 /// inside of it, this is fine.
512 bool CodeGenFunction::containsBreak(const Stmt *S) {
513   // Null statement, not a label!
514   if (S == 0) return false;
515 
516   // If this is a switch or loop that defines its own break scope, then we can
517   // include it and anything inside of it.
518   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
519       isa<ForStmt>(S))
520     return false;
521 
522   if (isa<BreakStmt>(S))
523     return true;
524 
525   // Scan subexpressions for verboten breaks.
526   for (Stmt::const_child_range I = S->children(); I; ++I)
527     if (containsBreak(*I))
528       return true;
529 
530   return false;
531 }
532 
533 
534 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
535 /// to a constant, or if it does but contains a label, return false.  If it
536 /// constant folds return true and set the boolean result in Result.
537 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
538                                                    bool &ResultBool) {
539   llvm::APInt ResultInt;
540   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
541     return false;
542 
543   ResultBool = ResultInt.getBoolValue();
544   return true;
545 }
546 
547 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
548 /// to a constant, or if it does but contains a label, return false.  If it
549 /// constant folds return true and set the folded value.
550 bool CodeGenFunction::
551 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
552   // FIXME: Rename and handle conversion of other evaluatable things
553   // to bool.
554   llvm::APSInt Int;
555   if (!Cond->EvaluateAsInt(Int, getContext()))
556     return false;  // Not foldable, not integer or not fully evaluatable.
557 
558   if (CodeGenFunction::ContainsLabel(Cond))
559     return false;  // Contains a label.
560 
561   ResultInt = Int;
562   return true;
563 }
564 
565 
566 
567 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
568 /// statement) to the specified blocks.  Based on the condition, this might try
569 /// to simplify the codegen of the conditional based on the branch.
570 ///
571 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
572                                            llvm::BasicBlock *TrueBlock,
573                                            llvm::BasicBlock *FalseBlock) {
574   Cond = Cond->IgnoreParens();
575 
576   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
577     // Handle X && Y in a condition.
578     if (CondBOp->getOpcode() == BO_LAnd) {
579       // If we have "1 && X", simplify the code.  "0 && X" would have constant
580       // folded if the case was simple enough.
581       bool ConstantBool = false;
582       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
583           ConstantBool) {
584         // br(1 && X) -> br(X).
585         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
586       }
587 
588       // If we have "X && 1", simplify the code to use an uncond branch.
589       // "X && 0" would have been constant folded to 0.
590       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
591           ConstantBool) {
592         // br(X && 1) -> br(X).
593         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
594       }
595 
596       // Emit the LHS as a conditional.  If the LHS conditional is false, we
597       // want to jump to the FalseBlock.
598       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
599 
600       ConditionalEvaluation eval(*this);
601       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
602       EmitBlock(LHSTrue);
603 
604       // Any temporaries created here are conditional.
605       eval.begin(*this);
606       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
607       eval.end(*this);
608 
609       return;
610     }
611 
612     if (CondBOp->getOpcode() == BO_LOr) {
613       // If we have "0 || X", simplify the code.  "1 || X" would have constant
614       // folded if the case was simple enough.
615       bool ConstantBool = false;
616       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
617           !ConstantBool) {
618         // br(0 || X) -> br(X).
619         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
620       }
621 
622       // If we have "X || 0", simplify the code to use an uncond branch.
623       // "X || 1" would have been constant folded to 1.
624       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
625           !ConstantBool) {
626         // br(X || 0) -> br(X).
627         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
628       }
629 
630       // Emit the LHS as a conditional.  If the LHS conditional is true, we
631       // want to jump to the TrueBlock.
632       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
633 
634       ConditionalEvaluation eval(*this);
635       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
636       EmitBlock(LHSFalse);
637 
638       // Any temporaries created here are conditional.
639       eval.begin(*this);
640       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
641       eval.end(*this);
642 
643       return;
644     }
645   }
646 
647   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
648     // br(!x, t, f) -> br(x, f, t)
649     if (CondUOp->getOpcode() == UO_LNot)
650       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
651   }
652 
653   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
654     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
655     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
656     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
657 
658     ConditionalEvaluation cond(*this);
659     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
660 
661     cond.begin(*this);
662     EmitBlock(LHSBlock);
663     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
664     cond.end(*this);
665 
666     cond.begin(*this);
667     EmitBlock(RHSBlock);
668     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
669     cond.end(*this);
670 
671     return;
672   }
673 
674   // Emit the code with the fully general case.
675   llvm::Value *CondV = EvaluateExprAsBool(Cond);
676   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
682                                        bool OmitOnError) {
683   CGM.ErrorUnsupported(S, Type, OmitOnError);
684 }
685 
686 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
687 /// variable-length array whose elements have a non-zero bit-pattern.
688 ///
689 /// \param src - a char* pointing to the bit-pattern for a single
690 /// base element of the array
691 /// \param sizeInChars - the total size of the VLA, in chars
692 /// \param align - the total alignment of the VLA
693 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
694                                llvm::Value *dest, llvm::Value *src,
695                                llvm::Value *sizeInChars) {
696   std::pair<CharUnits,CharUnits> baseSizeAndAlign
697     = CGF.getContext().getTypeInfoInChars(baseType);
698 
699   CGBuilderTy &Builder = CGF.Builder;
700 
701   llvm::Value *baseSizeInChars
702     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
703 
704   llvm::Type *i8p = Builder.getInt8PtrTy();
705 
706   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
707   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
708 
709   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
710   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
711   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
712 
713   // Make a loop over the VLA.  C99 guarantees that the VLA element
714   // count must be nonzero.
715   CGF.EmitBlock(loopBB);
716 
717   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
718   cur->addIncoming(begin, originBB);
719 
720   // memcpy the individual element bit-pattern.
721   Builder.CreateMemCpy(cur, src, baseSizeInChars,
722                        baseSizeAndAlign.second.getQuantity(),
723                        /*volatile*/ false);
724 
725   // Go to the next element.
726   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
727 
728   // Leave if that's the end of the VLA.
729   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
730   Builder.CreateCondBr(done, contBB, loopBB);
731   cur->addIncoming(next, loopBB);
732 
733   CGF.EmitBlock(contBB);
734 }
735 
736 void
737 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
738   // Ignore empty classes in C++.
739   if (getContext().getLangOpts().CPlusPlus) {
740     if (const RecordType *RT = Ty->getAs<RecordType>()) {
741       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
742         return;
743     }
744   }
745 
746   // Cast the dest ptr to the appropriate i8 pointer type.
747   unsigned DestAS =
748     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
749   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
750   if (DestPtr->getType() != BP)
751     DestPtr = Builder.CreateBitCast(DestPtr, BP);
752 
753   // Get size and alignment info for this aggregate.
754   std::pair<CharUnits, CharUnits> TypeInfo =
755     getContext().getTypeInfoInChars(Ty);
756   CharUnits Size = TypeInfo.first;
757   CharUnits Align = TypeInfo.second;
758 
759   llvm::Value *SizeVal;
760   const VariableArrayType *vla;
761 
762   // Don't bother emitting a zero-byte memset.
763   if (Size.isZero()) {
764     // But note that getTypeInfo returns 0 for a VLA.
765     if (const VariableArrayType *vlaType =
766           dyn_cast_or_null<VariableArrayType>(
767                                           getContext().getAsArrayType(Ty))) {
768       QualType eltType;
769       llvm::Value *numElts;
770       llvm::tie(numElts, eltType) = getVLASize(vlaType);
771 
772       SizeVal = numElts;
773       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
774       if (!eltSize.isOne())
775         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
776       vla = vlaType;
777     } else {
778       return;
779     }
780   } else {
781     SizeVal = CGM.getSize(Size);
782     vla = 0;
783   }
784 
785   // If the type contains a pointer to data member we can't memset it to zero.
786   // Instead, create a null constant and copy it to the destination.
787   // TODO: there are other patterns besides zero that we can usefully memset,
788   // like -1, which happens to be the pattern used by member-pointers.
789   if (!CGM.getTypes().isZeroInitializable(Ty)) {
790     // For a VLA, emit a single element, then splat that over the VLA.
791     if (vla) Ty = getContext().getBaseElementType(vla);
792 
793     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
794 
795     llvm::GlobalVariable *NullVariable =
796       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
797                                /*isConstant=*/true,
798                                llvm::GlobalVariable::PrivateLinkage,
799                                NullConstant, Twine());
800     llvm::Value *SrcPtr =
801       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
802 
803     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
804 
805     // Get and call the appropriate llvm.memcpy overload.
806     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
807     return;
808   }
809 
810   // Otherwise, just memset the whole thing to zero.  This is legal
811   // because in LLVM, all default initializers (other than the ones we just
812   // handled above) are guaranteed to have a bit pattern of all zeros.
813   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
814                        Align.getQuantity(), false);
815 }
816 
817 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
818   // Make sure that there is a block for the indirect goto.
819   if (IndirectBranch == 0)
820     GetIndirectGotoBlock();
821 
822   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
823 
824   // Make sure the indirect branch includes all of the address-taken blocks.
825   IndirectBranch->addDestination(BB);
826   return llvm::BlockAddress::get(CurFn, BB);
827 }
828 
829 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
830   // If we already made the indirect branch for indirect goto, return its block.
831   if (IndirectBranch) return IndirectBranch->getParent();
832 
833   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
834 
835   // Create the PHI node that indirect gotos will add entries to.
836   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
837                                               "indirect.goto.dest");
838 
839   // Create the indirect branch instruction.
840   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
841   return IndirectBranch->getParent();
842 }
843 
844 /// Computes the length of an array in elements, as well as the base
845 /// element type and a properly-typed first element pointer.
846 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
847                                               QualType &baseType,
848                                               llvm::Value *&addr) {
849   const ArrayType *arrayType = origArrayType;
850 
851   // If it's a VLA, we have to load the stored size.  Note that
852   // this is the size of the VLA in bytes, not its size in elements.
853   llvm::Value *numVLAElements = 0;
854   if (isa<VariableArrayType>(arrayType)) {
855     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
856 
857     // Walk into all VLAs.  This doesn't require changes to addr,
858     // which has type T* where T is the first non-VLA element type.
859     do {
860       QualType elementType = arrayType->getElementType();
861       arrayType = getContext().getAsArrayType(elementType);
862 
863       // If we only have VLA components, 'addr' requires no adjustment.
864       if (!arrayType) {
865         baseType = elementType;
866         return numVLAElements;
867       }
868     } while (isa<VariableArrayType>(arrayType));
869 
870     // We get out here only if we find a constant array type
871     // inside the VLA.
872   }
873 
874   // We have some number of constant-length arrays, so addr should
875   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
876   // down to the first element of addr.
877   SmallVector<llvm::Value*, 8> gepIndices;
878 
879   // GEP down to the array type.
880   llvm::ConstantInt *zero = Builder.getInt32(0);
881   gepIndices.push_back(zero);
882 
883   // It's more efficient to calculate the count from the LLVM
884   // constant-length arrays than to re-evaluate the array bounds.
885   uint64_t countFromCLAs = 1;
886 
887   llvm::ArrayType *llvmArrayType =
888     cast<llvm::ArrayType>(
889       cast<llvm::PointerType>(addr->getType())->getElementType());
890   while (true) {
891     assert(isa<ConstantArrayType>(arrayType));
892     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
893              == llvmArrayType->getNumElements());
894 
895     gepIndices.push_back(zero);
896     countFromCLAs *= llvmArrayType->getNumElements();
897 
898     llvmArrayType =
899       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
900     if (!llvmArrayType) break;
901 
902     arrayType = getContext().getAsArrayType(arrayType->getElementType());
903     assert(arrayType && "LLVM and Clang types are out-of-synch");
904   }
905 
906   baseType = arrayType->getElementType();
907 
908   // Create the actual GEP.
909   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
910 
911   llvm::Value *numElements
912     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
913 
914   // If we had any VLA dimensions, factor them in.
915   if (numVLAElements)
916     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
917 
918   return numElements;
919 }
920 
921 std::pair<llvm::Value*, QualType>
922 CodeGenFunction::getVLASize(QualType type) {
923   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
924   assert(vla && "type was not a variable array type!");
925   return getVLASize(vla);
926 }
927 
928 std::pair<llvm::Value*, QualType>
929 CodeGenFunction::getVLASize(const VariableArrayType *type) {
930   // The number of elements so far; always size_t.
931   llvm::Value *numElements = 0;
932 
933   QualType elementType;
934   do {
935     elementType = type->getElementType();
936     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
937     assert(vlaSize && "no size for VLA!");
938     assert(vlaSize->getType() == SizeTy);
939 
940     if (!numElements) {
941       numElements = vlaSize;
942     } else {
943       // It's undefined behavior if this wraps around, so mark it that way.
944       numElements = Builder.CreateNUWMul(numElements, vlaSize);
945     }
946   } while ((type = getContext().getAsVariableArrayType(elementType)));
947 
948   return std::pair<llvm::Value*,QualType>(numElements, elementType);
949 }
950 
951 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
952   assert(type->isVariablyModifiedType() &&
953          "Must pass variably modified type to EmitVLASizes!");
954 
955   EnsureInsertPoint();
956 
957   // We're going to walk down into the type and look for VLA
958   // expressions.
959   do {
960     assert(type->isVariablyModifiedType());
961 
962     const Type *ty = type.getTypePtr();
963     switch (ty->getTypeClass()) {
964 
965 #define TYPE(Class, Base)
966 #define ABSTRACT_TYPE(Class, Base)
967 #define NON_CANONICAL_TYPE(Class, Base)
968 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
969 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
970 #include "clang/AST/TypeNodes.def"
971       llvm_unreachable("unexpected dependent type!");
972 
973     // These types are never variably-modified.
974     case Type::Builtin:
975     case Type::Complex:
976     case Type::Vector:
977     case Type::ExtVector:
978     case Type::Record:
979     case Type::Enum:
980     case Type::Elaborated:
981     case Type::TemplateSpecialization:
982     case Type::ObjCObject:
983     case Type::ObjCInterface:
984     case Type::ObjCObjectPointer:
985       llvm_unreachable("type class is never variably-modified!");
986 
987     case Type::Pointer:
988       type = cast<PointerType>(ty)->getPointeeType();
989       break;
990 
991     case Type::BlockPointer:
992       type = cast<BlockPointerType>(ty)->getPointeeType();
993       break;
994 
995     case Type::LValueReference:
996     case Type::RValueReference:
997       type = cast<ReferenceType>(ty)->getPointeeType();
998       break;
999 
1000     case Type::MemberPointer:
1001       type = cast<MemberPointerType>(ty)->getPointeeType();
1002       break;
1003 
1004     case Type::ConstantArray:
1005     case Type::IncompleteArray:
1006       // Losing element qualification here is fine.
1007       type = cast<ArrayType>(ty)->getElementType();
1008       break;
1009 
1010     case Type::VariableArray: {
1011       // Losing element qualification here is fine.
1012       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1013 
1014       // Unknown size indication requires no size computation.
1015       // Otherwise, evaluate and record it.
1016       if (const Expr *size = vat->getSizeExpr()) {
1017         // It's possible that we might have emitted this already,
1018         // e.g. with a typedef and a pointer to it.
1019         llvm::Value *&entry = VLASizeMap[size];
1020         if (!entry) {
1021           // Always zexting here would be wrong if it weren't
1022           // undefined behavior to have a negative bound.
1023           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1024                                         /*signed*/ false);
1025         }
1026       }
1027       type = vat->getElementType();
1028       break;
1029     }
1030 
1031     case Type::FunctionProto:
1032     case Type::FunctionNoProto:
1033       type = cast<FunctionType>(ty)->getResultType();
1034       break;
1035 
1036     case Type::Paren:
1037     case Type::TypeOf:
1038     case Type::UnaryTransform:
1039     case Type::Attributed:
1040     case Type::SubstTemplateTypeParm:
1041       // Keep walking after single level desugaring.
1042       type = type.getSingleStepDesugaredType(getContext());
1043       break;
1044 
1045     case Type::Typedef:
1046     case Type::Decltype:
1047     case Type::Auto:
1048       // Stop walking: nothing to do.
1049       return;
1050 
1051     case Type::TypeOfExpr:
1052       // Stop walking: emit typeof expression.
1053       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1054       return;
1055 
1056     case Type::Atomic:
1057       type = cast<AtomicType>(ty)->getValueType();
1058       break;
1059     }
1060   } while (type->isVariablyModifiedType());
1061 }
1062 
1063 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1064   if (getContext().getBuiltinVaListType()->isArrayType())
1065     return EmitScalarExpr(E);
1066   return EmitLValue(E).getAddress();
1067 }
1068 
1069 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1070                                               llvm::Constant *Init) {
1071   assert (Init && "Invalid DeclRefExpr initializer!");
1072   if (CGDebugInfo *Dbg = getDebugInfo())
1073     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1074 }
1075 
1076 CodeGenFunction::PeepholeProtection
1077 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1078   // At the moment, the only aggressive peephole we do in IR gen
1079   // is trunc(zext) folding, but if we add more, we can easily
1080   // extend this protection.
1081 
1082   if (!rvalue.isScalar()) return PeepholeProtection();
1083   llvm::Value *value = rvalue.getScalarVal();
1084   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1085 
1086   // Just make an extra bitcast.
1087   assert(HaveInsertPoint());
1088   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1089                                                   Builder.GetInsertBlock());
1090 
1091   PeepholeProtection protection;
1092   protection.Inst = inst;
1093   return protection;
1094 }
1095 
1096 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1097   if (!protection.Inst) return;
1098 
1099   // In theory, we could try to duplicate the peepholes now, but whatever.
1100   protection.Inst->eraseFromParent();
1101 }
1102 
1103 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1104                                                  llvm::Value *AnnotatedVal,
1105                                                  llvm::StringRef AnnotationStr,
1106                                                  SourceLocation Location) {
1107   llvm::Value *Args[4] = {
1108     AnnotatedVal,
1109     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1110     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1111     CGM.EmitAnnotationLineNo(Location)
1112   };
1113   return Builder.CreateCall(AnnotationFn, Args);
1114 }
1115 
1116 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1117   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1118   // FIXME We create a new bitcast for every annotation because that's what
1119   // llvm-gcc was doing.
1120   for (specific_attr_iterator<AnnotateAttr>
1121        ai = D->specific_attr_begin<AnnotateAttr>(),
1122        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1123     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1124                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1125                        (*ai)->getAnnotation(), D->getLocation());
1126 }
1127 
1128 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1129                                                    llvm::Value *V) {
1130   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1131   llvm::Type *VTy = V->getType();
1132   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1133                                     CGM.Int8PtrTy);
1134 
1135   for (specific_attr_iterator<AnnotateAttr>
1136        ai = D->specific_attr_begin<AnnotateAttr>(),
1137        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1138     // FIXME Always emit the cast inst so we can differentiate between
1139     // annotation on the first field of a struct and annotation on the struct
1140     // itself.
1141     if (VTy != CGM.Int8PtrTy)
1142       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1143     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1144     V = Builder.CreateBitCast(V, VTy);
1145   }
1146 
1147   return V;
1148 }
1149