1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : CodeGenTypeCache(cgm), CGM(cgm),
32     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
33     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
34     NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0),
35     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
36     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
37     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
38     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
39     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
40     TrapBB(0) {
41 
42   CatchUndefined = getContext().getLangOptions().CatchUndefined;
43   CGM.getCXXABI().getMangleContext().startNewFunction();
44 }
45 
46 CodeGenFunction::~CodeGenFunction() {
47   // If there are any unclaimed block infos, go ahead and destroy them
48   // now.  This can happen if IR-gen gets clever and skips evaluating
49   // something.
50   if (FirstBlockInfo)
51     destroyBlockInfos(FirstBlockInfo);
52 }
53 
54 
55 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
56   return CGM.getTypes().ConvertTypeForMem(T);
57 }
58 
59 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
60   return CGM.getTypes().ConvertType(T);
61 }
62 
63 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
64   switch (type.getCanonicalType()->getTypeClass()) {
65 #define TYPE(name, parent)
66 #define ABSTRACT_TYPE(name, parent)
67 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
68 #define DEPENDENT_TYPE(name, parent) case Type::name:
69 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
70 #include "clang/AST/TypeNodes.def"
71     llvm_unreachable("non-canonical or dependent type in IR-generation");
72 
73   case Type::Builtin:
74   case Type::Pointer:
75   case Type::BlockPointer:
76   case Type::LValueReference:
77   case Type::RValueReference:
78   case Type::MemberPointer:
79   case Type::Vector:
80   case Type::ExtVector:
81   case Type::FunctionProto:
82   case Type::FunctionNoProto:
83   case Type::Enum:
84   case Type::ObjCObjectPointer:
85     return false;
86 
87   // Complexes, arrays, records, and Objective-C objects.
88   case Type::Complex:
89   case Type::ConstantArray:
90   case Type::IncompleteArray:
91   case Type::VariableArray:
92   case Type::Record:
93   case Type::ObjCObject:
94   case Type::ObjCInterface:
95     return true;
96 
97   // In IRGen, atomic types are just the underlying type
98   case Type::Atomic:
99     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
100   }
101   llvm_unreachable("unknown type kind!");
102 }
103 
104 void CodeGenFunction::EmitReturnBlock() {
105   // For cleanliness, we try to avoid emitting the return block for
106   // simple cases.
107   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
108 
109   if (CurBB) {
110     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
111 
112     // We have a valid insert point, reuse it if it is empty or there are no
113     // explicit jumps to the return block.
114     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
115       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
116       delete ReturnBlock.getBlock();
117     } else
118       EmitBlock(ReturnBlock.getBlock());
119     return;
120   }
121 
122   // Otherwise, if the return block is the target of a single direct
123   // branch then we can just put the code in that block instead. This
124   // cleans up functions which started with a unified return block.
125   if (ReturnBlock.getBlock()->hasOneUse()) {
126     llvm::BranchInst *BI =
127       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
128     if (BI && BI->isUnconditional() &&
129         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
130       // Reset insertion point, including debug location, and delete the branch.
131       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
132       Builder.SetInsertPoint(BI->getParent());
133       BI->eraseFromParent();
134       delete ReturnBlock.getBlock();
135       return;
136     }
137   }
138 
139   // FIXME: We are at an unreachable point, there is no reason to emit the block
140   // unless it has uses. However, we still need a place to put the debug
141   // region.end for now.
142 
143   EmitBlock(ReturnBlock.getBlock());
144 }
145 
146 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
147   if (!BB) return;
148   if (!BB->use_empty())
149     return CGF.CurFn->getBasicBlockList().push_back(BB);
150   delete BB;
151 }
152 
153 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
154   assert(BreakContinueStack.empty() &&
155          "mismatched push/pop in break/continue stack!");
156 
157   // Pop any cleanups that might have been associated with the
158   // parameters.  Do this in whatever block we're currently in; it's
159   // important to do this before we enter the return block or return
160   // edges will be *really* confused.
161   if (EHStack.stable_begin() != PrologueCleanupDepth)
162     PopCleanupBlocks(PrologueCleanupDepth);
163 
164   // Emit function epilog (to return).
165   EmitReturnBlock();
166 
167   if (ShouldInstrumentFunction())
168     EmitFunctionInstrumentation("__cyg_profile_func_exit");
169 
170   // Emit debug descriptor for function end.
171   if (CGDebugInfo *DI = getDebugInfo()) {
172     DI->setLocation(EndLoc);
173     DI->EmitFunctionEnd(Builder);
174   }
175 
176   EmitFunctionEpilog(*CurFnInfo);
177   EmitEndEHSpec(CurCodeDecl);
178 
179   assert(EHStack.empty() &&
180          "did not remove all scopes from cleanup stack!");
181 
182   // If someone did an indirect goto, emit the indirect goto block at the end of
183   // the function.
184   if (IndirectBranch) {
185     EmitBlock(IndirectBranch->getParent());
186     Builder.ClearInsertionPoint();
187   }
188 
189   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
190   llvm::Instruction *Ptr = AllocaInsertPt;
191   AllocaInsertPt = 0;
192   Ptr->eraseFromParent();
193 
194   // If someone took the address of a label but never did an indirect goto, we
195   // made a zero entry PHI node, which is illegal, zap it now.
196   if (IndirectBranch) {
197     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
198     if (PN->getNumIncomingValues() == 0) {
199       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
200       PN->eraseFromParent();
201     }
202   }
203 
204   EmitIfUsed(*this, EHResumeBlock);
205   EmitIfUsed(*this, TerminateLandingPad);
206   EmitIfUsed(*this, TerminateHandler);
207   EmitIfUsed(*this, UnreachableBlock);
208 
209   if (CGM.getCodeGenOpts().EmitDeclMetadata)
210     EmitDeclMetadata();
211 }
212 
213 /// ShouldInstrumentFunction - Return true if the current function should be
214 /// instrumented with __cyg_profile_func_* calls
215 bool CodeGenFunction::ShouldInstrumentFunction() {
216   if (!CGM.getCodeGenOpts().InstrumentFunctions)
217     return false;
218   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
219     return false;
220   return true;
221 }
222 
223 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
224 /// instrumentation function with the current function and the call site, if
225 /// function instrumentation is enabled.
226 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
227   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
228   llvm::PointerType *PointerTy = Int8PtrTy;
229   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
230   llvm::FunctionType *FunctionTy =
231     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
232 
233   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
234   llvm::CallInst *CallSite = Builder.CreateCall(
235     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
236     llvm::ConstantInt::get(Int32Ty, 0),
237     "callsite");
238 
239   Builder.CreateCall2(F,
240                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
241                       CallSite);
242 }
243 
244 void CodeGenFunction::EmitMCountInstrumentation() {
245   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
246 
247   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
248                                                        Target.getMCountName());
249   Builder.CreateCall(MCountFn);
250 }
251 
252 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
253                                     llvm::Function *Fn,
254                                     const CGFunctionInfo &FnInfo,
255                                     const FunctionArgList &Args,
256                                     SourceLocation StartLoc) {
257   const Decl *D = GD.getDecl();
258 
259   DidCallStackSave = false;
260   CurCodeDecl = CurFuncDecl = D;
261   FnRetTy = RetTy;
262   CurFn = Fn;
263   CurFnInfo = &FnInfo;
264   assert(CurFn->isDeclaration() && "Function already has body?");
265 
266   // Pass inline keyword to optimizer if it appears explicitly on any
267   // declaration.
268   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
269     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
270            RE = FD->redecls_end(); RI != RE; ++RI)
271       if (RI->isInlineSpecified()) {
272         Fn->addFnAttr(llvm::Attribute::InlineHint);
273         break;
274       }
275 
276   if (getContext().getLangOptions().OpenCL) {
277     // Add metadata for a kernel function.
278     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
279       if (FD->hasAttr<OpenCLKernelAttr>()) {
280         llvm::LLVMContext &Context = getLLVMContext();
281         llvm::NamedMDNode *OpenCLMetadata =
282           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
283 
284         llvm::Value *Op = Fn;
285         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
286       }
287   }
288 
289   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
290 
291   // Create a marker to make it easy to insert allocas into the entryblock
292   // later.  Don't create this with the builder, because we don't want it
293   // folded.
294   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
295   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
296   if (Builder.isNamePreserving())
297     AllocaInsertPt->setName("allocapt");
298 
299   ReturnBlock = getJumpDestInCurrentScope("return");
300 
301   Builder.SetInsertPoint(EntryBB);
302 
303   // Emit subprogram debug descriptor.
304   if (CGDebugInfo *DI = getDebugInfo()) {
305     unsigned NumArgs = 0;
306     QualType *ArgsArray = new QualType[Args.size()];
307     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
308 	 i != e; ++i) {
309       ArgsArray[NumArgs++] = (*i)->getType();
310     }
311 
312     QualType FnType =
313       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
314                                    FunctionProtoType::ExtProtoInfo());
315 
316     delete[] ArgsArray;
317 
318     DI->setLocation(StartLoc);
319     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
320   }
321 
322   if (ShouldInstrumentFunction())
323     EmitFunctionInstrumentation("__cyg_profile_func_enter");
324 
325   if (CGM.getCodeGenOpts().InstrumentForProfiling)
326     EmitMCountInstrumentation();
327 
328   if (RetTy->isVoidType()) {
329     // Void type; nothing to return.
330     ReturnValue = 0;
331   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
332              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
333     // Indirect aggregate return; emit returned value directly into sret slot.
334     // This reduces code size, and affects correctness in C++.
335     ReturnValue = CurFn->arg_begin();
336   } else {
337     ReturnValue = CreateIRTemp(RetTy, "retval");
338 
339     // Tell the epilog emitter to autorelease the result.  We do this
340     // now so that various specialized functions can suppress it
341     // during their IR-generation.
342     if (getLangOptions().ObjCAutoRefCount &&
343         !CurFnInfo->isReturnsRetained() &&
344         RetTy->isObjCRetainableType())
345       AutoreleaseResult = true;
346   }
347 
348   EmitStartEHSpec(CurCodeDecl);
349 
350   PrologueCleanupDepth = EHStack.stable_begin();
351   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
352 
353   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
354     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
355 
356   // If any of the arguments have a variably modified type, make sure to
357   // emit the type size.
358   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
359        i != e; ++i) {
360     QualType Ty = (*i)->getType();
361 
362     if (Ty->isVariablyModifiedType())
363       EmitVariablyModifiedType(Ty);
364   }
365   // Emit a location at the end of the prologue.
366   if (CGDebugInfo *DI = getDebugInfo())
367     DI->EmitLocation(Builder, StartLoc);
368 }
369 
370 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
371   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
372   assert(FD->getBody());
373   EmitStmt(FD->getBody());
374 }
375 
376 /// Tries to mark the given function nounwind based on the
377 /// non-existence of any throwing calls within it.  We believe this is
378 /// lightweight enough to do at -O0.
379 static void TryMarkNoThrow(llvm::Function *F) {
380   // LLVM treats 'nounwind' on a function as part of the type, so we
381   // can't do this on functions that can be overwritten.
382   if (F->mayBeOverridden()) return;
383 
384   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
385     for (llvm::BasicBlock::iterator
386            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
387       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
388         if (!Call->doesNotThrow())
389           return;
390       } else if (isa<llvm::ResumeInst>(&*BI)) {
391         return;
392       }
393   F->setDoesNotThrow(true);
394 }
395 
396 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
397                                    const CGFunctionInfo &FnInfo) {
398   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
399 
400   // Check if we should generate debug info for this function.
401   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
402     DebugInfo = CGM.getModuleDebugInfo();
403 
404   FunctionArgList Args;
405   QualType ResTy = FD->getResultType();
406 
407   CurGD = GD;
408   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
409     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
410 
411   if (FD->getNumParams())
412     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
413       Args.push_back(FD->getParamDecl(i));
414 
415   SourceRange BodyRange;
416   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
417 
418   // Emit the standard function prologue.
419   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
420 
421   // Generate the body of the function.
422   if (isa<CXXDestructorDecl>(FD))
423     EmitDestructorBody(Args);
424   else if (isa<CXXConstructorDecl>(FD))
425     EmitConstructorBody(Args);
426   else if (getContext().getLangOptions().CUDA &&
427            !CGM.getCodeGenOpts().CUDAIsDevice &&
428            FD->hasAttr<CUDAGlobalAttr>())
429     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
430   else
431     EmitFunctionBody(Args);
432 
433   // Emit the standard function epilogue.
434   FinishFunction(BodyRange.getEnd());
435 
436   // If we haven't marked the function nothrow through other means, do
437   // a quick pass now to see if we can.
438   if (!CurFn->doesNotThrow())
439     TryMarkNoThrow(CurFn);
440 }
441 
442 /// ContainsLabel - Return true if the statement contains a label in it.  If
443 /// this statement is not executed normally, it not containing a label means
444 /// that we can just remove the code.
445 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
446   // Null statement, not a label!
447   if (S == 0) return false;
448 
449   // If this is a label, we have to emit the code, consider something like:
450   // if (0) {  ...  foo:  bar(); }  goto foo;
451   //
452   // TODO: If anyone cared, we could track __label__'s, since we know that you
453   // can't jump to one from outside their declared region.
454   if (isa<LabelStmt>(S))
455     return true;
456 
457   // If this is a case/default statement, and we haven't seen a switch, we have
458   // to emit the code.
459   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
460     return true;
461 
462   // If this is a switch statement, we want to ignore cases below it.
463   if (isa<SwitchStmt>(S))
464     IgnoreCaseStmts = true;
465 
466   // Scan subexpressions for verboten labels.
467   for (Stmt::const_child_range I = S->children(); I; ++I)
468     if (ContainsLabel(*I, IgnoreCaseStmts))
469       return true;
470 
471   return false;
472 }
473 
474 /// containsBreak - Return true if the statement contains a break out of it.
475 /// If the statement (recursively) contains a switch or loop with a break
476 /// inside of it, this is fine.
477 bool CodeGenFunction::containsBreak(const Stmt *S) {
478   // Null statement, not a label!
479   if (S == 0) return false;
480 
481   // If this is a switch or loop that defines its own break scope, then we can
482   // include it and anything inside of it.
483   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
484       isa<ForStmt>(S))
485     return false;
486 
487   if (isa<BreakStmt>(S))
488     return true;
489 
490   // Scan subexpressions for verboten breaks.
491   for (Stmt::const_child_range I = S->children(); I; ++I)
492     if (containsBreak(*I))
493       return true;
494 
495   return false;
496 }
497 
498 
499 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
500 /// to a constant, or if it does but contains a label, return false.  If it
501 /// constant folds return true and set the boolean result in Result.
502 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
503                                                    bool &ResultBool) {
504   llvm::APInt ResultInt;
505   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
506     return false;
507 
508   ResultBool = ResultInt.getBoolValue();
509   return true;
510 }
511 
512 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
513 /// to a constant, or if it does but contains a label, return false.  If it
514 /// constant folds return true and set the folded value.
515 bool CodeGenFunction::
516 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
517   // FIXME: Rename and handle conversion of other evaluatable things
518   // to bool.
519   llvm::APSInt Int;
520   if (!Cond->EvaluateAsInt(Int, getContext()))
521     return false;  // Not foldable, not integer or not fully evaluatable.
522 
523   if (CodeGenFunction::ContainsLabel(Cond))
524     return false;  // Contains a label.
525 
526   ResultInt = Int;
527   return true;
528 }
529 
530 
531 
532 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
533 /// statement) to the specified blocks.  Based on the condition, this might try
534 /// to simplify the codegen of the conditional based on the branch.
535 ///
536 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
537                                            llvm::BasicBlock *TrueBlock,
538                                            llvm::BasicBlock *FalseBlock) {
539   Cond = Cond->IgnoreParens();
540 
541   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
542     // Handle X && Y in a condition.
543     if (CondBOp->getOpcode() == BO_LAnd) {
544       // If we have "1 && X", simplify the code.  "0 && X" would have constant
545       // folded if the case was simple enough.
546       bool ConstantBool = false;
547       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
548           ConstantBool) {
549         // br(1 && X) -> br(X).
550         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
551       }
552 
553       // If we have "X && 1", simplify the code to use an uncond branch.
554       // "X && 0" would have been constant folded to 0.
555       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
556           ConstantBool) {
557         // br(X && 1) -> br(X).
558         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
559       }
560 
561       // Emit the LHS as a conditional.  If the LHS conditional is false, we
562       // want to jump to the FalseBlock.
563       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
564 
565       ConditionalEvaluation eval(*this);
566       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
567       EmitBlock(LHSTrue);
568 
569       // Any temporaries created here are conditional.
570       eval.begin(*this);
571       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
572       eval.end(*this);
573 
574       return;
575     }
576 
577     if (CondBOp->getOpcode() == BO_LOr) {
578       // If we have "0 || X", simplify the code.  "1 || X" would have constant
579       // folded if the case was simple enough.
580       bool ConstantBool = false;
581       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
582           !ConstantBool) {
583         // br(0 || X) -> br(X).
584         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
585       }
586 
587       // If we have "X || 0", simplify the code to use an uncond branch.
588       // "X || 1" would have been constant folded to 1.
589       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
590           !ConstantBool) {
591         // br(X || 0) -> br(X).
592         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
593       }
594 
595       // Emit the LHS as a conditional.  If the LHS conditional is true, we
596       // want to jump to the TrueBlock.
597       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
598 
599       ConditionalEvaluation eval(*this);
600       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
601       EmitBlock(LHSFalse);
602 
603       // Any temporaries created here are conditional.
604       eval.begin(*this);
605       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
606       eval.end(*this);
607 
608       return;
609     }
610   }
611 
612   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
613     // br(!x, t, f) -> br(x, f, t)
614     if (CondUOp->getOpcode() == UO_LNot)
615       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
616   }
617 
618   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
619     // Handle ?: operator.
620 
621     // Just ignore GNU ?: extension.
622     if (CondOp->getLHS()) {
623       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
624       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
625       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
626 
627       ConditionalEvaluation cond(*this);
628       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
629 
630       cond.begin(*this);
631       EmitBlock(LHSBlock);
632       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
633       cond.end(*this);
634 
635       cond.begin(*this);
636       EmitBlock(RHSBlock);
637       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
638       cond.end(*this);
639 
640       return;
641     }
642   }
643 
644   // Emit the code with the fully general case.
645   llvm::Value *CondV = EvaluateExprAsBool(Cond);
646   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
647 }
648 
649 /// ErrorUnsupported - Print out an error that codegen doesn't support the
650 /// specified stmt yet.
651 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
652                                        bool OmitOnError) {
653   CGM.ErrorUnsupported(S, Type, OmitOnError);
654 }
655 
656 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
657 /// variable-length array whose elements have a non-zero bit-pattern.
658 ///
659 /// \param src - a char* pointing to the bit-pattern for a single
660 /// base element of the array
661 /// \param sizeInChars - the total size of the VLA, in chars
662 /// \param align - the total alignment of the VLA
663 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
664                                llvm::Value *dest, llvm::Value *src,
665                                llvm::Value *sizeInChars) {
666   std::pair<CharUnits,CharUnits> baseSizeAndAlign
667     = CGF.getContext().getTypeInfoInChars(baseType);
668 
669   CGBuilderTy &Builder = CGF.Builder;
670 
671   llvm::Value *baseSizeInChars
672     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
673 
674   llvm::Type *i8p = Builder.getInt8PtrTy();
675 
676   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
677   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
678 
679   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
680   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
681   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
682 
683   // Make a loop over the VLA.  C99 guarantees that the VLA element
684   // count must be nonzero.
685   CGF.EmitBlock(loopBB);
686 
687   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
688   cur->addIncoming(begin, originBB);
689 
690   // memcpy the individual element bit-pattern.
691   Builder.CreateMemCpy(cur, src, baseSizeInChars,
692                        baseSizeAndAlign.second.getQuantity(),
693                        /*volatile*/ false);
694 
695   // Go to the next element.
696   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
697 
698   // Leave if that's the end of the VLA.
699   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
700   Builder.CreateCondBr(done, contBB, loopBB);
701   cur->addIncoming(next, loopBB);
702 
703   CGF.EmitBlock(contBB);
704 }
705 
706 void
707 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
708   // Ignore empty classes in C++.
709   if (getContext().getLangOptions().CPlusPlus) {
710     if (const RecordType *RT = Ty->getAs<RecordType>()) {
711       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
712         return;
713     }
714   }
715 
716   // Cast the dest ptr to the appropriate i8 pointer type.
717   unsigned DestAS =
718     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
719   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
720   if (DestPtr->getType() != BP)
721     DestPtr = Builder.CreateBitCast(DestPtr, BP);
722 
723   // Get size and alignment info for this aggregate.
724   std::pair<CharUnits, CharUnits> TypeInfo =
725     getContext().getTypeInfoInChars(Ty);
726   CharUnits Size = TypeInfo.first;
727   CharUnits Align = TypeInfo.second;
728 
729   llvm::Value *SizeVal;
730   const VariableArrayType *vla;
731 
732   // Don't bother emitting a zero-byte memset.
733   if (Size.isZero()) {
734     // But note that getTypeInfo returns 0 for a VLA.
735     if (const VariableArrayType *vlaType =
736           dyn_cast_or_null<VariableArrayType>(
737                                           getContext().getAsArrayType(Ty))) {
738       QualType eltType;
739       llvm::Value *numElts;
740       llvm::tie(numElts, eltType) = getVLASize(vlaType);
741 
742       SizeVal = numElts;
743       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
744       if (!eltSize.isOne())
745         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
746       vla = vlaType;
747     } else {
748       return;
749     }
750   } else {
751     SizeVal = CGM.getSize(Size);
752     vla = 0;
753   }
754 
755   // If the type contains a pointer to data member we can't memset it to zero.
756   // Instead, create a null constant and copy it to the destination.
757   // TODO: there are other patterns besides zero that we can usefully memset,
758   // like -1, which happens to be the pattern used by member-pointers.
759   if (!CGM.getTypes().isZeroInitializable(Ty)) {
760     // For a VLA, emit a single element, then splat that over the VLA.
761     if (vla) Ty = getContext().getBaseElementType(vla);
762 
763     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
764 
765     llvm::GlobalVariable *NullVariable =
766       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
767                                /*isConstant=*/true,
768                                llvm::GlobalVariable::PrivateLinkage,
769                                NullConstant, Twine());
770     llvm::Value *SrcPtr =
771       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
772 
773     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
774 
775     // Get and call the appropriate llvm.memcpy overload.
776     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
777     return;
778   }
779 
780   // Otherwise, just memset the whole thing to zero.  This is legal
781   // because in LLVM, all default initializers (other than the ones we just
782   // handled above) are guaranteed to have a bit pattern of all zeros.
783   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
784                        Align.getQuantity(), false);
785 }
786 
787 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
788   // Make sure that there is a block for the indirect goto.
789   if (IndirectBranch == 0)
790     GetIndirectGotoBlock();
791 
792   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
793 
794   // Make sure the indirect branch includes all of the address-taken blocks.
795   IndirectBranch->addDestination(BB);
796   return llvm::BlockAddress::get(CurFn, BB);
797 }
798 
799 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
800   // If we already made the indirect branch for indirect goto, return its block.
801   if (IndirectBranch) return IndirectBranch->getParent();
802 
803   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
804 
805   // Create the PHI node that indirect gotos will add entries to.
806   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
807                                               "indirect.goto.dest");
808 
809   // Create the indirect branch instruction.
810   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
811   return IndirectBranch->getParent();
812 }
813 
814 /// Computes the length of an array in elements, as well as the base
815 /// element type and a properly-typed first element pointer.
816 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
817                                               QualType &baseType,
818                                               llvm::Value *&addr) {
819   const ArrayType *arrayType = origArrayType;
820 
821   // If it's a VLA, we have to load the stored size.  Note that
822   // this is the size of the VLA in bytes, not its size in elements.
823   llvm::Value *numVLAElements = 0;
824   if (isa<VariableArrayType>(arrayType)) {
825     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
826 
827     // Walk into all VLAs.  This doesn't require changes to addr,
828     // which has type T* where T is the first non-VLA element type.
829     do {
830       QualType elementType = arrayType->getElementType();
831       arrayType = getContext().getAsArrayType(elementType);
832 
833       // If we only have VLA components, 'addr' requires no adjustment.
834       if (!arrayType) {
835         baseType = elementType;
836         return numVLAElements;
837       }
838     } while (isa<VariableArrayType>(arrayType));
839 
840     // We get out here only if we find a constant array type
841     // inside the VLA.
842   }
843 
844   // We have some number of constant-length arrays, so addr should
845   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
846   // down to the first element of addr.
847   SmallVector<llvm::Value*, 8> gepIndices;
848 
849   // GEP down to the array type.
850   llvm::ConstantInt *zero = Builder.getInt32(0);
851   gepIndices.push_back(zero);
852 
853   // It's more efficient to calculate the count from the LLVM
854   // constant-length arrays than to re-evaluate the array bounds.
855   uint64_t countFromCLAs = 1;
856 
857   llvm::ArrayType *llvmArrayType =
858     cast<llvm::ArrayType>(
859       cast<llvm::PointerType>(addr->getType())->getElementType());
860   while (true) {
861     assert(isa<ConstantArrayType>(arrayType));
862     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
863              == llvmArrayType->getNumElements());
864 
865     gepIndices.push_back(zero);
866     countFromCLAs *= llvmArrayType->getNumElements();
867 
868     llvmArrayType =
869       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
870     if (!llvmArrayType) break;
871 
872     arrayType = getContext().getAsArrayType(arrayType->getElementType());
873     assert(arrayType && "LLVM and Clang types are out-of-synch");
874   }
875 
876   baseType = arrayType->getElementType();
877 
878   // Create the actual GEP.
879   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
880 
881   llvm::Value *numElements
882     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
883 
884   // If we had any VLA dimensions, factor them in.
885   if (numVLAElements)
886     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
887 
888   return numElements;
889 }
890 
891 std::pair<llvm::Value*, QualType>
892 CodeGenFunction::getVLASize(QualType type) {
893   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
894   assert(vla && "type was not a variable array type!");
895   return getVLASize(vla);
896 }
897 
898 std::pair<llvm::Value*, QualType>
899 CodeGenFunction::getVLASize(const VariableArrayType *type) {
900   // The number of elements so far; always size_t.
901   llvm::Value *numElements = 0;
902 
903   QualType elementType;
904   do {
905     elementType = type->getElementType();
906     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
907     assert(vlaSize && "no size for VLA!");
908     assert(vlaSize->getType() == SizeTy);
909 
910     if (!numElements) {
911       numElements = vlaSize;
912     } else {
913       // It's undefined behavior if this wraps around, so mark it that way.
914       numElements = Builder.CreateNUWMul(numElements, vlaSize);
915     }
916   } while ((type = getContext().getAsVariableArrayType(elementType)));
917 
918   return std::pair<llvm::Value*,QualType>(numElements, elementType);
919 }
920 
921 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
922   assert(type->isVariablyModifiedType() &&
923          "Must pass variably modified type to EmitVLASizes!");
924 
925   EnsureInsertPoint();
926 
927   // We're going to walk down into the type and look for VLA
928   // expressions.
929   do {
930     assert(type->isVariablyModifiedType());
931 
932     const Type *ty = type.getTypePtr();
933     switch (ty->getTypeClass()) {
934 
935 #define TYPE(Class, Base)
936 #define ABSTRACT_TYPE(Class, Base)
937 #define NON_CANONICAL_TYPE(Class, Base)
938 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
939 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
940 #include "clang/AST/TypeNodes.def"
941       llvm_unreachable("unexpected dependent type!");
942 
943     // These types are never variably-modified.
944     case Type::Builtin:
945     case Type::Complex:
946     case Type::Vector:
947     case Type::ExtVector:
948     case Type::Record:
949     case Type::Enum:
950     case Type::Elaborated:
951     case Type::TemplateSpecialization:
952     case Type::ObjCObject:
953     case Type::ObjCInterface:
954     case Type::ObjCObjectPointer:
955       llvm_unreachable("type class is never variably-modified!");
956 
957     case Type::Pointer:
958       type = cast<PointerType>(ty)->getPointeeType();
959       break;
960 
961     case Type::BlockPointer:
962       type = cast<BlockPointerType>(ty)->getPointeeType();
963       break;
964 
965     case Type::LValueReference:
966     case Type::RValueReference:
967       type = cast<ReferenceType>(ty)->getPointeeType();
968       break;
969 
970     case Type::MemberPointer:
971       type = cast<MemberPointerType>(ty)->getPointeeType();
972       break;
973 
974     case Type::ConstantArray:
975     case Type::IncompleteArray:
976       // Losing element qualification here is fine.
977       type = cast<ArrayType>(ty)->getElementType();
978       break;
979 
980     case Type::VariableArray: {
981       // Losing element qualification here is fine.
982       const VariableArrayType *vat = cast<VariableArrayType>(ty);
983 
984       // Unknown size indication requires no size computation.
985       // Otherwise, evaluate and record it.
986       if (const Expr *size = vat->getSizeExpr()) {
987         // It's possible that we might have emitted this already,
988         // e.g. with a typedef and a pointer to it.
989         llvm::Value *&entry = VLASizeMap[size];
990         if (!entry) {
991           // Always zexting here would be wrong if it weren't
992           // undefined behavior to have a negative bound.
993           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
994                                         /*signed*/ false);
995         }
996       }
997       type = vat->getElementType();
998       break;
999     }
1000 
1001     case Type::FunctionProto:
1002     case Type::FunctionNoProto:
1003       type = cast<FunctionType>(ty)->getResultType();
1004       break;
1005 
1006     case Type::Paren:
1007     case Type::TypeOf:
1008     case Type::UnaryTransform:
1009     case Type::Attributed:
1010     case Type::SubstTemplateTypeParm:
1011       // Keep walking after single level desugaring.
1012       type = type.getSingleStepDesugaredType(getContext());
1013       break;
1014 
1015     case Type::Typedef:
1016     case Type::Decltype:
1017     case Type::Auto:
1018       // Stop walking: nothing to do.
1019       return;
1020 
1021     case Type::TypeOfExpr:
1022       // Stop walking: emit typeof expression.
1023       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1024       return;
1025 
1026     case Type::Atomic:
1027       type = cast<AtomicType>(ty)->getValueType();
1028       break;
1029     }
1030   } while (type->isVariablyModifiedType());
1031 }
1032 
1033 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1034   if (getContext().getBuiltinVaListType()->isArrayType())
1035     return EmitScalarExpr(E);
1036   return EmitLValue(E).getAddress();
1037 }
1038 
1039 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1040                                               llvm::Constant *Init) {
1041   assert (Init && "Invalid DeclRefExpr initializer!");
1042   if (CGDebugInfo *Dbg = getDebugInfo())
1043     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1044 }
1045 
1046 CodeGenFunction::PeepholeProtection
1047 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1048   // At the moment, the only aggressive peephole we do in IR gen
1049   // is trunc(zext) folding, but if we add more, we can easily
1050   // extend this protection.
1051 
1052   if (!rvalue.isScalar()) return PeepholeProtection();
1053   llvm::Value *value = rvalue.getScalarVal();
1054   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1055 
1056   // Just make an extra bitcast.
1057   assert(HaveInsertPoint());
1058   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1059                                                   Builder.GetInsertBlock());
1060 
1061   PeepholeProtection protection;
1062   protection.Inst = inst;
1063   return protection;
1064 }
1065 
1066 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1067   if (!protection.Inst) return;
1068 
1069   // In theory, we could try to duplicate the peepholes now, but whatever.
1070   protection.Inst->eraseFromParent();
1071 }
1072 
1073 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1074                                                  llvm::Value *AnnotatedVal,
1075                                                  llvm::StringRef AnnotationStr,
1076                                                  SourceLocation Location) {
1077   llvm::Value *Args[4] = {
1078     AnnotatedVal,
1079     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1080     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1081     CGM.EmitAnnotationLineNo(Location)
1082   };
1083   return Builder.CreateCall(AnnotationFn, Args);
1084 }
1085 
1086 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1087   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1088   // FIXME We create a new bitcast for every annotation because that's what
1089   // llvm-gcc was doing.
1090   for (specific_attr_iterator<AnnotateAttr>
1091        ai = D->specific_attr_begin<AnnotateAttr>(),
1092        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1093     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1094                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1095                        (*ai)->getAnnotation(), D->getLocation());
1096 }
1097 
1098 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1099                                                    llvm::Value *V) {
1100   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1101   llvm::Type *VTy = V->getType();
1102   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1103                                     CGM.Int8PtrTy);
1104 
1105   for (specific_attr_iterator<AnnotateAttr>
1106        ai = D->specific_attr_begin<AnnotateAttr>(),
1107        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1108     // FIXME Always emit the cast inst so we can differentiate between
1109     // annotation on the first field of a struct and annotation on the struct
1110     // itself.
1111     if (VTy != CGM.Int8PtrTy)
1112       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1113     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1114     V = Builder.CreateBitCast(V, VTy);
1115   }
1116 
1117   return V;
1118 }
1119