1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 43 /// markers. 44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 45 const LangOptions &LangOpts) { 46 if (CGOpts.DisableLifetimeMarkers) 47 return false; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // Asan uses markers for use-after-scope checks. 55 if (CGOpts.SanitizeAddressUseAfterScope) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 CurFn(nullptr), ReturnValue(Address::invalid()), 67 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 68 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 69 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 70 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 71 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 72 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 73 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 74 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 75 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 76 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 77 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 78 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 79 CXXStructorImplicitParamDecl(nullptr), 80 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 81 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 82 TerminateHandler(nullptr), TrapBB(nullptr), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 88 llvm::FastMathFlags FMF; 89 if (CGM.getLangOpts().FastMath) 90 FMF.setUnsafeAlgebra(); 91 if (CGM.getLangOpts().FiniteMathOnly) { 92 FMF.setNoNaNs(); 93 FMF.setNoInfs(); 94 } 95 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 96 FMF.setNoNaNs(); 97 } 98 if (CGM.getCodeGenOpts().NoSignedZeros) { 99 FMF.setNoSignedZeros(); 100 } 101 if (CGM.getCodeGenOpts().ReciprocalMath) { 102 FMF.setAllowReciprocal(); 103 } 104 Builder.setFastMathFlags(FMF); 105 } 106 107 CodeGenFunction::~CodeGenFunction() { 108 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 109 110 // If there are any unclaimed block infos, go ahead and destroy them 111 // now. This can happen if IR-gen gets clever and skips evaluating 112 // something. 113 if (FirstBlockInfo) 114 destroyBlockInfos(FirstBlockInfo); 115 116 if (getLangOpts().OpenMP && CurFn) 117 CGM.getOpenMPRuntime().functionFinished(*this); 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 LValueBaseInfo *BaseInfo) { 122 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 123 /* TBAAInfo= */ nullptr, 124 /* forPointeeType= */ true); 125 } 126 127 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 128 LValueBaseInfo *BaseInfo, 129 TBAAAccessInfo *TBAAInfo, 130 bool forPointeeType) { 131 if (TBAAInfo) 132 *TBAAInfo = CGM.getTBAAAccessInfo(T); 133 134 // Honor alignment typedef attributes even on incomplete types. 135 // We also honor them straight for C++ class types, even as pointees; 136 // there's an expressivity gap here. 137 if (auto TT = T->getAs<TypedefType>()) { 138 if (auto Align = TT->getDecl()->getMaxAlignment()) { 139 if (BaseInfo) 140 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 141 return getContext().toCharUnitsFromBits(Align); 142 } 143 } 144 145 if (BaseInfo) 146 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 147 148 CharUnits Alignment; 149 if (T->isIncompleteType()) { 150 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 151 } else { 152 // For C++ class pointees, we don't know whether we're pointing at a 153 // base or a complete object, so we generally need to use the 154 // non-virtual alignment. 155 const CXXRecordDecl *RD; 156 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 157 Alignment = CGM.getClassPointerAlignment(RD); 158 } else { 159 Alignment = getContext().getTypeAlignInChars(T); 160 if (T.getQualifiers().hasUnaligned()) 161 Alignment = CharUnits::One(); 162 } 163 164 // Cap to the global maximum type alignment unless the alignment 165 // was somehow explicit on the type. 166 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 167 if (Alignment.getQuantity() > MaxAlign && 168 !getContext().isAlignmentRequired(T)) 169 Alignment = CharUnits::fromQuantity(MaxAlign); 170 } 171 } 172 return Alignment; 173 } 174 175 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 176 LValueBaseInfo BaseInfo; 177 TBAAAccessInfo TBAAInfo; 178 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 179 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 180 TBAAInfo); 181 } 182 183 /// Given a value of type T* that may not be to a complete object, 184 /// construct an l-value with the natural pointee alignment of T. 185 LValue 186 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 187 LValueBaseInfo BaseInfo; 188 TBAAAccessInfo TBAAInfo; 189 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 190 /* forPointeeType= */ true); 191 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 192 } 193 194 195 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 196 return CGM.getTypes().ConvertTypeForMem(T); 197 } 198 199 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 200 return CGM.getTypes().ConvertType(T); 201 } 202 203 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 204 type = type.getCanonicalType(); 205 while (true) { 206 switch (type->getTypeClass()) { 207 #define TYPE(name, parent) 208 #define ABSTRACT_TYPE(name, parent) 209 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 210 #define DEPENDENT_TYPE(name, parent) case Type::name: 211 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 212 #include "clang/AST/TypeNodes.def" 213 llvm_unreachable("non-canonical or dependent type in IR-generation"); 214 215 case Type::Auto: 216 case Type::DeducedTemplateSpecialization: 217 llvm_unreachable("undeduced type in IR-generation"); 218 219 // Various scalar types. 220 case Type::Builtin: 221 case Type::Pointer: 222 case Type::BlockPointer: 223 case Type::LValueReference: 224 case Type::RValueReference: 225 case Type::MemberPointer: 226 case Type::Vector: 227 case Type::ExtVector: 228 case Type::FunctionProto: 229 case Type::FunctionNoProto: 230 case Type::Enum: 231 case Type::ObjCObjectPointer: 232 case Type::Pipe: 233 return TEK_Scalar; 234 235 // Complexes. 236 case Type::Complex: 237 return TEK_Complex; 238 239 // Arrays, records, and Objective-C objects. 240 case Type::ConstantArray: 241 case Type::IncompleteArray: 242 case Type::VariableArray: 243 case Type::Record: 244 case Type::ObjCObject: 245 case Type::ObjCInterface: 246 return TEK_Aggregate; 247 248 // We operate on atomic values according to their underlying type. 249 case Type::Atomic: 250 type = cast<AtomicType>(type)->getValueType(); 251 continue; 252 } 253 llvm_unreachable("unknown type kind!"); 254 } 255 } 256 257 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 258 // For cleanliness, we try to avoid emitting the return block for 259 // simple cases. 260 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 261 262 if (CurBB) { 263 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 264 265 // We have a valid insert point, reuse it if it is empty or there are no 266 // explicit jumps to the return block. 267 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 268 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 269 delete ReturnBlock.getBlock(); 270 } else 271 EmitBlock(ReturnBlock.getBlock()); 272 return llvm::DebugLoc(); 273 } 274 275 // Otherwise, if the return block is the target of a single direct 276 // branch then we can just put the code in that block instead. This 277 // cleans up functions which started with a unified return block. 278 if (ReturnBlock.getBlock()->hasOneUse()) { 279 llvm::BranchInst *BI = 280 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 281 if (BI && BI->isUnconditional() && 282 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 283 // Record/return the DebugLoc of the simple 'return' expression to be used 284 // later by the actual 'ret' instruction. 285 llvm::DebugLoc Loc = BI->getDebugLoc(); 286 Builder.SetInsertPoint(BI->getParent()); 287 BI->eraseFromParent(); 288 delete ReturnBlock.getBlock(); 289 return Loc; 290 } 291 } 292 293 // FIXME: We are at an unreachable point, there is no reason to emit the block 294 // unless it has uses. However, we still need a place to put the debug 295 // region.end for now. 296 297 EmitBlock(ReturnBlock.getBlock()); 298 return llvm::DebugLoc(); 299 } 300 301 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 302 if (!BB) return; 303 if (!BB->use_empty()) 304 return CGF.CurFn->getBasicBlockList().push_back(BB); 305 delete BB; 306 } 307 308 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 309 assert(BreakContinueStack.empty() && 310 "mismatched push/pop in break/continue stack!"); 311 312 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 313 && NumSimpleReturnExprs == NumReturnExprs 314 && ReturnBlock.getBlock()->use_empty(); 315 // Usually the return expression is evaluated before the cleanup 316 // code. If the function contains only a simple return statement, 317 // such as a constant, the location before the cleanup code becomes 318 // the last useful breakpoint in the function, because the simple 319 // return expression will be evaluated after the cleanup code. To be 320 // safe, set the debug location for cleanup code to the location of 321 // the return statement. Otherwise the cleanup code should be at the 322 // end of the function's lexical scope. 323 // 324 // If there are multiple branches to the return block, the branch 325 // instructions will get the location of the return statements and 326 // all will be fine. 327 if (CGDebugInfo *DI = getDebugInfo()) { 328 if (OnlySimpleReturnStmts) 329 DI->EmitLocation(Builder, LastStopPoint); 330 else 331 DI->EmitLocation(Builder, EndLoc); 332 } 333 334 // Pop any cleanups that might have been associated with the 335 // parameters. Do this in whatever block we're currently in; it's 336 // important to do this before we enter the return block or return 337 // edges will be *really* confused. 338 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 339 bool HasOnlyLifetimeMarkers = 340 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 341 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 342 if (HasCleanups) { 343 // Make sure the line table doesn't jump back into the body for 344 // the ret after it's been at EndLoc. 345 if (CGDebugInfo *DI = getDebugInfo()) 346 if (OnlySimpleReturnStmts) 347 DI->EmitLocation(Builder, EndLoc); 348 349 PopCleanupBlocks(PrologueCleanupDepth); 350 } 351 352 // Emit function epilog (to return). 353 llvm::DebugLoc Loc = EmitReturnBlock(); 354 355 if (ShouldInstrumentFunction()) 356 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 357 358 // Emit debug descriptor for function end. 359 if (CGDebugInfo *DI = getDebugInfo()) 360 DI->EmitFunctionEnd(Builder, CurFn); 361 362 // Reset the debug location to that of the simple 'return' expression, if any 363 // rather than that of the end of the function's scope '}'. 364 ApplyDebugLocation AL(*this, Loc); 365 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 366 EmitEndEHSpec(CurCodeDecl); 367 368 assert(EHStack.empty() && 369 "did not remove all scopes from cleanup stack!"); 370 371 // If someone did an indirect goto, emit the indirect goto block at the end of 372 // the function. 373 if (IndirectBranch) { 374 EmitBlock(IndirectBranch->getParent()); 375 Builder.ClearInsertionPoint(); 376 } 377 378 // If some of our locals escaped, insert a call to llvm.localescape in the 379 // entry block. 380 if (!EscapedLocals.empty()) { 381 // Invert the map from local to index into a simple vector. There should be 382 // no holes. 383 SmallVector<llvm::Value *, 4> EscapeArgs; 384 EscapeArgs.resize(EscapedLocals.size()); 385 for (auto &Pair : EscapedLocals) 386 EscapeArgs[Pair.second] = Pair.first; 387 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 388 &CGM.getModule(), llvm::Intrinsic::localescape); 389 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 390 } 391 392 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 393 llvm::Instruction *Ptr = AllocaInsertPt; 394 AllocaInsertPt = nullptr; 395 Ptr->eraseFromParent(); 396 397 // If someone took the address of a label but never did an indirect goto, we 398 // made a zero entry PHI node, which is illegal, zap it now. 399 if (IndirectBranch) { 400 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 401 if (PN->getNumIncomingValues() == 0) { 402 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 403 PN->eraseFromParent(); 404 } 405 } 406 407 EmitIfUsed(*this, EHResumeBlock); 408 EmitIfUsed(*this, TerminateLandingPad); 409 EmitIfUsed(*this, TerminateHandler); 410 EmitIfUsed(*this, UnreachableBlock); 411 412 if (CGM.getCodeGenOpts().EmitDeclMetadata) 413 EmitDeclMetadata(); 414 415 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 416 I = DeferredReplacements.begin(), 417 E = DeferredReplacements.end(); 418 I != E; ++I) { 419 I->first->replaceAllUsesWith(I->second); 420 I->first->eraseFromParent(); 421 } 422 } 423 424 /// ShouldInstrumentFunction - Return true if the current function should be 425 /// instrumented with __cyg_profile_func_* calls 426 bool CodeGenFunction::ShouldInstrumentFunction() { 427 if (!CGM.getCodeGenOpts().InstrumentFunctions) 428 return false; 429 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 430 return false; 431 return true; 432 } 433 434 /// ShouldXRayInstrument - Return true if the current function should be 435 /// instrumented with XRay nop sleds. 436 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 437 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 438 } 439 440 llvm::Constant * 441 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 442 llvm::Constant *Addr) { 443 // Addresses stored in prologue data can't require run-time fixups and must 444 // be PC-relative. Run-time fixups are undesirable because they necessitate 445 // writable text segments, which are unsafe. And absolute addresses are 446 // undesirable because they break PIE mode. 447 448 // Add a layer of indirection through a private global. Taking its address 449 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 450 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 451 /*isConstant=*/true, 452 llvm::GlobalValue::PrivateLinkage, Addr); 453 454 // Create a PC-relative address. 455 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 456 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 457 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 458 return (IntPtrTy == Int32Ty) 459 ? PCRelAsInt 460 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 461 } 462 463 llvm::Value * 464 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 465 llvm::Value *EncodedAddr) { 466 // Reconstruct the address of the global. 467 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 468 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 469 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 470 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 471 472 // Load the original pointer through the global. 473 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 474 "decoded_addr"); 475 } 476 477 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 478 /// instrumentation function with the current function and the call site, if 479 /// function instrumentation is enabled. 480 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 481 auto NL = ApplyDebugLocation::CreateArtificial(*this); 482 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 483 llvm::PointerType *PointerTy = Int8PtrTy; 484 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 485 llvm::FunctionType *FunctionTy = 486 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 487 488 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 489 llvm::CallInst *CallSite = Builder.CreateCall( 490 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 491 llvm::ConstantInt::get(Int32Ty, 0), 492 "callsite"); 493 494 llvm::Value *args[] = { 495 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 496 CallSite 497 }; 498 499 EmitNounwindRuntimeCall(F, args); 500 } 501 502 static void removeImageAccessQualifier(std::string& TyName) { 503 std::string ReadOnlyQual("__read_only"); 504 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 505 if (ReadOnlyPos != std::string::npos) 506 // "+ 1" for the space after access qualifier. 507 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 508 else { 509 std::string WriteOnlyQual("__write_only"); 510 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 511 if (WriteOnlyPos != std::string::npos) 512 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 513 else { 514 std::string ReadWriteQual("__read_write"); 515 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 516 if (ReadWritePos != std::string::npos) 517 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 518 } 519 } 520 } 521 522 // Returns the address space id that should be produced to the 523 // kernel_arg_addr_space metadata. This is always fixed to the ids 524 // as specified in the SPIR 2.0 specification in order to differentiate 525 // for example in clGetKernelArgInfo() implementation between the address 526 // spaces with targets without unique mapping to the OpenCL address spaces 527 // (basically all single AS CPUs). 528 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 529 switch (LangAS) { 530 case LangAS::opencl_global: return 1; 531 case LangAS::opencl_constant: return 2; 532 case LangAS::opencl_local: return 3; 533 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 534 default: 535 return 0; // Assume private. 536 } 537 } 538 539 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 540 // information in the program executable. The argument information stored 541 // includes the argument name, its type, the address and access qualifiers used. 542 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 543 CodeGenModule &CGM, llvm::LLVMContext &Context, 544 CGBuilderTy &Builder, ASTContext &ASTCtx) { 545 // Create MDNodes that represent the kernel arg metadata. 546 // Each MDNode is a list in the form of "key", N number of values which is 547 // the same number of values as their are kernel arguments. 548 549 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 550 551 // MDNode for the kernel argument address space qualifiers. 552 SmallVector<llvm::Metadata *, 8> addressQuals; 553 554 // MDNode for the kernel argument access qualifiers (images only). 555 SmallVector<llvm::Metadata *, 8> accessQuals; 556 557 // MDNode for the kernel argument type names. 558 SmallVector<llvm::Metadata *, 8> argTypeNames; 559 560 // MDNode for the kernel argument base type names. 561 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 562 563 // MDNode for the kernel argument type qualifiers. 564 SmallVector<llvm::Metadata *, 8> argTypeQuals; 565 566 // MDNode for the kernel argument names. 567 SmallVector<llvm::Metadata *, 8> argNames; 568 569 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 570 const ParmVarDecl *parm = FD->getParamDecl(i); 571 QualType ty = parm->getType(); 572 std::string typeQuals; 573 574 if (ty->isPointerType()) { 575 QualType pointeeTy = ty->getPointeeType(); 576 577 // Get address qualifier. 578 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 579 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 580 581 // Get argument type name. 582 std::string typeName = 583 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 584 585 // Turn "unsigned type" to "utype" 586 std::string::size_type pos = typeName.find("unsigned"); 587 if (pointeeTy.isCanonical() && pos != std::string::npos) 588 typeName.erase(pos+1, 8); 589 590 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 591 592 std::string baseTypeName = 593 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 594 Policy) + 595 "*"; 596 597 // Turn "unsigned type" to "utype" 598 pos = baseTypeName.find("unsigned"); 599 if (pos != std::string::npos) 600 baseTypeName.erase(pos+1, 8); 601 602 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 603 604 // Get argument type qualifiers: 605 if (ty.isRestrictQualified()) 606 typeQuals = "restrict"; 607 if (pointeeTy.isConstQualified() || 608 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 609 typeQuals += typeQuals.empty() ? "const" : " const"; 610 if (pointeeTy.isVolatileQualified()) 611 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 612 } else { 613 uint32_t AddrSpc = 0; 614 bool isPipe = ty->isPipeType(); 615 if (ty->isImageType() || isPipe) 616 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 617 618 addressQuals.push_back( 619 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 620 621 // Get argument type name. 622 std::string typeName; 623 if (isPipe) 624 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 625 .getAsString(Policy); 626 else 627 typeName = ty.getUnqualifiedType().getAsString(Policy); 628 629 // Turn "unsigned type" to "utype" 630 std::string::size_type pos = typeName.find("unsigned"); 631 if (ty.isCanonical() && pos != std::string::npos) 632 typeName.erase(pos+1, 8); 633 634 std::string baseTypeName; 635 if (isPipe) 636 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 637 ->getElementType().getCanonicalType() 638 .getAsString(Policy); 639 else 640 baseTypeName = 641 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 642 643 // Remove access qualifiers on images 644 // (as they are inseparable from type in clang implementation, 645 // but OpenCL spec provides a special query to get access qualifier 646 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 647 if (ty->isImageType()) { 648 removeImageAccessQualifier(typeName); 649 removeImageAccessQualifier(baseTypeName); 650 } 651 652 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 653 654 // Turn "unsigned type" to "utype" 655 pos = baseTypeName.find("unsigned"); 656 if (pos != std::string::npos) 657 baseTypeName.erase(pos+1, 8); 658 659 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 660 661 if (isPipe) 662 typeQuals = "pipe"; 663 } 664 665 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 666 667 // Get image and pipe access qualifier: 668 if (ty->isImageType()|| ty->isPipeType()) { 669 const Decl *PDecl = parm; 670 if (auto *TD = dyn_cast<TypedefType>(ty)) 671 PDecl = TD->getDecl(); 672 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 673 if (A && A->isWriteOnly()) 674 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 675 else if (A && A->isReadWrite()) 676 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 677 else 678 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 679 } else 680 accessQuals.push_back(llvm::MDString::get(Context, "none")); 681 682 // Get argument name. 683 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 684 } 685 686 Fn->setMetadata("kernel_arg_addr_space", 687 llvm::MDNode::get(Context, addressQuals)); 688 Fn->setMetadata("kernel_arg_access_qual", 689 llvm::MDNode::get(Context, accessQuals)); 690 Fn->setMetadata("kernel_arg_type", 691 llvm::MDNode::get(Context, argTypeNames)); 692 Fn->setMetadata("kernel_arg_base_type", 693 llvm::MDNode::get(Context, argBaseTypeNames)); 694 Fn->setMetadata("kernel_arg_type_qual", 695 llvm::MDNode::get(Context, argTypeQuals)); 696 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 697 Fn->setMetadata("kernel_arg_name", 698 llvm::MDNode::get(Context, argNames)); 699 } 700 701 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 702 llvm::Function *Fn) 703 { 704 if (!FD->hasAttr<OpenCLKernelAttr>()) 705 return; 706 707 llvm::LLVMContext &Context = getLLVMContext(); 708 709 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 710 711 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 712 QualType HintQTy = A->getTypeHint(); 713 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 714 bool IsSignedInteger = 715 HintQTy->isSignedIntegerType() || 716 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 717 llvm::Metadata *AttrMDArgs[] = { 718 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 719 CGM.getTypes().ConvertType(A->getTypeHint()))), 720 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 721 llvm::IntegerType::get(Context, 32), 722 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 723 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 724 } 725 726 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 727 llvm::Metadata *AttrMDArgs[] = { 728 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 729 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 730 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 731 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 732 } 733 734 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 735 llvm::Metadata *AttrMDArgs[] = { 736 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 738 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 739 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 740 } 741 742 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 743 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 744 llvm::Metadata *AttrMDArgs[] = { 745 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 746 Fn->setMetadata("intel_reqd_sub_group_size", 747 llvm::MDNode::get(Context, AttrMDArgs)); 748 } 749 } 750 751 /// Determine whether the function F ends with a return stmt. 752 static bool endsWithReturn(const Decl* F) { 753 const Stmt *Body = nullptr; 754 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 755 Body = FD->getBody(); 756 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 757 Body = OMD->getBody(); 758 759 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 760 auto LastStmt = CS->body_rbegin(); 761 if (LastStmt != CS->body_rend()) 762 return isa<ReturnStmt>(*LastStmt); 763 } 764 return false; 765 } 766 767 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 768 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 769 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 770 } 771 772 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 773 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 774 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 775 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 776 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 777 return false; 778 779 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 780 return false; 781 782 if (MD->getNumParams() == 2) { 783 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 784 if (!PT || !PT->isVoidPointerType() || 785 !PT->getPointeeType().isConstQualified()) 786 return false; 787 } 788 789 return true; 790 } 791 792 void CodeGenFunction::StartFunction(GlobalDecl GD, 793 QualType RetTy, 794 llvm::Function *Fn, 795 const CGFunctionInfo &FnInfo, 796 const FunctionArgList &Args, 797 SourceLocation Loc, 798 SourceLocation StartLoc) { 799 assert(!CurFn && 800 "Do not use a CodeGenFunction object for more than one function"); 801 802 const Decl *D = GD.getDecl(); 803 804 DidCallStackSave = false; 805 CurCodeDecl = D; 806 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 807 if (FD->usesSEHTry()) 808 CurSEHParent = FD; 809 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 810 FnRetTy = RetTy; 811 CurFn = Fn; 812 CurFnInfo = &FnInfo; 813 assert(CurFn->isDeclaration() && "Function already has body?"); 814 815 // If this function has been blacklisted for any of the enabled sanitizers, 816 // disable the sanitizer for the function. 817 do { 818 #define SANITIZER(NAME, ID) \ 819 if (SanOpts.empty()) \ 820 break; \ 821 if (SanOpts.has(SanitizerKind::ID)) \ 822 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 823 SanOpts.set(SanitizerKind::ID, false); 824 825 #include "clang/Basic/Sanitizers.def" 826 #undef SANITIZER 827 } while (0); 828 829 if (D) { 830 // Apply the no_sanitize* attributes to SanOpts. 831 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 832 SanOpts.Mask &= ~Attr->getMask(); 833 } 834 835 // Apply sanitizer attributes to the function. 836 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 837 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 838 if (SanOpts.has(SanitizerKind::Thread)) 839 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 840 if (SanOpts.has(SanitizerKind::Memory)) 841 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 842 if (SanOpts.has(SanitizerKind::SafeStack)) 843 Fn->addFnAttr(llvm::Attribute::SafeStack); 844 845 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 846 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 847 if (SanOpts.has(SanitizerKind::Thread)) { 848 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 849 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 850 if (OMD->getMethodFamily() == OMF_dealloc || 851 OMD->getMethodFamily() == OMF_initialize || 852 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 853 markAsIgnoreThreadCheckingAtRuntime(Fn); 854 } 855 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 IdentifierInfo *II = FD->getIdentifier(); 857 if (II && II->isStr("__destroy_helper_block_")) 858 markAsIgnoreThreadCheckingAtRuntime(Fn); 859 } 860 } 861 862 // Ignore unrelated casts in STL allocate() since the allocator must cast 863 // from void* to T* before object initialization completes. Don't match on the 864 // namespace because not all allocators are in std:: 865 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 866 if (matchesStlAllocatorFn(D, getContext())) 867 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 868 } 869 870 // Apply xray attributes to the function (as a string, for now) 871 if (D && ShouldXRayInstrumentFunction()) { 872 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 873 if (XRayAttr->alwaysXRayInstrument()) 874 Fn->addFnAttr("function-instrument", "xray-always"); 875 if (XRayAttr->neverXRayInstrument()) 876 Fn->addFnAttr("function-instrument", "xray-never"); 877 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 878 Fn->addFnAttr("xray-log-args", 879 llvm::utostr(LogArgs->getArgumentCount())); 880 } 881 } else { 882 if (!CGM.imbueXRayAttrs(Fn, Loc)) 883 Fn->addFnAttr( 884 "xray-instruction-threshold", 885 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 886 } 887 } 888 889 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 890 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 891 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 892 893 // Add no-jump-tables value. 894 Fn->addFnAttr("no-jump-tables", 895 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 896 897 // Add profile-sample-accurate value. 898 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 899 Fn->addFnAttr("profile-sample-accurate"); 900 901 if (getLangOpts().OpenCL) { 902 // Add metadata for a kernel function. 903 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 904 EmitOpenCLKernelMetadata(FD, Fn); 905 } 906 907 // If we are checking function types, emit a function type signature as 908 // prologue data. 909 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 910 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 911 if (llvm::Constant *PrologueSig = 912 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 913 llvm::Constant *FTRTTIConst = 914 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 915 llvm::Constant *FTRTTIConstEncoded = 916 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 917 llvm::Constant *PrologueStructElems[] = {PrologueSig, 918 FTRTTIConstEncoded}; 919 llvm::Constant *PrologueStructConst = 920 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 921 Fn->setPrologueData(PrologueStructConst); 922 } 923 } 924 } 925 926 // If we're checking nullability, we need to know whether we can check the 927 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 928 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 929 auto Nullability = FnRetTy->getNullability(getContext()); 930 if (Nullability && *Nullability == NullabilityKind::NonNull) { 931 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 932 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 933 RetValNullabilityPrecondition = 934 llvm::ConstantInt::getTrue(getLLVMContext()); 935 } 936 } 937 938 // If we're in C++ mode and the function name is "main", it is guaranteed 939 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 940 // used within a program"). 941 if (getLangOpts().CPlusPlus) 942 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 943 if (FD->isMain()) 944 Fn->addFnAttr(llvm::Attribute::NoRecurse); 945 946 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 947 948 // Create a marker to make it easy to insert allocas into the entryblock 949 // later. Don't create this with the builder, because we don't want it 950 // folded. 951 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 952 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 953 954 ReturnBlock = getJumpDestInCurrentScope("return"); 955 956 Builder.SetInsertPoint(EntryBB); 957 958 // If we're checking the return value, allocate space for a pointer to a 959 // precise source location of the checked return statement. 960 if (requiresReturnValueCheck()) { 961 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 962 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 963 } 964 965 // Emit subprogram debug descriptor. 966 if (CGDebugInfo *DI = getDebugInfo()) { 967 // Reconstruct the type from the argument list so that implicit parameters, 968 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 969 // convention. 970 CallingConv CC = CallingConv::CC_C; 971 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 972 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 973 CC = SrcFnTy->getCallConv(); 974 SmallVector<QualType, 16> ArgTypes; 975 for (const VarDecl *VD : Args) 976 ArgTypes.push_back(VD->getType()); 977 QualType FnType = getContext().getFunctionType( 978 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 979 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 980 } 981 982 if (ShouldInstrumentFunction()) 983 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 984 985 // Since emitting the mcount call here impacts optimizations such as function 986 // inlining, we just add an attribute to insert a mcount call in backend. 987 // The attribute "counting-function" is set to mcount function name which is 988 // architecture dependent. 989 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 990 if (CGM.getCodeGenOpts().CallFEntry) 991 Fn->addFnAttr("fentry-call", "true"); 992 else { 993 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 994 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 995 } 996 } 997 998 if (RetTy->isVoidType()) { 999 // Void type; nothing to return. 1000 ReturnValue = Address::invalid(); 1001 1002 // Count the implicit return. 1003 if (!endsWithReturn(D)) 1004 ++NumReturnExprs; 1005 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1006 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1007 // Indirect aggregate return; emit returned value directly into sret slot. 1008 // This reduces code size, and affects correctness in C++. 1009 auto AI = CurFn->arg_begin(); 1010 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1011 ++AI; 1012 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1013 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1014 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1015 // Load the sret pointer from the argument struct and return into that. 1016 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1017 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1018 --EI; 1019 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1020 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1021 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1022 } else { 1023 ReturnValue = CreateIRTemp(RetTy, "retval"); 1024 1025 // Tell the epilog emitter to autorelease the result. We do this 1026 // now so that various specialized functions can suppress it 1027 // during their IR-generation. 1028 if (getLangOpts().ObjCAutoRefCount && 1029 !CurFnInfo->isReturnsRetained() && 1030 RetTy->isObjCRetainableType()) 1031 AutoreleaseResult = true; 1032 } 1033 1034 EmitStartEHSpec(CurCodeDecl); 1035 1036 PrologueCleanupDepth = EHStack.stable_begin(); 1037 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1038 1039 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1040 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1041 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1042 if (MD->getParent()->isLambda() && 1043 MD->getOverloadedOperator() == OO_Call) { 1044 // We're in a lambda; figure out the captures. 1045 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1046 LambdaThisCaptureField); 1047 if (LambdaThisCaptureField) { 1048 // If the lambda captures the object referred to by '*this' - either by 1049 // value or by reference, make sure CXXThisValue points to the correct 1050 // object. 1051 1052 // Get the lvalue for the field (which is a copy of the enclosing object 1053 // or contains the address of the enclosing object). 1054 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1055 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1056 // If the enclosing object was captured by value, just use its address. 1057 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1058 } else { 1059 // Load the lvalue pointed to by the field, since '*this' was captured 1060 // by reference. 1061 CXXThisValue = 1062 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1063 } 1064 } 1065 for (auto *FD : MD->getParent()->fields()) { 1066 if (FD->hasCapturedVLAType()) { 1067 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1068 SourceLocation()).getScalarVal(); 1069 auto VAT = FD->getCapturedVLAType(); 1070 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1071 } 1072 } 1073 } else { 1074 // Not in a lambda; just use 'this' from the method. 1075 // FIXME: Should we generate a new load for each use of 'this'? The 1076 // fast register allocator would be happier... 1077 CXXThisValue = CXXABIThisValue; 1078 } 1079 1080 // Check the 'this' pointer once per function, if it's available. 1081 if (CXXABIThisValue) { 1082 SanitizerSet SkippedChecks; 1083 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1084 QualType ThisTy = MD->getThisType(getContext()); 1085 1086 // If this is the call operator of a lambda with no capture-default, it 1087 // may have a static invoker function, which may call this operator with 1088 // a null 'this' pointer. 1089 if (isLambdaCallOperator(MD) && 1090 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1091 LCD_None) 1092 SkippedChecks.set(SanitizerKind::Null, true); 1093 1094 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1095 : TCK_MemberCall, 1096 Loc, CXXABIThisValue, ThisTy, 1097 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1098 SkippedChecks); 1099 } 1100 } 1101 1102 // If any of the arguments have a variably modified type, make sure to 1103 // emit the type size. 1104 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1105 i != e; ++i) { 1106 const VarDecl *VD = *i; 1107 1108 // Dig out the type as written from ParmVarDecls; it's unclear whether 1109 // the standard (C99 6.9.1p10) requires this, but we're following the 1110 // precedent set by gcc. 1111 QualType Ty; 1112 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1113 Ty = PVD->getOriginalType(); 1114 else 1115 Ty = VD->getType(); 1116 1117 if (Ty->isVariablyModifiedType()) 1118 EmitVariablyModifiedType(Ty); 1119 } 1120 // Emit a location at the end of the prologue. 1121 if (CGDebugInfo *DI = getDebugInfo()) 1122 DI->EmitLocation(Builder, StartLoc); 1123 } 1124 1125 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1126 const Stmt *Body) { 1127 incrementProfileCounter(Body); 1128 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1129 EmitCompoundStmtWithoutScope(*S); 1130 else 1131 EmitStmt(Body); 1132 } 1133 1134 /// When instrumenting to collect profile data, the counts for some blocks 1135 /// such as switch cases need to not include the fall-through counts, so 1136 /// emit a branch around the instrumentation code. When not instrumenting, 1137 /// this just calls EmitBlock(). 1138 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1139 const Stmt *S) { 1140 llvm::BasicBlock *SkipCountBB = nullptr; 1141 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1142 // When instrumenting for profiling, the fallthrough to certain 1143 // statements needs to skip over the instrumentation code so that we 1144 // get an accurate count. 1145 SkipCountBB = createBasicBlock("skipcount"); 1146 EmitBranch(SkipCountBB); 1147 } 1148 EmitBlock(BB); 1149 uint64_t CurrentCount = getCurrentProfileCount(); 1150 incrementProfileCounter(S); 1151 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1152 if (SkipCountBB) 1153 EmitBlock(SkipCountBB); 1154 } 1155 1156 /// Tries to mark the given function nounwind based on the 1157 /// non-existence of any throwing calls within it. We believe this is 1158 /// lightweight enough to do at -O0. 1159 static void TryMarkNoThrow(llvm::Function *F) { 1160 // LLVM treats 'nounwind' on a function as part of the type, so we 1161 // can't do this on functions that can be overwritten. 1162 if (F->isInterposable()) return; 1163 1164 for (llvm::BasicBlock &BB : *F) 1165 for (llvm::Instruction &I : BB) 1166 if (I.mayThrow()) 1167 return; 1168 1169 F->setDoesNotThrow(); 1170 } 1171 1172 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1173 FunctionArgList &Args) { 1174 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1175 QualType ResTy = FD->getReturnType(); 1176 1177 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1178 if (MD && MD->isInstance()) { 1179 if (CGM.getCXXABI().HasThisReturn(GD)) 1180 ResTy = MD->getThisType(getContext()); 1181 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1182 ResTy = CGM.getContext().VoidPtrTy; 1183 CGM.getCXXABI().buildThisParam(*this, Args); 1184 } 1185 1186 // The base version of an inheriting constructor whose constructed base is a 1187 // virtual base is not passed any arguments (because it doesn't actually call 1188 // the inherited constructor). 1189 bool PassedParams = true; 1190 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1191 if (auto Inherited = CD->getInheritedConstructor()) 1192 PassedParams = 1193 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1194 1195 if (PassedParams) { 1196 for (auto *Param : FD->parameters()) { 1197 Args.push_back(Param); 1198 if (!Param->hasAttr<PassObjectSizeAttr>()) 1199 continue; 1200 1201 auto *Implicit = ImplicitParamDecl::Create( 1202 getContext(), Param->getDeclContext(), Param->getLocation(), 1203 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1204 SizeArguments[Param] = Implicit; 1205 Args.push_back(Implicit); 1206 } 1207 } 1208 1209 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1210 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1211 1212 return ResTy; 1213 } 1214 1215 static bool 1216 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1217 const ASTContext &Context) { 1218 QualType T = FD->getReturnType(); 1219 // Avoid the optimization for functions that return a record type with a 1220 // trivial destructor or another trivially copyable type. 1221 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1222 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1223 return !ClassDecl->hasTrivialDestructor(); 1224 } 1225 return !T.isTriviallyCopyableType(Context); 1226 } 1227 1228 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1229 const CGFunctionInfo &FnInfo) { 1230 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1231 CurGD = GD; 1232 1233 FunctionArgList Args; 1234 QualType ResTy = BuildFunctionArgList(GD, Args); 1235 1236 // Check if we should generate debug info for this function. 1237 if (FD->hasAttr<NoDebugAttr>()) 1238 DebugInfo = nullptr; // disable debug info indefinitely for this function 1239 1240 // The function might not have a body if we're generating thunks for a 1241 // function declaration. 1242 SourceRange BodyRange; 1243 if (Stmt *Body = FD->getBody()) 1244 BodyRange = Body->getSourceRange(); 1245 else 1246 BodyRange = FD->getLocation(); 1247 CurEHLocation = BodyRange.getEnd(); 1248 1249 // Use the location of the start of the function to determine where 1250 // the function definition is located. By default use the location 1251 // of the declaration as the location for the subprogram. A function 1252 // may lack a declaration in the source code if it is created by code 1253 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1254 SourceLocation Loc = FD->getLocation(); 1255 1256 // If this is a function specialization then use the pattern body 1257 // as the location for the function. 1258 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1259 if (SpecDecl->hasBody(SpecDecl)) 1260 Loc = SpecDecl->getLocation(); 1261 1262 Stmt *Body = FD->getBody(); 1263 1264 // Initialize helper which will detect jumps which can cause invalid lifetime 1265 // markers. 1266 if (Body && ShouldEmitLifetimeMarkers) 1267 Bypasses.Init(Body); 1268 1269 // Emit the standard function prologue. 1270 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1271 1272 // Generate the body of the function. 1273 PGO.assignRegionCounters(GD, CurFn); 1274 if (isa<CXXDestructorDecl>(FD)) 1275 EmitDestructorBody(Args); 1276 else if (isa<CXXConstructorDecl>(FD)) 1277 EmitConstructorBody(Args); 1278 else if (getLangOpts().CUDA && 1279 !getLangOpts().CUDAIsDevice && 1280 FD->hasAttr<CUDAGlobalAttr>()) 1281 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1282 else if (isa<CXXMethodDecl>(FD) && 1283 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1284 // The lambda static invoker function is special, because it forwards or 1285 // clones the body of the function call operator (but is actually static). 1286 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1287 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1288 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1289 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1290 // Implicit copy-assignment gets the same special treatment as implicit 1291 // copy-constructors. 1292 emitImplicitAssignmentOperatorBody(Args); 1293 } else if (Body) { 1294 EmitFunctionBody(Args, Body); 1295 } else 1296 llvm_unreachable("no definition for emitted function"); 1297 1298 // C++11 [stmt.return]p2: 1299 // Flowing off the end of a function [...] results in undefined behavior in 1300 // a value-returning function. 1301 // C11 6.9.1p12: 1302 // If the '}' that terminates a function is reached, and the value of the 1303 // function call is used by the caller, the behavior is undefined. 1304 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1305 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1306 bool ShouldEmitUnreachable = 1307 CGM.getCodeGenOpts().StrictReturn || 1308 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1309 if (SanOpts.has(SanitizerKind::Return)) { 1310 SanitizerScope SanScope(this); 1311 llvm::Value *IsFalse = Builder.getFalse(); 1312 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1313 SanitizerHandler::MissingReturn, 1314 EmitCheckSourceLocation(FD->getLocation()), None); 1315 } else if (ShouldEmitUnreachable) { 1316 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1317 EmitTrapCall(llvm::Intrinsic::trap); 1318 } 1319 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1320 Builder.CreateUnreachable(); 1321 Builder.ClearInsertionPoint(); 1322 } 1323 } 1324 1325 // Emit the standard function epilogue. 1326 FinishFunction(BodyRange.getEnd()); 1327 1328 // If we haven't marked the function nothrow through other means, do 1329 // a quick pass now to see if we can. 1330 if (!CurFn->doesNotThrow()) 1331 TryMarkNoThrow(CurFn); 1332 } 1333 1334 /// ContainsLabel - Return true if the statement contains a label in it. If 1335 /// this statement is not executed normally, it not containing a label means 1336 /// that we can just remove the code. 1337 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1338 // Null statement, not a label! 1339 if (!S) return false; 1340 1341 // If this is a label, we have to emit the code, consider something like: 1342 // if (0) { ... foo: bar(); } goto foo; 1343 // 1344 // TODO: If anyone cared, we could track __label__'s, since we know that you 1345 // can't jump to one from outside their declared region. 1346 if (isa<LabelStmt>(S)) 1347 return true; 1348 1349 // If this is a case/default statement, and we haven't seen a switch, we have 1350 // to emit the code. 1351 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1352 return true; 1353 1354 // If this is a switch statement, we want to ignore cases below it. 1355 if (isa<SwitchStmt>(S)) 1356 IgnoreCaseStmts = true; 1357 1358 // Scan subexpressions for verboten labels. 1359 for (const Stmt *SubStmt : S->children()) 1360 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1361 return true; 1362 1363 return false; 1364 } 1365 1366 /// containsBreak - Return true if the statement contains a break out of it. 1367 /// If the statement (recursively) contains a switch or loop with a break 1368 /// inside of it, this is fine. 1369 bool CodeGenFunction::containsBreak(const Stmt *S) { 1370 // Null statement, not a label! 1371 if (!S) return false; 1372 1373 // If this is a switch or loop that defines its own break scope, then we can 1374 // include it and anything inside of it. 1375 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1376 isa<ForStmt>(S)) 1377 return false; 1378 1379 if (isa<BreakStmt>(S)) 1380 return true; 1381 1382 // Scan subexpressions for verboten breaks. 1383 for (const Stmt *SubStmt : S->children()) 1384 if (containsBreak(SubStmt)) 1385 return true; 1386 1387 return false; 1388 } 1389 1390 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1391 if (!S) return false; 1392 1393 // Some statement kinds add a scope and thus never add a decl to the current 1394 // scope. Note, this list is longer than the list of statements that might 1395 // have an unscoped decl nested within them, but this way is conservatively 1396 // correct even if more statement kinds are added. 1397 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1398 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1399 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1400 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1401 return false; 1402 1403 if (isa<DeclStmt>(S)) 1404 return true; 1405 1406 for (const Stmt *SubStmt : S->children()) 1407 if (mightAddDeclToScope(SubStmt)) 1408 return true; 1409 1410 return false; 1411 } 1412 1413 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1414 /// to a constant, or if it does but contains a label, return false. If it 1415 /// constant folds return true and set the boolean result in Result. 1416 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1417 bool &ResultBool, 1418 bool AllowLabels) { 1419 llvm::APSInt ResultInt; 1420 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1421 return false; 1422 1423 ResultBool = ResultInt.getBoolValue(); 1424 return true; 1425 } 1426 1427 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1428 /// to a constant, or if it does but contains a label, return false. If it 1429 /// constant folds return true and set the folded value. 1430 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1431 llvm::APSInt &ResultInt, 1432 bool AllowLabels) { 1433 // FIXME: Rename and handle conversion of other evaluatable things 1434 // to bool. 1435 llvm::APSInt Int; 1436 if (!Cond->EvaluateAsInt(Int, getContext())) 1437 return false; // Not foldable, not integer or not fully evaluatable. 1438 1439 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1440 return false; // Contains a label. 1441 1442 ResultInt = Int; 1443 return true; 1444 } 1445 1446 1447 1448 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1449 /// statement) to the specified blocks. Based on the condition, this might try 1450 /// to simplify the codegen of the conditional based on the branch. 1451 /// 1452 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1453 llvm::BasicBlock *TrueBlock, 1454 llvm::BasicBlock *FalseBlock, 1455 uint64_t TrueCount) { 1456 Cond = Cond->IgnoreParens(); 1457 1458 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1459 1460 // Handle X && Y in a condition. 1461 if (CondBOp->getOpcode() == BO_LAnd) { 1462 // If we have "1 && X", simplify the code. "0 && X" would have constant 1463 // folded if the case was simple enough. 1464 bool ConstantBool = false; 1465 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1466 ConstantBool) { 1467 // br(1 && X) -> br(X). 1468 incrementProfileCounter(CondBOp); 1469 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1470 TrueCount); 1471 } 1472 1473 // If we have "X && 1", simplify the code to use an uncond branch. 1474 // "X && 0" would have been constant folded to 0. 1475 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1476 ConstantBool) { 1477 // br(X && 1) -> br(X). 1478 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1479 TrueCount); 1480 } 1481 1482 // Emit the LHS as a conditional. If the LHS conditional is false, we 1483 // want to jump to the FalseBlock. 1484 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1485 // The counter tells us how often we evaluate RHS, and all of TrueCount 1486 // can be propagated to that branch. 1487 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1488 1489 ConditionalEvaluation eval(*this); 1490 { 1491 ApplyDebugLocation DL(*this, Cond); 1492 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1493 EmitBlock(LHSTrue); 1494 } 1495 1496 incrementProfileCounter(CondBOp); 1497 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1498 1499 // Any temporaries created here are conditional. 1500 eval.begin(*this); 1501 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1502 eval.end(*this); 1503 1504 return; 1505 } 1506 1507 if (CondBOp->getOpcode() == BO_LOr) { 1508 // If we have "0 || X", simplify the code. "1 || X" would have constant 1509 // folded if the case was simple enough. 1510 bool ConstantBool = false; 1511 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1512 !ConstantBool) { 1513 // br(0 || X) -> br(X). 1514 incrementProfileCounter(CondBOp); 1515 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1516 TrueCount); 1517 } 1518 1519 // If we have "X || 0", simplify the code to use an uncond branch. 1520 // "X || 1" would have been constant folded to 1. 1521 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1522 !ConstantBool) { 1523 // br(X || 0) -> br(X). 1524 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1525 TrueCount); 1526 } 1527 1528 // Emit the LHS as a conditional. If the LHS conditional is true, we 1529 // want to jump to the TrueBlock. 1530 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1531 // We have the count for entry to the RHS and for the whole expression 1532 // being true, so we can divy up True count between the short circuit and 1533 // the RHS. 1534 uint64_t LHSCount = 1535 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1536 uint64_t RHSCount = TrueCount - LHSCount; 1537 1538 ConditionalEvaluation eval(*this); 1539 { 1540 ApplyDebugLocation DL(*this, Cond); 1541 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1542 EmitBlock(LHSFalse); 1543 } 1544 1545 incrementProfileCounter(CondBOp); 1546 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1547 1548 // Any temporaries created here are conditional. 1549 eval.begin(*this); 1550 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1551 1552 eval.end(*this); 1553 1554 return; 1555 } 1556 } 1557 1558 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1559 // br(!x, t, f) -> br(x, f, t) 1560 if (CondUOp->getOpcode() == UO_LNot) { 1561 // Negate the count. 1562 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1563 // Negate the condition and swap the destination blocks. 1564 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1565 FalseCount); 1566 } 1567 } 1568 1569 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1570 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1571 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1572 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1573 1574 ConditionalEvaluation cond(*this); 1575 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1576 getProfileCount(CondOp)); 1577 1578 // When computing PGO branch weights, we only know the overall count for 1579 // the true block. This code is essentially doing tail duplication of the 1580 // naive code-gen, introducing new edges for which counts are not 1581 // available. Divide the counts proportionally between the LHS and RHS of 1582 // the conditional operator. 1583 uint64_t LHSScaledTrueCount = 0; 1584 if (TrueCount) { 1585 double LHSRatio = 1586 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1587 LHSScaledTrueCount = TrueCount * LHSRatio; 1588 } 1589 1590 cond.begin(*this); 1591 EmitBlock(LHSBlock); 1592 incrementProfileCounter(CondOp); 1593 { 1594 ApplyDebugLocation DL(*this, Cond); 1595 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1596 LHSScaledTrueCount); 1597 } 1598 cond.end(*this); 1599 1600 cond.begin(*this); 1601 EmitBlock(RHSBlock); 1602 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1603 TrueCount - LHSScaledTrueCount); 1604 cond.end(*this); 1605 1606 return; 1607 } 1608 1609 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1610 // Conditional operator handling can give us a throw expression as a 1611 // condition for a case like: 1612 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1613 // Fold this to: 1614 // br(c, throw x, br(y, t, f)) 1615 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1616 return; 1617 } 1618 1619 // If the branch has a condition wrapped by __builtin_unpredictable, 1620 // create metadata that specifies that the branch is unpredictable. 1621 // Don't bother if not optimizing because that metadata would not be used. 1622 llvm::MDNode *Unpredictable = nullptr; 1623 auto *Call = dyn_cast<CallExpr>(Cond); 1624 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1625 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1626 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1627 llvm::MDBuilder MDHelper(getLLVMContext()); 1628 Unpredictable = MDHelper.createUnpredictable(); 1629 } 1630 } 1631 1632 // Create branch weights based on the number of times we get here and the 1633 // number of times the condition should be true. 1634 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1635 llvm::MDNode *Weights = 1636 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1637 1638 // Emit the code with the fully general case. 1639 llvm::Value *CondV; 1640 { 1641 ApplyDebugLocation DL(*this, Cond); 1642 CondV = EvaluateExprAsBool(Cond); 1643 } 1644 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1645 } 1646 1647 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1648 /// specified stmt yet. 1649 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1650 CGM.ErrorUnsupported(S, Type); 1651 } 1652 1653 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1654 /// variable-length array whose elements have a non-zero bit-pattern. 1655 /// 1656 /// \param baseType the inner-most element type of the array 1657 /// \param src - a char* pointing to the bit-pattern for a single 1658 /// base element of the array 1659 /// \param sizeInChars - the total size of the VLA, in chars 1660 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1661 Address dest, Address src, 1662 llvm::Value *sizeInChars) { 1663 CGBuilderTy &Builder = CGF.Builder; 1664 1665 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1666 llvm::Value *baseSizeInChars 1667 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1668 1669 Address begin = 1670 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1671 llvm::Value *end = 1672 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1673 1674 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1675 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1676 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1677 1678 // Make a loop over the VLA. C99 guarantees that the VLA element 1679 // count must be nonzero. 1680 CGF.EmitBlock(loopBB); 1681 1682 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1683 cur->addIncoming(begin.getPointer(), originBB); 1684 1685 CharUnits curAlign = 1686 dest.getAlignment().alignmentOfArrayElement(baseSize); 1687 1688 // memcpy the individual element bit-pattern. 1689 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1690 /*volatile*/ false); 1691 1692 // Go to the next element. 1693 llvm::Value *next = 1694 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1695 1696 // Leave if that's the end of the VLA. 1697 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1698 Builder.CreateCondBr(done, contBB, loopBB); 1699 cur->addIncoming(next, loopBB); 1700 1701 CGF.EmitBlock(contBB); 1702 } 1703 1704 void 1705 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1706 // Ignore empty classes in C++. 1707 if (getLangOpts().CPlusPlus) { 1708 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1709 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1710 return; 1711 } 1712 } 1713 1714 // Cast the dest ptr to the appropriate i8 pointer type. 1715 if (DestPtr.getElementType() != Int8Ty) 1716 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1717 1718 // Get size and alignment info for this aggregate. 1719 CharUnits size = getContext().getTypeSizeInChars(Ty); 1720 1721 llvm::Value *SizeVal; 1722 const VariableArrayType *vla; 1723 1724 // Don't bother emitting a zero-byte memset. 1725 if (size.isZero()) { 1726 // But note that getTypeInfo returns 0 for a VLA. 1727 if (const VariableArrayType *vlaType = 1728 dyn_cast_or_null<VariableArrayType>( 1729 getContext().getAsArrayType(Ty))) { 1730 QualType eltType; 1731 llvm::Value *numElts; 1732 std::tie(numElts, eltType) = getVLASize(vlaType); 1733 1734 SizeVal = numElts; 1735 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1736 if (!eltSize.isOne()) 1737 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1738 vla = vlaType; 1739 } else { 1740 return; 1741 } 1742 } else { 1743 SizeVal = CGM.getSize(size); 1744 vla = nullptr; 1745 } 1746 1747 // If the type contains a pointer to data member we can't memset it to zero. 1748 // Instead, create a null constant and copy it to the destination. 1749 // TODO: there are other patterns besides zero that we can usefully memset, 1750 // like -1, which happens to be the pattern used by member-pointers. 1751 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1752 // For a VLA, emit a single element, then splat that over the VLA. 1753 if (vla) Ty = getContext().getBaseElementType(vla); 1754 1755 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1756 1757 llvm::GlobalVariable *NullVariable = 1758 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1759 /*isConstant=*/true, 1760 llvm::GlobalVariable::PrivateLinkage, 1761 NullConstant, Twine()); 1762 CharUnits NullAlign = DestPtr.getAlignment(); 1763 NullVariable->setAlignment(NullAlign.getQuantity()); 1764 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1765 NullAlign); 1766 1767 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1768 1769 // Get and call the appropriate llvm.memcpy overload. 1770 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1771 return; 1772 } 1773 1774 // Otherwise, just memset the whole thing to zero. This is legal 1775 // because in LLVM, all default initializers (other than the ones we just 1776 // handled above) are guaranteed to have a bit pattern of all zeros. 1777 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1778 } 1779 1780 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1781 // Make sure that there is a block for the indirect goto. 1782 if (!IndirectBranch) 1783 GetIndirectGotoBlock(); 1784 1785 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1786 1787 // Make sure the indirect branch includes all of the address-taken blocks. 1788 IndirectBranch->addDestination(BB); 1789 return llvm::BlockAddress::get(CurFn, BB); 1790 } 1791 1792 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1793 // If we already made the indirect branch for indirect goto, return its block. 1794 if (IndirectBranch) return IndirectBranch->getParent(); 1795 1796 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1797 1798 // Create the PHI node that indirect gotos will add entries to. 1799 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1800 "indirect.goto.dest"); 1801 1802 // Create the indirect branch instruction. 1803 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1804 return IndirectBranch->getParent(); 1805 } 1806 1807 /// Computes the length of an array in elements, as well as the base 1808 /// element type and a properly-typed first element pointer. 1809 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1810 QualType &baseType, 1811 Address &addr) { 1812 const ArrayType *arrayType = origArrayType; 1813 1814 // If it's a VLA, we have to load the stored size. Note that 1815 // this is the size of the VLA in bytes, not its size in elements. 1816 llvm::Value *numVLAElements = nullptr; 1817 if (isa<VariableArrayType>(arrayType)) { 1818 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1819 1820 // Walk into all VLAs. This doesn't require changes to addr, 1821 // which has type T* where T is the first non-VLA element type. 1822 do { 1823 QualType elementType = arrayType->getElementType(); 1824 arrayType = getContext().getAsArrayType(elementType); 1825 1826 // If we only have VLA components, 'addr' requires no adjustment. 1827 if (!arrayType) { 1828 baseType = elementType; 1829 return numVLAElements; 1830 } 1831 } while (isa<VariableArrayType>(arrayType)); 1832 1833 // We get out here only if we find a constant array type 1834 // inside the VLA. 1835 } 1836 1837 // We have some number of constant-length arrays, so addr should 1838 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1839 // down to the first element of addr. 1840 SmallVector<llvm::Value*, 8> gepIndices; 1841 1842 // GEP down to the array type. 1843 llvm::ConstantInt *zero = Builder.getInt32(0); 1844 gepIndices.push_back(zero); 1845 1846 uint64_t countFromCLAs = 1; 1847 QualType eltType; 1848 1849 llvm::ArrayType *llvmArrayType = 1850 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1851 while (llvmArrayType) { 1852 assert(isa<ConstantArrayType>(arrayType)); 1853 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1854 == llvmArrayType->getNumElements()); 1855 1856 gepIndices.push_back(zero); 1857 countFromCLAs *= llvmArrayType->getNumElements(); 1858 eltType = arrayType->getElementType(); 1859 1860 llvmArrayType = 1861 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1862 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1863 assert((!llvmArrayType || arrayType) && 1864 "LLVM and Clang types are out-of-synch"); 1865 } 1866 1867 if (arrayType) { 1868 // From this point onwards, the Clang array type has been emitted 1869 // as some other type (probably a packed struct). Compute the array 1870 // size, and just emit the 'begin' expression as a bitcast. 1871 while (arrayType) { 1872 countFromCLAs *= 1873 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1874 eltType = arrayType->getElementType(); 1875 arrayType = getContext().getAsArrayType(eltType); 1876 } 1877 1878 llvm::Type *baseType = ConvertType(eltType); 1879 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1880 } else { 1881 // Create the actual GEP. 1882 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1883 gepIndices, "array.begin"), 1884 addr.getAlignment()); 1885 } 1886 1887 baseType = eltType; 1888 1889 llvm::Value *numElements 1890 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1891 1892 // If we had any VLA dimensions, factor them in. 1893 if (numVLAElements) 1894 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1895 1896 return numElements; 1897 } 1898 1899 std::pair<llvm::Value*, QualType> 1900 CodeGenFunction::getVLASize(QualType type) { 1901 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1902 assert(vla && "type was not a variable array type!"); 1903 return getVLASize(vla); 1904 } 1905 1906 std::pair<llvm::Value*, QualType> 1907 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1908 // The number of elements so far; always size_t. 1909 llvm::Value *numElements = nullptr; 1910 1911 QualType elementType; 1912 do { 1913 elementType = type->getElementType(); 1914 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1915 assert(vlaSize && "no size for VLA!"); 1916 assert(vlaSize->getType() == SizeTy); 1917 1918 if (!numElements) { 1919 numElements = vlaSize; 1920 } else { 1921 // It's undefined behavior if this wraps around, so mark it that way. 1922 // FIXME: Teach -fsanitize=undefined to trap this. 1923 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1924 } 1925 } while ((type = getContext().getAsVariableArrayType(elementType))); 1926 1927 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1928 } 1929 1930 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1931 assert(type->isVariablyModifiedType() && 1932 "Must pass variably modified type to EmitVLASizes!"); 1933 1934 EnsureInsertPoint(); 1935 1936 // We're going to walk down into the type and look for VLA 1937 // expressions. 1938 do { 1939 assert(type->isVariablyModifiedType()); 1940 1941 const Type *ty = type.getTypePtr(); 1942 switch (ty->getTypeClass()) { 1943 1944 #define TYPE(Class, Base) 1945 #define ABSTRACT_TYPE(Class, Base) 1946 #define NON_CANONICAL_TYPE(Class, Base) 1947 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1948 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1949 #include "clang/AST/TypeNodes.def" 1950 llvm_unreachable("unexpected dependent type!"); 1951 1952 // These types are never variably-modified. 1953 case Type::Builtin: 1954 case Type::Complex: 1955 case Type::Vector: 1956 case Type::ExtVector: 1957 case Type::Record: 1958 case Type::Enum: 1959 case Type::Elaborated: 1960 case Type::TemplateSpecialization: 1961 case Type::ObjCTypeParam: 1962 case Type::ObjCObject: 1963 case Type::ObjCInterface: 1964 case Type::ObjCObjectPointer: 1965 llvm_unreachable("type class is never variably-modified!"); 1966 1967 case Type::Adjusted: 1968 type = cast<AdjustedType>(ty)->getAdjustedType(); 1969 break; 1970 1971 case Type::Decayed: 1972 type = cast<DecayedType>(ty)->getPointeeType(); 1973 break; 1974 1975 case Type::Pointer: 1976 type = cast<PointerType>(ty)->getPointeeType(); 1977 break; 1978 1979 case Type::BlockPointer: 1980 type = cast<BlockPointerType>(ty)->getPointeeType(); 1981 break; 1982 1983 case Type::LValueReference: 1984 case Type::RValueReference: 1985 type = cast<ReferenceType>(ty)->getPointeeType(); 1986 break; 1987 1988 case Type::MemberPointer: 1989 type = cast<MemberPointerType>(ty)->getPointeeType(); 1990 break; 1991 1992 case Type::ConstantArray: 1993 case Type::IncompleteArray: 1994 // Losing element qualification here is fine. 1995 type = cast<ArrayType>(ty)->getElementType(); 1996 break; 1997 1998 case Type::VariableArray: { 1999 // Losing element qualification here is fine. 2000 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2001 2002 // Unknown size indication requires no size computation. 2003 // Otherwise, evaluate and record it. 2004 if (const Expr *size = vat->getSizeExpr()) { 2005 // It's possible that we might have emitted this already, 2006 // e.g. with a typedef and a pointer to it. 2007 llvm::Value *&entry = VLASizeMap[size]; 2008 if (!entry) { 2009 llvm::Value *Size = EmitScalarExpr(size); 2010 2011 // C11 6.7.6.2p5: 2012 // If the size is an expression that is not an integer constant 2013 // expression [...] each time it is evaluated it shall have a value 2014 // greater than zero. 2015 if (SanOpts.has(SanitizerKind::VLABound) && 2016 size->getType()->isSignedIntegerType()) { 2017 SanitizerScope SanScope(this); 2018 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2019 llvm::Constant *StaticArgs[] = { 2020 EmitCheckSourceLocation(size->getLocStart()), 2021 EmitCheckTypeDescriptor(size->getType()) 2022 }; 2023 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2024 SanitizerKind::VLABound), 2025 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2026 } 2027 2028 // Always zexting here would be wrong if it weren't 2029 // undefined behavior to have a negative bound. 2030 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2031 } 2032 } 2033 type = vat->getElementType(); 2034 break; 2035 } 2036 2037 case Type::FunctionProto: 2038 case Type::FunctionNoProto: 2039 type = cast<FunctionType>(ty)->getReturnType(); 2040 break; 2041 2042 case Type::Paren: 2043 case Type::TypeOf: 2044 case Type::UnaryTransform: 2045 case Type::Attributed: 2046 case Type::SubstTemplateTypeParm: 2047 case Type::PackExpansion: 2048 // Keep walking after single level desugaring. 2049 type = type.getSingleStepDesugaredType(getContext()); 2050 break; 2051 2052 case Type::Typedef: 2053 case Type::Decltype: 2054 case Type::Auto: 2055 case Type::DeducedTemplateSpecialization: 2056 // Stop walking: nothing to do. 2057 return; 2058 2059 case Type::TypeOfExpr: 2060 // Stop walking: emit typeof expression. 2061 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2062 return; 2063 2064 case Type::Atomic: 2065 type = cast<AtomicType>(ty)->getValueType(); 2066 break; 2067 2068 case Type::Pipe: 2069 type = cast<PipeType>(ty)->getElementType(); 2070 break; 2071 } 2072 } while (type->isVariablyModifiedType()); 2073 } 2074 2075 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2076 if (getContext().getBuiltinVaListType()->isArrayType()) 2077 return EmitPointerWithAlignment(E); 2078 return EmitLValue(E).getAddress(); 2079 } 2080 2081 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2082 return EmitLValue(E).getAddress(); 2083 } 2084 2085 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2086 const APValue &Init) { 2087 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2088 if (CGDebugInfo *Dbg = getDebugInfo()) 2089 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2090 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2091 } 2092 2093 CodeGenFunction::PeepholeProtection 2094 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2095 // At the moment, the only aggressive peephole we do in IR gen 2096 // is trunc(zext) folding, but if we add more, we can easily 2097 // extend this protection. 2098 2099 if (!rvalue.isScalar()) return PeepholeProtection(); 2100 llvm::Value *value = rvalue.getScalarVal(); 2101 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2102 2103 // Just make an extra bitcast. 2104 assert(HaveInsertPoint()); 2105 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2106 Builder.GetInsertBlock()); 2107 2108 PeepholeProtection protection; 2109 protection.Inst = inst; 2110 return protection; 2111 } 2112 2113 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2114 if (!protection.Inst) return; 2115 2116 // In theory, we could try to duplicate the peepholes now, but whatever. 2117 protection.Inst->eraseFromParent(); 2118 } 2119 2120 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2121 llvm::Value *AnnotatedVal, 2122 StringRef AnnotationStr, 2123 SourceLocation Location) { 2124 llvm::Value *Args[4] = { 2125 AnnotatedVal, 2126 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2127 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2128 CGM.EmitAnnotationLineNo(Location) 2129 }; 2130 return Builder.CreateCall(AnnotationFn, Args); 2131 } 2132 2133 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2134 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2135 // FIXME We create a new bitcast for every annotation because that's what 2136 // llvm-gcc was doing. 2137 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2138 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2139 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2140 I->getAnnotation(), D->getLocation()); 2141 } 2142 2143 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2144 Address Addr) { 2145 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2146 llvm::Value *V = Addr.getPointer(); 2147 llvm::Type *VTy = V->getType(); 2148 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2149 CGM.Int8PtrTy); 2150 2151 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2152 // FIXME Always emit the cast inst so we can differentiate between 2153 // annotation on the first field of a struct and annotation on the struct 2154 // itself. 2155 if (VTy != CGM.Int8PtrTy) 2156 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2157 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2158 V = Builder.CreateBitCast(V, VTy); 2159 } 2160 2161 return Address(V, Addr.getAlignment()); 2162 } 2163 2164 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2165 2166 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2167 : CGF(CGF) { 2168 assert(!CGF->IsSanitizerScope); 2169 CGF->IsSanitizerScope = true; 2170 } 2171 2172 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2173 CGF->IsSanitizerScope = false; 2174 } 2175 2176 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2177 const llvm::Twine &Name, 2178 llvm::BasicBlock *BB, 2179 llvm::BasicBlock::iterator InsertPt) const { 2180 LoopStack.InsertHelper(I); 2181 if (IsSanitizerScope) 2182 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2183 } 2184 2185 void CGBuilderInserter::InsertHelper( 2186 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2187 llvm::BasicBlock::iterator InsertPt) const { 2188 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2189 if (CGF) 2190 CGF->InsertHelper(I, Name, BB, InsertPt); 2191 } 2192 2193 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2194 CodeGenModule &CGM, const FunctionDecl *FD, 2195 std::string &FirstMissing) { 2196 // If there aren't any required features listed then go ahead and return. 2197 if (ReqFeatures.empty()) 2198 return false; 2199 2200 // Now build up the set of caller features and verify that all the required 2201 // features are there. 2202 llvm::StringMap<bool> CallerFeatureMap; 2203 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2204 2205 // If we have at least one of the features in the feature list return 2206 // true, otherwise return false. 2207 return std::all_of( 2208 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2209 SmallVector<StringRef, 1> OrFeatures; 2210 Feature.split(OrFeatures, "|"); 2211 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2212 [&](StringRef Feature) { 2213 if (!CallerFeatureMap.lookup(Feature)) { 2214 FirstMissing = Feature.str(); 2215 return false; 2216 } 2217 return true; 2218 }); 2219 }); 2220 } 2221 2222 // Emits an error if we don't have a valid set of target features for the 2223 // called function. 2224 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2225 const FunctionDecl *TargetDecl) { 2226 // Early exit if this is an indirect call. 2227 if (!TargetDecl) 2228 return; 2229 2230 // Get the current enclosing function if it exists. If it doesn't 2231 // we can't check the target features anyhow. 2232 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2233 if (!FD) 2234 return; 2235 2236 // Grab the required features for the call. For a builtin this is listed in 2237 // the td file with the default cpu, for an always_inline function this is any 2238 // listed cpu and any listed features. 2239 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2240 std::string MissingFeature; 2241 if (BuiltinID) { 2242 SmallVector<StringRef, 1> ReqFeatures; 2243 const char *FeatureList = 2244 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2245 // Return if the builtin doesn't have any required features. 2246 if (!FeatureList || StringRef(FeatureList) == "") 2247 return; 2248 StringRef(FeatureList).split(ReqFeatures, ","); 2249 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2250 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2251 << TargetDecl->getDeclName() 2252 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2253 2254 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2255 // Get the required features for the callee. 2256 SmallVector<StringRef, 1> ReqFeatures; 2257 llvm::StringMap<bool> CalleeFeatureMap; 2258 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2259 for (const auto &F : CalleeFeatureMap) { 2260 // Only positive features are "required". 2261 if (F.getValue()) 2262 ReqFeatures.push_back(F.getKey()); 2263 } 2264 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2265 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2266 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2267 } 2268 } 2269 2270 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2271 if (!CGM.getCodeGenOpts().SanitizeStats) 2272 return; 2273 2274 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2275 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2276 CGM.getSanStats().create(IRB, SSK); 2277 } 2278 2279 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2280 if (CGDebugInfo *DI = getDebugInfo()) 2281 return DI->SourceLocToDebugLoc(Location); 2282 2283 return llvm::DebugLoc(); 2284 } 2285