1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 41 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 42 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 43 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 44 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 45 SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 46 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 47 CXXThisValue(0), CXXDefaultInitExprThis(0), 48 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 49 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 50 TerminateHandler(0), TrapBB(0) { 51 if (!suppressNewContext) 52 CGM.getCXXABI().getMangleContext().startNewFunction(); 53 54 llvm::FastMathFlags FMF; 55 if (CGM.getLangOpts().FastMath) 56 FMF.setUnsafeAlgebra(); 57 if (CGM.getLangOpts().FiniteMathOnly) { 58 FMF.setNoNaNs(); 59 FMF.setNoInfs(); 60 } 61 Builder.SetFastMathFlags(FMF); 62 } 63 64 CodeGenFunction::~CodeGenFunction() { 65 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 66 67 // If there are any unclaimed block infos, go ahead and destroy them 68 // now. This can happen if IR-gen gets clever and skips evaluating 69 // something. 70 if (FirstBlockInfo) 71 destroyBlockInfos(FirstBlockInfo); 72 } 73 74 75 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 76 return CGM.getTypes().ConvertTypeForMem(T); 77 } 78 79 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 80 return CGM.getTypes().ConvertType(T); 81 } 82 83 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 84 type = type.getCanonicalType(); 85 while (true) { 86 switch (type->getTypeClass()) { 87 #define TYPE(name, parent) 88 #define ABSTRACT_TYPE(name, parent) 89 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 90 #define DEPENDENT_TYPE(name, parent) case Type::name: 91 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 92 #include "clang/AST/TypeNodes.def" 93 llvm_unreachable("non-canonical or dependent type in IR-generation"); 94 95 case Type::Auto: 96 llvm_unreachable("undeduced auto type in IR-generation"); 97 98 // Various scalar types. 99 case Type::Builtin: 100 case Type::Pointer: 101 case Type::BlockPointer: 102 case Type::LValueReference: 103 case Type::RValueReference: 104 case Type::MemberPointer: 105 case Type::Vector: 106 case Type::ExtVector: 107 case Type::FunctionProto: 108 case Type::FunctionNoProto: 109 case Type::Enum: 110 case Type::ObjCObjectPointer: 111 return TEK_Scalar; 112 113 // Complexes. 114 case Type::Complex: 115 return TEK_Complex; 116 117 // Arrays, records, and Objective-C objects. 118 case Type::ConstantArray: 119 case Type::IncompleteArray: 120 case Type::VariableArray: 121 case Type::Record: 122 case Type::ObjCObject: 123 case Type::ObjCInterface: 124 return TEK_Aggregate; 125 126 // We operate on atomic values according to their underlying type. 127 case Type::Atomic: 128 type = cast<AtomicType>(type)->getValueType(); 129 continue; 130 } 131 llvm_unreachable("unknown type kind!"); 132 } 133 } 134 135 void CodeGenFunction::EmitReturnBlock() { 136 // For cleanliness, we try to avoid emitting the return block for 137 // simple cases. 138 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 139 140 if (CurBB) { 141 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 142 143 // We have a valid insert point, reuse it if it is empty or there are no 144 // explicit jumps to the return block. 145 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 146 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 147 delete ReturnBlock.getBlock(); 148 } else 149 EmitBlock(ReturnBlock.getBlock()); 150 return; 151 } 152 153 // Otherwise, if the return block is the target of a single direct 154 // branch then we can just put the code in that block instead. This 155 // cleans up functions which started with a unified return block. 156 if (ReturnBlock.getBlock()->hasOneUse()) { 157 llvm::BranchInst *BI = 158 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 159 if (BI && BI->isUnconditional() && 160 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 161 // Reset insertion point, including debug location, and delete the 162 // branch. This is really subtle and only works because the next change 163 // in location will hit the caching in CGDebugInfo::EmitLocation and not 164 // override this. 165 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 166 Builder.SetInsertPoint(BI->getParent()); 167 BI->eraseFromParent(); 168 delete ReturnBlock.getBlock(); 169 return; 170 } 171 } 172 173 // FIXME: We are at an unreachable point, there is no reason to emit the block 174 // unless it has uses. However, we still need a place to put the debug 175 // region.end for now. 176 177 EmitBlock(ReturnBlock.getBlock()); 178 } 179 180 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 181 if (!BB) return; 182 if (!BB->use_empty()) 183 return CGF.CurFn->getBasicBlockList().push_back(BB); 184 delete BB; 185 } 186 187 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 188 assert(BreakContinueStack.empty() && 189 "mismatched push/pop in break/continue stack!"); 190 191 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 192 && NumSimpleReturnExprs == NumReturnExprs 193 && ReturnBlock.getBlock()->use_empty(); 194 // Usually the return expression is evaluated before the cleanup 195 // code. If the function contains only a simple return statement, 196 // such as a constant, the location before the cleanup code becomes 197 // the last useful breakpoint in the function, because the simple 198 // return expression will be evaluated after the cleanup code. To be 199 // safe, set the debug location for cleanup code to the location of 200 // the return statement. Otherwise the cleanup code should be at the 201 // end of the function's lexical scope. 202 // 203 // If there are multiple branches to the return block, the branch 204 // instructions will get the location of the return statements and 205 // all will be fine. 206 if (CGDebugInfo *DI = getDebugInfo()) { 207 if (OnlySimpleReturnStmts) 208 DI->EmitLocation(Builder, LastStopPoint); 209 else 210 DI->EmitLocation(Builder, EndLoc); 211 } 212 213 // Pop any cleanups that might have been associated with the 214 // parameters. Do this in whatever block we're currently in; it's 215 // important to do this before we enter the return block or return 216 // edges will be *really* confused. 217 bool EmitRetDbgLoc = true; 218 if (EHStack.stable_begin() != PrologueCleanupDepth) { 219 PopCleanupBlocks(PrologueCleanupDepth); 220 221 // Make sure the line table doesn't jump back into the body for 222 // the ret after it's been at EndLoc. 223 EmitRetDbgLoc = false; 224 225 if (CGDebugInfo *DI = getDebugInfo()) 226 if (OnlySimpleReturnStmts) 227 DI->EmitLocation(Builder, EndLoc); 228 } 229 230 // Emit function epilog (to return). 231 EmitReturnBlock(); 232 233 if (ShouldInstrumentFunction()) 234 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 235 236 // Emit debug descriptor for function end. 237 if (CGDebugInfo *DI = getDebugInfo()) { 238 DI->EmitFunctionEnd(Builder); 239 } 240 241 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc); 242 EmitEndEHSpec(CurCodeDecl); 243 244 assert(EHStack.empty() && 245 "did not remove all scopes from cleanup stack!"); 246 247 // If someone did an indirect goto, emit the indirect goto block at the end of 248 // the function. 249 if (IndirectBranch) { 250 EmitBlock(IndirectBranch->getParent()); 251 Builder.ClearInsertionPoint(); 252 } 253 254 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 255 llvm::Instruction *Ptr = AllocaInsertPt; 256 AllocaInsertPt = 0; 257 Ptr->eraseFromParent(); 258 259 // If someone took the address of a label but never did an indirect goto, we 260 // made a zero entry PHI node, which is illegal, zap it now. 261 if (IndirectBranch) { 262 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 263 if (PN->getNumIncomingValues() == 0) { 264 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 265 PN->eraseFromParent(); 266 } 267 } 268 269 EmitIfUsed(*this, EHResumeBlock); 270 EmitIfUsed(*this, TerminateLandingPad); 271 EmitIfUsed(*this, TerminateHandler); 272 EmitIfUsed(*this, UnreachableBlock); 273 274 if (CGM.getCodeGenOpts().EmitDeclMetadata) 275 EmitDeclMetadata(); 276 } 277 278 /// ShouldInstrumentFunction - Return true if the current function should be 279 /// instrumented with __cyg_profile_func_* calls 280 bool CodeGenFunction::ShouldInstrumentFunction() { 281 if (!CGM.getCodeGenOpts().InstrumentFunctions) 282 return false; 283 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 284 return false; 285 return true; 286 } 287 288 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 289 /// instrumentation function with the current function and the call site, if 290 /// function instrumentation is enabled. 291 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 292 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 293 llvm::PointerType *PointerTy = Int8PtrTy; 294 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 295 llvm::FunctionType *FunctionTy = 296 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 297 298 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 299 llvm::CallInst *CallSite = Builder.CreateCall( 300 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 301 llvm::ConstantInt::get(Int32Ty, 0), 302 "callsite"); 303 304 llvm::Value *args[] = { 305 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 306 CallSite 307 }; 308 309 EmitNounwindRuntimeCall(F, args); 310 } 311 312 void CodeGenFunction::EmitMCountInstrumentation() { 313 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 314 315 llvm::Constant *MCountFn = 316 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 317 EmitNounwindRuntimeCall(MCountFn); 318 } 319 320 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 321 // information in the program executable. The argument information stored 322 // includes the argument name, its type, the address and access qualifiers used. 323 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 324 CodeGenModule &CGM,llvm::LLVMContext &Context, 325 SmallVector <llvm::Value*, 5> &kernelMDArgs, 326 CGBuilderTy& Builder, ASTContext &ASTCtx) { 327 // Create MDNodes that represent the kernel arg metadata. 328 // Each MDNode is a list in the form of "key", N number of values which is 329 // the same number of values as their are kernel arguments. 330 331 // MDNode for the kernel argument address space qualifiers. 332 SmallVector<llvm::Value*, 8> addressQuals; 333 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 334 335 // MDNode for the kernel argument access qualifiers (images only). 336 SmallVector<llvm::Value*, 8> accessQuals; 337 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 338 339 // MDNode for the kernel argument type names. 340 SmallVector<llvm::Value*, 8> argTypeNames; 341 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 342 343 // MDNode for the kernel argument type qualifiers. 344 SmallVector<llvm::Value*, 8> argTypeQuals; 345 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 346 347 // MDNode for the kernel argument names. 348 SmallVector<llvm::Value*, 8> argNames; 349 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 350 351 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 352 const ParmVarDecl *parm = FD->getParamDecl(i); 353 QualType ty = parm->getType(); 354 std::string typeQuals; 355 356 if (ty->isPointerType()) { 357 QualType pointeeTy = ty->getPointeeType(); 358 359 // Get address qualifier. 360 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 361 pointeeTy.getAddressSpace()))); 362 363 // Get argument type name. 364 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 365 366 // Turn "unsigned type" to "utype" 367 std::string::size_type pos = typeName.find("unsigned"); 368 if (pos != std::string::npos) 369 typeName.erase(pos+1, 8); 370 371 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 372 373 // Get argument type qualifiers: 374 if (ty.isRestrictQualified()) 375 typeQuals = "restrict"; 376 if (pointeeTy.isConstQualified() || 377 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 378 typeQuals += typeQuals.empty() ? "const" : " const"; 379 if (pointeeTy.isVolatileQualified()) 380 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 381 } else { 382 addressQuals.push_back(Builder.getInt32(0)); 383 384 // Get argument type name. 385 std::string typeName = ty.getUnqualifiedType().getAsString(); 386 387 // Turn "unsigned type" to "utype" 388 std::string::size_type pos = typeName.find("unsigned"); 389 if (pos != std::string::npos) 390 typeName.erase(pos+1, 8); 391 392 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 393 394 // Get argument type qualifiers: 395 if (ty.isConstQualified()) 396 typeQuals = "const"; 397 if (ty.isVolatileQualified()) 398 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 399 } 400 401 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 402 403 // Get image access qualifier: 404 if (ty->isImageType()) { 405 if (parm->hasAttr<OpenCLImageAccessAttr>() && 406 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 407 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 408 else 409 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 410 } else 411 accessQuals.push_back(llvm::MDString::get(Context, "none")); 412 413 // Get argument name. 414 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 415 } 416 417 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 418 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 419 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 420 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 421 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 422 } 423 424 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 425 llvm::Function *Fn) 426 { 427 if (!FD->hasAttr<OpenCLKernelAttr>()) 428 return; 429 430 llvm::LLVMContext &Context = getLLVMContext(); 431 432 SmallVector <llvm::Value*, 5> kernelMDArgs; 433 kernelMDArgs.push_back(Fn); 434 435 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 436 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 437 Builder, getContext()); 438 439 if (FD->hasAttr<VecTypeHintAttr>()) { 440 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 441 QualType hintQTy = attr->getTypeHint(); 442 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 443 bool isSignedInteger = 444 hintQTy->isSignedIntegerType() || 445 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 446 llvm::Value *attrMDArgs[] = { 447 llvm::MDString::get(Context, "vec_type_hint"), 448 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 449 llvm::ConstantInt::get( 450 llvm::IntegerType::get(Context, 32), 451 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 452 }; 453 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 454 } 455 456 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 457 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 458 llvm::Value *attrMDArgs[] = { 459 llvm::MDString::get(Context, "work_group_size_hint"), 460 Builder.getInt32(attr->getXDim()), 461 Builder.getInt32(attr->getYDim()), 462 Builder.getInt32(attr->getZDim()) 463 }; 464 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 465 } 466 467 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 468 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 469 llvm::Value *attrMDArgs[] = { 470 llvm::MDString::get(Context, "reqd_work_group_size"), 471 Builder.getInt32(attr->getXDim()), 472 Builder.getInt32(attr->getYDim()), 473 Builder.getInt32(attr->getZDim()) 474 }; 475 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 476 } 477 478 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 479 llvm::NamedMDNode *OpenCLKernelMetadata = 480 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 481 OpenCLKernelMetadata->addOperand(kernelMDNode); 482 } 483 484 void CodeGenFunction::StartFunction(GlobalDecl GD, 485 QualType RetTy, 486 llvm::Function *Fn, 487 const CGFunctionInfo &FnInfo, 488 const FunctionArgList &Args, 489 SourceLocation StartLoc) { 490 const Decl *D = GD.getDecl(); 491 492 DidCallStackSave = false; 493 CurCodeDecl = D; 494 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 495 FnRetTy = RetTy; 496 CurFn = Fn; 497 CurFnInfo = &FnInfo; 498 assert(CurFn->isDeclaration() && "Function already has body?"); 499 500 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 501 SanOpts = &SanitizerOptions::Disabled; 502 SanitizePerformTypeCheck = false; 503 } 504 505 // Pass inline keyword to optimizer if it appears explicitly on any 506 // declaration. 507 if (!CGM.getCodeGenOpts().NoInline) 508 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 509 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 510 RE = FD->redecls_end(); RI != RE; ++RI) 511 if (RI->isInlineSpecified()) { 512 Fn->addFnAttr(llvm::Attribute::InlineHint); 513 break; 514 } 515 516 if (getLangOpts().OpenCL) { 517 // Add metadata for a kernel function. 518 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 519 EmitOpenCLKernelMetadata(FD, Fn); 520 } 521 522 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 523 524 // Create a marker to make it easy to insert allocas into the entryblock 525 // later. Don't create this with the builder, because we don't want it 526 // folded. 527 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 528 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 529 if (Builder.isNamePreserving()) 530 AllocaInsertPt->setName("allocapt"); 531 532 ReturnBlock = getJumpDestInCurrentScope("return"); 533 534 Builder.SetInsertPoint(EntryBB); 535 536 // Emit subprogram debug descriptor. 537 if (CGDebugInfo *DI = getDebugInfo()) { 538 SmallVector<QualType, 16> ArgTypes; 539 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 540 i != e; ++i) { 541 ArgTypes.push_back((*i)->getType()); 542 } 543 544 QualType FnType = 545 getContext().getFunctionType(RetTy, ArgTypes, 546 FunctionProtoType::ExtProtoInfo()); 547 548 DI->setLocation(StartLoc); 549 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 550 } 551 552 if (ShouldInstrumentFunction()) 553 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 554 555 if (CGM.getCodeGenOpts().InstrumentForProfiling) 556 EmitMCountInstrumentation(); 557 558 if (RetTy->isVoidType()) { 559 // Void type; nothing to return. 560 ReturnValue = 0; 561 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 562 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 563 // Indirect aggregate return; emit returned value directly into sret slot. 564 // This reduces code size, and affects correctness in C++. 565 ReturnValue = CurFn->arg_begin(); 566 } else { 567 ReturnValue = CreateIRTemp(RetTy, "retval"); 568 569 // Tell the epilog emitter to autorelease the result. We do this 570 // now so that various specialized functions can suppress it 571 // during their IR-generation. 572 if (getLangOpts().ObjCAutoRefCount && 573 !CurFnInfo->isReturnsRetained() && 574 RetTy->isObjCRetainableType()) 575 AutoreleaseResult = true; 576 } 577 578 EmitStartEHSpec(CurCodeDecl); 579 580 PrologueCleanupDepth = EHStack.stable_begin(); 581 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 582 583 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 584 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 585 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 586 if (MD->getParent()->isLambda() && 587 MD->getOverloadedOperator() == OO_Call) { 588 // We're in a lambda; figure out the captures. 589 MD->getParent()->getCaptureFields(LambdaCaptureFields, 590 LambdaThisCaptureField); 591 if (LambdaThisCaptureField) { 592 // If this lambda captures this, load it. 593 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 594 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 595 } 596 } else { 597 // Not in a lambda; just use 'this' from the method. 598 // FIXME: Should we generate a new load for each use of 'this'? The 599 // fast register allocator would be happier... 600 CXXThisValue = CXXABIThisValue; 601 } 602 } 603 604 // If any of the arguments have a variably modified type, make sure to 605 // emit the type size. 606 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 607 i != e; ++i) { 608 const VarDecl *VD = *i; 609 610 // Dig out the type as written from ParmVarDecls; it's unclear whether 611 // the standard (C99 6.9.1p10) requires this, but we're following the 612 // precedent set by gcc. 613 QualType Ty; 614 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 615 Ty = PVD->getOriginalType(); 616 else 617 Ty = VD->getType(); 618 619 if (Ty->isVariablyModifiedType()) 620 EmitVariablyModifiedType(Ty); 621 } 622 // Emit a location at the end of the prologue. 623 if (CGDebugInfo *DI = getDebugInfo()) 624 DI->EmitLocation(Builder, StartLoc); 625 } 626 627 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 628 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 629 assert(FD->getBody()); 630 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 631 EmitCompoundStmtWithoutScope(*S); 632 else 633 EmitStmt(FD->getBody()); 634 } 635 636 /// Tries to mark the given function nounwind based on the 637 /// non-existence of any throwing calls within it. We believe this is 638 /// lightweight enough to do at -O0. 639 static void TryMarkNoThrow(llvm::Function *F) { 640 // LLVM treats 'nounwind' on a function as part of the type, so we 641 // can't do this on functions that can be overwritten. 642 if (F->mayBeOverridden()) return; 643 644 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 645 for (llvm::BasicBlock::iterator 646 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 647 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 648 if (!Call->doesNotThrow()) 649 return; 650 } else if (isa<llvm::ResumeInst>(&*BI)) { 651 return; 652 } 653 F->setDoesNotThrow(); 654 } 655 656 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 657 const CGFunctionInfo &FnInfo) { 658 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 659 660 // Check if we should generate debug info for this function. 661 if (FD->hasAttr<NoDebugAttr>()) 662 DebugInfo = NULL; // disable debug info indefinitely for this function 663 664 FunctionArgList Args; 665 QualType ResTy = FD->getResultType(); 666 667 CurGD = GD; 668 const CXXMethodDecl *MD; 669 if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) { 670 if (CGM.getCXXABI().HasThisReturn(GD)) 671 ResTy = MD->getThisType(getContext()); 672 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 673 } 674 675 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 676 Args.push_back(FD->getParamDecl(i)); 677 678 SourceRange BodyRange; 679 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 680 CurEHLocation = BodyRange.getEnd(); 681 682 // Emit the standard function prologue. 683 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 684 685 // Generate the body of the function. 686 if (isa<CXXDestructorDecl>(FD)) 687 EmitDestructorBody(Args); 688 else if (isa<CXXConstructorDecl>(FD)) 689 EmitConstructorBody(Args); 690 else if (getLangOpts().CUDA && 691 !CGM.getCodeGenOpts().CUDAIsDevice && 692 FD->hasAttr<CUDAGlobalAttr>()) 693 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 694 else if (isa<CXXConversionDecl>(FD) && 695 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 696 // The lambda conversion to block pointer is special; the semantics can't be 697 // expressed in the AST, so IRGen needs to special-case it. 698 EmitLambdaToBlockPointerBody(Args); 699 } else if (isa<CXXMethodDecl>(FD) && 700 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 701 // The lambda "__invoke" function is special, because it forwards or 702 // clones the body of the function call operator (but is actually static). 703 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 704 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 705 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 706 // Implicit copy-assignment gets the same special treatment as implicit 707 // copy-constructors. 708 emitImplicitAssignmentOperatorBody(Args); 709 } 710 else 711 EmitFunctionBody(Args); 712 713 // C++11 [stmt.return]p2: 714 // Flowing off the end of a function [...] results in undefined behavior in 715 // a value-returning function. 716 // C11 6.9.1p12: 717 // If the '}' that terminates a function is reached, and the value of the 718 // function call is used by the caller, the behavior is undefined. 719 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 720 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 721 if (SanOpts->Return) 722 EmitCheck(Builder.getFalse(), "missing_return", 723 EmitCheckSourceLocation(FD->getLocation()), 724 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 725 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 726 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 727 Builder.CreateUnreachable(); 728 Builder.ClearInsertionPoint(); 729 } 730 731 // Emit the standard function epilogue. 732 FinishFunction(BodyRange.getEnd()); 733 734 // If we haven't marked the function nothrow through other means, do 735 // a quick pass now to see if we can. 736 if (!CurFn->doesNotThrow()) 737 TryMarkNoThrow(CurFn); 738 } 739 740 /// ContainsLabel - Return true if the statement contains a label in it. If 741 /// this statement is not executed normally, it not containing a label means 742 /// that we can just remove the code. 743 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 744 // Null statement, not a label! 745 if (S == 0) return false; 746 747 // If this is a label, we have to emit the code, consider something like: 748 // if (0) { ... foo: bar(); } goto foo; 749 // 750 // TODO: If anyone cared, we could track __label__'s, since we know that you 751 // can't jump to one from outside their declared region. 752 if (isa<LabelStmt>(S)) 753 return true; 754 755 // If this is a case/default statement, and we haven't seen a switch, we have 756 // to emit the code. 757 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 758 return true; 759 760 // If this is a switch statement, we want to ignore cases below it. 761 if (isa<SwitchStmt>(S)) 762 IgnoreCaseStmts = true; 763 764 // Scan subexpressions for verboten labels. 765 for (Stmt::const_child_range I = S->children(); I; ++I) 766 if (ContainsLabel(*I, IgnoreCaseStmts)) 767 return true; 768 769 return false; 770 } 771 772 /// containsBreak - Return true if the statement contains a break out of it. 773 /// If the statement (recursively) contains a switch or loop with a break 774 /// inside of it, this is fine. 775 bool CodeGenFunction::containsBreak(const Stmt *S) { 776 // Null statement, not a label! 777 if (S == 0) return false; 778 779 // If this is a switch or loop that defines its own break scope, then we can 780 // include it and anything inside of it. 781 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 782 isa<ForStmt>(S)) 783 return false; 784 785 if (isa<BreakStmt>(S)) 786 return true; 787 788 // Scan subexpressions for verboten breaks. 789 for (Stmt::const_child_range I = S->children(); I; ++I) 790 if (containsBreak(*I)) 791 return true; 792 793 return false; 794 } 795 796 797 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 798 /// to a constant, or if it does but contains a label, return false. If it 799 /// constant folds return true and set the boolean result in Result. 800 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 801 bool &ResultBool) { 802 llvm::APSInt ResultInt; 803 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 804 return false; 805 806 ResultBool = ResultInt.getBoolValue(); 807 return true; 808 } 809 810 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 811 /// to a constant, or if it does but contains a label, return false. If it 812 /// constant folds return true and set the folded value. 813 bool CodeGenFunction:: 814 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 815 // FIXME: Rename and handle conversion of other evaluatable things 816 // to bool. 817 llvm::APSInt Int; 818 if (!Cond->EvaluateAsInt(Int, getContext())) 819 return false; // Not foldable, not integer or not fully evaluatable. 820 821 if (CodeGenFunction::ContainsLabel(Cond)) 822 return false; // Contains a label. 823 824 ResultInt = Int; 825 return true; 826 } 827 828 829 830 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 831 /// statement) to the specified blocks. Based on the condition, this might try 832 /// to simplify the codegen of the conditional based on the branch. 833 /// 834 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 835 llvm::BasicBlock *TrueBlock, 836 llvm::BasicBlock *FalseBlock) { 837 Cond = Cond->IgnoreParens(); 838 839 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 840 // Handle X && Y in a condition. 841 if (CondBOp->getOpcode() == BO_LAnd) { 842 // If we have "1 && X", simplify the code. "0 && X" would have constant 843 // folded if the case was simple enough. 844 bool ConstantBool = false; 845 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 846 ConstantBool) { 847 // br(1 && X) -> br(X). 848 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 849 } 850 851 // If we have "X && 1", simplify the code to use an uncond branch. 852 // "X && 0" would have been constant folded to 0. 853 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 854 ConstantBool) { 855 // br(X && 1) -> br(X). 856 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 857 } 858 859 // Emit the LHS as a conditional. If the LHS conditional is false, we 860 // want to jump to the FalseBlock. 861 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 862 863 ConditionalEvaluation eval(*this); 864 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 865 EmitBlock(LHSTrue); 866 867 // Any temporaries created here are conditional. 868 eval.begin(*this); 869 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 870 eval.end(*this); 871 872 return; 873 } 874 875 if (CondBOp->getOpcode() == BO_LOr) { 876 // If we have "0 || X", simplify the code. "1 || X" would have constant 877 // folded if the case was simple enough. 878 bool ConstantBool = false; 879 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 880 !ConstantBool) { 881 // br(0 || X) -> br(X). 882 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 883 } 884 885 // If we have "X || 0", simplify the code to use an uncond branch. 886 // "X || 1" would have been constant folded to 1. 887 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 888 !ConstantBool) { 889 // br(X || 0) -> br(X). 890 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 891 } 892 893 // Emit the LHS as a conditional. If the LHS conditional is true, we 894 // want to jump to the TrueBlock. 895 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 896 897 ConditionalEvaluation eval(*this); 898 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 899 EmitBlock(LHSFalse); 900 901 // Any temporaries created here are conditional. 902 eval.begin(*this); 903 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 904 eval.end(*this); 905 906 return; 907 } 908 } 909 910 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 911 // br(!x, t, f) -> br(x, f, t) 912 if (CondUOp->getOpcode() == UO_LNot) 913 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 914 } 915 916 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 917 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 918 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 919 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 920 921 ConditionalEvaluation cond(*this); 922 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 923 924 cond.begin(*this); 925 EmitBlock(LHSBlock); 926 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 927 cond.end(*this); 928 929 cond.begin(*this); 930 EmitBlock(RHSBlock); 931 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 932 cond.end(*this); 933 934 return; 935 } 936 937 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 938 // Conditional operator handling can give us a throw expression as a 939 // condition for a case like: 940 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 941 // Fold this to: 942 // br(c, throw x, br(y, t, f)) 943 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 944 return; 945 } 946 947 // Emit the code with the fully general case. 948 llvm::Value *CondV = EvaluateExprAsBool(Cond); 949 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 950 } 951 952 /// ErrorUnsupported - Print out an error that codegen doesn't support the 953 /// specified stmt yet. 954 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 955 CGM.ErrorUnsupported(S, Type); 956 } 957 958 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 959 /// variable-length array whose elements have a non-zero bit-pattern. 960 /// 961 /// \param baseType the inner-most element type of the array 962 /// \param src - a char* pointing to the bit-pattern for a single 963 /// base element of the array 964 /// \param sizeInChars - the total size of the VLA, in chars 965 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 966 llvm::Value *dest, llvm::Value *src, 967 llvm::Value *sizeInChars) { 968 std::pair<CharUnits,CharUnits> baseSizeAndAlign 969 = CGF.getContext().getTypeInfoInChars(baseType); 970 971 CGBuilderTy &Builder = CGF.Builder; 972 973 llvm::Value *baseSizeInChars 974 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 975 976 llvm::Type *i8p = Builder.getInt8PtrTy(); 977 978 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 979 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 980 981 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 982 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 983 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 984 985 // Make a loop over the VLA. C99 guarantees that the VLA element 986 // count must be nonzero. 987 CGF.EmitBlock(loopBB); 988 989 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 990 cur->addIncoming(begin, originBB); 991 992 // memcpy the individual element bit-pattern. 993 Builder.CreateMemCpy(cur, src, baseSizeInChars, 994 baseSizeAndAlign.second.getQuantity(), 995 /*volatile*/ false); 996 997 // Go to the next element. 998 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 999 1000 // Leave if that's the end of the VLA. 1001 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1002 Builder.CreateCondBr(done, contBB, loopBB); 1003 cur->addIncoming(next, loopBB); 1004 1005 CGF.EmitBlock(contBB); 1006 } 1007 1008 void 1009 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1010 // Ignore empty classes in C++. 1011 if (getLangOpts().CPlusPlus) { 1012 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1013 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1014 return; 1015 } 1016 } 1017 1018 // Cast the dest ptr to the appropriate i8 pointer type. 1019 unsigned DestAS = 1020 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1021 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1022 if (DestPtr->getType() != BP) 1023 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1024 1025 // Get size and alignment info for this aggregate. 1026 std::pair<CharUnits, CharUnits> TypeInfo = 1027 getContext().getTypeInfoInChars(Ty); 1028 CharUnits Size = TypeInfo.first; 1029 CharUnits Align = TypeInfo.second; 1030 1031 llvm::Value *SizeVal; 1032 const VariableArrayType *vla; 1033 1034 // Don't bother emitting a zero-byte memset. 1035 if (Size.isZero()) { 1036 // But note that getTypeInfo returns 0 for a VLA. 1037 if (const VariableArrayType *vlaType = 1038 dyn_cast_or_null<VariableArrayType>( 1039 getContext().getAsArrayType(Ty))) { 1040 QualType eltType; 1041 llvm::Value *numElts; 1042 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1043 1044 SizeVal = numElts; 1045 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1046 if (!eltSize.isOne()) 1047 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1048 vla = vlaType; 1049 } else { 1050 return; 1051 } 1052 } else { 1053 SizeVal = CGM.getSize(Size); 1054 vla = 0; 1055 } 1056 1057 // If the type contains a pointer to data member we can't memset it to zero. 1058 // Instead, create a null constant and copy it to the destination. 1059 // TODO: there are other patterns besides zero that we can usefully memset, 1060 // like -1, which happens to be the pattern used by member-pointers. 1061 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1062 // For a VLA, emit a single element, then splat that over the VLA. 1063 if (vla) Ty = getContext().getBaseElementType(vla); 1064 1065 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1066 1067 llvm::GlobalVariable *NullVariable = 1068 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1069 /*isConstant=*/true, 1070 llvm::GlobalVariable::PrivateLinkage, 1071 NullConstant, Twine()); 1072 llvm::Value *SrcPtr = 1073 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1074 1075 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1076 1077 // Get and call the appropriate llvm.memcpy overload. 1078 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1079 return; 1080 } 1081 1082 // Otherwise, just memset the whole thing to zero. This is legal 1083 // because in LLVM, all default initializers (other than the ones we just 1084 // handled above) are guaranteed to have a bit pattern of all zeros. 1085 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1086 Align.getQuantity(), false); 1087 } 1088 1089 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1090 // Make sure that there is a block for the indirect goto. 1091 if (IndirectBranch == 0) 1092 GetIndirectGotoBlock(); 1093 1094 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1095 1096 // Make sure the indirect branch includes all of the address-taken blocks. 1097 IndirectBranch->addDestination(BB); 1098 return llvm::BlockAddress::get(CurFn, BB); 1099 } 1100 1101 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1102 // If we already made the indirect branch for indirect goto, return its block. 1103 if (IndirectBranch) return IndirectBranch->getParent(); 1104 1105 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1106 1107 // Create the PHI node that indirect gotos will add entries to. 1108 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1109 "indirect.goto.dest"); 1110 1111 // Create the indirect branch instruction. 1112 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1113 return IndirectBranch->getParent(); 1114 } 1115 1116 /// Computes the length of an array in elements, as well as the base 1117 /// element type and a properly-typed first element pointer. 1118 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1119 QualType &baseType, 1120 llvm::Value *&addr) { 1121 const ArrayType *arrayType = origArrayType; 1122 1123 // If it's a VLA, we have to load the stored size. Note that 1124 // this is the size of the VLA in bytes, not its size in elements. 1125 llvm::Value *numVLAElements = 0; 1126 if (isa<VariableArrayType>(arrayType)) { 1127 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1128 1129 // Walk into all VLAs. This doesn't require changes to addr, 1130 // which has type T* where T is the first non-VLA element type. 1131 do { 1132 QualType elementType = arrayType->getElementType(); 1133 arrayType = getContext().getAsArrayType(elementType); 1134 1135 // If we only have VLA components, 'addr' requires no adjustment. 1136 if (!arrayType) { 1137 baseType = elementType; 1138 return numVLAElements; 1139 } 1140 } while (isa<VariableArrayType>(arrayType)); 1141 1142 // We get out here only if we find a constant array type 1143 // inside the VLA. 1144 } 1145 1146 // We have some number of constant-length arrays, so addr should 1147 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1148 // down to the first element of addr. 1149 SmallVector<llvm::Value*, 8> gepIndices; 1150 1151 // GEP down to the array type. 1152 llvm::ConstantInt *zero = Builder.getInt32(0); 1153 gepIndices.push_back(zero); 1154 1155 uint64_t countFromCLAs = 1; 1156 QualType eltType; 1157 1158 llvm::ArrayType *llvmArrayType = 1159 dyn_cast<llvm::ArrayType>( 1160 cast<llvm::PointerType>(addr->getType())->getElementType()); 1161 while (llvmArrayType) { 1162 assert(isa<ConstantArrayType>(arrayType)); 1163 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1164 == llvmArrayType->getNumElements()); 1165 1166 gepIndices.push_back(zero); 1167 countFromCLAs *= llvmArrayType->getNumElements(); 1168 eltType = arrayType->getElementType(); 1169 1170 llvmArrayType = 1171 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1172 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1173 assert((!llvmArrayType || arrayType) && 1174 "LLVM and Clang types are out-of-synch"); 1175 } 1176 1177 if (arrayType) { 1178 // From this point onwards, the Clang array type has been emitted 1179 // as some other type (probably a packed struct). Compute the array 1180 // size, and just emit the 'begin' expression as a bitcast. 1181 while (arrayType) { 1182 countFromCLAs *= 1183 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1184 eltType = arrayType->getElementType(); 1185 arrayType = getContext().getAsArrayType(eltType); 1186 } 1187 1188 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1189 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1190 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1191 } else { 1192 // Create the actual GEP. 1193 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1194 } 1195 1196 baseType = eltType; 1197 1198 llvm::Value *numElements 1199 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1200 1201 // If we had any VLA dimensions, factor them in. 1202 if (numVLAElements) 1203 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1204 1205 return numElements; 1206 } 1207 1208 std::pair<llvm::Value*, QualType> 1209 CodeGenFunction::getVLASize(QualType type) { 1210 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1211 assert(vla && "type was not a variable array type!"); 1212 return getVLASize(vla); 1213 } 1214 1215 std::pair<llvm::Value*, QualType> 1216 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1217 // The number of elements so far; always size_t. 1218 llvm::Value *numElements = 0; 1219 1220 QualType elementType; 1221 do { 1222 elementType = type->getElementType(); 1223 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1224 assert(vlaSize && "no size for VLA!"); 1225 assert(vlaSize->getType() == SizeTy); 1226 1227 if (!numElements) { 1228 numElements = vlaSize; 1229 } else { 1230 // It's undefined behavior if this wraps around, so mark it that way. 1231 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1232 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1233 } 1234 } while ((type = getContext().getAsVariableArrayType(elementType))); 1235 1236 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1237 } 1238 1239 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1240 assert(type->isVariablyModifiedType() && 1241 "Must pass variably modified type to EmitVLASizes!"); 1242 1243 EnsureInsertPoint(); 1244 1245 // We're going to walk down into the type and look for VLA 1246 // expressions. 1247 do { 1248 assert(type->isVariablyModifiedType()); 1249 1250 const Type *ty = type.getTypePtr(); 1251 switch (ty->getTypeClass()) { 1252 1253 #define TYPE(Class, Base) 1254 #define ABSTRACT_TYPE(Class, Base) 1255 #define NON_CANONICAL_TYPE(Class, Base) 1256 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1257 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1258 #include "clang/AST/TypeNodes.def" 1259 llvm_unreachable("unexpected dependent type!"); 1260 1261 // These types are never variably-modified. 1262 case Type::Builtin: 1263 case Type::Complex: 1264 case Type::Vector: 1265 case Type::ExtVector: 1266 case Type::Record: 1267 case Type::Enum: 1268 case Type::Elaborated: 1269 case Type::TemplateSpecialization: 1270 case Type::ObjCObject: 1271 case Type::ObjCInterface: 1272 case Type::ObjCObjectPointer: 1273 llvm_unreachable("type class is never variably-modified!"); 1274 1275 case Type::Decayed: 1276 type = cast<DecayedType>(ty)->getPointeeType(); 1277 break; 1278 1279 case Type::Pointer: 1280 type = cast<PointerType>(ty)->getPointeeType(); 1281 break; 1282 1283 case Type::BlockPointer: 1284 type = cast<BlockPointerType>(ty)->getPointeeType(); 1285 break; 1286 1287 case Type::LValueReference: 1288 case Type::RValueReference: 1289 type = cast<ReferenceType>(ty)->getPointeeType(); 1290 break; 1291 1292 case Type::MemberPointer: 1293 type = cast<MemberPointerType>(ty)->getPointeeType(); 1294 break; 1295 1296 case Type::ConstantArray: 1297 case Type::IncompleteArray: 1298 // Losing element qualification here is fine. 1299 type = cast<ArrayType>(ty)->getElementType(); 1300 break; 1301 1302 case Type::VariableArray: { 1303 // Losing element qualification here is fine. 1304 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1305 1306 // Unknown size indication requires no size computation. 1307 // Otherwise, evaluate and record it. 1308 if (const Expr *size = vat->getSizeExpr()) { 1309 // It's possible that we might have emitted this already, 1310 // e.g. with a typedef and a pointer to it. 1311 llvm::Value *&entry = VLASizeMap[size]; 1312 if (!entry) { 1313 llvm::Value *Size = EmitScalarExpr(size); 1314 1315 // C11 6.7.6.2p5: 1316 // If the size is an expression that is not an integer constant 1317 // expression [...] each time it is evaluated it shall have a value 1318 // greater than zero. 1319 if (SanOpts->VLABound && 1320 size->getType()->isSignedIntegerType()) { 1321 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1322 llvm::Constant *StaticArgs[] = { 1323 EmitCheckSourceLocation(size->getLocStart()), 1324 EmitCheckTypeDescriptor(size->getType()) 1325 }; 1326 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1327 "vla_bound_not_positive", StaticArgs, Size, 1328 CRK_Recoverable); 1329 } 1330 1331 // Always zexting here would be wrong if it weren't 1332 // undefined behavior to have a negative bound. 1333 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1334 } 1335 } 1336 type = vat->getElementType(); 1337 break; 1338 } 1339 1340 case Type::FunctionProto: 1341 case Type::FunctionNoProto: 1342 type = cast<FunctionType>(ty)->getResultType(); 1343 break; 1344 1345 case Type::Paren: 1346 case Type::TypeOf: 1347 case Type::UnaryTransform: 1348 case Type::Attributed: 1349 case Type::SubstTemplateTypeParm: 1350 case Type::PackExpansion: 1351 // Keep walking after single level desugaring. 1352 type = type.getSingleStepDesugaredType(getContext()); 1353 break; 1354 1355 case Type::Typedef: 1356 case Type::Decltype: 1357 case Type::Auto: 1358 // Stop walking: nothing to do. 1359 return; 1360 1361 case Type::TypeOfExpr: 1362 // Stop walking: emit typeof expression. 1363 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1364 return; 1365 1366 case Type::Atomic: 1367 type = cast<AtomicType>(ty)->getValueType(); 1368 break; 1369 } 1370 } while (type->isVariablyModifiedType()); 1371 } 1372 1373 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1374 if (getContext().getBuiltinVaListType()->isArrayType()) 1375 return EmitScalarExpr(E); 1376 return EmitLValue(E).getAddress(); 1377 } 1378 1379 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1380 llvm::Constant *Init) { 1381 assert (Init && "Invalid DeclRefExpr initializer!"); 1382 if (CGDebugInfo *Dbg = getDebugInfo()) 1383 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1384 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1385 } 1386 1387 CodeGenFunction::PeepholeProtection 1388 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1389 // At the moment, the only aggressive peephole we do in IR gen 1390 // is trunc(zext) folding, but if we add more, we can easily 1391 // extend this protection. 1392 1393 if (!rvalue.isScalar()) return PeepholeProtection(); 1394 llvm::Value *value = rvalue.getScalarVal(); 1395 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1396 1397 // Just make an extra bitcast. 1398 assert(HaveInsertPoint()); 1399 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1400 Builder.GetInsertBlock()); 1401 1402 PeepholeProtection protection; 1403 protection.Inst = inst; 1404 return protection; 1405 } 1406 1407 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1408 if (!protection.Inst) return; 1409 1410 // In theory, we could try to duplicate the peepholes now, but whatever. 1411 protection.Inst->eraseFromParent(); 1412 } 1413 1414 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1415 llvm::Value *AnnotatedVal, 1416 StringRef AnnotationStr, 1417 SourceLocation Location) { 1418 llvm::Value *Args[4] = { 1419 AnnotatedVal, 1420 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1421 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1422 CGM.EmitAnnotationLineNo(Location) 1423 }; 1424 return Builder.CreateCall(AnnotationFn, Args); 1425 } 1426 1427 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1428 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1429 // FIXME We create a new bitcast for every annotation because that's what 1430 // llvm-gcc was doing. 1431 for (specific_attr_iterator<AnnotateAttr> 1432 ai = D->specific_attr_begin<AnnotateAttr>(), 1433 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1434 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1435 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1436 (*ai)->getAnnotation(), D->getLocation()); 1437 } 1438 1439 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1440 llvm::Value *V) { 1441 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1442 llvm::Type *VTy = V->getType(); 1443 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1444 CGM.Int8PtrTy); 1445 1446 for (specific_attr_iterator<AnnotateAttr> 1447 ai = D->specific_attr_begin<AnnotateAttr>(), 1448 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1449 // FIXME Always emit the cast inst so we can differentiate between 1450 // annotation on the first field of a struct and annotation on the struct 1451 // itself. 1452 if (VTy != CGM.Int8PtrTy) 1453 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1454 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1455 V = Builder.CreateBitCast(V, VTy); 1456 } 1457 1458 return V; 1459 } 1460 1461 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1462