1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94   SetFPModel();
95 }
96 
97 CodeGenFunction::~CodeGenFunction() {
98   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
99 
100   // If there are any unclaimed block infos, go ahead and destroy them
101   // now.  This can happen if IR-gen gets clever and skips evaluating
102   // something.
103   if (FirstBlockInfo)
104     destroyBlockInfos(FirstBlockInfo);
105 
106   if (getLangOpts().OpenMP && CurFn)
107     CGM.getOpenMPRuntime().functionFinished(*this);
108 
109   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
110   // outlining etc) at some point. Doing it once the function codegen is done
111   // seems to be a reasonable spot. We do it here, as opposed to the deletion
112   // time of the CodeGenModule, because we have to ensure the IR has not yet
113   // been "emitted" to the outside, thus, modifications are still sensible.
114   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
115     OMPBuilder->finalize();
116 }
117 
118 // Map the LangOption for exception behavior into
119 // the corresponding enum in the IR.
120 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
121   LangOptions::FPExceptionModeKind Kind) {
122 
123   switch (Kind) {
124   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
125   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
126   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
127   }
128   llvm_unreachable("Unsupported FP Exception Behavior");
129 }
130 
131 void CodeGenFunction::SetFPModel() {
132   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
133   auto fpExceptionBehavior = ToConstrainedExceptMD(
134                                getLangOpts().getFPExceptionMode());
135 
136   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
137       RM == llvm::RoundingMode::NearestTiesToEven)
138     // Constrained intrinsics are not used.
139     ;
140   else {
141     Builder.setIsFPConstrained(true);
142     Builder.setDefaultConstrainedRounding(RM);
143     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
144   }
145 }
146 
147 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
148                                                     LValueBaseInfo *BaseInfo,
149                                                     TBAAAccessInfo *TBAAInfo) {
150   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
151                                  /* forPointeeType= */ true);
152 }
153 
154 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
155                                                    LValueBaseInfo *BaseInfo,
156                                                    TBAAAccessInfo *TBAAInfo,
157                                                    bool forPointeeType) {
158   if (TBAAInfo)
159     *TBAAInfo = CGM.getTBAAAccessInfo(T);
160 
161   // Honor alignment typedef attributes even on incomplete types.
162   // We also honor them straight for C++ class types, even as pointees;
163   // there's an expressivity gap here.
164   if (auto TT = T->getAs<TypedefType>()) {
165     if (auto Align = TT->getDecl()->getMaxAlignment()) {
166       if (BaseInfo)
167         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
168       return getContext().toCharUnitsFromBits(Align);
169     }
170   }
171 
172   if (BaseInfo)
173     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
174 
175   CharUnits Alignment;
176   if (T->isIncompleteType()) {
177     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
178   } else {
179     // For C++ class pointees, we don't know whether we're pointing at a
180     // base or a complete object, so we generally need to use the
181     // non-virtual alignment.
182     const CXXRecordDecl *RD;
183     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
184       Alignment = CGM.getClassPointerAlignment(RD);
185     } else {
186       Alignment = getContext().getTypeAlignInChars(T);
187       if (T.getQualifiers().hasUnaligned())
188         Alignment = CharUnits::One();
189     }
190 
191     // Cap to the global maximum type alignment unless the alignment
192     // was somehow explicit on the type.
193     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
194       if (Alignment.getQuantity() > MaxAlign &&
195           !getContext().isAlignmentRequired(T))
196         Alignment = CharUnits::fromQuantity(MaxAlign);
197     }
198   }
199   return Alignment;
200 }
201 
202 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
203   LValueBaseInfo BaseInfo;
204   TBAAAccessInfo TBAAInfo;
205   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
206   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
207                           TBAAInfo);
208 }
209 
210 /// Given a value of type T* that may not be to a complete object,
211 /// construct an l-value with the natural pointee alignment of T.
212 LValue
213 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
214   LValueBaseInfo BaseInfo;
215   TBAAAccessInfo TBAAInfo;
216   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
217                                             /* forPointeeType= */ true);
218   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
219 }
220 
221 
222 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
223   return CGM.getTypes().ConvertTypeForMem(T);
224 }
225 
226 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
227   return CGM.getTypes().ConvertType(T);
228 }
229 
230 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
231   type = type.getCanonicalType();
232   while (true) {
233     switch (type->getTypeClass()) {
234 #define TYPE(name, parent)
235 #define ABSTRACT_TYPE(name, parent)
236 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
237 #define DEPENDENT_TYPE(name, parent) case Type::name:
238 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
239 #include "clang/AST/TypeNodes.inc"
240       llvm_unreachable("non-canonical or dependent type in IR-generation");
241 
242     case Type::Auto:
243     case Type::DeducedTemplateSpecialization:
244       llvm_unreachable("undeduced type in IR-generation");
245 
246     // Various scalar types.
247     case Type::Builtin:
248     case Type::Pointer:
249     case Type::BlockPointer:
250     case Type::LValueReference:
251     case Type::RValueReference:
252     case Type::MemberPointer:
253     case Type::Vector:
254     case Type::ExtVector:
255     case Type::FunctionProto:
256     case Type::FunctionNoProto:
257     case Type::Enum:
258     case Type::ObjCObjectPointer:
259     case Type::Pipe:
260       return TEK_Scalar;
261 
262     // Complexes.
263     case Type::Complex:
264       return TEK_Complex;
265 
266     // Arrays, records, and Objective-C objects.
267     case Type::ConstantArray:
268     case Type::IncompleteArray:
269     case Type::VariableArray:
270     case Type::Record:
271     case Type::ObjCObject:
272     case Type::ObjCInterface:
273       return TEK_Aggregate;
274 
275     // We operate on atomic values according to their underlying type.
276     case Type::Atomic:
277       type = cast<AtomicType>(type)->getValueType();
278       continue;
279     }
280     llvm_unreachable("unknown type kind!");
281   }
282 }
283 
284 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
285   // For cleanliness, we try to avoid emitting the return block for
286   // simple cases.
287   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
288 
289   if (CurBB) {
290     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
291 
292     // We have a valid insert point, reuse it if it is empty or there are no
293     // explicit jumps to the return block.
294     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
295       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
296       delete ReturnBlock.getBlock();
297       ReturnBlock = JumpDest();
298     } else
299       EmitBlock(ReturnBlock.getBlock());
300     return llvm::DebugLoc();
301   }
302 
303   // Otherwise, if the return block is the target of a single direct
304   // branch then we can just put the code in that block instead. This
305   // cleans up functions which started with a unified return block.
306   if (ReturnBlock.getBlock()->hasOneUse()) {
307     llvm::BranchInst *BI =
308       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
309     if (BI && BI->isUnconditional() &&
310         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
311       // Record/return the DebugLoc of the simple 'return' expression to be used
312       // later by the actual 'ret' instruction.
313       llvm::DebugLoc Loc = BI->getDebugLoc();
314       Builder.SetInsertPoint(BI->getParent());
315       BI->eraseFromParent();
316       delete ReturnBlock.getBlock();
317       ReturnBlock = JumpDest();
318       return Loc;
319     }
320   }
321 
322   // FIXME: We are at an unreachable point, there is no reason to emit the block
323   // unless it has uses. However, we still need a place to put the debug
324   // region.end for now.
325 
326   EmitBlock(ReturnBlock.getBlock());
327   return llvm::DebugLoc();
328 }
329 
330 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
331   if (!BB) return;
332   if (!BB->use_empty())
333     return CGF.CurFn->getBasicBlockList().push_back(BB);
334   delete BB;
335 }
336 
337 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
338   assert(BreakContinueStack.empty() &&
339          "mismatched push/pop in break/continue stack!");
340 
341   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
342     && NumSimpleReturnExprs == NumReturnExprs
343     && ReturnBlock.getBlock()->use_empty();
344   // Usually the return expression is evaluated before the cleanup
345   // code.  If the function contains only a simple return statement,
346   // such as a constant, the location before the cleanup code becomes
347   // the last useful breakpoint in the function, because the simple
348   // return expression will be evaluated after the cleanup code. To be
349   // safe, set the debug location for cleanup code to the location of
350   // the return statement.  Otherwise the cleanup code should be at the
351   // end of the function's lexical scope.
352   //
353   // If there are multiple branches to the return block, the branch
354   // instructions will get the location of the return statements and
355   // all will be fine.
356   if (CGDebugInfo *DI = getDebugInfo()) {
357     if (OnlySimpleReturnStmts)
358       DI->EmitLocation(Builder, LastStopPoint);
359     else
360       DI->EmitLocation(Builder, EndLoc);
361   }
362 
363   // Pop any cleanups that might have been associated with the
364   // parameters.  Do this in whatever block we're currently in; it's
365   // important to do this before we enter the return block or return
366   // edges will be *really* confused.
367   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
368   bool HasOnlyLifetimeMarkers =
369       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
370   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
371   if (HasCleanups) {
372     // Make sure the line table doesn't jump back into the body for
373     // the ret after it's been at EndLoc.
374     Optional<ApplyDebugLocation> AL;
375     if (CGDebugInfo *DI = getDebugInfo()) {
376       if (OnlySimpleReturnStmts)
377         DI->EmitLocation(Builder, EndLoc);
378       else
379         // We may not have a valid end location. Try to apply it anyway, and
380         // fall back to an artificial location if needed.
381         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
382     }
383 
384     PopCleanupBlocks(PrologueCleanupDepth);
385   }
386 
387   // Emit function epilog (to return).
388   llvm::DebugLoc Loc = EmitReturnBlock();
389 
390   if (ShouldInstrumentFunction()) {
391     if (CGM.getCodeGenOpts().InstrumentFunctions)
392       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
393     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
394       CurFn->addFnAttr("instrument-function-exit-inlined",
395                        "__cyg_profile_func_exit");
396   }
397 
398   // Emit debug descriptor for function end.
399   if (CGDebugInfo *DI = getDebugInfo())
400     DI->EmitFunctionEnd(Builder, CurFn);
401 
402   // Reset the debug location to that of the simple 'return' expression, if any
403   // rather than that of the end of the function's scope '}'.
404   ApplyDebugLocation AL(*this, Loc);
405   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
406   EmitEndEHSpec(CurCodeDecl);
407 
408   assert(EHStack.empty() &&
409          "did not remove all scopes from cleanup stack!");
410 
411   // If someone did an indirect goto, emit the indirect goto block at the end of
412   // the function.
413   if (IndirectBranch) {
414     EmitBlock(IndirectBranch->getParent());
415     Builder.ClearInsertionPoint();
416   }
417 
418   // If some of our locals escaped, insert a call to llvm.localescape in the
419   // entry block.
420   if (!EscapedLocals.empty()) {
421     // Invert the map from local to index into a simple vector. There should be
422     // no holes.
423     SmallVector<llvm::Value *, 4> EscapeArgs;
424     EscapeArgs.resize(EscapedLocals.size());
425     for (auto &Pair : EscapedLocals)
426       EscapeArgs[Pair.second] = Pair.first;
427     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
428         &CGM.getModule(), llvm::Intrinsic::localescape);
429     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
430   }
431 
432   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
433   llvm::Instruction *Ptr = AllocaInsertPt;
434   AllocaInsertPt = nullptr;
435   Ptr->eraseFromParent();
436 
437   // If someone took the address of a label but never did an indirect goto, we
438   // made a zero entry PHI node, which is illegal, zap it now.
439   if (IndirectBranch) {
440     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
441     if (PN->getNumIncomingValues() == 0) {
442       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
443       PN->eraseFromParent();
444     }
445   }
446 
447   EmitIfUsed(*this, EHResumeBlock);
448   EmitIfUsed(*this, TerminateLandingPad);
449   EmitIfUsed(*this, TerminateHandler);
450   EmitIfUsed(*this, UnreachableBlock);
451 
452   for (const auto &FuncletAndParent : TerminateFunclets)
453     EmitIfUsed(*this, FuncletAndParent.second);
454 
455   if (CGM.getCodeGenOpts().EmitDeclMetadata)
456     EmitDeclMetadata();
457 
458   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
459            I = DeferredReplacements.begin(),
460            E = DeferredReplacements.end();
461        I != E; ++I) {
462     I->first->replaceAllUsesWith(I->second);
463     I->first->eraseFromParent();
464   }
465 
466   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
467   // PHIs if the current function is a coroutine. We don't do it for all
468   // functions as it may result in slight increase in numbers of instructions
469   // if compiled with no optimizations. We do it for coroutine as the lifetime
470   // of CleanupDestSlot alloca make correct coroutine frame building very
471   // difficult.
472   if (NormalCleanupDest.isValid() && isCoroutine()) {
473     llvm::DominatorTree DT(*CurFn);
474     llvm::PromoteMemToReg(
475         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
476     NormalCleanupDest = Address::invalid();
477   }
478 
479   // Scan function arguments for vector width.
480   for (llvm::Argument &A : CurFn->args())
481     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
482       LargestVectorWidth =
483           std::max((uint64_t)LargestVectorWidth,
484                    VT->getPrimitiveSizeInBits().getKnownMinSize());
485 
486   // Update vector width based on return type.
487   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
488     LargestVectorWidth =
489         std::max((uint64_t)LargestVectorWidth,
490                  VT->getPrimitiveSizeInBits().getKnownMinSize());
491 
492   // Add the required-vector-width attribute. This contains the max width from:
493   // 1. min-vector-width attribute used in the source program.
494   // 2. Any builtins used that have a vector width specified.
495   // 3. Values passed in and out of inline assembly.
496   // 4. Width of vector arguments and return types for this function.
497   // 5. Width of vector aguments and return types for functions called by this
498   //    function.
499   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
500 
501   // If we generated an unreachable return block, delete it now.
502   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
503     Builder.ClearInsertionPoint();
504     ReturnBlock.getBlock()->eraseFromParent();
505   }
506   if (ReturnValue.isValid()) {
507     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
508     if (RetAlloca && RetAlloca->use_empty()) {
509       RetAlloca->eraseFromParent();
510       ReturnValue = Address::invalid();
511     }
512   }
513 }
514 
515 /// ShouldInstrumentFunction - Return true if the current function should be
516 /// instrumented with __cyg_profile_func_* calls
517 bool CodeGenFunction::ShouldInstrumentFunction() {
518   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
519       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
520       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
521     return false;
522   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
523     return false;
524   return true;
525 }
526 
527 /// ShouldXRayInstrument - Return true if the current function should be
528 /// instrumented with XRay nop sleds.
529 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
530   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
531 }
532 
533 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
534 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
535 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
536   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
537          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
538           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
539               XRayInstrKind::Custom);
540 }
541 
542 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
543   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
544          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
545           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
546               XRayInstrKind::Typed);
547 }
548 
549 llvm::Constant *
550 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
551                                             llvm::Constant *Addr) {
552   // Addresses stored in prologue data can't require run-time fixups and must
553   // be PC-relative. Run-time fixups are undesirable because they necessitate
554   // writable text segments, which are unsafe. And absolute addresses are
555   // undesirable because they break PIE mode.
556 
557   // Add a layer of indirection through a private global. Taking its address
558   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
559   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
560                                       /*isConstant=*/true,
561                                       llvm::GlobalValue::PrivateLinkage, Addr);
562 
563   // Create a PC-relative address.
564   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
565   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
566   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
567   return (IntPtrTy == Int32Ty)
568              ? PCRelAsInt
569              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
570 }
571 
572 llvm::Value *
573 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
574                                           llvm::Value *EncodedAddr) {
575   // Reconstruct the address of the global.
576   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
577   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
578   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
579   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
580 
581   // Load the original pointer through the global.
582   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
583                             "decoded_addr");
584 }
585 
586 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
587                                                llvm::Function *Fn)
588 {
589   if (!FD->hasAttr<OpenCLKernelAttr>())
590     return;
591 
592   llvm::LLVMContext &Context = getLLVMContext();
593 
594   CGM.GenOpenCLArgMetadata(Fn, FD, this);
595 
596   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
597     QualType HintQTy = A->getTypeHint();
598     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
599     bool IsSignedInteger =
600         HintQTy->isSignedIntegerType() ||
601         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
602     llvm::Metadata *AttrMDArgs[] = {
603         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604             CGM.getTypes().ConvertType(A->getTypeHint()))),
605         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606             llvm::IntegerType::get(Context, 32),
607             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
608     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
609   }
610 
611   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
612     llvm::Metadata *AttrMDArgs[] = {
613         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
617   }
618 
619   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
620     llvm::Metadata *AttrMDArgs[] = {
621         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
624     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
625   }
626 
627   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
628           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
629     llvm::Metadata *AttrMDArgs[] = {
630         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
631     Fn->setMetadata("intel_reqd_sub_group_size",
632                     llvm::MDNode::get(Context, AttrMDArgs));
633   }
634 }
635 
636 /// Determine whether the function F ends with a return stmt.
637 static bool endsWithReturn(const Decl* F) {
638   const Stmt *Body = nullptr;
639   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
640     Body = FD->getBody();
641   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
642     Body = OMD->getBody();
643 
644   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
645     auto LastStmt = CS->body_rbegin();
646     if (LastStmt != CS->body_rend())
647       return isa<ReturnStmt>(*LastStmt);
648   }
649   return false;
650 }
651 
652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
653   if (SanOpts.has(SanitizerKind::Thread)) {
654     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
655     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
656   }
657 }
658 
659 /// Check if the return value of this function requires sanitization.
660 bool CodeGenFunction::requiresReturnValueCheck() const {
661   return requiresReturnValueNullabilityCheck() ||
662          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
663           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
664 }
665 
666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
667   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
668   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
669       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
671     return false;
672 
673   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
674     return false;
675 
676   if (MD->getNumParams() == 2) {
677     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
678     if (!PT || !PT->isVoidPointerType() ||
679         !PT->getPointeeType().isConstQualified())
680       return false;
681   }
682 
683   return true;
684 }
685 
686 /// Return the UBSan prologue signature for \p FD if one is available.
687 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
688                                             const FunctionDecl *FD) {
689   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
690     if (!MD->isStatic())
691       return nullptr;
692   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
693 }
694 
695 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
696                                     llvm::Function *Fn,
697                                     const CGFunctionInfo &FnInfo,
698                                     const FunctionArgList &Args,
699                                     SourceLocation Loc,
700                                     SourceLocation StartLoc) {
701   assert(!CurFn &&
702          "Do not use a CodeGenFunction object for more than one function");
703 
704   const Decl *D = GD.getDecl();
705 
706   DidCallStackSave = false;
707   CurCodeDecl = D;
708   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
709     if (FD->usesSEHTry())
710       CurSEHParent = FD;
711   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
712   FnRetTy = RetTy;
713   CurFn = Fn;
714   CurFnInfo = &FnInfo;
715   assert(CurFn->isDeclaration() && "Function already has body?");
716 
717   // If this function has been blacklisted for any of the enabled sanitizers,
718   // disable the sanitizer for the function.
719   do {
720 #define SANITIZER(NAME, ID)                                                    \
721   if (SanOpts.empty())                                                         \
722     break;                                                                     \
723   if (SanOpts.has(SanitizerKind::ID))                                          \
724     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
725       SanOpts.set(SanitizerKind::ID, false);
726 
727 #include "clang/Basic/Sanitizers.def"
728 #undef SANITIZER
729   } while (0);
730 
731   if (D) {
732     // Apply the no_sanitize* attributes to SanOpts.
733     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
734       SanitizerMask mask = Attr->getMask();
735       SanOpts.Mask &= ~mask;
736       if (mask & SanitizerKind::Address)
737         SanOpts.set(SanitizerKind::KernelAddress, false);
738       if (mask & SanitizerKind::KernelAddress)
739         SanOpts.set(SanitizerKind::Address, false);
740       if (mask & SanitizerKind::HWAddress)
741         SanOpts.set(SanitizerKind::KernelHWAddress, false);
742       if (mask & SanitizerKind::KernelHWAddress)
743         SanOpts.set(SanitizerKind::HWAddress, false);
744     }
745   }
746 
747   // Apply sanitizer attributes to the function.
748   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
749     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
750   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
751     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
752   if (SanOpts.has(SanitizerKind::MemTag))
753     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
754   if (SanOpts.has(SanitizerKind::Thread))
755     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
756   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
757     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
758   if (SanOpts.has(SanitizerKind::SafeStack))
759     Fn->addFnAttr(llvm::Attribute::SafeStack);
760   if (SanOpts.has(SanitizerKind::ShadowCallStack))
761     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
762 
763   // Apply fuzzing attribute to the function.
764   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
765     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
766 
767   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
768   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
769   if (SanOpts.has(SanitizerKind::Thread)) {
770     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
771       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
772       if (OMD->getMethodFamily() == OMF_dealloc ||
773           OMD->getMethodFamily() == OMF_initialize ||
774           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
775         markAsIgnoreThreadCheckingAtRuntime(Fn);
776       }
777     }
778   }
779 
780   // Ignore unrelated casts in STL allocate() since the allocator must cast
781   // from void* to T* before object initialization completes. Don't match on the
782   // namespace because not all allocators are in std::
783   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
784     if (matchesStlAllocatorFn(D, getContext()))
785       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
786   }
787 
788   // Ignore null checks in coroutine functions since the coroutines passes
789   // are not aware of how to move the extra UBSan instructions across the split
790   // coroutine boundaries.
791   if (D && SanOpts.has(SanitizerKind::Null))
792     if (const auto *FD = dyn_cast<FunctionDecl>(D))
793       if (FD->getBody() &&
794           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
795         SanOpts.Mask &= ~SanitizerKind::Null;
796 
797   // Apply xray attributes to the function (as a string, for now)
798   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
799     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
800             XRayInstrKind::FunctionEntry) ||
801         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
802             XRayInstrKind::FunctionExit)) {
803       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
804         Fn->addFnAttr("function-instrument", "xray-always");
805       if (XRayAttr->neverXRayInstrument())
806         Fn->addFnAttr("function-instrument", "xray-never");
807       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
808         if (ShouldXRayInstrumentFunction())
809           Fn->addFnAttr("xray-log-args",
810                         llvm::utostr(LogArgs->getArgumentCount()));
811     }
812   } else {
813     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
814       Fn->addFnAttr(
815           "xray-instruction-threshold",
816           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
817   }
818 
819   if (ShouldXRayInstrumentFunction()) {
820     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
821       Fn->addFnAttr("xray-ignore-loops");
822 
823     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
824             XRayInstrKind::FunctionExit))
825       Fn->addFnAttr("xray-skip-exit");
826 
827     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
828             XRayInstrKind::FunctionEntry))
829       Fn->addFnAttr("xray-skip-entry");
830   }
831 
832   unsigned Count, Offset;
833   if (const auto *Attr =
834           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
835     Count = Attr->getCount();
836     Offset = Attr->getOffset();
837   } else {
838     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
839     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
840   }
841   if (Count && Offset <= Count) {
842     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
843     if (Offset)
844       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
845   }
846 
847   // Add no-jump-tables value.
848   Fn->addFnAttr("no-jump-tables",
849                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
850 
851   // Add no-inline-line-tables value.
852   if (CGM.getCodeGenOpts().NoInlineLineTables)
853     Fn->addFnAttr("no-inline-line-tables");
854 
855   // Add profile-sample-accurate value.
856   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
857     Fn->addFnAttr("profile-sample-accurate");
858 
859   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
860     Fn->addFnAttr("cfi-canonical-jump-table");
861 
862   if (getLangOpts().OpenCL) {
863     // Add metadata for a kernel function.
864     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
865       EmitOpenCLKernelMetadata(FD, Fn);
866   }
867 
868   // If we are checking function types, emit a function type signature as
869   // prologue data.
870   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
871     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
872       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
873         // Remove any (C++17) exception specifications, to allow calling e.g. a
874         // noexcept function through a non-noexcept pointer.
875         auto ProtoTy =
876           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
877                                                         EST_None);
878         llvm::Constant *FTRTTIConst =
879             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
880         llvm::Constant *FTRTTIConstEncoded =
881             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
882         llvm::Constant *PrologueStructElems[] = {PrologueSig,
883                                                  FTRTTIConstEncoded};
884         llvm::Constant *PrologueStructConst =
885             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
886         Fn->setPrologueData(PrologueStructConst);
887       }
888     }
889   }
890 
891   // If we're checking nullability, we need to know whether we can check the
892   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
893   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
894     auto Nullability = FnRetTy->getNullability(getContext());
895     if (Nullability && *Nullability == NullabilityKind::NonNull) {
896       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
897             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
898         RetValNullabilityPrecondition =
899             llvm::ConstantInt::getTrue(getLLVMContext());
900     }
901   }
902 
903   // If we're in C++ mode and the function name is "main", it is guaranteed
904   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
905   // used within a program").
906   //
907   // OpenCL C 2.0 v2.2-11 s6.9.i:
908   //     Recursion is not supported.
909   //
910   // SYCL v1.2.1 s3.10:
911   //     kernels cannot include RTTI information, exception classes,
912   //     recursive code, virtual functions or make use of C++ libraries that
913   //     are not compiled for the device.
914   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
915     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
916         getLangOpts().SYCLIsDevice ||
917         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
918       Fn->addFnAttr(llvm::Attribute::NoRecurse);
919   }
920 
921   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
922     if (FD->usesFPIntrin())
923       Fn->addFnAttr(llvm::Attribute::StrictFP);
924 
925   // If a custom alignment is used, force realigning to this alignment on
926   // any main function which certainly will need it.
927   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
928     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
929         CGM.getCodeGenOpts().StackAlignment)
930       Fn->addFnAttr("stackrealign");
931 
932   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
933 
934   // Create a marker to make it easy to insert allocas into the entryblock
935   // later.  Don't create this with the builder, because we don't want it
936   // folded.
937   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
938   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
939 
940   ReturnBlock = getJumpDestInCurrentScope("return");
941 
942   Builder.SetInsertPoint(EntryBB);
943 
944   // If we're checking the return value, allocate space for a pointer to a
945   // precise source location of the checked return statement.
946   if (requiresReturnValueCheck()) {
947     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
948     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
949   }
950 
951   // Emit subprogram debug descriptor.
952   if (CGDebugInfo *DI = getDebugInfo()) {
953     // Reconstruct the type from the argument list so that implicit parameters,
954     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
955     // convention.
956     CallingConv CC = CallingConv::CC_C;
957     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
958       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
959         CC = SrcFnTy->getCallConv();
960     SmallVector<QualType, 16> ArgTypes;
961     for (const VarDecl *VD : Args)
962       ArgTypes.push_back(VD->getType());
963     QualType FnType = getContext().getFunctionType(
964         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
965     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
966                           Builder);
967   }
968 
969   if (ShouldInstrumentFunction()) {
970     if (CGM.getCodeGenOpts().InstrumentFunctions)
971       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
972     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
973       CurFn->addFnAttr("instrument-function-entry-inlined",
974                        "__cyg_profile_func_enter");
975     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
976       CurFn->addFnAttr("instrument-function-entry-inlined",
977                        "__cyg_profile_func_enter_bare");
978   }
979 
980   // Since emitting the mcount call here impacts optimizations such as function
981   // inlining, we just add an attribute to insert a mcount call in backend.
982   // The attribute "counting-function" is set to mcount function name which is
983   // architecture dependent.
984   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
985     // Calls to fentry/mcount should not be generated if function has
986     // the no_instrument_function attribute.
987     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
988       if (CGM.getCodeGenOpts().CallFEntry)
989         Fn->addFnAttr("fentry-call", "true");
990       else {
991         Fn->addFnAttr("instrument-function-entry-inlined",
992                       getTarget().getMCountName());
993       }
994       if (CGM.getCodeGenOpts().MNopMCount) {
995         if (!CGM.getCodeGenOpts().CallFEntry)
996           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
997             << "-mnop-mcount" << "-mfentry";
998         Fn->addFnAttr("mnop-mcount");
999       }
1000 
1001       if (CGM.getCodeGenOpts().RecordMCount) {
1002         if (!CGM.getCodeGenOpts().CallFEntry)
1003           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1004             << "-mrecord-mcount" << "-mfentry";
1005         Fn->addFnAttr("mrecord-mcount");
1006       }
1007     }
1008   }
1009 
1010   if (CGM.getCodeGenOpts().PackedStack) {
1011     if (getContext().getTargetInfo().getTriple().getArch() !=
1012         llvm::Triple::systemz)
1013       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1014         << "-mpacked-stack";
1015     Fn->addFnAttr("packed-stack");
1016   }
1017 
1018   if (RetTy->isVoidType()) {
1019     // Void type; nothing to return.
1020     ReturnValue = Address::invalid();
1021 
1022     // Count the implicit return.
1023     if (!endsWithReturn(D))
1024       ++NumReturnExprs;
1025   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1026     // Indirect return; emit returned value directly into sret slot.
1027     // This reduces code size, and affects correctness in C++.
1028     auto AI = CurFn->arg_begin();
1029     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1030       ++AI;
1031     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1032     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1033       ReturnValuePointer =
1034           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1035       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1036                               ReturnValue.getPointer(), Int8PtrTy),
1037                           ReturnValuePointer);
1038     }
1039   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1040              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1041     // Load the sret pointer from the argument struct and return into that.
1042     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1043     llvm::Function::arg_iterator EI = CurFn->arg_end();
1044     --EI;
1045     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1046     ReturnValuePointer = Address(Addr, getPointerAlign());
1047     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1048     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1049   } else {
1050     ReturnValue = CreateIRTemp(RetTy, "retval");
1051 
1052     // Tell the epilog emitter to autorelease the result.  We do this
1053     // now so that various specialized functions can suppress it
1054     // during their IR-generation.
1055     if (getLangOpts().ObjCAutoRefCount &&
1056         !CurFnInfo->isReturnsRetained() &&
1057         RetTy->isObjCRetainableType())
1058       AutoreleaseResult = true;
1059   }
1060 
1061   EmitStartEHSpec(CurCodeDecl);
1062 
1063   PrologueCleanupDepth = EHStack.stable_begin();
1064 
1065   // Emit OpenMP specific initialization of the device functions.
1066   if (getLangOpts().OpenMP && CurCodeDecl)
1067     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1068 
1069   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1070 
1071   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1072     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1073     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1074     if (MD->getParent()->isLambda() &&
1075         MD->getOverloadedOperator() == OO_Call) {
1076       // We're in a lambda; figure out the captures.
1077       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1078                                         LambdaThisCaptureField);
1079       if (LambdaThisCaptureField) {
1080         // If the lambda captures the object referred to by '*this' - either by
1081         // value or by reference, make sure CXXThisValue points to the correct
1082         // object.
1083 
1084         // Get the lvalue for the field (which is a copy of the enclosing object
1085         // or contains the address of the enclosing object).
1086         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1087         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1088           // If the enclosing object was captured by value, just use its address.
1089           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1090         } else {
1091           // Load the lvalue pointed to by the field, since '*this' was captured
1092           // by reference.
1093           CXXThisValue =
1094               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1095         }
1096       }
1097       for (auto *FD : MD->getParent()->fields()) {
1098         if (FD->hasCapturedVLAType()) {
1099           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1100                                            SourceLocation()).getScalarVal();
1101           auto VAT = FD->getCapturedVLAType();
1102           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1103         }
1104       }
1105     } else {
1106       // Not in a lambda; just use 'this' from the method.
1107       // FIXME: Should we generate a new load for each use of 'this'?  The
1108       // fast register allocator would be happier...
1109       CXXThisValue = CXXABIThisValue;
1110     }
1111 
1112     // Check the 'this' pointer once per function, if it's available.
1113     if (CXXABIThisValue) {
1114       SanitizerSet SkippedChecks;
1115       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1116       QualType ThisTy = MD->getThisType();
1117 
1118       // If this is the call operator of a lambda with no capture-default, it
1119       // may have a static invoker function, which may call this operator with
1120       // a null 'this' pointer.
1121       if (isLambdaCallOperator(MD) &&
1122           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1123         SkippedChecks.set(SanitizerKind::Null, true);
1124 
1125       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1126                                                 : TCK_MemberCall,
1127                     Loc, CXXABIThisValue, ThisTy,
1128                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1129                     SkippedChecks);
1130     }
1131   }
1132 
1133   // If any of the arguments have a variably modified type, make sure to
1134   // emit the type size.
1135   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1136        i != e; ++i) {
1137     const VarDecl *VD = *i;
1138 
1139     // Dig out the type as written from ParmVarDecls; it's unclear whether
1140     // the standard (C99 6.9.1p10) requires this, but we're following the
1141     // precedent set by gcc.
1142     QualType Ty;
1143     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1144       Ty = PVD->getOriginalType();
1145     else
1146       Ty = VD->getType();
1147 
1148     if (Ty->isVariablyModifiedType())
1149       EmitVariablyModifiedType(Ty);
1150   }
1151   // Emit a location at the end of the prologue.
1152   if (CGDebugInfo *DI = getDebugInfo())
1153     DI->EmitLocation(Builder, StartLoc);
1154 
1155   // TODO: Do we need to handle this in two places like we do with
1156   // target-features/target-cpu?
1157   if (CurFuncDecl)
1158     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1159       LargestVectorWidth = VecWidth->getVectorWidth();
1160 }
1161 
1162 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1163   incrementProfileCounter(Body);
1164   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1165     EmitCompoundStmtWithoutScope(*S);
1166   else
1167     EmitStmt(Body);
1168 }
1169 
1170 /// When instrumenting to collect profile data, the counts for some blocks
1171 /// such as switch cases need to not include the fall-through counts, so
1172 /// emit a branch around the instrumentation code. When not instrumenting,
1173 /// this just calls EmitBlock().
1174 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1175                                                const Stmt *S) {
1176   llvm::BasicBlock *SkipCountBB = nullptr;
1177   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1178     // When instrumenting for profiling, the fallthrough to certain
1179     // statements needs to skip over the instrumentation code so that we
1180     // get an accurate count.
1181     SkipCountBB = createBasicBlock("skipcount");
1182     EmitBranch(SkipCountBB);
1183   }
1184   EmitBlock(BB);
1185   uint64_t CurrentCount = getCurrentProfileCount();
1186   incrementProfileCounter(S);
1187   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1188   if (SkipCountBB)
1189     EmitBlock(SkipCountBB);
1190 }
1191 
1192 /// Tries to mark the given function nounwind based on the
1193 /// non-existence of any throwing calls within it.  We believe this is
1194 /// lightweight enough to do at -O0.
1195 static void TryMarkNoThrow(llvm::Function *F) {
1196   // LLVM treats 'nounwind' on a function as part of the type, so we
1197   // can't do this on functions that can be overwritten.
1198   if (F->isInterposable()) return;
1199 
1200   for (llvm::BasicBlock &BB : *F)
1201     for (llvm::Instruction &I : BB)
1202       if (I.mayThrow())
1203         return;
1204 
1205   F->setDoesNotThrow();
1206 }
1207 
1208 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1209                                                FunctionArgList &Args) {
1210   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1211   QualType ResTy = FD->getReturnType();
1212 
1213   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1214   if (MD && MD->isInstance()) {
1215     if (CGM.getCXXABI().HasThisReturn(GD))
1216       ResTy = MD->getThisType();
1217     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1218       ResTy = CGM.getContext().VoidPtrTy;
1219     CGM.getCXXABI().buildThisParam(*this, Args);
1220   }
1221 
1222   // The base version of an inheriting constructor whose constructed base is a
1223   // virtual base is not passed any arguments (because it doesn't actually call
1224   // the inherited constructor).
1225   bool PassedParams = true;
1226   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1227     if (auto Inherited = CD->getInheritedConstructor())
1228       PassedParams =
1229           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1230 
1231   if (PassedParams) {
1232     for (auto *Param : FD->parameters()) {
1233       Args.push_back(Param);
1234       if (!Param->hasAttr<PassObjectSizeAttr>())
1235         continue;
1236 
1237       auto *Implicit = ImplicitParamDecl::Create(
1238           getContext(), Param->getDeclContext(), Param->getLocation(),
1239           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1240       SizeArguments[Param] = Implicit;
1241       Args.push_back(Implicit);
1242     }
1243   }
1244 
1245   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1246     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1247 
1248   return ResTy;
1249 }
1250 
1251 static bool
1252 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1253                                              const ASTContext &Context) {
1254   QualType T = FD->getReturnType();
1255   // Avoid the optimization for functions that return a record type with a
1256   // trivial destructor or another trivially copyable type.
1257   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1258     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1259       return !ClassDecl->hasTrivialDestructor();
1260   }
1261   return !T.isTriviallyCopyableType(Context);
1262 }
1263 
1264 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1265                                    const CGFunctionInfo &FnInfo) {
1266   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1267   CurGD = GD;
1268 
1269   FunctionArgList Args;
1270   QualType ResTy = BuildFunctionArgList(GD, Args);
1271 
1272   // Check if we should generate debug info for this function.
1273   if (FD->hasAttr<NoDebugAttr>())
1274     DebugInfo = nullptr; // disable debug info indefinitely for this function
1275 
1276   // The function might not have a body if we're generating thunks for a
1277   // function declaration.
1278   SourceRange BodyRange;
1279   if (Stmt *Body = FD->getBody())
1280     BodyRange = Body->getSourceRange();
1281   else
1282     BodyRange = FD->getLocation();
1283   CurEHLocation = BodyRange.getEnd();
1284 
1285   // Use the location of the start of the function to determine where
1286   // the function definition is located. By default use the location
1287   // of the declaration as the location for the subprogram. A function
1288   // may lack a declaration in the source code if it is created by code
1289   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1290   SourceLocation Loc = FD->getLocation();
1291 
1292   // If this is a function specialization then use the pattern body
1293   // as the location for the function.
1294   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1295     if (SpecDecl->hasBody(SpecDecl))
1296       Loc = SpecDecl->getLocation();
1297 
1298   Stmt *Body = FD->getBody();
1299 
1300   // Initialize helper which will detect jumps which can cause invalid lifetime
1301   // markers.
1302   if (Body && ShouldEmitLifetimeMarkers)
1303     Bypasses.Init(Body);
1304 
1305   // Emit the standard function prologue.
1306   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1307 
1308   // Generate the body of the function.
1309   PGO.assignRegionCounters(GD, CurFn);
1310   if (isa<CXXDestructorDecl>(FD))
1311     EmitDestructorBody(Args);
1312   else if (isa<CXXConstructorDecl>(FD))
1313     EmitConstructorBody(Args);
1314   else if (getLangOpts().CUDA &&
1315            !getLangOpts().CUDAIsDevice &&
1316            FD->hasAttr<CUDAGlobalAttr>())
1317     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1318   else if (isa<CXXMethodDecl>(FD) &&
1319            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1320     // The lambda static invoker function is special, because it forwards or
1321     // clones the body of the function call operator (but is actually static).
1322     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1323   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1324              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1325               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1326     // Implicit copy-assignment gets the same special treatment as implicit
1327     // copy-constructors.
1328     emitImplicitAssignmentOperatorBody(Args);
1329   } else if (Body) {
1330     EmitFunctionBody(Body);
1331   } else
1332     llvm_unreachable("no definition for emitted function");
1333 
1334   // C++11 [stmt.return]p2:
1335   //   Flowing off the end of a function [...] results in undefined behavior in
1336   //   a value-returning function.
1337   // C11 6.9.1p12:
1338   //   If the '}' that terminates a function is reached, and the value of the
1339   //   function call is used by the caller, the behavior is undefined.
1340   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1341       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1342     bool ShouldEmitUnreachable =
1343         CGM.getCodeGenOpts().StrictReturn ||
1344         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1345     if (SanOpts.has(SanitizerKind::Return)) {
1346       SanitizerScope SanScope(this);
1347       llvm::Value *IsFalse = Builder.getFalse();
1348       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1349                 SanitizerHandler::MissingReturn,
1350                 EmitCheckSourceLocation(FD->getLocation()), None);
1351     } else if (ShouldEmitUnreachable) {
1352       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1353         EmitTrapCall(llvm::Intrinsic::trap);
1354     }
1355     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1356       Builder.CreateUnreachable();
1357       Builder.ClearInsertionPoint();
1358     }
1359   }
1360 
1361   // Emit the standard function epilogue.
1362   FinishFunction(BodyRange.getEnd());
1363 
1364   // If we haven't marked the function nothrow through other means, do
1365   // a quick pass now to see if we can.
1366   if (!CurFn->doesNotThrow())
1367     TryMarkNoThrow(CurFn);
1368 }
1369 
1370 /// ContainsLabel - Return true if the statement contains a label in it.  If
1371 /// this statement is not executed normally, it not containing a label means
1372 /// that we can just remove the code.
1373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1374   // Null statement, not a label!
1375   if (!S) return false;
1376 
1377   // If this is a label, we have to emit the code, consider something like:
1378   // if (0) {  ...  foo:  bar(); }  goto foo;
1379   //
1380   // TODO: If anyone cared, we could track __label__'s, since we know that you
1381   // can't jump to one from outside their declared region.
1382   if (isa<LabelStmt>(S))
1383     return true;
1384 
1385   // If this is a case/default statement, and we haven't seen a switch, we have
1386   // to emit the code.
1387   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1388     return true;
1389 
1390   // If this is a switch statement, we want to ignore cases below it.
1391   if (isa<SwitchStmt>(S))
1392     IgnoreCaseStmts = true;
1393 
1394   // Scan subexpressions for verboten labels.
1395   for (const Stmt *SubStmt : S->children())
1396     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1397       return true;
1398 
1399   return false;
1400 }
1401 
1402 /// containsBreak - Return true if the statement contains a break out of it.
1403 /// If the statement (recursively) contains a switch or loop with a break
1404 /// inside of it, this is fine.
1405 bool CodeGenFunction::containsBreak(const Stmt *S) {
1406   // Null statement, not a label!
1407   if (!S) return false;
1408 
1409   // If this is a switch or loop that defines its own break scope, then we can
1410   // include it and anything inside of it.
1411   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1412       isa<ForStmt>(S))
1413     return false;
1414 
1415   if (isa<BreakStmt>(S))
1416     return true;
1417 
1418   // Scan subexpressions for verboten breaks.
1419   for (const Stmt *SubStmt : S->children())
1420     if (containsBreak(SubStmt))
1421       return true;
1422 
1423   return false;
1424 }
1425 
1426 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1427   if (!S) return false;
1428 
1429   // Some statement kinds add a scope and thus never add a decl to the current
1430   // scope. Note, this list is longer than the list of statements that might
1431   // have an unscoped decl nested within them, but this way is conservatively
1432   // correct even if more statement kinds are added.
1433   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1434       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1435       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1436       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1437     return false;
1438 
1439   if (isa<DeclStmt>(S))
1440     return true;
1441 
1442   for (const Stmt *SubStmt : S->children())
1443     if (mightAddDeclToScope(SubStmt))
1444       return true;
1445 
1446   return false;
1447 }
1448 
1449 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1450 /// to a constant, or if it does but contains a label, return false.  If it
1451 /// constant folds return true and set the boolean result in Result.
1452 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1453                                                    bool &ResultBool,
1454                                                    bool AllowLabels) {
1455   llvm::APSInt ResultInt;
1456   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1457     return false;
1458 
1459   ResultBool = ResultInt.getBoolValue();
1460   return true;
1461 }
1462 
1463 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1464 /// to a constant, or if it does but contains a label, return false.  If it
1465 /// constant folds return true and set the folded value.
1466 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1467                                                    llvm::APSInt &ResultInt,
1468                                                    bool AllowLabels) {
1469   // FIXME: Rename and handle conversion of other evaluatable things
1470   // to bool.
1471   Expr::EvalResult Result;
1472   if (!Cond->EvaluateAsInt(Result, getContext()))
1473     return false;  // Not foldable, not integer or not fully evaluatable.
1474 
1475   llvm::APSInt Int = Result.Val.getInt();
1476   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1477     return false;  // Contains a label.
1478 
1479   ResultInt = Int;
1480   return true;
1481 }
1482 
1483 
1484 
1485 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1486 /// statement) to the specified blocks.  Based on the condition, this might try
1487 /// to simplify the codegen of the conditional based on the branch.
1488 ///
1489 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1490                                            llvm::BasicBlock *TrueBlock,
1491                                            llvm::BasicBlock *FalseBlock,
1492                                            uint64_t TrueCount) {
1493   Cond = Cond->IgnoreParens();
1494 
1495   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1496 
1497     // Handle X && Y in a condition.
1498     if (CondBOp->getOpcode() == BO_LAnd) {
1499       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1500       // folded if the case was simple enough.
1501       bool ConstantBool = false;
1502       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1503           ConstantBool) {
1504         // br(1 && X) -> br(X).
1505         incrementProfileCounter(CondBOp);
1506         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1507                                     TrueCount);
1508       }
1509 
1510       // If we have "X && 1", simplify the code to use an uncond branch.
1511       // "X && 0" would have been constant folded to 0.
1512       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1513           ConstantBool) {
1514         // br(X && 1) -> br(X).
1515         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1516                                     TrueCount);
1517       }
1518 
1519       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1520       // want to jump to the FalseBlock.
1521       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1522       // The counter tells us how often we evaluate RHS, and all of TrueCount
1523       // can be propagated to that branch.
1524       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1525 
1526       ConditionalEvaluation eval(*this);
1527       {
1528         ApplyDebugLocation DL(*this, Cond);
1529         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1530         EmitBlock(LHSTrue);
1531       }
1532 
1533       incrementProfileCounter(CondBOp);
1534       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1535 
1536       // Any temporaries created here are conditional.
1537       eval.begin(*this);
1538       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1539       eval.end(*this);
1540 
1541       return;
1542     }
1543 
1544     if (CondBOp->getOpcode() == BO_LOr) {
1545       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1546       // folded if the case was simple enough.
1547       bool ConstantBool = false;
1548       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1549           !ConstantBool) {
1550         // br(0 || X) -> br(X).
1551         incrementProfileCounter(CondBOp);
1552         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1553                                     TrueCount);
1554       }
1555 
1556       // If we have "X || 0", simplify the code to use an uncond branch.
1557       // "X || 1" would have been constant folded to 1.
1558       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1559           !ConstantBool) {
1560         // br(X || 0) -> br(X).
1561         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1562                                     TrueCount);
1563       }
1564 
1565       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1566       // want to jump to the TrueBlock.
1567       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1568       // We have the count for entry to the RHS and for the whole expression
1569       // being true, so we can divy up True count between the short circuit and
1570       // the RHS.
1571       uint64_t LHSCount =
1572           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1573       uint64_t RHSCount = TrueCount - LHSCount;
1574 
1575       ConditionalEvaluation eval(*this);
1576       {
1577         ApplyDebugLocation DL(*this, Cond);
1578         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1579         EmitBlock(LHSFalse);
1580       }
1581 
1582       incrementProfileCounter(CondBOp);
1583       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1584 
1585       // Any temporaries created here are conditional.
1586       eval.begin(*this);
1587       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1588 
1589       eval.end(*this);
1590 
1591       return;
1592     }
1593   }
1594 
1595   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1596     // br(!x, t, f) -> br(x, f, t)
1597     if (CondUOp->getOpcode() == UO_LNot) {
1598       // Negate the count.
1599       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1600       // Negate the condition and swap the destination blocks.
1601       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1602                                   FalseCount);
1603     }
1604   }
1605 
1606   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1607     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1608     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1609     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1610 
1611     ConditionalEvaluation cond(*this);
1612     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1613                          getProfileCount(CondOp));
1614 
1615     // When computing PGO branch weights, we only know the overall count for
1616     // the true block. This code is essentially doing tail duplication of the
1617     // naive code-gen, introducing new edges for which counts are not
1618     // available. Divide the counts proportionally between the LHS and RHS of
1619     // the conditional operator.
1620     uint64_t LHSScaledTrueCount = 0;
1621     if (TrueCount) {
1622       double LHSRatio =
1623           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1624       LHSScaledTrueCount = TrueCount * LHSRatio;
1625     }
1626 
1627     cond.begin(*this);
1628     EmitBlock(LHSBlock);
1629     incrementProfileCounter(CondOp);
1630     {
1631       ApplyDebugLocation DL(*this, Cond);
1632       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1633                            LHSScaledTrueCount);
1634     }
1635     cond.end(*this);
1636 
1637     cond.begin(*this);
1638     EmitBlock(RHSBlock);
1639     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1640                          TrueCount - LHSScaledTrueCount);
1641     cond.end(*this);
1642 
1643     return;
1644   }
1645 
1646   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1647     // Conditional operator handling can give us a throw expression as a
1648     // condition for a case like:
1649     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1650     // Fold this to:
1651     //   br(c, throw x, br(y, t, f))
1652     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1653     return;
1654   }
1655 
1656   // If the branch has a condition wrapped by __builtin_unpredictable,
1657   // create metadata that specifies that the branch is unpredictable.
1658   // Don't bother if not optimizing because that metadata would not be used.
1659   llvm::MDNode *Unpredictable = nullptr;
1660   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1661   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1662     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1663     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1664       llvm::MDBuilder MDHelper(getLLVMContext());
1665       Unpredictable = MDHelper.createUnpredictable();
1666     }
1667   }
1668 
1669   // Create branch weights based on the number of times we get here and the
1670   // number of times the condition should be true.
1671   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1672   llvm::MDNode *Weights =
1673       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1674 
1675   // Emit the code with the fully general case.
1676   llvm::Value *CondV;
1677   {
1678     ApplyDebugLocation DL(*this, Cond);
1679     CondV = EvaluateExprAsBool(Cond);
1680   }
1681   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1682 }
1683 
1684 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1685 /// specified stmt yet.
1686 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1687   CGM.ErrorUnsupported(S, Type);
1688 }
1689 
1690 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1691 /// variable-length array whose elements have a non-zero bit-pattern.
1692 ///
1693 /// \param baseType the inner-most element type of the array
1694 /// \param src - a char* pointing to the bit-pattern for a single
1695 /// base element of the array
1696 /// \param sizeInChars - the total size of the VLA, in chars
1697 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1698                                Address dest, Address src,
1699                                llvm::Value *sizeInChars) {
1700   CGBuilderTy &Builder = CGF.Builder;
1701 
1702   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1703   llvm::Value *baseSizeInChars
1704     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1705 
1706   Address begin =
1707     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1708   llvm::Value *end =
1709     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1710 
1711   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1712   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1713   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1714 
1715   // Make a loop over the VLA.  C99 guarantees that the VLA element
1716   // count must be nonzero.
1717   CGF.EmitBlock(loopBB);
1718 
1719   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1720   cur->addIncoming(begin.getPointer(), originBB);
1721 
1722   CharUnits curAlign =
1723     dest.getAlignment().alignmentOfArrayElement(baseSize);
1724 
1725   // memcpy the individual element bit-pattern.
1726   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1727                        /*volatile*/ false);
1728 
1729   // Go to the next element.
1730   llvm::Value *next =
1731     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1732 
1733   // Leave if that's the end of the VLA.
1734   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1735   Builder.CreateCondBr(done, contBB, loopBB);
1736   cur->addIncoming(next, loopBB);
1737 
1738   CGF.EmitBlock(contBB);
1739 }
1740 
1741 void
1742 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1743   // Ignore empty classes in C++.
1744   if (getLangOpts().CPlusPlus) {
1745     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1746       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1747         return;
1748     }
1749   }
1750 
1751   // Cast the dest ptr to the appropriate i8 pointer type.
1752   if (DestPtr.getElementType() != Int8Ty)
1753     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1754 
1755   // Get size and alignment info for this aggregate.
1756   CharUnits size = getContext().getTypeSizeInChars(Ty);
1757 
1758   llvm::Value *SizeVal;
1759   const VariableArrayType *vla;
1760 
1761   // Don't bother emitting a zero-byte memset.
1762   if (size.isZero()) {
1763     // But note that getTypeInfo returns 0 for a VLA.
1764     if (const VariableArrayType *vlaType =
1765           dyn_cast_or_null<VariableArrayType>(
1766                                           getContext().getAsArrayType(Ty))) {
1767       auto VlaSize = getVLASize(vlaType);
1768       SizeVal = VlaSize.NumElts;
1769       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1770       if (!eltSize.isOne())
1771         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1772       vla = vlaType;
1773     } else {
1774       return;
1775     }
1776   } else {
1777     SizeVal = CGM.getSize(size);
1778     vla = nullptr;
1779   }
1780 
1781   // If the type contains a pointer to data member we can't memset it to zero.
1782   // Instead, create a null constant and copy it to the destination.
1783   // TODO: there are other patterns besides zero that we can usefully memset,
1784   // like -1, which happens to be the pattern used by member-pointers.
1785   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1786     // For a VLA, emit a single element, then splat that over the VLA.
1787     if (vla) Ty = getContext().getBaseElementType(vla);
1788 
1789     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1790 
1791     llvm::GlobalVariable *NullVariable =
1792       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1793                                /*isConstant=*/true,
1794                                llvm::GlobalVariable::PrivateLinkage,
1795                                NullConstant, Twine());
1796     CharUnits NullAlign = DestPtr.getAlignment();
1797     NullVariable->setAlignment(NullAlign.getAsAlign());
1798     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1799                    NullAlign);
1800 
1801     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1802 
1803     // Get and call the appropriate llvm.memcpy overload.
1804     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1805     return;
1806   }
1807 
1808   // Otherwise, just memset the whole thing to zero.  This is legal
1809   // because in LLVM, all default initializers (other than the ones we just
1810   // handled above) are guaranteed to have a bit pattern of all zeros.
1811   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1812 }
1813 
1814 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1815   // Make sure that there is a block for the indirect goto.
1816   if (!IndirectBranch)
1817     GetIndirectGotoBlock();
1818 
1819   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1820 
1821   // Make sure the indirect branch includes all of the address-taken blocks.
1822   IndirectBranch->addDestination(BB);
1823   return llvm::BlockAddress::get(CurFn, BB);
1824 }
1825 
1826 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1827   // If we already made the indirect branch for indirect goto, return its block.
1828   if (IndirectBranch) return IndirectBranch->getParent();
1829 
1830   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1831 
1832   // Create the PHI node that indirect gotos will add entries to.
1833   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1834                                               "indirect.goto.dest");
1835 
1836   // Create the indirect branch instruction.
1837   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1838   return IndirectBranch->getParent();
1839 }
1840 
1841 /// Computes the length of an array in elements, as well as the base
1842 /// element type and a properly-typed first element pointer.
1843 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1844                                               QualType &baseType,
1845                                               Address &addr) {
1846   const ArrayType *arrayType = origArrayType;
1847 
1848   // If it's a VLA, we have to load the stored size.  Note that
1849   // this is the size of the VLA in bytes, not its size in elements.
1850   llvm::Value *numVLAElements = nullptr;
1851   if (isa<VariableArrayType>(arrayType)) {
1852     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1853 
1854     // Walk into all VLAs.  This doesn't require changes to addr,
1855     // which has type T* where T is the first non-VLA element type.
1856     do {
1857       QualType elementType = arrayType->getElementType();
1858       arrayType = getContext().getAsArrayType(elementType);
1859 
1860       // If we only have VLA components, 'addr' requires no adjustment.
1861       if (!arrayType) {
1862         baseType = elementType;
1863         return numVLAElements;
1864       }
1865     } while (isa<VariableArrayType>(arrayType));
1866 
1867     // We get out here only if we find a constant array type
1868     // inside the VLA.
1869   }
1870 
1871   // We have some number of constant-length arrays, so addr should
1872   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1873   // down to the first element of addr.
1874   SmallVector<llvm::Value*, 8> gepIndices;
1875 
1876   // GEP down to the array type.
1877   llvm::ConstantInt *zero = Builder.getInt32(0);
1878   gepIndices.push_back(zero);
1879 
1880   uint64_t countFromCLAs = 1;
1881   QualType eltType;
1882 
1883   llvm::ArrayType *llvmArrayType =
1884     dyn_cast<llvm::ArrayType>(addr.getElementType());
1885   while (llvmArrayType) {
1886     assert(isa<ConstantArrayType>(arrayType));
1887     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1888              == llvmArrayType->getNumElements());
1889 
1890     gepIndices.push_back(zero);
1891     countFromCLAs *= llvmArrayType->getNumElements();
1892     eltType = arrayType->getElementType();
1893 
1894     llvmArrayType =
1895       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1896     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1897     assert((!llvmArrayType || arrayType) &&
1898            "LLVM and Clang types are out-of-synch");
1899   }
1900 
1901   if (arrayType) {
1902     // From this point onwards, the Clang array type has been emitted
1903     // as some other type (probably a packed struct). Compute the array
1904     // size, and just emit the 'begin' expression as a bitcast.
1905     while (arrayType) {
1906       countFromCLAs *=
1907           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1908       eltType = arrayType->getElementType();
1909       arrayType = getContext().getAsArrayType(eltType);
1910     }
1911 
1912     llvm::Type *baseType = ConvertType(eltType);
1913     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1914   } else {
1915     // Create the actual GEP.
1916     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1917                                              gepIndices, "array.begin"),
1918                    addr.getAlignment());
1919   }
1920 
1921   baseType = eltType;
1922 
1923   llvm::Value *numElements
1924     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1925 
1926   // If we had any VLA dimensions, factor them in.
1927   if (numVLAElements)
1928     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1929 
1930   return numElements;
1931 }
1932 
1933 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1934   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1935   assert(vla && "type was not a variable array type!");
1936   return getVLASize(vla);
1937 }
1938 
1939 CodeGenFunction::VlaSizePair
1940 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1941   // The number of elements so far; always size_t.
1942   llvm::Value *numElements = nullptr;
1943 
1944   QualType elementType;
1945   do {
1946     elementType = type->getElementType();
1947     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1948     assert(vlaSize && "no size for VLA!");
1949     assert(vlaSize->getType() == SizeTy);
1950 
1951     if (!numElements) {
1952       numElements = vlaSize;
1953     } else {
1954       // It's undefined behavior if this wraps around, so mark it that way.
1955       // FIXME: Teach -fsanitize=undefined to trap this.
1956       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1957     }
1958   } while ((type = getContext().getAsVariableArrayType(elementType)));
1959 
1960   return { numElements, elementType };
1961 }
1962 
1963 CodeGenFunction::VlaSizePair
1964 CodeGenFunction::getVLAElements1D(QualType type) {
1965   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1966   assert(vla && "type was not a variable array type!");
1967   return getVLAElements1D(vla);
1968 }
1969 
1970 CodeGenFunction::VlaSizePair
1971 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1972   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1973   assert(VlaSize && "no size for VLA!");
1974   assert(VlaSize->getType() == SizeTy);
1975   return { VlaSize, Vla->getElementType() };
1976 }
1977 
1978 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1979   assert(type->isVariablyModifiedType() &&
1980          "Must pass variably modified type to EmitVLASizes!");
1981 
1982   EnsureInsertPoint();
1983 
1984   // We're going to walk down into the type and look for VLA
1985   // expressions.
1986   do {
1987     assert(type->isVariablyModifiedType());
1988 
1989     const Type *ty = type.getTypePtr();
1990     switch (ty->getTypeClass()) {
1991 
1992 #define TYPE(Class, Base)
1993 #define ABSTRACT_TYPE(Class, Base)
1994 #define NON_CANONICAL_TYPE(Class, Base)
1995 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1996 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1997 #include "clang/AST/TypeNodes.inc"
1998       llvm_unreachable("unexpected dependent type!");
1999 
2000     // These types are never variably-modified.
2001     case Type::Builtin:
2002     case Type::Complex:
2003     case Type::Vector:
2004     case Type::ExtVector:
2005     case Type::Record:
2006     case Type::Enum:
2007     case Type::Elaborated:
2008     case Type::TemplateSpecialization:
2009     case Type::ObjCTypeParam:
2010     case Type::ObjCObject:
2011     case Type::ObjCInterface:
2012     case Type::ObjCObjectPointer:
2013       llvm_unreachable("type class is never variably-modified!");
2014 
2015     case Type::Adjusted:
2016       type = cast<AdjustedType>(ty)->getAdjustedType();
2017       break;
2018 
2019     case Type::Decayed:
2020       type = cast<DecayedType>(ty)->getPointeeType();
2021       break;
2022 
2023     case Type::Pointer:
2024       type = cast<PointerType>(ty)->getPointeeType();
2025       break;
2026 
2027     case Type::BlockPointer:
2028       type = cast<BlockPointerType>(ty)->getPointeeType();
2029       break;
2030 
2031     case Type::LValueReference:
2032     case Type::RValueReference:
2033       type = cast<ReferenceType>(ty)->getPointeeType();
2034       break;
2035 
2036     case Type::MemberPointer:
2037       type = cast<MemberPointerType>(ty)->getPointeeType();
2038       break;
2039 
2040     case Type::ConstantArray:
2041     case Type::IncompleteArray:
2042       // Losing element qualification here is fine.
2043       type = cast<ArrayType>(ty)->getElementType();
2044       break;
2045 
2046     case Type::VariableArray: {
2047       // Losing element qualification here is fine.
2048       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2049 
2050       // Unknown size indication requires no size computation.
2051       // Otherwise, evaluate and record it.
2052       if (const Expr *size = vat->getSizeExpr()) {
2053         // It's possible that we might have emitted this already,
2054         // e.g. with a typedef and a pointer to it.
2055         llvm::Value *&entry = VLASizeMap[size];
2056         if (!entry) {
2057           llvm::Value *Size = EmitScalarExpr(size);
2058 
2059           // C11 6.7.6.2p5:
2060           //   If the size is an expression that is not an integer constant
2061           //   expression [...] each time it is evaluated it shall have a value
2062           //   greater than zero.
2063           if (SanOpts.has(SanitizerKind::VLABound) &&
2064               size->getType()->isSignedIntegerType()) {
2065             SanitizerScope SanScope(this);
2066             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2067             llvm::Constant *StaticArgs[] = {
2068                 EmitCheckSourceLocation(size->getBeginLoc()),
2069                 EmitCheckTypeDescriptor(size->getType())};
2070             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2071                                      SanitizerKind::VLABound),
2072                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2073           }
2074 
2075           // Always zexting here would be wrong if it weren't
2076           // undefined behavior to have a negative bound.
2077           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2078         }
2079       }
2080       type = vat->getElementType();
2081       break;
2082     }
2083 
2084     case Type::FunctionProto:
2085     case Type::FunctionNoProto:
2086       type = cast<FunctionType>(ty)->getReturnType();
2087       break;
2088 
2089     case Type::Paren:
2090     case Type::TypeOf:
2091     case Type::UnaryTransform:
2092     case Type::Attributed:
2093     case Type::SubstTemplateTypeParm:
2094     case Type::PackExpansion:
2095     case Type::MacroQualified:
2096       // Keep walking after single level desugaring.
2097       type = type.getSingleStepDesugaredType(getContext());
2098       break;
2099 
2100     case Type::Typedef:
2101     case Type::Decltype:
2102     case Type::Auto:
2103     case Type::DeducedTemplateSpecialization:
2104       // Stop walking: nothing to do.
2105       return;
2106 
2107     case Type::TypeOfExpr:
2108       // Stop walking: emit typeof expression.
2109       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2110       return;
2111 
2112     case Type::Atomic:
2113       type = cast<AtomicType>(ty)->getValueType();
2114       break;
2115 
2116     case Type::Pipe:
2117       type = cast<PipeType>(ty)->getElementType();
2118       break;
2119     }
2120   } while (type->isVariablyModifiedType());
2121 }
2122 
2123 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2124   if (getContext().getBuiltinVaListType()->isArrayType())
2125     return EmitPointerWithAlignment(E);
2126   return EmitLValue(E).getAddress(*this);
2127 }
2128 
2129 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2130   return EmitLValue(E).getAddress(*this);
2131 }
2132 
2133 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2134                                               const APValue &Init) {
2135   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2136   if (CGDebugInfo *Dbg = getDebugInfo())
2137     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2138       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2139 }
2140 
2141 CodeGenFunction::PeepholeProtection
2142 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2143   // At the moment, the only aggressive peephole we do in IR gen
2144   // is trunc(zext) folding, but if we add more, we can easily
2145   // extend this protection.
2146 
2147   if (!rvalue.isScalar()) return PeepholeProtection();
2148   llvm::Value *value = rvalue.getScalarVal();
2149   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2150 
2151   // Just make an extra bitcast.
2152   assert(HaveInsertPoint());
2153   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2154                                                   Builder.GetInsertBlock());
2155 
2156   PeepholeProtection protection;
2157   protection.Inst = inst;
2158   return protection;
2159 }
2160 
2161 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2162   if (!protection.Inst) return;
2163 
2164   // In theory, we could try to duplicate the peepholes now, but whatever.
2165   protection.Inst->eraseFromParent();
2166 }
2167 
2168 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2169                                               QualType Ty, SourceLocation Loc,
2170                                               SourceLocation AssumptionLoc,
2171                                               llvm::Value *Alignment,
2172                                               llvm::Value *OffsetValue) {
2173   llvm::Value *TheCheck;
2174   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2175       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2176   if (SanOpts.has(SanitizerKind::Alignment)) {
2177     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2178                                  OffsetValue, TheCheck, Assumption);
2179   }
2180 }
2181 
2182 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2183                                               const Expr *E,
2184                                               SourceLocation AssumptionLoc,
2185                                               llvm::Value *Alignment,
2186                                               llvm::Value *OffsetValue) {
2187   if (auto *CE = dyn_cast<CastExpr>(E))
2188     E = CE->getSubExprAsWritten();
2189   QualType Ty = E->getType();
2190   SourceLocation Loc = E->getExprLoc();
2191 
2192   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2193                           OffsetValue);
2194 }
2195 
2196 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2197                                                  llvm::Value *AnnotatedVal,
2198                                                  StringRef AnnotationStr,
2199                                                  SourceLocation Location) {
2200   llvm::Value *Args[4] = {
2201     AnnotatedVal,
2202     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2203     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2204     CGM.EmitAnnotationLineNo(Location)
2205   };
2206   return Builder.CreateCall(AnnotationFn, Args);
2207 }
2208 
2209 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2210   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2211   // FIXME We create a new bitcast for every annotation because that's what
2212   // llvm-gcc was doing.
2213   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2214     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2215                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2216                        I->getAnnotation(), D->getLocation());
2217 }
2218 
2219 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2220                                               Address Addr) {
2221   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2222   llvm::Value *V = Addr.getPointer();
2223   llvm::Type *VTy = V->getType();
2224   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2225                                     CGM.Int8PtrTy);
2226 
2227   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2228     // FIXME Always emit the cast inst so we can differentiate between
2229     // annotation on the first field of a struct and annotation on the struct
2230     // itself.
2231     if (VTy != CGM.Int8PtrTy)
2232       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2233     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2234     V = Builder.CreateBitCast(V, VTy);
2235   }
2236 
2237   return Address(V, Addr.getAlignment());
2238 }
2239 
2240 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2241 
2242 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2243     : CGF(CGF) {
2244   assert(!CGF->IsSanitizerScope);
2245   CGF->IsSanitizerScope = true;
2246 }
2247 
2248 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2249   CGF->IsSanitizerScope = false;
2250 }
2251 
2252 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2253                                    const llvm::Twine &Name,
2254                                    llvm::BasicBlock *BB,
2255                                    llvm::BasicBlock::iterator InsertPt) const {
2256   LoopStack.InsertHelper(I);
2257   if (IsSanitizerScope)
2258     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2259 }
2260 
2261 void CGBuilderInserter::InsertHelper(
2262     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2263     llvm::BasicBlock::iterator InsertPt) const {
2264   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2265   if (CGF)
2266     CGF->InsertHelper(I, Name, BB, InsertPt);
2267 }
2268 
2269 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2270                                 CodeGenModule &CGM, const FunctionDecl *FD,
2271                                 std::string &FirstMissing) {
2272   // If there aren't any required features listed then go ahead and return.
2273   if (ReqFeatures.empty())
2274     return false;
2275 
2276   // Now build up the set of caller features and verify that all the required
2277   // features are there.
2278   llvm::StringMap<bool> CallerFeatureMap;
2279   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2280 
2281   // If we have at least one of the features in the feature list return
2282   // true, otherwise return false.
2283   return std::all_of(
2284       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2285         SmallVector<StringRef, 1> OrFeatures;
2286         Feature.split(OrFeatures, '|');
2287         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2288           if (!CallerFeatureMap.lookup(Feature)) {
2289             FirstMissing = Feature.str();
2290             return false;
2291           }
2292           return true;
2293         });
2294       });
2295 }
2296 
2297 // Emits an error if we don't have a valid set of target features for the
2298 // called function.
2299 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2300                                           const FunctionDecl *TargetDecl) {
2301   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2302 }
2303 
2304 // Emits an error if we don't have a valid set of target features for the
2305 // called function.
2306 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2307                                           const FunctionDecl *TargetDecl) {
2308   // Early exit if this is an indirect call.
2309   if (!TargetDecl)
2310     return;
2311 
2312   // Get the current enclosing function if it exists. If it doesn't
2313   // we can't check the target features anyhow.
2314   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2315   if (!FD)
2316     return;
2317 
2318   // Grab the required features for the call. For a builtin this is listed in
2319   // the td file with the default cpu, for an always_inline function this is any
2320   // listed cpu and any listed features.
2321   unsigned BuiltinID = TargetDecl->getBuiltinID();
2322   std::string MissingFeature;
2323   if (BuiltinID) {
2324     SmallVector<StringRef, 1> ReqFeatures;
2325     const char *FeatureList =
2326         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2327     // Return if the builtin doesn't have any required features.
2328     if (!FeatureList || StringRef(FeatureList) == "")
2329       return;
2330     StringRef(FeatureList).split(ReqFeatures, ',');
2331     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2332       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2333           << TargetDecl->getDeclName()
2334           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2335 
2336   } else if (!TargetDecl->isMultiVersion() &&
2337              TargetDecl->hasAttr<TargetAttr>()) {
2338     // Get the required features for the callee.
2339 
2340     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2341     ParsedTargetAttr ParsedAttr =
2342         CGM.getContext().filterFunctionTargetAttrs(TD);
2343 
2344     SmallVector<StringRef, 1> ReqFeatures;
2345     llvm::StringMap<bool> CalleeFeatureMap;
2346     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2347 
2348     for (const auto &F : ParsedAttr.Features) {
2349       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2350         ReqFeatures.push_back(StringRef(F).substr(1));
2351     }
2352 
2353     for (const auto &F : CalleeFeatureMap) {
2354       // Only positive features are "required".
2355       if (F.getValue())
2356         ReqFeatures.push_back(F.getKey());
2357     }
2358     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2359       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2360           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2361   }
2362 }
2363 
2364 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2365   if (!CGM.getCodeGenOpts().SanitizeStats)
2366     return;
2367 
2368   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2369   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2370   CGM.getSanStats().create(IRB, SSK);
2371 }
2372 
2373 llvm::Value *
2374 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2375   llvm::Value *Condition = nullptr;
2376 
2377   if (!RO.Conditions.Architecture.empty())
2378     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2379 
2380   if (!RO.Conditions.Features.empty()) {
2381     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2382     Condition =
2383         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2384   }
2385   return Condition;
2386 }
2387 
2388 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2389                                              llvm::Function *Resolver,
2390                                              CGBuilderTy &Builder,
2391                                              llvm::Function *FuncToReturn,
2392                                              bool SupportsIFunc) {
2393   if (SupportsIFunc) {
2394     Builder.CreateRet(FuncToReturn);
2395     return;
2396   }
2397 
2398   llvm::SmallVector<llvm::Value *, 10> Args;
2399   llvm::for_each(Resolver->args(),
2400                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2401 
2402   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2403   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2404 
2405   if (Resolver->getReturnType()->isVoidTy())
2406     Builder.CreateRetVoid();
2407   else
2408     Builder.CreateRet(Result);
2409 }
2410 
2411 void CodeGenFunction::EmitMultiVersionResolver(
2412     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2413   assert(getContext().getTargetInfo().getTriple().isX86() &&
2414          "Only implemented for x86 targets");
2415 
2416   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2417 
2418   // Main function's basic block.
2419   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2420   Builder.SetInsertPoint(CurBlock);
2421   EmitX86CpuInit();
2422 
2423   for (const MultiVersionResolverOption &RO : Options) {
2424     Builder.SetInsertPoint(CurBlock);
2425     llvm::Value *Condition = FormResolverCondition(RO);
2426 
2427     // The 'default' or 'generic' case.
2428     if (!Condition) {
2429       assert(&RO == Options.end() - 1 &&
2430              "Default or Generic case must be last");
2431       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2432                                        SupportsIFunc);
2433       return;
2434     }
2435 
2436     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2437     CGBuilderTy RetBuilder(*this, RetBlock);
2438     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2439                                      SupportsIFunc);
2440     CurBlock = createBasicBlock("resolver_else", Resolver);
2441     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2442   }
2443 
2444   // If no generic/default, emit an unreachable.
2445   Builder.SetInsertPoint(CurBlock);
2446   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2447   TrapCall->setDoesNotReturn();
2448   TrapCall->setDoesNotThrow();
2449   Builder.CreateUnreachable();
2450   Builder.ClearInsertionPoint();
2451 }
2452 
2453 // Loc - where the diagnostic will point, where in the source code this
2454 //  alignment has failed.
2455 // SecondaryLoc - if present (will be present if sufficiently different from
2456 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2457 //  It should be the location where the __attribute__((assume_aligned))
2458 //  was written e.g.
2459 void CodeGenFunction::emitAlignmentAssumptionCheck(
2460     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2461     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2462     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2463     llvm::Instruction *Assumption) {
2464   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2465          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2466              llvm::Intrinsic::getDeclaration(
2467                  Builder.GetInsertBlock()->getParent()->getParent(),
2468                  llvm::Intrinsic::assume) &&
2469          "Assumption should be a call to llvm.assume().");
2470   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2471          "Assumption should be the last instruction of the basic block, "
2472          "since the basic block is still being generated.");
2473 
2474   if (!SanOpts.has(SanitizerKind::Alignment))
2475     return;
2476 
2477   // Don't check pointers to volatile data. The behavior here is implementation-
2478   // defined.
2479   if (Ty->getPointeeType().isVolatileQualified())
2480     return;
2481 
2482   // We need to temorairly remove the assumption so we can insert the
2483   // sanitizer check before it, else the check will be dropped by optimizations.
2484   Assumption->removeFromParent();
2485 
2486   {
2487     SanitizerScope SanScope(this);
2488 
2489     if (!OffsetValue)
2490       OffsetValue = Builder.getInt1(0); // no offset.
2491 
2492     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2493                                     EmitCheckSourceLocation(SecondaryLoc),
2494                                     EmitCheckTypeDescriptor(Ty)};
2495     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2496                                   EmitCheckValue(Alignment),
2497                                   EmitCheckValue(OffsetValue)};
2498     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2499               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2500   }
2501 
2502   // We are now in the (new, empty) "cont" basic block.
2503   // Reintroduce the assumption.
2504   Builder.Insert(Assumption);
2505   // FIXME: Assumption still has it's original basic block as it's Parent.
2506 }
2507 
2508 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2509   if (CGDebugInfo *DI = getDebugInfo())
2510     return DI->SourceLocToDebugLoc(Location);
2511 
2512   return llvm::DebugLoc();
2513 }
2514