1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 48 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 49 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 50 CXXThisValue(0), CXXDefaultInitExprThis(0), 51 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 52 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 53 TerminateHandler(0), TrapBB(0) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 } 76 77 78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 79 return CGM.getTypes().ConvertTypeForMem(T); 80 } 81 82 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 83 return CGM.getTypes().ConvertType(T); 84 } 85 86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 87 type = type.getCanonicalType(); 88 while (true) { 89 switch (type->getTypeClass()) { 90 #define TYPE(name, parent) 91 #define ABSTRACT_TYPE(name, parent) 92 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 93 #define DEPENDENT_TYPE(name, parent) case Type::name: 94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 95 #include "clang/AST/TypeNodes.def" 96 llvm_unreachable("non-canonical or dependent type in IR-generation"); 97 98 case Type::Auto: 99 llvm_unreachable("undeduced auto type in IR-generation"); 100 101 // Various scalar types. 102 case Type::Builtin: 103 case Type::Pointer: 104 case Type::BlockPointer: 105 case Type::LValueReference: 106 case Type::RValueReference: 107 case Type::MemberPointer: 108 case Type::Vector: 109 case Type::ExtVector: 110 case Type::FunctionProto: 111 case Type::FunctionNoProto: 112 case Type::Enum: 113 case Type::ObjCObjectPointer: 114 return TEK_Scalar; 115 116 // Complexes. 117 case Type::Complex: 118 return TEK_Complex; 119 120 // Arrays, records, and Objective-C objects. 121 case Type::ConstantArray: 122 case Type::IncompleteArray: 123 case Type::VariableArray: 124 case Type::Record: 125 case Type::ObjCObject: 126 case Type::ObjCInterface: 127 return TEK_Aggregate; 128 129 // We operate on atomic values according to their underlying type. 130 case Type::Atomic: 131 type = cast<AtomicType>(type)->getValueType(); 132 continue; 133 } 134 llvm_unreachable("unknown type kind!"); 135 } 136 } 137 138 void CodeGenFunction::EmitReturnBlock() { 139 // For cleanliness, we try to avoid emitting the return block for 140 // simple cases. 141 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 142 143 if (CurBB) { 144 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 145 146 // We have a valid insert point, reuse it if it is empty or there are no 147 // explicit jumps to the return block. 148 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 149 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 150 delete ReturnBlock.getBlock(); 151 } else 152 EmitBlock(ReturnBlock.getBlock()); 153 return; 154 } 155 156 // Otherwise, if the return block is the target of a single direct 157 // branch then we can just put the code in that block instead. This 158 // cleans up functions which started with a unified return block. 159 if (ReturnBlock.getBlock()->hasOneUse()) { 160 llvm::BranchInst *BI = 161 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 162 if (BI && BI->isUnconditional() && 163 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 164 // Reset insertion point, including debug location, and delete the 165 // branch. This is really subtle and only works because the next change 166 // in location will hit the caching in CGDebugInfo::EmitLocation and not 167 // override this. 168 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 169 Builder.SetInsertPoint(BI->getParent()); 170 BI->eraseFromParent(); 171 delete ReturnBlock.getBlock(); 172 return; 173 } 174 } 175 176 // FIXME: We are at an unreachable point, there is no reason to emit the block 177 // unless it has uses. However, we still need a place to put the debug 178 // region.end for now. 179 180 EmitBlock(ReturnBlock.getBlock()); 181 } 182 183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 184 if (!BB) return; 185 if (!BB->use_empty()) 186 return CGF.CurFn->getBasicBlockList().push_back(BB); 187 delete BB; 188 } 189 190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 191 assert(BreakContinueStack.empty() && 192 "mismatched push/pop in break/continue stack!"); 193 194 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 195 && NumSimpleReturnExprs == NumReturnExprs 196 && ReturnBlock.getBlock()->use_empty(); 197 // Usually the return expression is evaluated before the cleanup 198 // code. If the function contains only a simple return statement, 199 // such as a constant, the location before the cleanup code becomes 200 // the last useful breakpoint in the function, because the simple 201 // return expression will be evaluated after the cleanup code. To be 202 // safe, set the debug location for cleanup code to the location of 203 // the return statement. Otherwise the cleanup code should be at the 204 // end of the function's lexical scope. 205 // 206 // If there are multiple branches to the return block, the branch 207 // instructions will get the location of the return statements and 208 // all will be fine. 209 if (CGDebugInfo *DI = getDebugInfo()) { 210 if (OnlySimpleReturnStmts) 211 DI->EmitLocation(Builder, LastStopPoint); 212 else 213 DI->EmitLocation(Builder, EndLoc); 214 } 215 216 // Pop any cleanups that might have been associated with the 217 // parameters. Do this in whatever block we're currently in; it's 218 // important to do this before we enter the return block or return 219 // edges will be *really* confused. 220 bool EmitRetDbgLoc = true; 221 if (EHStack.stable_begin() != PrologueCleanupDepth) { 222 PopCleanupBlocks(PrologueCleanupDepth); 223 224 // Make sure the line table doesn't jump back into the body for 225 // the ret after it's been at EndLoc. 226 EmitRetDbgLoc = false; 227 228 if (CGDebugInfo *DI = getDebugInfo()) 229 if (OnlySimpleReturnStmts) 230 DI->EmitLocation(Builder, EndLoc); 231 } 232 233 // Emit function epilog (to return). 234 EmitReturnBlock(); 235 236 if (ShouldInstrumentFunction()) 237 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 238 239 // Emit debug descriptor for function end. 240 if (CGDebugInfo *DI = getDebugInfo()) { 241 DI->EmitFunctionEnd(Builder); 242 } 243 244 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 245 EmitEndEHSpec(CurCodeDecl); 246 247 assert(EHStack.empty() && 248 "did not remove all scopes from cleanup stack!"); 249 250 // If someone did an indirect goto, emit the indirect goto block at the end of 251 // the function. 252 if (IndirectBranch) { 253 EmitBlock(IndirectBranch->getParent()); 254 Builder.ClearInsertionPoint(); 255 } 256 257 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 258 llvm::Instruction *Ptr = AllocaInsertPt; 259 AllocaInsertPt = 0; 260 Ptr->eraseFromParent(); 261 262 // If someone took the address of a label but never did an indirect goto, we 263 // made a zero entry PHI node, which is illegal, zap it now. 264 if (IndirectBranch) { 265 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 266 if (PN->getNumIncomingValues() == 0) { 267 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 268 PN->eraseFromParent(); 269 } 270 } 271 272 EmitIfUsed(*this, EHResumeBlock); 273 EmitIfUsed(*this, TerminateLandingPad); 274 EmitIfUsed(*this, TerminateHandler); 275 EmitIfUsed(*this, UnreachableBlock); 276 277 if (CGM.getCodeGenOpts().EmitDeclMetadata) 278 EmitDeclMetadata(); 279 280 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 281 I = DeferredReplacements.begin(), 282 E = DeferredReplacements.end(); 283 I != E; ++I) { 284 I->first->replaceAllUsesWith(I->second); 285 I->first->eraseFromParent(); 286 } 287 } 288 289 /// ShouldInstrumentFunction - Return true if the current function should be 290 /// instrumented with __cyg_profile_func_* calls 291 bool CodeGenFunction::ShouldInstrumentFunction() { 292 if (!CGM.getCodeGenOpts().InstrumentFunctions) 293 return false; 294 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 295 return false; 296 return true; 297 } 298 299 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 300 /// instrumentation function with the current function and the call site, if 301 /// function instrumentation is enabled. 302 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 303 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 304 llvm::PointerType *PointerTy = Int8PtrTy; 305 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 306 llvm::FunctionType *FunctionTy = 307 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 308 309 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 310 llvm::CallInst *CallSite = Builder.CreateCall( 311 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 312 llvm::ConstantInt::get(Int32Ty, 0), 313 "callsite"); 314 315 llvm::Value *args[] = { 316 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 317 CallSite 318 }; 319 320 EmitNounwindRuntimeCall(F, args); 321 } 322 323 void CodeGenFunction::EmitMCountInstrumentation() { 324 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 325 326 llvm::Constant *MCountFn = 327 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 328 EmitNounwindRuntimeCall(MCountFn); 329 } 330 331 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 332 // information in the program executable. The argument information stored 333 // includes the argument name, its type, the address and access qualifiers used. 334 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 335 CodeGenModule &CGM,llvm::LLVMContext &Context, 336 SmallVector <llvm::Value*, 5> &kernelMDArgs, 337 CGBuilderTy& Builder, ASTContext &ASTCtx) { 338 // Create MDNodes that represent the kernel arg metadata. 339 // Each MDNode is a list in the form of "key", N number of values which is 340 // the same number of values as their are kernel arguments. 341 342 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 343 344 // MDNode for the kernel argument address space qualifiers. 345 SmallVector<llvm::Value*, 8> addressQuals; 346 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 347 348 // MDNode for the kernel argument access qualifiers (images only). 349 SmallVector<llvm::Value*, 8> accessQuals; 350 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 351 352 // MDNode for the kernel argument type names. 353 SmallVector<llvm::Value*, 8> argTypeNames; 354 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 355 356 // MDNode for the kernel argument type qualifiers. 357 SmallVector<llvm::Value*, 8> argTypeQuals; 358 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 359 360 // MDNode for the kernel argument names. 361 SmallVector<llvm::Value*, 8> argNames; 362 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 363 364 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 365 const ParmVarDecl *parm = FD->getParamDecl(i); 366 QualType ty = parm->getType(); 367 std::string typeQuals; 368 369 if (ty->isPointerType()) { 370 QualType pointeeTy = ty->getPointeeType(); 371 372 // Get address qualifier. 373 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 374 pointeeTy.getAddressSpace()))); 375 376 // Get argument type name. 377 std::string typeName = 378 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 379 380 // Turn "unsigned type" to "utype" 381 std::string::size_type pos = typeName.find("unsigned"); 382 if (pos != std::string::npos) 383 typeName.erase(pos+1, 8); 384 385 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 386 387 // Get argument type qualifiers: 388 if (ty.isRestrictQualified()) 389 typeQuals = "restrict"; 390 if (pointeeTy.isConstQualified() || 391 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 392 typeQuals += typeQuals.empty() ? "const" : " const"; 393 if (pointeeTy.isVolatileQualified()) 394 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 395 } else { 396 uint32_t AddrSpc = 0; 397 if (ty->isImageType()) 398 AddrSpc = 399 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 400 401 addressQuals.push_back(Builder.getInt32(AddrSpc)); 402 403 // Get argument type name. 404 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 405 406 // Turn "unsigned type" to "utype" 407 std::string::size_type pos = typeName.find("unsigned"); 408 if (pos != std::string::npos) 409 typeName.erase(pos+1, 8); 410 411 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 412 413 // Get argument type qualifiers: 414 if (ty.isConstQualified()) 415 typeQuals = "const"; 416 if (ty.isVolatileQualified()) 417 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 418 } 419 420 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 421 422 // Get image access qualifier: 423 if (ty->isImageType()) { 424 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 425 if (A && A->isWriteOnly()) 426 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 427 else 428 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 429 // FIXME: what about read_write? 430 } else 431 accessQuals.push_back(llvm::MDString::get(Context, "none")); 432 433 // Get argument name. 434 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 435 } 436 437 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 438 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 439 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 440 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 441 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 442 } 443 444 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 445 llvm::Function *Fn) 446 { 447 if (!FD->hasAttr<OpenCLKernelAttr>()) 448 return; 449 450 llvm::LLVMContext &Context = getLLVMContext(); 451 452 SmallVector <llvm::Value*, 5> kernelMDArgs; 453 kernelMDArgs.push_back(Fn); 454 455 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 456 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 457 Builder, getContext()); 458 459 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 460 QualType hintQTy = A->getTypeHint(); 461 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 462 bool isSignedInteger = 463 hintQTy->isSignedIntegerType() || 464 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 465 llvm::Value *attrMDArgs[] = { 466 llvm::MDString::get(Context, "vec_type_hint"), 467 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 468 llvm::ConstantInt::get( 469 llvm::IntegerType::get(Context, 32), 470 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 471 }; 472 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 473 } 474 475 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 476 llvm::Value *attrMDArgs[] = { 477 llvm::MDString::get(Context, "work_group_size_hint"), 478 Builder.getInt32(A->getXDim()), 479 Builder.getInt32(A->getYDim()), 480 Builder.getInt32(A->getZDim()) 481 }; 482 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 483 } 484 485 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 486 llvm::Value *attrMDArgs[] = { 487 llvm::MDString::get(Context, "reqd_work_group_size"), 488 Builder.getInt32(A->getXDim()), 489 Builder.getInt32(A->getYDim()), 490 Builder.getInt32(A->getZDim()) 491 }; 492 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 493 } 494 495 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 496 llvm::NamedMDNode *OpenCLKernelMetadata = 497 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 498 OpenCLKernelMetadata->addOperand(kernelMDNode); 499 } 500 501 /// Determine whether the function F ends with a return stmt. 502 static bool endsWithReturn(const Decl* F) { 503 const Stmt *Body = nullptr; 504 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 505 Body = FD->getBody(); 506 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 507 Body = OMD->getBody(); 508 509 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 510 auto LastStmt = CS->body_rbegin(); 511 if (LastStmt != CS->body_rend()) 512 return isa<ReturnStmt>(*LastStmt); 513 } 514 return false; 515 } 516 517 void CodeGenFunction::StartFunction(GlobalDecl GD, 518 QualType RetTy, 519 llvm::Function *Fn, 520 const CGFunctionInfo &FnInfo, 521 const FunctionArgList &Args, 522 SourceLocation Loc, 523 SourceLocation StartLoc) { 524 const Decl *D = GD.getDecl(); 525 526 DidCallStackSave = false; 527 CurCodeDecl = D; 528 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 529 FnRetTy = RetTy; 530 CurFn = Fn; 531 CurFnInfo = &FnInfo; 532 assert(CurFn->isDeclaration() && "Function already has body?"); 533 534 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 535 SanOpts = &SanitizerOptions::Disabled; 536 SanitizePerformTypeCheck = false; 537 } 538 539 // Pass inline keyword to optimizer if it appears explicitly on any 540 // declaration. Also, in the case of -fno-inline attach NoInline 541 // attribute to all function that are not marked AlwaysInline. 542 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 543 if (!CGM.getCodeGenOpts().NoInline) { 544 for (auto RI : FD->redecls()) 545 if (RI->isInlineSpecified()) { 546 Fn->addFnAttr(llvm::Attribute::InlineHint); 547 break; 548 } 549 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 550 Fn->addFnAttr(llvm::Attribute::NoInline); 551 } 552 553 if (getLangOpts().OpenCL) { 554 // Add metadata for a kernel function. 555 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 556 EmitOpenCLKernelMetadata(FD, Fn); 557 } 558 559 // If we are checking function types, emit a function type signature as 560 // prefix data. 561 if (getLangOpts().CPlusPlus && SanOpts->Function) { 562 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 563 if (llvm::Constant *PrefixSig = 564 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 565 llvm::Constant *FTRTTIConst = 566 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 567 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 568 llvm::Constant *PrefixStructConst = 569 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 570 Fn->setPrefixData(PrefixStructConst); 571 } 572 } 573 } 574 575 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 576 577 // Create a marker to make it easy to insert allocas into the entryblock 578 // later. Don't create this with the builder, because we don't want it 579 // folded. 580 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 581 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 582 if (Builder.isNamePreserving()) 583 AllocaInsertPt->setName("allocapt"); 584 585 ReturnBlock = getJumpDestInCurrentScope("return"); 586 587 Builder.SetInsertPoint(EntryBB); 588 589 // Emit subprogram debug descriptor. 590 if (CGDebugInfo *DI = getDebugInfo()) { 591 SmallVector<QualType, 16> ArgTypes; 592 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 593 i != e; ++i) { 594 ArgTypes.push_back((*i)->getType()); 595 } 596 597 QualType FnType = 598 getContext().getFunctionType(RetTy, ArgTypes, 599 FunctionProtoType::ExtProtoInfo()); 600 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 601 } 602 603 if (ShouldInstrumentFunction()) 604 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 605 606 if (CGM.getCodeGenOpts().InstrumentForProfiling) 607 EmitMCountInstrumentation(); 608 609 if (RetTy->isVoidType()) { 610 // Void type; nothing to return. 611 ReturnValue = 0; 612 613 // Count the implicit return. 614 if (!endsWithReturn(D)) 615 ++NumReturnExprs; 616 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 617 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 618 // Indirect aggregate return; emit returned value directly into sret slot. 619 // This reduces code size, and affects correctness in C++. 620 ReturnValue = CurFn->arg_begin(); 621 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 622 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 623 // Load the sret pointer from the argument struct and return into that. 624 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 625 llvm::Function::arg_iterator EI = CurFn->arg_end(); 626 --EI; 627 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 628 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 629 } else { 630 ReturnValue = CreateIRTemp(RetTy, "retval"); 631 632 // Tell the epilog emitter to autorelease the result. We do this 633 // now so that various specialized functions can suppress it 634 // during their IR-generation. 635 if (getLangOpts().ObjCAutoRefCount && 636 !CurFnInfo->isReturnsRetained() && 637 RetTy->isObjCRetainableType()) 638 AutoreleaseResult = true; 639 } 640 641 EmitStartEHSpec(CurCodeDecl); 642 643 PrologueCleanupDepth = EHStack.stable_begin(); 644 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 645 646 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 647 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 648 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 649 if (MD->getParent()->isLambda() && 650 MD->getOverloadedOperator() == OO_Call) { 651 // We're in a lambda; figure out the captures. 652 MD->getParent()->getCaptureFields(LambdaCaptureFields, 653 LambdaThisCaptureField); 654 if (LambdaThisCaptureField) { 655 // If this lambda captures this, load it. 656 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 657 CXXThisValue = EmitLoadOfLValue(ThisLValue, 658 SourceLocation()).getScalarVal(); 659 } 660 } else { 661 // Not in a lambda; just use 'this' from the method. 662 // FIXME: Should we generate a new load for each use of 'this'? The 663 // fast register allocator would be happier... 664 CXXThisValue = CXXABIThisValue; 665 } 666 } 667 668 // If any of the arguments have a variably modified type, make sure to 669 // emit the type size. 670 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 671 i != e; ++i) { 672 const VarDecl *VD = *i; 673 674 // Dig out the type as written from ParmVarDecls; it's unclear whether 675 // the standard (C99 6.9.1p10) requires this, but we're following the 676 // precedent set by gcc. 677 QualType Ty; 678 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 679 Ty = PVD->getOriginalType(); 680 else 681 Ty = VD->getType(); 682 683 if (Ty->isVariablyModifiedType()) 684 EmitVariablyModifiedType(Ty); 685 } 686 // Emit a location at the end of the prologue. 687 if (CGDebugInfo *DI = getDebugInfo()) 688 DI->EmitLocation(Builder, StartLoc); 689 } 690 691 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 692 const Stmt *Body) { 693 RegionCounter Cnt = getPGORegionCounter(Body); 694 Cnt.beginRegion(Builder); 695 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 696 EmitCompoundStmtWithoutScope(*S); 697 else 698 EmitStmt(Body); 699 } 700 701 /// When instrumenting to collect profile data, the counts for some blocks 702 /// such as switch cases need to not include the fall-through counts, so 703 /// emit a branch around the instrumentation code. When not instrumenting, 704 /// this just calls EmitBlock(). 705 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 706 RegionCounter &Cnt) { 707 llvm::BasicBlock *SkipCountBB = 0; 708 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 709 // When instrumenting for profiling, the fallthrough to certain 710 // statements needs to skip over the instrumentation code so that we 711 // get an accurate count. 712 SkipCountBB = createBasicBlock("skipcount"); 713 EmitBranch(SkipCountBB); 714 } 715 EmitBlock(BB); 716 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 717 if (SkipCountBB) 718 EmitBlock(SkipCountBB); 719 } 720 721 /// Tries to mark the given function nounwind based on the 722 /// non-existence of any throwing calls within it. We believe this is 723 /// lightweight enough to do at -O0. 724 static void TryMarkNoThrow(llvm::Function *F) { 725 // LLVM treats 'nounwind' on a function as part of the type, so we 726 // can't do this on functions that can be overwritten. 727 if (F->mayBeOverridden()) return; 728 729 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 730 for (llvm::BasicBlock::iterator 731 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 732 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 733 if (!Call->doesNotThrow()) 734 return; 735 } else if (isa<llvm::ResumeInst>(&*BI)) { 736 return; 737 } 738 F->setDoesNotThrow(); 739 } 740 741 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 742 const FunctionDecl *UnsizedDealloc) { 743 // This is a weak discardable definition of the sized deallocation function. 744 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 745 746 // Call the unsized deallocation function and forward the first argument 747 // unchanged. 748 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 749 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 750 } 751 752 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 753 const CGFunctionInfo &FnInfo) { 754 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 755 756 // Check if we should generate debug info for this function. 757 if (FD->hasAttr<NoDebugAttr>()) 758 DebugInfo = NULL; // disable debug info indefinitely for this function 759 760 FunctionArgList Args; 761 QualType ResTy = FD->getReturnType(); 762 763 CurGD = GD; 764 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 765 if (MD && MD->isInstance()) { 766 if (CGM.getCXXABI().HasThisReturn(GD)) 767 ResTy = MD->getThisType(getContext()); 768 CGM.getCXXABI().buildThisParam(*this, Args); 769 } 770 771 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 772 Args.push_back(FD->getParamDecl(i)); 773 774 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 775 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 776 777 SourceRange BodyRange; 778 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 779 CurEHLocation = BodyRange.getEnd(); 780 781 // Use the location of the start of the function to determine where 782 // the function definition is located. By default use the location 783 // of the declaration as the location for the subprogram. A function 784 // may lack a declaration in the source code if it is created by code 785 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 786 SourceLocation Loc; 787 if (FD) { 788 Loc = FD->getLocation(); 789 790 // If this is a function specialization then use the pattern body 791 // as the location for the function. 792 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 793 if (SpecDecl->hasBody(SpecDecl)) 794 Loc = SpecDecl->getLocation(); 795 } 796 797 // Emit the standard function prologue. 798 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 799 800 // Generate the body of the function. 801 PGO.assignRegionCounters(GD.getDecl(), CurFn); 802 if (isa<CXXDestructorDecl>(FD)) 803 EmitDestructorBody(Args); 804 else if (isa<CXXConstructorDecl>(FD)) 805 EmitConstructorBody(Args); 806 else if (getLangOpts().CUDA && 807 !CGM.getCodeGenOpts().CUDAIsDevice && 808 FD->hasAttr<CUDAGlobalAttr>()) 809 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 810 else if (isa<CXXConversionDecl>(FD) && 811 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 812 // The lambda conversion to block pointer is special; the semantics can't be 813 // expressed in the AST, so IRGen needs to special-case it. 814 EmitLambdaToBlockPointerBody(Args); 815 } else if (isa<CXXMethodDecl>(FD) && 816 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 817 // The lambda static invoker function is special, because it forwards or 818 // clones the body of the function call operator (but is actually static). 819 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 820 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 821 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 822 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 823 // Implicit copy-assignment gets the same special treatment as implicit 824 // copy-constructors. 825 emitImplicitAssignmentOperatorBody(Args); 826 } else if (Stmt *Body = FD->getBody()) { 827 EmitFunctionBody(Args, Body); 828 } else if (FunctionDecl *UnsizedDealloc = 829 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 830 // Global sized deallocation functions get an implicit weak definition if 831 // they don't have an explicit definition. 832 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 833 } else 834 llvm_unreachable("no definition for emitted function"); 835 836 // C++11 [stmt.return]p2: 837 // Flowing off the end of a function [...] results in undefined behavior in 838 // a value-returning function. 839 // C11 6.9.1p12: 840 // If the '}' that terminates a function is reached, and the value of the 841 // function call is used by the caller, the behavior is undefined. 842 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 843 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 844 if (SanOpts->Return) 845 EmitCheck(Builder.getFalse(), "missing_return", 846 EmitCheckSourceLocation(FD->getLocation()), 847 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 848 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 849 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 850 Builder.CreateUnreachable(); 851 Builder.ClearInsertionPoint(); 852 } 853 854 // Emit the standard function epilogue. 855 FinishFunction(BodyRange.getEnd()); 856 857 // If we haven't marked the function nothrow through other means, do 858 // a quick pass now to see if we can. 859 if (!CurFn->doesNotThrow()) 860 TryMarkNoThrow(CurFn); 861 862 PGO.emitInstrumentationData(); 863 PGO.destroyRegionCounters(); 864 } 865 866 /// ContainsLabel - Return true if the statement contains a label in it. If 867 /// this statement is not executed normally, it not containing a label means 868 /// that we can just remove the code. 869 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 870 // Null statement, not a label! 871 if (S == 0) return false; 872 873 // If this is a label, we have to emit the code, consider something like: 874 // if (0) { ... foo: bar(); } goto foo; 875 // 876 // TODO: If anyone cared, we could track __label__'s, since we know that you 877 // can't jump to one from outside their declared region. 878 if (isa<LabelStmt>(S)) 879 return true; 880 881 // If this is a case/default statement, and we haven't seen a switch, we have 882 // to emit the code. 883 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 884 return true; 885 886 // If this is a switch statement, we want to ignore cases below it. 887 if (isa<SwitchStmt>(S)) 888 IgnoreCaseStmts = true; 889 890 // Scan subexpressions for verboten labels. 891 for (Stmt::const_child_range I = S->children(); I; ++I) 892 if (ContainsLabel(*I, IgnoreCaseStmts)) 893 return true; 894 895 return false; 896 } 897 898 /// containsBreak - Return true if the statement contains a break out of it. 899 /// If the statement (recursively) contains a switch or loop with a break 900 /// inside of it, this is fine. 901 bool CodeGenFunction::containsBreak(const Stmt *S) { 902 // Null statement, not a label! 903 if (S == 0) return false; 904 905 // If this is a switch or loop that defines its own break scope, then we can 906 // include it and anything inside of it. 907 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 908 isa<ForStmt>(S)) 909 return false; 910 911 if (isa<BreakStmt>(S)) 912 return true; 913 914 // Scan subexpressions for verboten breaks. 915 for (Stmt::const_child_range I = S->children(); I; ++I) 916 if (containsBreak(*I)) 917 return true; 918 919 return false; 920 } 921 922 923 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 924 /// to a constant, or if it does but contains a label, return false. If it 925 /// constant folds return true and set the boolean result in Result. 926 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 927 bool &ResultBool) { 928 llvm::APSInt ResultInt; 929 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 930 return false; 931 932 ResultBool = ResultInt.getBoolValue(); 933 return true; 934 } 935 936 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 937 /// to a constant, or if it does but contains a label, return false. If it 938 /// constant folds return true and set the folded value. 939 bool CodeGenFunction:: 940 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 941 // FIXME: Rename and handle conversion of other evaluatable things 942 // to bool. 943 llvm::APSInt Int; 944 if (!Cond->EvaluateAsInt(Int, getContext())) 945 return false; // Not foldable, not integer or not fully evaluatable. 946 947 if (CodeGenFunction::ContainsLabel(Cond)) 948 return false; // Contains a label. 949 950 ResultInt = Int; 951 return true; 952 } 953 954 955 956 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 957 /// statement) to the specified blocks. Based on the condition, this might try 958 /// to simplify the codegen of the conditional based on the branch. 959 /// 960 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 961 llvm::BasicBlock *TrueBlock, 962 llvm::BasicBlock *FalseBlock, 963 uint64_t TrueCount) { 964 Cond = Cond->IgnoreParens(); 965 966 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 967 968 // Handle X && Y in a condition. 969 if (CondBOp->getOpcode() == BO_LAnd) { 970 RegionCounter Cnt = getPGORegionCounter(CondBOp); 971 972 // If we have "1 && X", simplify the code. "0 && X" would have constant 973 // folded if the case was simple enough. 974 bool ConstantBool = false; 975 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 976 ConstantBool) { 977 // br(1 && X) -> br(X). 978 Cnt.beginRegion(Builder); 979 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 980 TrueCount); 981 } 982 983 // If we have "X && 1", simplify the code to use an uncond branch. 984 // "X && 0" would have been constant folded to 0. 985 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 986 ConstantBool) { 987 // br(X && 1) -> br(X). 988 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 989 TrueCount); 990 } 991 992 // Emit the LHS as a conditional. If the LHS conditional is false, we 993 // want to jump to the FalseBlock. 994 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 995 // The counter tells us how often we evaluate RHS, and all of TrueCount 996 // can be propagated to that branch. 997 uint64_t RHSCount = Cnt.getCount(); 998 999 ConditionalEvaluation eval(*this); 1000 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1001 EmitBlock(LHSTrue); 1002 1003 // Any temporaries created here are conditional. 1004 Cnt.beginRegion(Builder); 1005 eval.begin(*this); 1006 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1007 eval.end(*this); 1008 1009 return; 1010 } 1011 1012 if (CondBOp->getOpcode() == BO_LOr) { 1013 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1014 1015 // If we have "0 || X", simplify the code. "1 || X" would have constant 1016 // folded if the case was simple enough. 1017 bool ConstantBool = false; 1018 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1019 !ConstantBool) { 1020 // br(0 || X) -> br(X). 1021 Cnt.beginRegion(Builder); 1022 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1023 TrueCount); 1024 } 1025 1026 // If we have "X || 0", simplify the code to use an uncond branch. 1027 // "X || 1" would have been constant folded to 1. 1028 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1029 !ConstantBool) { 1030 // br(X || 0) -> br(X). 1031 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1032 TrueCount); 1033 } 1034 1035 // Emit the LHS as a conditional. If the LHS conditional is true, we 1036 // want to jump to the TrueBlock. 1037 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1038 // We have the count for entry to the RHS and for the whole expression 1039 // being true, so we can divy up True count between the short circuit and 1040 // the RHS. 1041 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1042 uint64_t RHSCount = TrueCount - LHSCount; 1043 1044 ConditionalEvaluation eval(*this); 1045 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1046 EmitBlock(LHSFalse); 1047 1048 // Any temporaries created here are conditional. 1049 Cnt.beginRegion(Builder); 1050 eval.begin(*this); 1051 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1052 1053 eval.end(*this); 1054 1055 return; 1056 } 1057 } 1058 1059 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1060 // br(!x, t, f) -> br(x, f, t) 1061 if (CondUOp->getOpcode() == UO_LNot) { 1062 // Negate the count. 1063 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1064 // Negate the condition and swap the destination blocks. 1065 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1066 FalseCount); 1067 } 1068 } 1069 1070 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1071 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1072 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1073 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1074 1075 RegionCounter Cnt = getPGORegionCounter(CondOp); 1076 ConditionalEvaluation cond(*this); 1077 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1078 1079 // When computing PGO branch weights, we only know the overall count for 1080 // the true block. This code is essentially doing tail duplication of the 1081 // naive code-gen, introducing new edges for which counts are not 1082 // available. Divide the counts proportionally between the LHS and RHS of 1083 // the conditional operator. 1084 uint64_t LHSScaledTrueCount = 0; 1085 if (TrueCount) { 1086 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1087 LHSScaledTrueCount = TrueCount * LHSRatio; 1088 } 1089 1090 cond.begin(*this); 1091 EmitBlock(LHSBlock); 1092 Cnt.beginRegion(Builder); 1093 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1094 LHSScaledTrueCount); 1095 cond.end(*this); 1096 1097 cond.begin(*this); 1098 EmitBlock(RHSBlock); 1099 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1100 TrueCount - LHSScaledTrueCount); 1101 cond.end(*this); 1102 1103 return; 1104 } 1105 1106 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1107 // Conditional operator handling can give us a throw expression as a 1108 // condition for a case like: 1109 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1110 // Fold this to: 1111 // br(c, throw x, br(y, t, f)) 1112 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1113 return; 1114 } 1115 1116 // Create branch weights based on the number of times we get here and the 1117 // number of times the condition should be true. 1118 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1119 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1120 CurrentCount - TrueCount); 1121 1122 // Emit the code with the fully general case. 1123 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1124 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1125 } 1126 1127 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1128 /// specified stmt yet. 1129 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1130 CGM.ErrorUnsupported(S, Type); 1131 } 1132 1133 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1134 /// variable-length array whose elements have a non-zero bit-pattern. 1135 /// 1136 /// \param baseType the inner-most element type of the array 1137 /// \param src - a char* pointing to the bit-pattern for a single 1138 /// base element of the array 1139 /// \param sizeInChars - the total size of the VLA, in chars 1140 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1141 llvm::Value *dest, llvm::Value *src, 1142 llvm::Value *sizeInChars) { 1143 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1144 = CGF.getContext().getTypeInfoInChars(baseType); 1145 1146 CGBuilderTy &Builder = CGF.Builder; 1147 1148 llvm::Value *baseSizeInChars 1149 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1150 1151 llvm::Type *i8p = Builder.getInt8PtrTy(); 1152 1153 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1154 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1155 1156 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1157 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1158 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1159 1160 // Make a loop over the VLA. C99 guarantees that the VLA element 1161 // count must be nonzero. 1162 CGF.EmitBlock(loopBB); 1163 1164 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1165 cur->addIncoming(begin, originBB); 1166 1167 // memcpy the individual element bit-pattern. 1168 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1169 baseSizeAndAlign.second.getQuantity(), 1170 /*volatile*/ false); 1171 1172 // Go to the next element. 1173 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1174 1175 // Leave if that's the end of the VLA. 1176 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1177 Builder.CreateCondBr(done, contBB, loopBB); 1178 cur->addIncoming(next, loopBB); 1179 1180 CGF.EmitBlock(contBB); 1181 } 1182 1183 void 1184 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1185 // Ignore empty classes in C++. 1186 if (getLangOpts().CPlusPlus) { 1187 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1188 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1189 return; 1190 } 1191 } 1192 1193 // Cast the dest ptr to the appropriate i8 pointer type. 1194 unsigned DestAS = 1195 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1196 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1197 if (DestPtr->getType() != BP) 1198 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1199 1200 // Get size and alignment info for this aggregate. 1201 std::pair<CharUnits, CharUnits> TypeInfo = 1202 getContext().getTypeInfoInChars(Ty); 1203 CharUnits Size = TypeInfo.first; 1204 CharUnits Align = TypeInfo.second; 1205 1206 llvm::Value *SizeVal; 1207 const VariableArrayType *vla; 1208 1209 // Don't bother emitting a zero-byte memset. 1210 if (Size.isZero()) { 1211 // But note that getTypeInfo returns 0 for a VLA. 1212 if (const VariableArrayType *vlaType = 1213 dyn_cast_or_null<VariableArrayType>( 1214 getContext().getAsArrayType(Ty))) { 1215 QualType eltType; 1216 llvm::Value *numElts; 1217 std::tie(numElts, eltType) = getVLASize(vlaType); 1218 1219 SizeVal = numElts; 1220 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1221 if (!eltSize.isOne()) 1222 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1223 vla = vlaType; 1224 } else { 1225 return; 1226 } 1227 } else { 1228 SizeVal = CGM.getSize(Size); 1229 vla = 0; 1230 } 1231 1232 // If the type contains a pointer to data member we can't memset it to zero. 1233 // Instead, create a null constant and copy it to the destination. 1234 // TODO: there are other patterns besides zero that we can usefully memset, 1235 // like -1, which happens to be the pattern used by member-pointers. 1236 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1237 // For a VLA, emit a single element, then splat that over the VLA. 1238 if (vla) Ty = getContext().getBaseElementType(vla); 1239 1240 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1241 1242 llvm::GlobalVariable *NullVariable = 1243 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1244 /*isConstant=*/true, 1245 llvm::GlobalVariable::PrivateLinkage, 1246 NullConstant, Twine()); 1247 llvm::Value *SrcPtr = 1248 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1249 1250 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1251 1252 // Get and call the appropriate llvm.memcpy overload. 1253 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1254 return; 1255 } 1256 1257 // Otherwise, just memset the whole thing to zero. This is legal 1258 // because in LLVM, all default initializers (other than the ones we just 1259 // handled above) are guaranteed to have a bit pattern of all zeros. 1260 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1261 Align.getQuantity(), false); 1262 } 1263 1264 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1265 // Make sure that there is a block for the indirect goto. 1266 if (IndirectBranch == 0) 1267 GetIndirectGotoBlock(); 1268 1269 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1270 1271 // Make sure the indirect branch includes all of the address-taken blocks. 1272 IndirectBranch->addDestination(BB); 1273 return llvm::BlockAddress::get(CurFn, BB); 1274 } 1275 1276 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1277 // If we already made the indirect branch for indirect goto, return its block. 1278 if (IndirectBranch) return IndirectBranch->getParent(); 1279 1280 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1281 1282 // Create the PHI node that indirect gotos will add entries to. 1283 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1284 "indirect.goto.dest"); 1285 1286 // Create the indirect branch instruction. 1287 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1288 return IndirectBranch->getParent(); 1289 } 1290 1291 /// Computes the length of an array in elements, as well as the base 1292 /// element type and a properly-typed first element pointer. 1293 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1294 QualType &baseType, 1295 llvm::Value *&addr) { 1296 const ArrayType *arrayType = origArrayType; 1297 1298 // If it's a VLA, we have to load the stored size. Note that 1299 // this is the size of the VLA in bytes, not its size in elements. 1300 llvm::Value *numVLAElements = 0; 1301 if (isa<VariableArrayType>(arrayType)) { 1302 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1303 1304 // Walk into all VLAs. This doesn't require changes to addr, 1305 // which has type T* where T is the first non-VLA element type. 1306 do { 1307 QualType elementType = arrayType->getElementType(); 1308 arrayType = getContext().getAsArrayType(elementType); 1309 1310 // If we only have VLA components, 'addr' requires no adjustment. 1311 if (!arrayType) { 1312 baseType = elementType; 1313 return numVLAElements; 1314 } 1315 } while (isa<VariableArrayType>(arrayType)); 1316 1317 // We get out here only if we find a constant array type 1318 // inside the VLA. 1319 } 1320 1321 // We have some number of constant-length arrays, so addr should 1322 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1323 // down to the first element of addr. 1324 SmallVector<llvm::Value*, 8> gepIndices; 1325 1326 // GEP down to the array type. 1327 llvm::ConstantInt *zero = Builder.getInt32(0); 1328 gepIndices.push_back(zero); 1329 1330 uint64_t countFromCLAs = 1; 1331 QualType eltType; 1332 1333 llvm::ArrayType *llvmArrayType = 1334 dyn_cast<llvm::ArrayType>( 1335 cast<llvm::PointerType>(addr->getType())->getElementType()); 1336 while (llvmArrayType) { 1337 assert(isa<ConstantArrayType>(arrayType)); 1338 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1339 == llvmArrayType->getNumElements()); 1340 1341 gepIndices.push_back(zero); 1342 countFromCLAs *= llvmArrayType->getNumElements(); 1343 eltType = arrayType->getElementType(); 1344 1345 llvmArrayType = 1346 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1347 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1348 assert((!llvmArrayType || arrayType) && 1349 "LLVM and Clang types are out-of-synch"); 1350 } 1351 1352 if (arrayType) { 1353 // From this point onwards, the Clang array type has been emitted 1354 // as some other type (probably a packed struct). Compute the array 1355 // size, and just emit the 'begin' expression as a bitcast. 1356 while (arrayType) { 1357 countFromCLAs *= 1358 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1359 eltType = arrayType->getElementType(); 1360 arrayType = getContext().getAsArrayType(eltType); 1361 } 1362 1363 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1364 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1365 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1366 } else { 1367 // Create the actual GEP. 1368 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1369 } 1370 1371 baseType = eltType; 1372 1373 llvm::Value *numElements 1374 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1375 1376 // If we had any VLA dimensions, factor them in. 1377 if (numVLAElements) 1378 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1379 1380 return numElements; 1381 } 1382 1383 std::pair<llvm::Value*, QualType> 1384 CodeGenFunction::getVLASize(QualType type) { 1385 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1386 assert(vla && "type was not a variable array type!"); 1387 return getVLASize(vla); 1388 } 1389 1390 std::pair<llvm::Value*, QualType> 1391 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1392 // The number of elements so far; always size_t. 1393 llvm::Value *numElements = 0; 1394 1395 QualType elementType; 1396 do { 1397 elementType = type->getElementType(); 1398 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1399 assert(vlaSize && "no size for VLA!"); 1400 assert(vlaSize->getType() == SizeTy); 1401 1402 if (!numElements) { 1403 numElements = vlaSize; 1404 } else { 1405 // It's undefined behavior if this wraps around, so mark it that way. 1406 // FIXME: Teach -fsanitize=undefined to trap this. 1407 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1408 } 1409 } while ((type = getContext().getAsVariableArrayType(elementType))); 1410 1411 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1412 } 1413 1414 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1415 assert(type->isVariablyModifiedType() && 1416 "Must pass variably modified type to EmitVLASizes!"); 1417 1418 EnsureInsertPoint(); 1419 1420 // We're going to walk down into the type and look for VLA 1421 // expressions. 1422 do { 1423 assert(type->isVariablyModifiedType()); 1424 1425 const Type *ty = type.getTypePtr(); 1426 switch (ty->getTypeClass()) { 1427 1428 #define TYPE(Class, Base) 1429 #define ABSTRACT_TYPE(Class, Base) 1430 #define NON_CANONICAL_TYPE(Class, Base) 1431 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1432 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1433 #include "clang/AST/TypeNodes.def" 1434 llvm_unreachable("unexpected dependent type!"); 1435 1436 // These types are never variably-modified. 1437 case Type::Builtin: 1438 case Type::Complex: 1439 case Type::Vector: 1440 case Type::ExtVector: 1441 case Type::Record: 1442 case Type::Enum: 1443 case Type::Elaborated: 1444 case Type::TemplateSpecialization: 1445 case Type::ObjCObject: 1446 case Type::ObjCInterface: 1447 case Type::ObjCObjectPointer: 1448 llvm_unreachable("type class is never variably-modified!"); 1449 1450 case Type::Adjusted: 1451 type = cast<AdjustedType>(ty)->getAdjustedType(); 1452 break; 1453 1454 case Type::Decayed: 1455 type = cast<DecayedType>(ty)->getPointeeType(); 1456 break; 1457 1458 case Type::Pointer: 1459 type = cast<PointerType>(ty)->getPointeeType(); 1460 break; 1461 1462 case Type::BlockPointer: 1463 type = cast<BlockPointerType>(ty)->getPointeeType(); 1464 break; 1465 1466 case Type::LValueReference: 1467 case Type::RValueReference: 1468 type = cast<ReferenceType>(ty)->getPointeeType(); 1469 break; 1470 1471 case Type::MemberPointer: 1472 type = cast<MemberPointerType>(ty)->getPointeeType(); 1473 break; 1474 1475 case Type::ConstantArray: 1476 case Type::IncompleteArray: 1477 // Losing element qualification here is fine. 1478 type = cast<ArrayType>(ty)->getElementType(); 1479 break; 1480 1481 case Type::VariableArray: { 1482 // Losing element qualification here is fine. 1483 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1484 1485 // Unknown size indication requires no size computation. 1486 // Otherwise, evaluate and record it. 1487 if (const Expr *size = vat->getSizeExpr()) { 1488 // It's possible that we might have emitted this already, 1489 // e.g. with a typedef and a pointer to it. 1490 llvm::Value *&entry = VLASizeMap[size]; 1491 if (!entry) { 1492 llvm::Value *Size = EmitScalarExpr(size); 1493 1494 // C11 6.7.6.2p5: 1495 // If the size is an expression that is not an integer constant 1496 // expression [...] each time it is evaluated it shall have a value 1497 // greater than zero. 1498 if (SanOpts->VLABound && 1499 size->getType()->isSignedIntegerType()) { 1500 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1501 llvm::Constant *StaticArgs[] = { 1502 EmitCheckSourceLocation(size->getLocStart()), 1503 EmitCheckTypeDescriptor(size->getType()) 1504 }; 1505 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1506 "vla_bound_not_positive", StaticArgs, Size, 1507 CRK_Recoverable); 1508 } 1509 1510 // Always zexting here would be wrong if it weren't 1511 // undefined behavior to have a negative bound. 1512 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1513 } 1514 } 1515 type = vat->getElementType(); 1516 break; 1517 } 1518 1519 case Type::FunctionProto: 1520 case Type::FunctionNoProto: 1521 type = cast<FunctionType>(ty)->getReturnType(); 1522 break; 1523 1524 case Type::Paren: 1525 case Type::TypeOf: 1526 case Type::UnaryTransform: 1527 case Type::Attributed: 1528 case Type::SubstTemplateTypeParm: 1529 case Type::PackExpansion: 1530 // Keep walking after single level desugaring. 1531 type = type.getSingleStepDesugaredType(getContext()); 1532 break; 1533 1534 case Type::Typedef: 1535 case Type::Decltype: 1536 case Type::Auto: 1537 // Stop walking: nothing to do. 1538 return; 1539 1540 case Type::TypeOfExpr: 1541 // Stop walking: emit typeof expression. 1542 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1543 return; 1544 1545 case Type::Atomic: 1546 type = cast<AtomicType>(ty)->getValueType(); 1547 break; 1548 } 1549 } while (type->isVariablyModifiedType()); 1550 } 1551 1552 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1553 if (getContext().getBuiltinVaListType()->isArrayType()) 1554 return EmitScalarExpr(E); 1555 return EmitLValue(E).getAddress(); 1556 } 1557 1558 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1559 llvm::Constant *Init) { 1560 assert (Init && "Invalid DeclRefExpr initializer!"); 1561 if (CGDebugInfo *Dbg = getDebugInfo()) 1562 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1563 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1564 } 1565 1566 CodeGenFunction::PeepholeProtection 1567 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1568 // At the moment, the only aggressive peephole we do in IR gen 1569 // is trunc(zext) folding, but if we add more, we can easily 1570 // extend this protection. 1571 1572 if (!rvalue.isScalar()) return PeepholeProtection(); 1573 llvm::Value *value = rvalue.getScalarVal(); 1574 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1575 1576 // Just make an extra bitcast. 1577 assert(HaveInsertPoint()); 1578 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1579 Builder.GetInsertBlock()); 1580 1581 PeepholeProtection protection; 1582 protection.Inst = inst; 1583 return protection; 1584 } 1585 1586 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1587 if (!protection.Inst) return; 1588 1589 // In theory, we could try to duplicate the peepholes now, but whatever. 1590 protection.Inst->eraseFromParent(); 1591 } 1592 1593 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1594 llvm::Value *AnnotatedVal, 1595 StringRef AnnotationStr, 1596 SourceLocation Location) { 1597 llvm::Value *Args[4] = { 1598 AnnotatedVal, 1599 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1600 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1601 CGM.EmitAnnotationLineNo(Location) 1602 }; 1603 return Builder.CreateCall(AnnotationFn, Args); 1604 } 1605 1606 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1607 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1608 // FIXME We create a new bitcast for every annotation because that's what 1609 // llvm-gcc was doing. 1610 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1611 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1612 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1613 I->getAnnotation(), D->getLocation()); 1614 } 1615 1616 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1617 llvm::Value *V) { 1618 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1619 llvm::Type *VTy = V->getType(); 1620 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1621 CGM.Int8PtrTy); 1622 1623 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1624 // FIXME Always emit the cast inst so we can differentiate between 1625 // annotation on the first field of a struct and annotation on the struct 1626 // itself. 1627 if (VTy != CGM.Int8PtrTy) 1628 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1629 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1630 V = Builder.CreateBitCast(V, VTy); 1631 } 1632 1633 return V; 1634 } 1635 1636 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1637