1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/Intrinsics.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 31 : CodeGenTypeCache(cgm), CGM(cgm), 32 Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()), 33 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 34 NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0), 35 EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 36 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 37 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 38 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 39 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 40 TrapBB(0) { 41 42 CatchUndefined = getContext().getLangOptions().CatchUndefined; 43 CGM.getCXXABI().getMangleContext().startNewFunction(); 44 } 45 46 CodeGenFunction::~CodeGenFunction() { 47 // If there are any unclaimed block infos, go ahead and destroy them 48 // now. This can happen if IR-gen gets clever and skips evaluating 49 // something. 50 if (FirstBlockInfo) 51 destroyBlockInfos(FirstBlockInfo); 52 } 53 54 55 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 56 return CGM.getTypes().ConvertTypeForMem(T); 57 } 58 59 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 60 return CGM.getTypes().ConvertType(T); 61 } 62 63 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 64 switch (type.getCanonicalType()->getTypeClass()) { 65 #define TYPE(name, parent) 66 #define ABSTRACT_TYPE(name, parent) 67 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 68 #define DEPENDENT_TYPE(name, parent) case Type::name: 69 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 70 #include "clang/AST/TypeNodes.def" 71 llvm_unreachable("non-canonical or dependent type in IR-generation"); 72 73 case Type::Builtin: 74 case Type::Pointer: 75 case Type::BlockPointer: 76 case Type::LValueReference: 77 case Type::RValueReference: 78 case Type::MemberPointer: 79 case Type::Vector: 80 case Type::ExtVector: 81 case Type::FunctionProto: 82 case Type::FunctionNoProto: 83 case Type::Enum: 84 case Type::ObjCObjectPointer: 85 return false; 86 87 // Complexes, arrays, records, and Objective-C objects. 88 case Type::Complex: 89 case Type::ConstantArray: 90 case Type::IncompleteArray: 91 case Type::VariableArray: 92 case Type::Record: 93 case Type::ObjCObject: 94 case Type::ObjCInterface: 95 return true; 96 97 // In IRGen, atomic types are just the underlying type 98 case Type::Atomic: 99 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 100 } 101 llvm_unreachable("unknown type kind!"); 102 } 103 104 void CodeGenFunction::EmitReturnBlock() { 105 // For cleanliness, we try to avoid emitting the return block for 106 // simple cases. 107 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 108 109 if (CurBB) { 110 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 111 112 // We have a valid insert point, reuse it if it is empty or there are no 113 // explicit jumps to the return block. 114 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 115 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 116 delete ReturnBlock.getBlock(); 117 } else 118 EmitBlock(ReturnBlock.getBlock()); 119 return; 120 } 121 122 // Otherwise, if the return block is the target of a single direct 123 // branch then we can just put the code in that block instead. This 124 // cleans up functions which started with a unified return block. 125 if (ReturnBlock.getBlock()->hasOneUse()) { 126 llvm::BranchInst *BI = 127 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 128 if (BI && BI->isUnconditional() && 129 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 130 // Reset insertion point, including debug location, and delete the branch. 131 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 132 Builder.SetInsertPoint(BI->getParent()); 133 BI->eraseFromParent(); 134 delete ReturnBlock.getBlock(); 135 return; 136 } 137 } 138 139 // FIXME: We are at an unreachable point, there is no reason to emit the block 140 // unless it has uses. However, we still need a place to put the debug 141 // region.end for now. 142 143 EmitBlock(ReturnBlock.getBlock()); 144 } 145 146 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 147 if (!BB) return; 148 if (!BB->use_empty()) 149 return CGF.CurFn->getBasicBlockList().push_back(BB); 150 delete BB; 151 } 152 153 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 154 assert(BreakContinueStack.empty() && 155 "mismatched push/pop in break/continue stack!"); 156 157 // Pop any cleanups that might have been associated with the 158 // parameters. Do this in whatever block we're currently in; it's 159 // important to do this before we enter the return block or return 160 // edges will be *really* confused. 161 if (EHStack.stable_begin() != PrologueCleanupDepth) 162 PopCleanupBlocks(PrologueCleanupDepth); 163 164 // Emit function epilog (to return). 165 EmitReturnBlock(); 166 167 if (ShouldInstrumentFunction()) 168 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 169 170 // Emit debug descriptor for function end. 171 if (CGDebugInfo *DI = getDebugInfo()) { 172 DI->setLocation(EndLoc); 173 DI->EmitFunctionEnd(Builder); 174 } 175 176 EmitFunctionEpilog(*CurFnInfo); 177 EmitEndEHSpec(CurCodeDecl); 178 179 assert(EHStack.empty() && 180 "did not remove all scopes from cleanup stack!"); 181 182 // If someone did an indirect goto, emit the indirect goto block at the end of 183 // the function. 184 if (IndirectBranch) { 185 EmitBlock(IndirectBranch->getParent()); 186 Builder.ClearInsertionPoint(); 187 } 188 189 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 190 llvm::Instruction *Ptr = AllocaInsertPt; 191 AllocaInsertPt = 0; 192 Ptr->eraseFromParent(); 193 194 // If someone took the address of a label but never did an indirect goto, we 195 // made a zero entry PHI node, which is illegal, zap it now. 196 if (IndirectBranch) { 197 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 198 if (PN->getNumIncomingValues() == 0) { 199 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 200 PN->eraseFromParent(); 201 } 202 } 203 204 EmitIfUsed(*this, EHResumeBlock); 205 EmitIfUsed(*this, TerminateLandingPad); 206 EmitIfUsed(*this, TerminateHandler); 207 EmitIfUsed(*this, UnreachableBlock); 208 209 if (CGM.getCodeGenOpts().EmitDeclMetadata) 210 EmitDeclMetadata(); 211 } 212 213 /// ShouldInstrumentFunction - Return true if the current function should be 214 /// instrumented with __cyg_profile_func_* calls 215 bool CodeGenFunction::ShouldInstrumentFunction() { 216 if (!CGM.getCodeGenOpts().InstrumentFunctions) 217 return false; 218 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 219 return false; 220 return true; 221 } 222 223 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 224 /// instrumentation function with the current function and the call site, if 225 /// function instrumentation is enabled. 226 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 227 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 228 llvm::PointerType *PointerTy = Int8PtrTy; 229 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 230 llvm::FunctionType *FunctionTy = 231 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 232 233 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 234 llvm::CallInst *CallSite = Builder.CreateCall( 235 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 236 llvm::ConstantInt::get(Int32Ty, 0), 237 "callsite"); 238 239 Builder.CreateCall2(F, 240 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 241 CallSite); 242 } 243 244 void CodeGenFunction::EmitMCountInstrumentation() { 245 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 246 247 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 248 Target.getMCountName()); 249 Builder.CreateCall(MCountFn); 250 } 251 252 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 253 llvm::Function *Fn, 254 const CGFunctionInfo &FnInfo, 255 const FunctionArgList &Args, 256 SourceLocation StartLoc) { 257 const Decl *D = GD.getDecl(); 258 259 DidCallStackSave = false; 260 CurCodeDecl = CurFuncDecl = D; 261 FnRetTy = RetTy; 262 CurFn = Fn; 263 CurFnInfo = &FnInfo; 264 assert(CurFn->isDeclaration() && "Function already has body?"); 265 266 // Pass inline keyword to optimizer if it appears explicitly on any 267 // declaration. 268 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 269 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 270 RE = FD->redecls_end(); RI != RE; ++RI) 271 if (RI->isInlineSpecified()) { 272 Fn->addFnAttr(llvm::Attribute::InlineHint); 273 break; 274 } 275 276 if (getContext().getLangOptions().OpenCL) { 277 // Add metadata for a kernel function. 278 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 279 if (FD->hasAttr<OpenCLKernelAttr>()) { 280 llvm::LLVMContext &Context = getLLVMContext(); 281 llvm::NamedMDNode *OpenCLMetadata = 282 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 283 284 llvm::Value *Op = Fn; 285 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 286 } 287 } 288 289 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 290 291 // Create a marker to make it easy to insert allocas into the entryblock 292 // later. Don't create this with the builder, because we don't want it 293 // folded. 294 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 295 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 296 if (Builder.isNamePreserving()) 297 AllocaInsertPt->setName("allocapt"); 298 299 ReturnBlock = getJumpDestInCurrentScope("return"); 300 301 Builder.SetInsertPoint(EntryBB); 302 303 // Emit subprogram debug descriptor. 304 if (CGDebugInfo *DI = getDebugInfo()) { 305 unsigned NumArgs = 0; 306 QualType *ArgsArray = new QualType[Args.size()]; 307 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 308 i != e; ++i) { 309 ArgsArray[NumArgs++] = (*i)->getType(); 310 } 311 312 QualType FnType = 313 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 314 FunctionProtoType::ExtProtoInfo()); 315 316 delete[] ArgsArray; 317 318 DI->setLocation(StartLoc); 319 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 320 } 321 322 if (ShouldInstrumentFunction()) 323 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 324 325 if (CGM.getCodeGenOpts().InstrumentForProfiling) 326 EmitMCountInstrumentation(); 327 328 if (RetTy->isVoidType()) { 329 // Void type; nothing to return. 330 ReturnValue = 0; 331 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 332 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 333 // Indirect aggregate return; emit returned value directly into sret slot. 334 // This reduces code size, and affects correctness in C++. 335 ReturnValue = CurFn->arg_begin(); 336 } else { 337 ReturnValue = CreateIRTemp(RetTy, "retval"); 338 339 // Tell the epilog emitter to autorelease the result. We do this 340 // now so that various specialized functions can suppress it 341 // during their IR-generation. 342 if (getLangOptions().ObjCAutoRefCount && 343 !CurFnInfo->isReturnsRetained() && 344 RetTy->isObjCRetainableType()) 345 AutoreleaseResult = true; 346 } 347 348 EmitStartEHSpec(CurCodeDecl); 349 350 PrologueCleanupDepth = EHStack.stable_begin(); 351 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 352 353 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 354 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 355 356 // If any of the arguments have a variably modified type, make sure to 357 // emit the type size. 358 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 359 i != e; ++i) { 360 QualType Ty = (*i)->getType(); 361 362 if (Ty->isVariablyModifiedType()) 363 EmitVariablyModifiedType(Ty); 364 } 365 // Emit a location at the end of the prologue. 366 if (CGDebugInfo *DI = getDebugInfo()) 367 DI->EmitLocation(Builder, StartLoc); 368 } 369 370 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 371 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 372 assert(FD->getBody()); 373 EmitStmt(FD->getBody()); 374 } 375 376 /// Tries to mark the given function nounwind based on the 377 /// non-existence of any throwing calls within it. We believe this is 378 /// lightweight enough to do at -O0. 379 static void TryMarkNoThrow(llvm::Function *F) { 380 // LLVM treats 'nounwind' on a function as part of the type, so we 381 // can't do this on functions that can be overwritten. 382 if (F->mayBeOverridden()) return; 383 384 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 385 for (llvm::BasicBlock::iterator 386 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 387 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 388 if (!Call->doesNotThrow()) 389 return; 390 } else if (isa<llvm::ResumeInst>(&*BI)) { 391 return; 392 } 393 F->setDoesNotThrow(true); 394 } 395 396 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 397 const CGFunctionInfo &FnInfo) { 398 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 399 400 // Check if we should generate debug info for this function. 401 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 402 DebugInfo = CGM.getModuleDebugInfo(); 403 404 FunctionArgList Args; 405 QualType ResTy = FD->getResultType(); 406 407 CurGD = GD; 408 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 409 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 410 411 if (FD->getNumParams()) 412 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 413 Args.push_back(FD->getParamDecl(i)); 414 415 SourceRange BodyRange; 416 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 417 418 // Emit the standard function prologue. 419 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 420 421 // Generate the body of the function. 422 if (isa<CXXDestructorDecl>(FD)) 423 EmitDestructorBody(Args); 424 else if (isa<CXXConstructorDecl>(FD)) 425 EmitConstructorBody(Args); 426 else if (getContext().getLangOptions().CUDA && 427 !CGM.getCodeGenOpts().CUDAIsDevice && 428 FD->hasAttr<CUDAGlobalAttr>()) 429 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 430 else 431 EmitFunctionBody(Args); 432 433 // Emit the standard function epilogue. 434 FinishFunction(BodyRange.getEnd()); 435 436 // If we haven't marked the function nothrow through other means, do 437 // a quick pass now to see if we can. 438 if (!CurFn->doesNotThrow()) 439 TryMarkNoThrow(CurFn); 440 } 441 442 /// ContainsLabel - Return true if the statement contains a label in it. If 443 /// this statement is not executed normally, it not containing a label means 444 /// that we can just remove the code. 445 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 446 // Null statement, not a label! 447 if (S == 0) return false; 448 449 // If this is a label, we have to emit the code, consider something like: 450 // if (0) { ... foo: bar(); } goto foo; 451 // 452 // TODO: If anyone cared, we could track __label__'s, since we know that you 453 // can't jump to one from outside their declared region. 454 if (isa<LabelStmt>(S)) 455 return true; 456 457 // If this is a case/default statement, and we haven't seen a switch, we have 458 // to emit the code. 459 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 460 return true; 461 462 // If this is a switch statement, we want to ignore cases below it. 463 if (isa<SwitchStmt>(S)) 464 IgnoreCaseStmts = true; 465 466 // Scan subexpressions for verboten labels. 467 for (Stmt::const_child_range I = S->children(); I; ++I) 468 if (ContainsLabel(*I, IgnoreCaseStmts)) 469 return true; 470 471 return false; 472 } 473 474 /// containsBreak - Return true if the statement contains a break out of it. 475 /// If the statement (recursively) contains a switch or loop with a break 476 /// inside of it, this is fine. 477 bool CodeGenFunction::containsBreak(const Stmt *S) { 478 // Null statement, not a label! 479 if (S == 0) return false; 480 481 // If this is a switch or loop that defines its own break scope, then we can 482 // include it and anything inside of it. 483 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 484 isa<ForStmt>(S)) 485 return false; 486 487 if (isa<BreakStmt>(S)) 488 return true; 489 490 // Scan subexpressions for verboten breaks. 491 for (Stmt::const_child_range I = S->children(); I; ++I) 492 if (containsBreak(*I)) 493 return true; 494 495 return false; 496 } 497 498 499 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 500 /// to a constant, or if it does but contains a label, return false. If it 501 /// constant folds return true and set the boolean result in Result. 502 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 503 bool &ResultBool) { 504 llvm::APInt ResultInt; 505 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 506 return false; 507 508 ResultBool = ResultInt.getBoolValue(); 509 return true; 510 } 511 512 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 513 /// to a constant, or if it does but contains a label, return false. If it 514 /// constant folds return true and set the folded value. 515 bool CodeGenFunction:: 516 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 517 // FIXME: Rename and handle conversion of other evaluatable things 518 // to bool. 519 llvm::APSInt Int; 520 if (!Cond->EvaluateAsInt(Int, getContext())) 521 return false; // Not foldable, not integer or not fully evaluatable. 522 523 if (CodeGenFunction::ContainsLabel(Cond)) 524 return false; // Contains a label. 525 526 ResultInt = Int; 527 return true; 528 } 529 530 531 532 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 533 /// statement) to the specified blocks. Based on the condition, this might try 534 /// to simplify the codegen of the conditional based on the branch. 535 /// 536 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 537 llvm::BasicBlock *TrueBlock, 538 llvm::BasicBlock *FalseBlock) { 539 Cond = Cond->IgnoreParens(); 540 541 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 542 // Handle X && Y in a condition. 543 if (CondBOp->getOpcode() == BO_LAnd) { 544 // If we have "1 && X", simplify the code. "0 && X" would have constant 545 // folded if the case was simple enough. 546 bool ConstantBool = false; 547 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 548 ConstantBool) { 549 // br(1 && X) -> br(X). 550 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 551 } 552 553 // If we have "X && 1", simplify the code to use an uncond branch. 554 // "X && 0" would have been constant folded to 0. 555 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 556 ConstantBool) { 557 // br(X && 1) -> br(X). 558 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 559 } 560 561 // Emit the LHS as a conditional. If the LHS conditional is false, we 562 // want to jump to the FalseBlock. 563 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 564 565 ConditionalEvaluation eval(*this); 566 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 567 EmitBlock(LHSTrue); 568 569 // Any temporaries created here are conditional. 570 eval.begin(*this); 571 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 572 eval.end(*this); 573 574 return; 575 } 576 577 if (CondBOp->getOpcode() == BO_LOr) { 578 // If we have "0 || X", simplify the code. "1 || X" would have constant 579 // folded if the case was simple enough. 580 bool ConstantBool = false; 581 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 582 !ConstantBool) { 583 // br(0 || X) -> br(X). 584 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 585 } 586 587 // If we have "X || 0", simplify the code to use an uncond branch. 588 // "X || 1" would have been constant folded to 1. 589 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 590 !ConstantBool) { 591 // br(X || 0) -> br(X). 592 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 593 } 594 595 // Emit the LHS as a conditional. If the LHS conditional is true, we 596 // want to jump to the TrueBlock. 597 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 598 599 ConditionalEvaluation eval(*this); 600 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 601 EmitBlock(LHSFalse); 602 603 // Any temporaries created here are conditional. 604 eval.begin(*this); 605 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 606 eval.end(*this); 607 608 return; 609 } 610 } 611 612 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 613 // br(!x, t, f) -> br(x, f, t) 614 if (CondUOp->getOpcode() == UO_LNot) 615 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 616 } 617 618 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 619 // Handle ?: operator. 620 621 // Just ignore GNU ?: extension. 622 if (CondOp->getLHS()) { 623 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 624 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 625 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 626 627 ConditionalEvaluation cond(*this); 628 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 629 630 cond.begin(*this); 631 EmitBlock(LHSBlock); 632 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 633 cond.end(*this); 634 635 cond.begin(*this); 636 EmitBlock(RHSBlock); 637 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 638 cond.end(*this); 639 640 return; 641 } 642 } 643 644 // Emit the code with the fully general case. 645 llvm::Value *CondV = EvaluateExprAsBool(Cond); 646 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 647 } 648 649 /// ErrorUnsupported - Print out an error that codegen doesn't support the 650 /// specified stmt yet. 651 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 652 bool OmitOnError) { 653 CGM.ErrorUnsupported(S, Type, OmitOnError); 654 } 655 656 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 657 /// variable-length array whose elements have a non-zero bit-pattern. 658 /// 659 /// \param src - a char* pointing to the bit-pattern for a single 660 /// base element of the array 661 /// \param sizeInChars - the total size of the VLA, in chars 662 /// \param align - the total alignment of the VLA 663 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 664 llvm::Value *dest, llvm::Value *src, 665 llvm::Value *sizeInChars) { 666 std::pair<CharUnits,CharUnits> baseSizeAndAlign 667 = CGF.getContext().getTypeInfoInChars(baseType); 668 669 CGBuilderTy &Builder = CGF.Builder; 670 671 llvm::Value *baseSizeInChars 672 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 673 674 llvm::Type *i8p = Builder.getInt8PtrTy(); 675 676 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 677 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 678 679 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 680 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 681 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 682 683 // Make a loop over the VLA. C99 guarantees that the VLA element 684 // count must be nonzero. 685 CGF.EmitBlock(loopBB); 686 687 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 688 cur->addIncoming(begin, originBB); 689 690 // memcpy the individual element bit-pattern. 691 Builder.CreateMemCpy(cur, src, baseSizeInChars, 692 baseSizeAndAlign.second.getQuantity(), 693 /*volatile*/ false); 694 695 // Go to the next element. 696 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 697 698 // Leave if that's the end of the VLA. 699 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 700 Builder.CreateCondBr(done, contBB, loopBB); 701 cur->addIncoming(next, loopBB); 702 703 CGF.EmitBlock(contBB); 704 } 705 706 void 707 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 708 // Ignore empty classes in C++. 709 if (getContext().getLangOptions().CPlusPlus) { 710 if (const RecordType *RT = Ty->getAs<RecordType>()) { 711 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 712 return; 713 } 714 } 715 716 // Cast the dest ptr to the appropriate i8 pointer type. 717 unsigned DestAS = 718 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 719 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 720 if (DestPtr->getType() != BP) 721 DestPtr = Builder.CreateBitCast(DestPtr, BP); 722 723 // Get size and alignment info for this aggregate. 724 std::pair<CharUnits, CharUnits> TypeInfo = 725 getContext().getTypeInfoInChars(Ty); 726 CharUnits Size = TypeInfo.first; 727 CharUnits Align = TypeInfo.second; 728 729 llvm::Value *SizeVal; 730 const VariableArrayType *vla; 731 732 // Don't bother emitting a zero-byte memset. 733 if (Size.isZero()) { 734 // But note that getTypeInfo returns 0 for a VLA. 735 if (const VariableArrayType *vlaType = 736 dyn_cast_or_null<VariableArrayType>( 737 getContext().getAsArrayType(Ty))) { 738 QualType eltType; 739 llvm::Value *numElts; 740 llvm::tie(numElts, eltType) = getVLASize(vlaType); 741 742 SizeVal = numElts; 743 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 744 if (!eltSize.isOne()) 745 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 746 vla = vlaType; 747 } else { 748 return; 749 } 750 } else { 751 SizeVal = CGM.getSize(Size); 752 vla = 0; 753 } 754 755 // If the type contains a pointer to data member we can't memset it to zero. 756 // Instead, create a null constant and copy it to the destination. 757 // TODO: there are other patterns besides zero that we can usefully memset, 758 // like -1, which happens to be the pattern used by member-pointers. 759 if (!CGM.getTypes().isZeroInitializable(Ty)) { 760 // For a VLA, emit a single element, then splat that over the VLA. 761 if (vla) Ty = getContext().getBaseElementType(vla); 762 763 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 764 765 llvm::GlobalVariable *NullVariable = 766 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 767 /*isConstant=*/true, 768 llvm::GlobalVariable::PrivateLinkage, 769 NullConstant, Twine()); 770 llvm::Value *SrcPtr = 771 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 772 773 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 774 775 // Get and call the appropriate llvm.memcpy overload. 776 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 777 return; 778 } 779 780 // Otherwise, just memset the whole thing to zero. This is legal 781 // because in LLVM, all default initializers (other than the ones we just 782 // handled above) are guaranteed to have a bit pattern of all zeros. 783 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 784 Align.getQuantity(), false); 785 } 786 787 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 788 // Make sure that there is a block for the indirect goto. 789 if (IndirectBranch == 0) 790 GetIndirectGotoBlock(); 791 792 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 793 794 // Make sure the indirect branch includes all of the address-taken blocks. 795 IndirectBranch->addDestination(BB); 796 return llvm::BlockAddress::get(CurFn, BB); 797 } 798 799 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 800 // If we already made the indirect branch for indirect goto, return its block. 801 if (IndirectBranch) return IndirectBranch->getParent(); 802 803 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 804 805 // Create the PHI node that indirect gotos will add entries to. 806 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 807 "indirect.goto.dest"); 808 809 // Create the indirect branch instruction. 810 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 811 return IndirectBranch->getParent(); 812 } 813 814 /// Computes the length of an array in elements, as well as the base 815 /// element type and a properly-typed first element pointer. 816 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 817 QualType &baseType, 818 llvm::Value *&addr) { 819 const ArrayType *arrayType = origArrayType; 820 821 // If it's a VLA, we have to load the stored size. Note that 822 // this is the size of the VLA in bytes, not its size in elements. 823 llvm::Value *numVLAElements = 0; 824 if (isa<VariableArrayType>(arrayType)) { 825 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 826 827 // Walk into all VLAs. This doesn't require changes to addr, 828 // which has type T* where T is the first non-VLA element type. 829 do { 830 QualType elementType = arrayType->getElementType(); 831 arrayType = getContext().getAsArrayType(elementType); 832 833 // If we only have VLA components, 'addr' requires no adjustment. 834 if (!arrayType) { 835 baseType = elementType; 836 return numVLAElements; 837 } 838 } while (isa<VariableArrayType>(arrayType)); 839 840 // We get out here only if we find a constant array type 841 // inside the VLA. 842 } 843 844 // We have some number of constant-length arrays, so addr should 845 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 846 // down to the first element of addr. 847 SmallVector<llvm::Value*, 8> gepIndices; 848 849 // GEP down to the array type. 850 llvm::ConstantInt *zero = Builder.getInt32(0); 851 gepIndices.push_back(zero); 852 853 // It's more efficient to calculate the count from the LLVM 854 // constant-length arrays than to re-evaluate the array bounds. 855 uint64_t countFromCLAs = 1; 856 857 llvm::ArrayType *llvmArrayType = 858 cast<llvm::ArrayType>( 859 cast<llvm::PointerType>(addr->getType())->getElementType()); 860 while (true) { 861 assert(isa<ConstantArrayType>(arrayType)); 862 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 863 == llvmArrayType->getNumElements()); 864 865 gepIndices.push_back(zero); 866 countFromCLAs *= llvmArrayType->getNumElements(); 867 868 llvmArrayType = 869 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 870 if (!llvmArrayType) break; 871 872 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 873 assert(arrayType && "LLVM and Clang types are out-of-synch"); 874 } 875 876 baseType = arrayType->getElementType(); 877 878 // Create the actual GEP. 879 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 880 881 llvm::Value *numElements 882 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 883 884 // If we had any VLA dimensions, factor them in. 885 if (numVLAElements) 886 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 887 888 return numElements; 889 } 890 891 std::pair<llvm::Value*, QualType> 892 CodeGenFunction::getVLASize(QualType type) { 893 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 894 assert(vla && "type was not a variable array type!"); 895 return getVLASize(vla); 896 } 897 898 std::pair<llvm::Value*, QualType> 899 CodeGenFunction::getVLASize(const VariableArrayType *type) { 900 // The number of elements so far; always size_t. 901 llvm::Value *numElements = 0; 902 903 QualType elementType; 904 do { 905 elementType = type->getElementType(); 906 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 907 assert(vlaSize && "no size for VLA!"); 908 assert(vlaSize->getType() == SizeTy); 909 910 if (!numElements) { 911 numElements = vlaSize; 912 } else { 913 // It's undefined behavior if this wraps around, so mark it that way. 914 numElements = Builder.CreateNUWMul(numElements, vlaSize); 915 } 916 } while ((type = getContext().getAsVariableArrayType(elementType))); 917 918 return std::pair<llvm::Value*,QualType>(numElements, elementType); 919 } 920 921 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 922 assert(type->isVariablyModifiedType() && 923 "Must pass variably modified type to EmitVLASizes!"); 924 925 EnsureInsertPoint(); 926 927 // We're going to walk down into the type and look for VLA 928 // expressions. 929 do { 930 assert(type->isVariablyModifiedType()); 931 932 const Type *ty = type.getTypePtr(); 933 switch (ty->getTypeClass()) { 934 935 #define TYPE(Class, Base) 936 #define ABSTRACT_TYPE(Class, Base) 937 #define NON_CANONICAL_TYPE(Class, Base) 938 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 939 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 940 #include "clang/AST/TypeNodes.def" 941 llvm_unreachable("unexpected dependent type!"); 942 943 // These types are never variably-modified. 944 case Type::Builtin: 945 case Type::Complex: 946 case Type::Vector: 947 case Type::ExtVector: 948 case Type::Record: 949 case Type::Enum: 950 case Type::Elaborated: 951 case Type::TemplateSpecialization: 952 case Type::ObjCObject: 953 case Type::ObjCInterface: 954 case Type::ObjCObjectPointer: 955 llvm_unreachable("type class is never variably-modified!"); 956 957 case Type::Pointer: 958 type = cast<PointerType>(ty)->getPointeeType(); 959 break; 960 961 case Type::BlockPointer: 962 type = cast<BlockPointerType>(ty)->getPointeeType(); 963 break; 964 965 case Type::LValueReference: 966 case Type::RValueReference: 967 type = cast<ReferenceType>(ty)->getPointeeType(); 968 break; 969 970 case Type::MemberPointer: 971 type = cast<MemberPointerType>(ty)->getPointeeType(); 972 break; 973 974 case Type::ConstantArray: 975 case Type::IncompleteArray: 976 // Losing element qualification here is fine. 977 type = cast<ArrayType>(ty)->getElementType(); 978 break; 979 980 case Type::VariableArray: { 981 // Losing element qualification here is fine. 982 const VariableArrayType *vat = cast<VariableArrayType>(ty); 983 984 // Unknown size indication requires no size computation. 985 // Otherwise, evaluate and record it. 986 if (const Expr *size = vat->getSizeExpr()) { 987 // It's possible that we might have emitted this already, 988 // e.g. with a typedef and a pointer to it. 989 llvm::Value *&entry = VLASizeMap[size]; 990 if (!entry) { 991 // Always zexting here would be wrong if it weren't 992 // undefined behavior to have a negative bound. 993 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 994 /*signed*/ false); 995 } 996 } 997 type = vat->getElementType(); 998 break; 999 } 1000 1001 case Type::FunctionProto: 1002 case Type::FunctionNoProto: 1003 type = cast<FunctionType>(ty)->getResultType(); 1004 break; 1005 1006 case Type::Paren: 1007 case Type::TypeOf: 1008 case Type::UnaryTransform: 1009 case Type::Attributed: 1010 case Type::SubstTemplateTypeParm: 1011 // Keep walking after single level desugaring. 1012 type = type.getSingleStepDesugaredType(getContext()); 1013 break; 1014 1015 case Type::Typedef: 1016 case Type::Decltype: 1017 case Type::Auto: 1018 // Stop walking: nothing to do. 1019 return; 1020 1021 case Type::TypeOfExpr: 1022 // Stop walking: emit typeof expression. 1023 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1024 return; 1025 1026 case Type::Atomic: 1027 type = cast<AtomicType>(ty)->getValueType(); 1028 break; 1029 } 1030 } while (type->isVariablyModifiedType()); 1031 } 1032 1033 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1034 if (getContext().getBuiltinVaListType()->isArrayType()) 1035 return EmitScalarExpr(E); 1036 return EmitLValue(E).getAddress(); 1037 } 1038 1039 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1040 llvm::Constant *Init) { 1041 assert (Init && "Invalid DeclRefExpr initializer!"); 1042 if (CGDebugInfo *Dbg = getDebugInfo()) 1043 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1044 } 1045 1046 CodeGenFunction::PeepholeProtection 1047 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1048 // At the moment, the only aggressive peephole we do in IR gen 1049 // is trunc(zext) folding, but if we add more, we can easily 1050 // extend this protection. 1051 1052 if (!rvalue.isScalar()) return PeepholeProtection(); 1053 llvm::Value *value = rvalue.getScalarVal(); 1054 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1055 1056 // Just make an extra bitcast. 1057 assert(HaveInsertPoint()); 1058 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1059 Builder.GetInsertBlock()); 1060 1061 PeepholeProtection protection; 1062 protection.Inst = inst; 1063 return protection; 1064 } 1065 1066 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1067 if (!protection.Inst) return; 1068 1069 // In theory, we could try to duplicate the peepholes now, but whatever. 1070 protection.Inst->eraseFromParent(); 1071 } 1072 1073 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1074 llvm::Value *AnnotatedVal, 1075 llvm::StringRef AnnotationStr, 1076 SourceLocation Location) { 1077 llvm::Value *Args[4] = { 1078 AnnotatedVal, 1079 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1080 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1081 CGM.EmitAnnotationLineNo(Location) 1082 }; 1083 return Builder.CreateCall(AnnotationFn, Args); 1084 } 1085 1086 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1087 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1088 // FIXME We create a new bitcast for every annotation because that's what 1089 // llvm-gcc was doing. 1090 for (specific_attr_iterator<AnnotateAttr> 1091 ai = D->specific_attr_begin<AnnotateAttr>(), 1092 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1093 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1094 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1095 (*ai)->getAnnotation(), D->getLocation()); 1096 } 1097 1098 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1099 llvm::Value *V) { 1100 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1101 llvm::Type *VTy = V->getType(); 1102 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1103 CGM.Int8PtrTy); 1104 1105 for (specific_attr_iterator<AnnotateAttr> 1106 ai = D->specific_attr_begin<AnnotateAttr>(), 1107 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1108 // FIXME Always emit the cast inst so we can differentiate between 1109 // annotation on the first field of a struct and annotation on the struct 1110 // itself. 1111 if (VTy != CGM.Int8PtrTy) 1112 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1113 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1114 V = Builder.CreateBitCast(V, VTy); 1115 } 1116 1117 return V; 1118 } 1119