1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 default: 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 } 112 113 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 114 llvm::FastMathFlags FMF; 115 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 116 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 117 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 118 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 119 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 120 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 121 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 122 Builder.setFastMathFlags(FMF); 123 } 124 125 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 126 const Expr *E) 127 : CGF(CGF) { 128 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 129 } 130 131 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 132 FPOptions FPFeatures) 133 : CGF(CGF) { 134 ConstructorHelper(FPFeatures); 135 } 136 137 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 138 OldFPFeatures = CGF.CurFPFeatures; 139 CGF.CurFPFeatures = FPFeatures; 140 141 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 142 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 143 144 if (OldFPFeatures == FPFeatures) 145 return; 146 147 FMFGuard.emplace(CGF.Builder); 148 149 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 Address Addr(V, ConvertTypeForMem(T), Alignment); 192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 Address Addr(V, ConvertTypeForMem(T), Align); 204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 205 } 206 207 208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 209 return CGM.getTypes().ConvertTypeForMem(T); 210 } 211 212 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 213 return CGM.getTypes().ConvertType(T); 214 } 215 216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 217 type = type.getCanonicalType(); 218 while (true) { 219 switch (type->getTypeClass()) { 220 #define TYPE(name, parent) 221 #define ABSTRACT_TYPE(name, parent) 222 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 223 #define DEPENDENT_TYPE(name, parent) case Type::name: 224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 225 #include "clang/AST/TypeNodes.inc" 226 llvm_unreachable("non-canonical or dependent type in IR-generation"); 227 228 case Type::Auto: 229 case Type::DeducedTemplateSpecialization: 230 llvm_unreachable("undeduced type in IR-generation"); 231 232 // Various scalar types. 233 case Type::Builtin: 234 case Type::Pointer: 235 case Type::BlockPointer: 236 case Type::LValueReference: 237 case Type::RValueReference: 238 case Type::MemberPointer: 239 case Type::Vector: 240 case Type::ExtVector: 241 case Type::ConstantMatrix: 242 case Type::FunctionProto: 243 case Type::FunctionNoProto: 244 case Type::Enum: 245 case Type::ObjCObjectPointer: 246 case Type::Pipe: 247 case Type::BitInt: 248 return TEK_Scalar; 249 250 // Complexes. 251 case Type::Complex: 252 return TEK_Complex; 253 254 // Arrays, records, and Objective-C objects. 255 case Type::ConstantArray: 256 case Type::IncompleteArray: 257 case Type::VariableArray: 258 case Type::Record: 259 case Type::ObjCObject: 260 case Type::ObjCInterface: 261 return TEK_Aggregate; 262 263 // We operate on atomic values according to their underlying type. 264 case Type::Atomic: 265 type = cast<AtomicType>(type)->getValueType(); 266 continue; 267 } 268 llvm_unreachable("unknown type kind!"); 269 } 270 } 271 272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 273 // For cleanliness, we try to avoid emitting the return block for 274 // simple cases. 275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 276 277 if (CurBB) { 278 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 279 280 // We have a valid insert point, reuse it if it is empty or there are no 281 // explicit jumps to the return block. 282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 284 delete ReturnBlock.getBlock(); 285 ReturnBlock = JumpDest(); 286 } else 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 // Otherwise, if the return block is the target of a single direct 292 // branch then we can just put the code in that block instead. This 293 // cleans up functions which started with a unified return block. 294 if (ReturnBlock.getBlock()->hasOneUse()) { 295 llvm::BranchInst *BI = 296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 297 if (BI && BI->isUnconditional() && 298 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 299 // Record/return the DebugLoc of the simple 'return' expression to be used 300 // later by the actual 'ret' instruction. 301 llvm::DebugLoc Loc = BI->getDebugLoc(); 302 Builder.SetInsertPoint(BI->getParent()); 303 BI->eraseFromParent(); 304 delete ReturnBlock.getBlock(); 305 ReturnBlock = JumpDest(); 306 return Loc; 307 } 308 } 309 310 // FIXME: We are at an unreachable point, there is no reason to emit the block 311 // unless it has uses. However, we still need a place to put the debug 312 // region.end for now. 313 314 EmitBlock(ReturnBlock.getBlock()); 315 return llvm::DebugLoc(); 316 } 317 318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 319 if (!BB) return; 320 if (!BB->use_empty()) 321 return CGF.CurFn->getBasicBlockList().push_back(BB); 322 delete BB; 323 } 324 325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 326 assert(BreakContinueStack.empty() && 327 "mismatched push/pop in break/continue stack!"); 328 329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 330 && NumSimpleReturnExprs == NumReturnExprs 331 && ReturnBlock.getBlock()->use_empty(); 332 // Usually the return expression is evaluated before the cleanup 333 // code. If the function contains only a simple return statement, 334 // such as a constant, the location before the cleanup code becomes 335 // the last useful breakpoint in the function, because the simple 336 // return expression will be evaluated after the cleanup code. To be 337 // safe, set the debug location for cleanup code to the location of 338 // the return statement. Otherwise the cleanup code should be at the 339 // end of the function's lexical scope. 340 // 341 // If there are multiple branches to the return block, the branch 342 // instructions will get the location of the return statements and 343 // all will be fine. 344 if (CGDebugInfo *DI = getDebugInfo()) { 345 if (OnlySimpleReturnStmts) 346 DI->EmitLocation(Builder, LastStopPoint); 347 else 348 DI->EmitLocation(Builder, EndLoc); 349 } 350 351 // Pop any cleanups that might have been associated with the 352 // parameters. Do this in whatever block we're currently in; it's 353 // important to do this before we enter the return block or return 354 // edges will be *really* confused. 355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 356 bool HasOnlyLifetimeMarkers = 357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 359 if (HasCleanups) { 360 // Make sure the line table doesn't jump back into the body for 361 // the ret after it's been at EndLoc. 362 Optional<ApplyDebugLocation> AL; 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, EndLoc); 366 else 367 // We may not have a valid end location. Try to apply it anyway, and 368 // fall back to an artificial location if needed. 369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 370 } 371 372 PopCleanupBlocks(PrologueCleanupDepth); 373 } 374 375 // Emit function epilog (to return). 376 llvm::DebugLoc Loc = EmitReturnBlock(); 377 378 if (ShouldInstrumentFunction()) { 379 if (CGM.getCodeGenOpts().InstrumentFunctions) 380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 382 CurFn->addFnAttr("instrument-function-exit-inlined", 383 "__cyg_profile_func_exit"); 384 } 385 386 // Emit debug descriptor for function end. 387 if (CGDebugInfo *DI = getDebugInfo()) 388 DI->EmitFunctionEnd(Builder, CurFn); 389 390 // Reset the debug location to that of the simple 'return' expression, if any 391 // rather than that of the end of the function's scope '}'. 392 ApplyDebugLocation AL(*this, Loc); 393 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 394 EmitEndEHSpec(CurCodeDecl); 395 396 assert(EHStack.empty() && 397 "did not remove all scopes from cleanup stack!"); 398 399 // If someone did an indirect goto, emit the indirect goto block at the end of 400 // the function. 401 if (IndirectBranch) { 402 EmitBlock(IndirectBranch->getParent()); 403 Builder.ClearInsertionPoint(); 404 } 405 406 // If some of our locals escaped, insert a call to llvm.localescape in the 407 // entry block. 408 if (!EscapedLocals.empty()) { 409 // Invert the map from local to index into a simple vector. There should be 410 // no holes. 411 SmallVector<llvm::Value *, 4> EscapeArgs; 412 EscapeArgs.resize(EscapedLocals.size()); 413 for (auto &Pair : EscapedLocals) 414 EscapeArgs[Pair.second] = Pair.first; 415 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 416 &CGM.getModule(), llvm::Intrinsic::localescape); 417 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 418 } 419 420 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 421 llvm::Instruction *Ptr = AllocaInsertPt; 422 AllocaInsertPt = nullptr; 423 Ptr->eraseFromParent(); 424 425 // PostAllocaInsertPt, if created, was lazily created when it was required, 426 // remove it now since it was just created for our own convenience. 427 if (PostAllocaInsertPt) { 428 llvm::Instruction *PostPtr = PostAllocaInsertPt; 429 PostAllocaInsertPt = nullptr; 430 PostPtr->eraseFromParent(); 431 } 432 433 // If someone took the address of a label but never did an indirect goto, we 434 // made a zero entry PHI node, which is illegal, zap it now. 435 if (IndirectBranch) { 436 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 437 if (PN->getNumIncomingValues() == 0) { 438 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 439 PN->eraseFromParent(); 440 } 441 } 442 443 EmitIfUsed(*this, EHResumeBlock); 444 EmitIfUsed(*this, TerminateLandingPad); 445 EmitIfUsed(*this, TerminateHandler); 446 EmitIfUsed(*this, UnreachableBlock); 447 448 for (const auto &FuncletAndParent : TerminateFunclets) 449 EmitIfUsed(*this, FuncletAndParent.second); 450 451 if (CGM.getCodeGenOpts().EmitDeclMetadata) 452 EmitDeclMetadata(); 453 454 for (const auto &R : DeferredReplacements) { 455 if (llvm::Value *Old = R.first) { 456 Old->replaceAllUsesWith(R.second); 457 cast<llvm::Instruction>(Old)->eraseFromParent(); 458 } 459 } 460 DeferredReplacements.clear(); 461 462 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 463 // PHIs if the current function is a coroutine. We don't do it for all 464 // functions as it may result in slight increase in numbers of instructions 465 // if compiled with no optimizations. We do it for coroutine as the lifetime 466 // of CleanupDestSlot alloca make correct coroutine frame building very 467 // difficult. 468 if (NormalCleanupDest.isValid() && isCoroutine()) { 469 llvm::DominatorTree DT(*CurFn); 470 llvm::PromoteMemToReg( 471 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 472 NormalCleanupDest = Address::invalid(); 473 } 474 475 // Scan function arguments for vector width. 476 for (llvm::Argument &A : CurFn->args()) 477 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 478 LargestVectorWidth = 479 std::max((uint64_t)LargestVectorWidth, 480 VT->getPrimitiveSizeInBits().getKnownMinSize()); 481 482 // Update vector width based on return type. 483 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 484 LargestVectorWidth = 485 std::max((uint64_t)LargestVectorWidth, 486 VT->getPrimitiveSizeInBits().getKnownMinSize()); 487 488 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) 489 LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); 490 491 // Add the required-vector-width attribute. This contains the max width from: 492 // 1. min-vector-width attribute used in the source program. 493 // 2. Any builtins used that have a vector width specified. 494 // 3. Values passed in and out of inline assembly. 495 // 4. Width of vector arguments and return types for this function. 496 // 5. Width of vector aguments and return types for functions called by this 497 // function. 498 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 499 500 // Add vscale_range attribute if appropriate. 501 Optional<std::pair<unsigned, unsigned>> VScaleRange = 502 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 503 if (VScaleRange) { 504 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 505 getLLVMContext(), VScaleRange->first, VScaleRange->second)); 506 } 507 508 // If we generated an unreachable return block, delete it now. 509 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 510 Builder.ClearInsertionPoint(); 511 ReturnBlock.getBlock()->eraseFromParent(); 512 } 513 if (ReturnValue.isValid()) { 514 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 515 if (RetAlloca && RetAlloca->use_empty()) { 516 RetAlloca->eraseFromParent(); 517 ReturnValue = Address::invalid(); 518 } 519 } 520 } 521 522 /// ShouldInstrumentFunction - Return true if the current function should be 523 /// instrumented with __cyg_profile_func_* calls 524 bool CodeGenFunction::ShouldInstrumentFunction() { 525 if (!CGM.getCodeGenOpts().InstrumentFunctions && 526 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 527 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 528 return false; 529 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 530 return false; 531 return true; 532 } 533 534 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 535 if (!CurFuncDecl) 536 return false; 537 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 538 } 539 540 /// ShouldXRayInstrument - Return true if the current function should be 541 /// instrumented with XRay nop sleds. 542 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 543 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 544 } 545 546 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 547 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 548 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 549 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 550 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 551 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 552 XRayInstrKind::Custom); 553 } 554 555 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 556 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 557 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 558 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 559 XRayInstrKind::Typed); 560 } 561 562 llvm::Constant * 563 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 564 llvm::Constant *Addr) { 565 // Addresses stored in prologue data can't require run-time fixups and must 566 // be PC-relative. Run-time fixups are undesirable because they necessitate 567 // writable text segments, which are unsafe. And absolute addresses are 568 // undesirable because they break PIE mode. 569 570 // Add a layer of indirection through a private global. Taking its address 571 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 572 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 573 /*isConstant=*/true, 574 llvm::GlobalValue::PrivateLinkage, Addr); 575 576 // Create a PC-relative address. 577 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 578 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 579 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 580 return (IntPtrTy == Int32Ty) 581 ? PCRelAsInt 582 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 583 } 584 585 llvm::Value * 586 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 587 llvm::Value *EncodedAddr) { 588 // Reconstruct the address of the global. 589 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 590 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 591 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 592 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 593 594 // Load the original pointer through the global. 595 return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()), 596 "decoded_addr"); 597 } 598 599 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 600 llvm::Function *Fn) 601 { 602 if (!FD->hasAttr<OpenCLKernelAttr>()) 603 return; 604 605 llvm::LLVMContext &Context = getLLVMContext(); 606 607 CGM.GenOpenCLArgMetadata(Fn, FD, this); 608 609 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 610 QualType HintQTy = A->getTypeHint(); 611 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 612 bool IsSignedInteger = 613 HintQTy->isSignedIntegerType() || 614 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 615 llvm::Metadata *AttrMDArgs[] = { 616 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 617 CGM.getTypes().ConvertType(A->getTypeHint()))), 618 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 619 llvm::IntegerType::get(Context, 32), 620 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 621 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 633 llvm::Metadata *AttrMDArgs[] = { 634 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 636 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 637 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 640 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 641 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 642 llvm::Metadata *AttrMDArgs[] = { 643 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 644 Fn->setMetadata("intel_reqd_sub_group_size", 645 llvm::MDNode::get(Context, AttrMDArgs)); 646 } 647 } 648 649 /// Determine whether the function F ends with a return stmt. 650 static bool endsWithReturn(const Decl* F) { 651 const Stmt *Body = nullptr; 652 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 653 Body = FD->getBody(); 654 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 655 Body = OMD->getBody(); 656 657 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 658 auto LastStmt = CS->body_rbegin(); 659 if (LastStmt != CS->body_rend()) 660 return isa<ReturnStmt>(*LastStmt); 661 } 662 return false; 663 } 664 665 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 666 if (SanOpts.has(SanitizerKind::Thread)) { 667 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 668 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 669 } 670 } 671 672 /// Check if the return value of this function requires sanitization. 673 bool CodeGenFunction::requiresReturnValueCheck() const { 674 return requiresReturnValueNullabilityCheck() || 675 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 676 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 677 } 678 679 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 680 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 681 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 682 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 683 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 684 return false; 685 686 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 687 return false; 688 689 if (MD->getNumParams() == 2) { 690 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 691 if (!PT || !PT->isVoidPointerType() || 692 !PT->getPointeeType().isConstQualified()) 693 return false; 694 } 695 696 return true; 697 } 698 699 /// Return the UBSan prologue signature for \p FD if one is available. 700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 701 const FunctionDecl *FD) { 702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 703 if (!MD->isStatic()) 704 return nullptr; 705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 709 llvm::Function *Fn, 710 const CGFunctionInfo &FnInfo, 711 const FunctionArgList &Args, 712 SourceLocation Loc, 713 SourceLocation StartLoc) { 714 assert(!CurFn && 715 "Do not use a CodeGenFunction object for more than one function"); 716 717 const Decl *D = GD.getDecl(); 718 719 DidCallStackSave = false; 720 CurCodeDecl = D; 721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 722 if (FD && FD->usesSEHTry()) 723 CurSEHParent = FD; 724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 725 FnRetTy = RetTy; 726 CurFn = Fn; 727 CurFnInfo = &FnInfo; 728 assert(CurFn->isDeclaration() && "Function already has body?"); 729 730 // If this function is ignored for any of the enabled sanitizers, 731 // disable the sanitizer for the function. 732 do { 733 #define SANITIZER(NAME, ID) \ 734 if (SanOpts.empty()) \ 735 break; \ 736 if (SanOpts.has(SanitizerKind::ID)) \ 737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 738 SanOpts.set(SanitizerKind::ID, false); 739 740 #include "clang/Basic/Sanitizers.def" 741 #undef SANITIZER 742 } while (false); 743 744 if (D) { 745 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); 746 bool NoSanitizeCoverage = false; 747 748 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 749 // Apply the no_sanitize* attributes to SanOpts. 750 SanitizerMask mask = Attr->getMask(); 751 SanOpts.Mask &= ~mask; 752 if (mask & SanitizerKind::Address) 753 SanOpts.set(SanitizerKind::KernelAddress, false); 754 if (mask & SanitizerKind::KernelAddress) 755 SanOpts.set(SanitizerKind::Address, false); 756 if (mask & SanitizerKind::HWAddress) 757 SanOpts.set(SanitizerKind::KernelHWAddress, false); 758 if (mask & SanitizerKind::KernelHWAddress) 759 SanOpts.set(SanitizerKind::HWAddress, false); 760 761 // SanitizeCoverage is not handled by SanOpts. 762 if (Attr->hasCoverage()) 763 NoSanitizeCoverage = true; 764 } 765 766 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) 767 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); 768 769 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 770 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 771 } 772 773 if (ShouldSkipSanitizerInstrumentation()) { 774 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 775 } else { 776 // Apply sanitizer attributes to the function. 777 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 778 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 779 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 780 SanitizerKind::KernelHWAddress)) 781 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 782 if (SanOpts.has(SanitizerKind::MemtagStack)) 783 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 784 if (SanOpts.has(SanitizerKind::Thread)) 785 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 786 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 787 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 788 } 789 if (SanOpts.has(SanitizerKind::SafeStack)) 790 Fn->addFnAttr(llvm::Attribute::SafeStack); 791 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 792 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 793 794 // Apply fuzzing attribute to the function. 795 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 796 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 797 798 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 799 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 800 if (SanOpts.has(SanitizerKind::Thread)) { 801 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 802 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 803 if (OMD->getMethodFamily() == OMF_dealloc || 804 OMD->getMethodFamily() == OMF_initialize || 805 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 806 markAsIgnoreThreadCheckingAtRuntime(Fn); 807 } 808 } 809 } 810 811 // Ignore unrelated casts in STL allocate() since the allocator must cast 812 // from void* to T* before object initialization completes. Don't match on the 813 // namespace because not all allocators are in std:: 814 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 815 if (matchesStlAllocatorFn(D, getContext())) 816 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 817 } 818 819 // Ignore null checks in coroutine functions since the coroutines passes 820 // are not aware of how to move the extra UBSan instructions across the split 821 // coroutine boundaries. 822 if (D && SanOpts.has(SanitizerKind::Null)) 823 if (FD && FD->getBody() && 824 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 825 SanOpts.Mask &= ~SanitizerKind::Null; 826 827 // Apply xray attributes to the function (as a string, for now) 828 bool AlwaysXRayAttr = false; 829 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 830 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 831 XRayInstrKind::FunctionEntry) || 832 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 833 XRayInstrKind::FunctionExit)) { 834 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 835 Fn->addFnAttr("function-instrument", "xray-always"); 836 AlwaysXRayAttr = true; 837 } 838 if (XRayAttr->neverXRayInstrument()) 839 Fn->addFnAttr("function-instrument", "xray-never"); 840 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 841 if (ShouldXRayInstrumentFunction()) 842 Fn->addFnAttr("xray-log-args", 843 llvm::utostr(LogArgs->getArgumentCount())); 844 } 845 } else { 846 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 847 Fn->addFnAttr( 848 "xray-instruction-threshold", 849 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 850 } 851 852 if (ShouldXRayInstrumentFunction()) { 853 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 854 Fn->addFnAttr("xray-ignore-loops"); 855 856 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 857 XRayInstrKind::FunctionExit)) 858 Fn->addFnAttr("xray-skip-exit"); 859 860 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 861 XRayInstrKind::FunctionEntry)) 862 Fn->addFnAttr("xray-skip-entry"); 863 864 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 865 if (FuncGroups > 1) { 866 auto FuncName = llvm::makeArrayRef<uint8_t>( 867 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 868 auto Group = crc32(FuncName) % FuncGroups; 869 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 870 !AlwaysXRayAttr) 871 Fn->addFnAttr("function-instrument", "xray-never"); 872 } 873 } 874 875 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 876 if (CGM.isProfileInstrExcluded(Fn, Loc)) 877 Fn->addFnAttr(llvm::Attribute::NoProfile); 878 879 unsigned Count, Offset; 880 if (const auto *Attr = 881 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 882 Count = Attr->getCount(); 883 Offset = Attr->getOffset(); 884 } else { 885 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 886 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 887 } 888 if (Count && Offset <= Count) { 889 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 890 if (Offset) 891 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 892 } 893 // Instruct that functions for COFF/CodeView targets should start with a 894 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 895 // backends as they don't need it -- instructions on these architectures are 896 // always atomically patchable at runtime. 897 if (CGM.getCodeGenOpts().HotPatch && 898 getContext().getTargetInfo().getTriple().isX86()) 899 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 900 901 // Add no-jump-tables value. 902 if (CGM.getCodeGenOpts().NoUseJumpTables) 903 Fn->addFnAttr("no-jump-tables", "true"); 904 905 // Add no-inline-line-tables value. 906 if (CGM.getCodeGenOpts().NoInlineLineTables) 907 Fn->addFnAttr("no-inline-line-tables"); 908 909 // Add profile-sample-accurate value. 910 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 911 Fn->addFnAttr("profile-sample-accurate"); 912 913 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 914 Fn->addFnAttr("use-sample-profile"); 915 916 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 917 Fn->addFnAttr("cfi-canonical-jump-table"); 918 919 if (D && D->hasAttr<NoProfileFunctionAttr>()) 920 Fn->addFnAttr(llvm::Attribute::NoProfile); 921 922 if (FD && getLangOpts().OpenCL) { 923 // Add metadata for a kernel function. 924 EmitOpenCLKernelMetadata(FD, Fn); 925 } 926 927 // If we are checking function types, emit a function type signature as 928 // prologue data. 929 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 930 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 931 // Remove any (C++17) exception specifications, to allow calling e.g. a 932 // noexcept function through a non-noexcept pointer. 933 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 934 FD->getType(), EST_None); 935 llvm::Constant *FTRTTIConst = 936 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 937 llvm::Constant *FTRTTIConstEncoded = 938 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 939 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 940 llvm::Constant *PrologueStructConst = 941 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 942 Fn->setPrologueData(PrologueStructConst); 943 } 944 } 945 946 // If we're checking nullability, we need to know whether we can check the 947 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 948 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 949 auto Nullability = FnRetTy->getNullability(getContext()); 950 if (Nullability && *Nullability == NullabilityKind::NonNull) { 951 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 952 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 953 RetValNullabilityPrecondition = 954 llvm::ConstantInt::getTrue(getLLVMContext()); 955 } 956 } 957 958 // If we're in C++ mode and the function name is "main", it is guaranteed 959 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 960 // used within a program"). 961 // 962 // OpenCL C 2.0 v2.2-11 s6.9.i: 963 // Recursion is not supported. 964 // 965 // SYCL v1.2.1 s3.10: 966 // kernels cannot include RTTI information, exception classes, 967 // recursive code, virtual functions or make use of C++ libraries that 968 // are not compiled for the device. 969 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 970 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 971 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 972 Fn->addFnAttr(llvm::Attribute::NoRecurse); 973 974 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); 975 llvm::fp::ExceptionBehavior FPExceptionBehavior = 976 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); 977 Builder.setDefaultConstrainedRounding(RM); 978 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 979 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 980 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 981 RM != llvm::RoundingMode::NearestTiesToEven))) { 982 Builder.setIsFPConstrained(true); 983 Fn->addFnAttr(llvm::Attribute::StrictFP); 984 } 985 986 // If a custom alignment is used, force realigning to this alignment on 987 // any main function which certainly will need it. 988 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 989 CGM.getCodeGenOpts().StackAlignment)) 990 Fn->addFnAttr("stackrealign"); 991 992 // "main" doesn't need to zero out call-used registers. 993 if (FD && FD->isMain()) 994 Fn->removeFnAttr("zero-call-used-regs"); 995 996 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 997 998 // Create a marker to make it easy to insert allocas into the entryblock 999 // later. Don't create this with the builder, because we don't want it 1000 // folded. 1001 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1002 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1003 1004 ReturnBlock = getJumpDestInCurrentScope("return"); 1005 1006 Builder.SetInsertPoint(EntryBB); 1007 1008 // If we're checking the return value, allocate space for a pointer to a 1009 // precise source location of the checked return statement. 1010 if (requiresReturnValueCheck()) { 1011 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1012 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1013 ReturnLocation); 1014 } 1015 1016 // Emit subprogram debug descriptor. 1017 if (CGDebugInfo *DI = getDebugInfo()) { 1018 // Reconstruct the type from the argument list so that implicit parameters, 1019 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1020 // convention. 1021 DI->emitFunctionStart(GD, Loc, StartLoc, 1022 DI->getFunctionType(FD, RetTy, Args), CurFn, 1023 CurFuncIsThunk); 1024 } 1025 1026 if (ShouldInstrumentFunction()) { 1027 if (CGM.getCodeGenOpts().InstrumentFunctions) 1028 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1029 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1030 CurFn->addFnAttr("instrument-function-entry-inlined", 1031 "__cyg_profile_func_enter"); 1032 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1033 CurFn->addFnAttr("instrument-function-entry-inlined", 1034 "__cyg_profile_func_enter_bare"); 1035 } 1036 1037 // Since emitting the mcount call here impacts optimizations such as function 1038 // inlining, we just add an attribute to insert a mcount call in backend. 1039 // The attribute "counting-function" is set to mcount function name which is 1040 // architecture dependent. 1041 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1042 // Calls to fentry/mcount should not be generated if function has 1043 // the no_instrument_function attribute. 1044 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1045 if (CGM.getCodeGenOpts().CallFEntry) 1046 Fn->addFnAttr("fentry-call", "true"); 1047 else { 1048 Fn->addFnAttr("instrument-function-entry-inlined", 1049 getTarget().getMCountName()); 1050 } 1051 if (CGM.getCodeGenOpts().MNopMCount) { 1052 if (!CGM.getCodeGenOpts().CallFEntry) 1053 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1054 << "-mnop-mcount" << "-mfentry"; 1055 Fn->addFnAttr("mnop-mcount"); 1056 } 1057 1058 if (CGM.getCodeGenOpts().RecordMCount) { 1059 if (!CGM.getCodeGenOpts().CallFEntry) 1060 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1061 << "-mrecord-mcount" << "-mfentry"; 1062 Fn->addFnAttr("mrecord-mcount"); 1063 } 1064 } 1065 } 1066 1067 if (CGM.getCodeGenOpts().PackedStack) { 1068 if (getContext().getTargetInfo().getTriple().getArch() != 1069 llvm::Triple::systemz) 1070 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1071 << "-mpacked-stack"; 1072 Fn->addFnAttr("packed-stack"); 1073 } 1074 1075 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1076 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1077 Fn->addFnAttr("warn-stack-size", 1078 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1079 1080 if (RetTy->isVoidType()) { 1081 // Void type; nothing to return. 1082 ReturnValue = Address::invalid(); 1083 1084 // Count the implicit return. 1085 if (!endsWithReturn(D)) 1086 ++NumReturnExprs; 1087 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1088 // Indirect return; emit returned value directly into sret slot. 1089 // This reduces code size, and affects correctness in C++. 1090 auto AI = CurFn->arg_begin(); 1091 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1092 ++AI; 1093 ReturnValue = Address(&*AI, ConvertType(RetTy), 1094 CurFnInfo->getReturnInfo().getIndirectAlign()); 1095 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1096 ReturnValuePointer = 1097 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1098 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1099 ReturnValue.getPointer(), Int8PtrTy), 1100 ReturnValuePointer); 1101 } 1102 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1103 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1104 // Load the sret pointer from the argument struct and return into that. 1105 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1106 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1107 --EI; 1108 llvm::Value *Addr = Builder.CreateStructGEP( 1109 CurFnInfo->getArgStruct(), &*EI, Idx); 1110 llvm::Type *Ty = 1111 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1112 ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); 1113 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1114 ReturnValue = 1115 Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy)); 1116 } else { 1117 ReturnValue = CreateIRTemp(RetTy, "retval"); 1118 1119 // Tell the epilog emitter to autorelease the result. We do this 1120 // now so that various specialized functions can suppress it 1121 // during their IR-generation. 1122 if (getLangOpts().ObjCAutoRefCount && 1123 !CurFnInfo->isReturnsRetained() && 1124 RetTy->isObjCRetainableType()) 1125 AutoreleaseResult = true; 1126 } 1127 1128 EmitStartEHSpec(CurCodeDecl); 1129 1130 PrologueCleanupDepth = EHStack.stable_begin(); 1131 1132 // Emit OpenMP specific initialization of the device functions. 1133 if (getLangOpts().OpenMP && CurCodeDecl) 1134 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1135 1136 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1137 1138 if (isa_and_nonnull<CXXMethodDecl>(D) && 1139 cast<CXXMethodDecl>(D)->isInstance()) { 1140 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1141 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1142 if (MD->getParent()->isLambda() && 1143 MD->getOverloadedOperator() == OO_Call) { 1144 // We're in a lambda; figure out the captures. 1145 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1146 LambdaThisCaptureField); 1147 if (LambdaThisCaptureField) { 1148 // If the lambda captures the object referred to by '*this' - either by 1149 // value or by reference, make sure CXXThisValue points to the correct 1150 // object. 1151 1152 // Get the lvalue for the field (which is a copy of the enclosing object 1153 // or contains the address of the enclosing object). 1154 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1155 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1156 // If the enclosing object was captured by value, just use its address. 1157 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1158 } else { 1159 // Load the lvalue pointed to by the field, since '*this' was captured 1160 // by reference. 1161 CXXThisValue = 1162 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1163 } 1164 } 1165 for (auto *FD : MD->getParent()->fields()) { 1166 if (FD->hasCapturedVLAType()) { 1167 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1168 SourceLocation()).getScalarVal(); 1169 auto VAT = FD->getCapturedVLAType(); 1170 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1171 } 1172 } 1173 } else { 1174 // Not in a lambda; just use 'this' from the method. 1175 // FIXME: Should we generate a new load for each use of 'this'? The 1176 // fast register allocator would be happier... 1177 CXXThisValue = CXXABIThisValue; 1178 } 1179 1180 // Check the 'this' pointer once per function, if it's available. 1181 if (CXXABIThisValue) { 1182 SanitizerSet SkippedChecks; 1183 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1184 QualType ThisTy = MD->getThisType(); 1185 1186 // If this is the call operator of a lambda with no capture-default, it 1187 // may have a static invoker function, which may call this operator with 1188 // a null 'this' pointer. 1189 if (isLambdaCallOperator(MD) && 1190 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1191 SkippedChecks.set(SanitizerKind::Null, true); 1192 1193 EmitTypeCheck( 1194 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1195 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1196 } 1197 } 1198 1199 // If any of the arguments have a variably modified type, make sure to 1200 // emit the type size, but only if the function is not naked. Naked functions 1201 // have no prolog to run this evaluation. 1202 if (!FD || !FD->hasAttr<NakedAttr>()) { 1203 for (const VarDecl *VD : Args) { 1204 // Dig out the type as written from ParmVarDecls; it's unclear whether 1205 // the standard (C99 6.9.1p10) requires this, but we're following the 1206 // precedent set by gcc. 1207 QualType Ty; 1208 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1209 Ty = PVD->getOriginalType(); 1210 else 1211 Ty = VD->getType(); 1212 1213 if (Ty->isVariablyModifiedType()) 1214 EmitVariablyModifiedType(Ty); 1215 } 1216 } 1217 // Emit a location at the end of the prologue. 1218 if (CGDebugInfo *DI = getDebugInfo()) 1219 DI->EmitLocation(Builder, StartLoc); 1220 // TODO: Do we need to handle this in two places like we do with 1221 // target-features/target-cpu? 1222 if (CurFuncDecl) 1223 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1224 LargestVectorWidth = VecWidth->getVectorWidth(); 1225 } 1226 1227 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1228 incrementProfileCounter(Body); 1229 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1230 EmitCompoundStmtWithoutScope(*S); 1231 else 1232 EmitStmt(Body); 1233 1234 // This is checked after emitting the function body so we know if there 1235 // are any permitted infinite loops. 1236 if (checkIfFunctionMustProgress()) 1237 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1238 } 1239 1240 /// When instrumenting to collect profile data, the counts for some blocks 1241 /// such as switch cases need to not include the fall-through counts, so 1242 /// emit a branch around the instrumentation code. When not instrumenting, 1243 /// this just calls EmitBlock(). 1244 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1245 const Stmt *S) { 1246 llvm::BasicBlock *SkipCountBB = nullptr; 1247 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1248 // When instrumenting for profiling, the fallthrough to certain 1249 // statements needs to skip over the instrumentation code so that we 1250 // get an accurate count. 1251 SkipCountBB = createBasicBlock("skipcount"); 1252 EmitBranch(SkipCountBB); 1253 } 1254 EmitBlock(BB); 1255 uint64_t CurrentCount = getCurrentProfileCount(); 1256 incrementProfileCounter(S); 1257 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1258 if (SkipCountBB) 1259 EmitBlock(SkipCountBB); 1260 } 1261 1262 /// Tries to mark the given function nounwind based on the 1263 /// non-existence of any throwing calls within it. We believe this is 1264 /// lightweight enough to do at -O0. 1265 static void TryMarkNoThrow(llvm::Function *F) { 1266 // LLVM treats 'nounwind' on a function as part of the type, so we 1267 // can't do this on functions that can be overwritten. 1268 if (F->isInterposable()) return; 1269 1270 for (llvm::BasicBlock &BB : *F) 1271 for (llvm::Instruction &I : BB) 1272 if (I.mayThrow()) 1273 return; 1274 1275 F->setDoesNotThrow(); 1276 } 1277 1278 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1279 FunctionArgList &Args) { 1280 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1281 QualType ResTy = FD->getReturnType(); 1282 1283 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1284 if (MD && MD->isInstance()) { 1285 if (CGM.getCXXABI().HasThisReturn(GD)) 1286 ResTy = MD->getThisType(); 1287 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1288 ResTy = CGM.getContext().VoidPtrTy; 1289 CGM.getCXXABI().buildThisParam(*this, Args); 1290 } 1291 1292 // The base version of an inheriting constructor whose constructed base is a 1293 // virtual base is not passed any arguments (because it doesn't actually call 1294 // the inherited constructor). 1295 bool PassedParams = true; 1296 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1297 if (auto Inherited = CD->getInheritedConstructor()) 1298 PassedParams = 1299 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1300 1301 if (PassedParams) { 1302 for (auto *Param : FD->parameters()) { 1303 Args.push_back(Param); 1304 if (!Param->hasAttr<PassObjectSizeAttr>()) 1305 continue; 1306 1307 auto *Implicit = ImplicitParamDecl::Create( 1308 getContext(), Param->getDeclContext(), Param->getLocation(), 1309 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1310 SizeArguments[Param] = Implicit; 1311 Args.push_back(Implicit); 1312 } 1313 } 1314 1315 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1316 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1317 1318 return ResTy; 1319 } 1320 1321 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1322 const CGFunctionInfo &FnInfo) { 1323 assert(Fn && "generating code for null Function"); 1324 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1325 CurGD = GD; 1326 1327 FunctionArgList Args; 1328 QualType ResTy = BuildFunctionArgList(GD, Args); 1329 1330 if (FD->isInlineBuiltinDeclaration()) { 1331 // When generating code for a builtin with an inline declaration, use a 1332 // mangled name to hold the actual body, while keeping an external 1333 // definition in case the function pointer is referenced somewhere. 1334 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1335 llvm::Module *M = Fn->getParent(); 1336 llvm::Function *Clone = M->getFunction(FDInlineName); 1337 if (!Clone) { 1338 Clone = llvm::Function::Create(Fn->getFunctionType(), 1339 llvm::GlobalValue::InternalLinkage, 1340 Fn->getAddressSpace(), FDInlineName, M); 1341 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1342 } 1343 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1344 Fn = Clone; 1345 } else { 1346 // Detect the unusual situation where an inline version is shadowed by a 1347 // non-inline version. In that case we should pick the external one 1348 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1349 // to detect that situation before we reach codegen, so do some late 1350 // replacement. 1351 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1352 PD = PD->getPreviousDecl()) { 1353 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1354 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1355 llvm::Module *M = Fn->getParent(); 1356 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1357 Clone->replaceAllUsesWith(Fn); 1358 Clone->eraseFromParent(); 1359 } 1360 break; 1361 } 1362 } 1363 } 1364 1365 // Check if we should generate debug info for this function. 1366 if (FD->hasAttr<NoDebugAttr>()) { 1367 // Clear non-distinct debug info that was possibly attached to the function 1368 // due to an earlier declaration without the nodebug attribute 1369 Fn->setSubprogram(nullptr); 1370 // Disable debug info indefinitely for this function 1371 DebugInfo = nullptr; 1372 } 1373 1374 // The function might not have a body if we're generating thunks for a 1375 // function declaration. 1376 SourceRange BodyRange; 1377 if (Stmt *Body = FD->getBody()) 1378 BodyRange = Body->getSourceRange(); 1379 else 1380 BodyRange = FD->getLocation(); 1381 CurEHLocation = BodyRange.getEnd(); 1382 1383 // Use the location of the start of the function to determine where 1384 // the function definition is located. By default use the location 1385 // of the declaration as the location for the subprogram. A function 1386 // may lack a declaration in the source code if it is created by code 1387 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1388 SourceLocation Loc = FD->getLocation(); 1389 1390 // If this is a function specialization then use the pattern body 1391 // as the location for the function. 1392 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1393 if (SpecDecl->hasBody(SpecDecl)) 1394 Loc = SpecDecl->getLocation(); 1395 1396 Stmt *Body = FD->getBody(); 1397 1398 if (Body) { 1399 // Coroutines always emit lifetime markers. 1400 if (isa<CoroutineBodyStmt>(Body)) 1401 ShouldEmitLifetimeMarkers = true; 1402 1403 // Initialize helper which will detect jumps which can cause invalid 1404 // lifetime markers. 1405 if (ShouldEmitLifetimeMarkers) 1406 Bypasses.Init(Body); 1407 } 1408 1409 // Emit the standard function prologue. 1410 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1411 1412 // Save parameters for coroutine function. 1413 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1414 llvm::append_range(FnArgs, FD->parameters()); 1415 1416 // Generate the body of the function. 1417 PGO.assignRegionCounters(GD, CurFn); 1418 if (isa<CXXDestructorDecl>(FD)) 1419 EmitDestructorBody(Args); 1420 else if (isa<CXXConstructorDecl>(FD)) 1421 EmitConstructorBody(Args); 1422 else if (getLangOpts().CUDA && 1423 !getLangOpts().CUDAIsDevice && 1424 FD->hasAttr<CUDAGlobalAttr>()) 1425 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1426 else if (isa<CXXMethodDecl>(FD) && 1427 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1428 // The lambda static invoker function is special, because it forwards or 1429 // clones the body of the function call operator (but is actually static). 1430 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1431 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1432 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1433 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1434 // Implicit copy-assignment gets the same special treatment as implicit 1435 // copy-constructors. 1436 emitImplicitAssignmentOperatorBody(Args); 1437 } else if (Body) { 1438 EmitFunctionBody(Body); 1439 } else 1440 llvm_unreachable("no definition for emitted function"); 1441 1442 // C++11 [stmt.return]p2: 1443 // Flowing off the end of a function [...] results in undefined behavior in 1444 // a value-returning function. 1445 // C11 6.9.1p12: 1446 // If the '}' that terminates a function is reached, and the value of the 1447 // function call is used by the caller, the behavior is undefined. 1448 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1449 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1450 bool ShouldEmitUnreachable = 1451 CGM.getCodeGenOpts().StrictReturn || 1452 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1453 if (SanOpts.has(SanitizerKind::Return)) { 1454 SanitizerScope SanScope(this); 1455 llvm::Value *IsFalse = Builder.getFalse(); 1456 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1457 SanitizerHandler::MissingReturn, 1458 EmitCheckSourceLocation(FD->getLocation()), None); 1459 } else if (ShouldEmitUnreachable) { 1460 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1461 EmitTrapCall(llvm::Intrinsic::trap); 1462 } 1463 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1464 Builder.CreateUnreachable(); 1465 Builder.ClearInsertionPoint(); 1466 } 1467 } 1468 1469 // Emit the standard function epilogue. 1470 FinishFunction(BodyRange.getEnd()); 1471 1472 // If we haven't marked the function nothrow through other means, do 1473 // a quick pass now to see if we can. 1474 if (!CurFn->doesNotThrow()) 1475 TryMarkNoThrow(CurFn); 1476 } 1477 1478 /// ContainsLabel - Return true if the statement contains a label in it. If 1479 /// this statement is not executed normally, it not containing a label means 1480 /// that we can just remove the code. 1481 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1482 // Null statement, not a label! 1483 if (!S) return false; 1484 1485 // If this is a label, we have to emit the code, consider something like: 1486 // if (0) { ... foo: bar(); } goto foo; 1487 // 1488 // TODO: If anyone cared, we could track __label__'s, since we know that you 1489 // can't jump to one from outside their declared region. 1490 if (isa<LabelStmt>(S)) 1491 return true; 1492 1493 // If this is a case/default statement, and we haven't seen a switch, we have 1494 // to emit the code. 1495 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1496 return true; 1497 1498 // If this is a switch statement, we want to ignore cases below it. 1499 if (isa<SwitchStmt>(S)) 1500 IgnoreCaseStmts = true; 1501 1502 // Scan subexpressions for verboten labels. 1503 for (const Stmt *SubStmt : S->children()) 1504 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1505 return true; 1506 1507 return false; 1508 } 1509 1510 /// containsBreak - Return true if the statement contains a break out of it. 1511 /// If the statement (recursively) contains a switch or loop with a break 1512 /// inside of it, this is fine. 1513 bool CodeGenFunction::containsBreak(const Stmt *S) { 1514 // Null statement, not a label! 1515 if (!S) return false; 1516 1517 // If this is a switch or loop that defines its own break scope, then we can 1518 // include it and anything inside of it. 1519 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1520 isa<ForStmt>(S)) 1521 return false; 1522 1523 if (isa<BreakStmt>(S)) 1524 return true; 1525 1526 // Scan subexpressions for verboten breaks. 1527 for (const Stmt *SubStmt : S->children()) 1528 if (containsBreak(SubStmt)) 1529 return true; 1530 1531 return false; 1532 } 1533 1534 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1535 if (!S) return false; 1536 1537 // Some statement kinds add a scope and thus never add a decl to the current 1538 // scope. Note, this list is longer than the list of statements that might 1539 // have an unscoped decl nested within them, but this way is conservatively 1540 // correct even if more statement kinds are added. 1541 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1542 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1543 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1544 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1545 return false; 1546 1547 if (isa<DeclStmt>(S)) 1548 return true; 1549 1550 for (const Stmt *SubStmt : S->children()) 1551 if (mightAddDeclToScope(SubStmt)) 1552 return true; 1553 1554 return false; 1555 } 1556 1557 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1558 /// to a constant, or if it does but contains a label, return false. If it 1559 /// constant folds return true and set the boolean result in Result. 1560 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1561 bool &ResultBool, 1562 bool AllowLabels) { 1563 llvm::APSInt ResultInt; 1564 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1565 return false; 1566 1567 ResultBool = ResultInt.getBoolValue(); 1568 return true; 1569 } 1570 1571 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1572 /// to a constant, or if it does but contains a label, return false. If it 1573 /// constant folds return true and set the folded value. 1574 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1575 llvm::APSInt &ResultInt, 1576 bool AllowLabels) { 1577 // FIXME: Rename and handle conversion of other evaluatable things 1578 // to bool. 1579 Expr::EvalResult Result; 1580 if (!Cond->EvaluateAsInt(Result, getContext())) 1581 return false; // Not foldable, not integer or not fully evaluatable. 1582 1583 llvm::APSInt Int = Result.Val.getInt(); 1584 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1585 return false; // Contains a label. 1586 1587 ResultInt = Int; 1588 return true; 1589 } 1590 1591 /// Determine whether the given condition is an instrumentable condition 1592 /// (i.e. no "&&" or "||"). 1593 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1594 // Bypass simplistic logical-NOT operator before determining whether the 1595 // condition contains any other logical operator. 1596 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1597 if (UnOp->getOpcode() == UO_LNot) 1598 C = UnOp->getSubExpr(); 1599 1600 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1601 return (!BOp || !BOp->isLogicalOp()); 1602 } 1603 1604 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1605 /// increments a profile counter based on the semantics of the given logical 1606 /// operator opcode. This is used to instrument branch condition coverage for 1607 /// logical operators. 1608 void CodeGenFunction::EmitBranchToCounterBlock( 1609 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1610 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1611 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1612 // If not instrumenting, just emit a branch. 1613 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1614 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1615 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1616 1617 llvm::BasicBlock *ThenBlock = nullptr; 1618 llvm::BasicBlock *ElseBlock = nullptr; 1619 llvm::BasicBlock *NextBlock = nullptr; 1620 1621 // Create the block we'll use to increment the appropriate counter. 1622 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1623 1624 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1625 // means we need to evaluate the condition and increment the counter on TRUE: 1626 // 1627 // if (Cond) 1628 // goto CounterIncrBlock; 1629 // else 1630 // goto FalseBlock; 1631 // 1632 // CounterIncrBlock: 1633 // Counter++; 1634 // goto TrueBlock; 1635 1636 if (LOp == BO_LAnd) { 1637 ThenBlock = CounterIncrBlock; 1638 ElseBlock = FalseBlock; 1639 NextBlock = TrueBlock; 1640 } 1641 1642 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1643 // we need to evaluate the condition and increment the counter on FALSE: 1644 // 1645 // if (Cond) 1646 // goto TrueBlock; 1647 // else 1648 // goto CounterIncrBlock; 1649 // 1650 // CounterIncrBlock: 1651 // Counter++; 1652 // goto FalseBlock; 1653 1654 else if (LOp == BO_LOr) { 1655 ThenBlock = TrueBlock; 1656 ElseBlock = CounterIncrBlock; 1657 NextBlock = FalseBlock; 1658 } else { 1659 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1660 } 1661 1662 // Emit Branch based on condition. 1663 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1664 1665 // Emit the block containing the counter increment(s). 1666 EmitBlock(CounterIncrBlock); 1667 1668 // Increment corresponding counter; if index not provided, use Cond as index. 1669 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1670 1671 // Go to the next block. 1672 EmitBranch(NextBlock); 1673 } 1674 1675 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1676 /// statement) to the specified blocks. Based on the condition, this might try 1677 /// to simplify the codegen of the conditional based on the branch. 1678 /// \param LH The value of the likelihood attribute on the True branch. 1679 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1680 llvm::BasicBlock *TrueBlock, 1681 llvm::BasicBlock *FalseBlock, 1682 uint64_t TrueCount, 1683 Stmt::Likelihood LH) { 1684 Cond = Cond->IgnoreParens(); 1685 1686 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1687 1688 // Handle X && Y in a condition. 1689 if (CondBOp->getOpcode() == BO_LAnd) { 1690 // If we have "1 && X", simplify the code. "0 && X" would have constant 1691 // folded if the case was simple enough. 1692 bool ConstantBool = false; 1693 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1694 ConstantBool) { 1695 // br(1 && X) -> br(X). 1696 incrementProfileCounter(CondBOp); 1697 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1698 FalseBlock, TrueCount, LH); 1699 } 1700 1701 // If we have "X && 1", simplify the code to use an uncond branch. 1702 // "X && 0" would have been constant folded to 0. 1703 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1704 ConstantBool) { 1705 // br(X && 1) -> br(X). 1706 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1707 FalseBlock, TrueCount, LH, CondBOp); 1708 } 1709 1710 // Emit the LHS as a conditional. If the LHS conditional is false, we 1711 // want to jump to the FalseBlock. 1712 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1713 // The counter tells us how often we evaluate RHS, and all of TrueCount 1714 // can be propagated to that branch. 1715 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1716 1717 ConditionalEvaluation eval(*this); 1718 { 1719 ApplyDebugLocation DL(*this, Cond); 1720 // Propagate the likelihood attribute like __builtin_expect 1721 // __builtin_expect(X && Y, 1) -> X and Y are likely 1722 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1723 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1724 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1725 EmitBlock(LHSTrue); 1726 } 1727 1728 incrementProfileCounter(CondBOp); 1729 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1730 1731 // Any temporaries created here are conditional. 1732 eval.begin(*this); 1733 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1734 FalseBlock, TrueCount, LH); 1735 eval.end(*this); 1736 1737 return; 1738 } 1739 1740 if (CondBOp->getOpcode() == BO_LOr) { 1741 // If we have "0 || X", simplify the code. "1 || X" would have constant 1742 // folded if the case was simple enough. 1743 bool ConstantBool = false; 1744 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1745 !ConstantBool) { 1746 // br(0 || X) -> br(X). 1747 incrementProfileCounter(CondBOp); 1748 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1749 FalseBlock, TrueCount, LH); 1750 } 1751 1752 // If we have "X || 0", simplify the code to use an uncond branch. 1753 // "X || 1" would have been constant folded to 1. 1754 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1755 !ConstantBool) { 1756 // br(X || 0) -> br(X). 1757 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1758 FalseBlock, TrueCount, LH, CondBOp); 1759 } 1760 1761 // Emit the LHS as a conditional. If the LHS conditional is true, we 1762 // want to jump to the TrueBlock. 1763 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1764 // We have the count for entry to the RHS and for the whole expression 1765 // being true, so we can divy up True count between the short circuit and 1766 // the RHS. 1767 uint64_t LHSCount = 1768 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1769 uint64_t RHSCount = TrueCount - LHSCount; 1770 1771 ConditionalEvaluation eval(*this); 1772 { 1773 // Propagate the likelihood attribute like __builtin_expect 1774 // __builtin_expect(X || Y, 1) -> only Y is likely 1775 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1776 ApplyDebugLocation DL(*this, Cond); 1777 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1778 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1779 EmitBlock(LHSFalse); 1780 } 1781 1782 incrementProfileCounter(CondBOp); 1783 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1784 1785 // Any temporaries created here are conditional. 1786 eval.begin(*this); 1787 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1788 RHSCount, LH); 1789 1790 eval.end(*this); 1791 1792 return; 1793 } 1794 } 1795 1796 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1797 // br(!x, t, f) -> br(x, f, t) 1798 if (CondUOp->getOpcode() == UO_LNot) { 1799 // Negate the count. 1800 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1801 // The values of the enum are chosen to make this negation possible. 1802 LH = static_cast<Stmt::Likelihood>(-LH); 1803 // Negate the condition and swap the destination blocks. 1804 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1805 FalseCount, LH); 1806 } 1807 } 1808 1809 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1810 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1811 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1812 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1813 1814 // The ConditionalOperator itself has no likelihood information for its 1815 // true and false branches. This matches the behavior of __builtin_expect. 1816 ConditionalEvaluation cond(*this); 1817 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1818 getProfileCount(CondOp), Stmt::LH_None); 1819 1820 // When computing PGO branch weights, we only know the overall count for 1821 // the true block. This code is essentially doing tail duplication of the 1822 // naive code-gen, introducing new edges for which counts are not 1823 // available. Divide the counts proportionally between the LHS and RHS of 1824 // the conditional operator. 1825 uint64_t LHSScaledTrueCount = 0; 1826 if (TrueCount) { 1827 double LHSRatio = 1828 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1829 LHSScaledTrueCount = TrueCount * LHSRatio; 1830 } 1831 1832 cond.begin(*this); 1833 EmitBlock(LHSBlock); 1834 incrementProfileCounter(CondOp); 1835 { 1836 ApplyDebugLocation DL(*this, Cond); 1837 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1838 LHSScaledTrueCount, LH); 1839 } 1840 cond.end(*this); 1841 1842 cond.begin(*this); 1843 EmitBlock(RHSBlock); 1844 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1845 TrueCount - LHSScaledTrueCount, LH); 1846 cond.end(*this); 1847 1848 return; 1849 } 1850 1851 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1852 // Conditional operator handling can give us a throw expression as a 1853 // condition for a case like: 1854 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1855 // Fold this to: 1856 // br(c, throw x, br(y, t, f)) 1857 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1858 return; 1859 } 1860 1861 // Emit the code with the fully general case. 1862 llvm::Value *CondV; 1863 { 1864 ApplyDebugLocation DL(*this, Cond); 1865 CondV = EvaluateExprAsBool(Cond); 1866 } 1867 1868 llvm::MDNode *Weights = nullptr; 1869 llvm::MDNode *Unpredictable = nullptr; 1870 1871 // If the branch has a condition wrapped by __builtin_unpredictable, 1872 // create metadata that specifies that the branch is unpredictable. 1873 // Don't bother if not optimizing because that metadata would not be used. 1874 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1875 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1876 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1877 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1878 llvm::MDBuilder MDHelper(getLLVMContext()); 1879 Unpredictable = MDHelper.createUnpredictable(); 1880 } 1881 } 1882 1883 // If there is a Likelihood knowledge for the cond, lower it. 1884 // Note that if not optimizing this won't emit anything. 1885 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1886 if (CondV != NewCondV) 1887 CondV = NewCondV; 1888 else { 1889 // Otherwise, lower profile counts. Note that we do this even at -O0. 1890 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1891 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1892 } 1893 1894 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1895 } 1896 1897 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1898 /// specified stmt yet. 1899 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1900 CGM.ErrorUnsupported(S, Type); 1901 } 1902 1903 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1904 /// variable-length array whose elements have a non-zero bit-pattern. 1905 /// 1906 /// \param baseType the inner-most element type of the array 1907 /// \param src - a char* pointing to the bit-pattern for a single 1908 /// base element of the array 1909 /// \param sizeInChars - the total size of the VLA, in chars 1910 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1911 Address dest, Address src, 1912 llvm::Value *sizeInChars) { 1913 CGBuilderTy &Builder = CGF.Builder; 1914 1915 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1916 llvm::Value *baseSizeInChars 1917 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1918 1919 Address begin = 1920 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1921 llvm::Value *end = Builder.CreateInBoundsGEP( 1922 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1923 1924 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1925 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1926 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1927 1928 // Make a loop over the VLA. C99 guarantees that the VLA element 1929 // count must be nonzero. 1930 CGF.EmitBlock(loopBB); 1931 1932 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1933 cur->addIncoming(begin.getPointer(), originBB); 1934 1935 CharUnits curAlign = 1936 dest.getAlignment().alignmentOfArrayElement(baseSize); 1937 1938 // memcpy the individual element bit-pattern. 1939 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, 1940 /*volatile*/ false); 1941 1942 // Go to the next element. 1943 llvm::Value *next = 1944 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1945 1946 // Leave if that's the end of the VLA. 1947 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1948 Builder.CreateCondBr(done, contBB, loopBB); 1949 cur->addIncoming(next, loopBB); 1950 1951 CGF.EmitBlock(contBB); 1952 } 1953 1954 void 1955 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1956 // Ignore empty classes in C++. 1957 if (getLangOpts().CPlusPlus) { 1958 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1959 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1960 return; 1961 } 1962 } 1963 1964 // Cast the dest ptr to the appropriate i8 pointer type. 1965 if (DestPtr.getElementType() != Int8Ty) 1966 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1967 1968 // Get size and alignment info for this aggregate. 1969 CharUnits size = getContext().getTypeSizeInChars(Ty); 1970 1971 llvm::Value *SizeVal; 1972 const VariableArrayType *vla; 1973 1974 // Don't bother emitting a zero-byte memset. 1975 if (size.isZero()) { 1976 // But note that getTypeInfo returns 0 for a VLA. 1977 if (const VariableArrayType *vlaType = 1978 dyn_cast_or_null<VariableArrayType>( 1979 getContext().getAsArrayType(Ty))) { 1980 auto VlaSize = getVLASize(vlaType); 1981 SizeVal = VlaSize.NumElts; 1982 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1983 if (!eltSize.isOne()) 1984 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1985 vla = vlaType; 1986 } else { 1987 return; 1988 } 1989 } else { 1990 SizeVal = CGM.getSize(size); 1991 vla = nullptr; 1992 } 1993 1994 // If the type contains a pointer to data member we can't memset it to zero. 1995 // Instead, create a null constant and copy it to the destination. 1996 // TODO: there are other patterns besides zero that we can usefully memset, 1997 // like -1, which happens to be the pattern used by member-pointers. 1998 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1999 // For a VLA, emit a single element, then splat that over the VLA. 2000 if (vla) Ty = getContext().getBaseElementType(vla); 2001 2002 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 2003 2004 llvm::GlobalVariable *NullVariable = 2005 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 2006 /*isConstant=*/true, 2007 llvm::GlobalVariable::PrivateLinkage, 2008 NullConstant, Twine()); 2009 CharUnits NullAlign = DestPtr.getAlignment(); 2010 NullVariable->setAlignment(NullAlign.getAsAlign()); 2011 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2012 Builder.getInt8Ty(), NullAlign); 2013 2014 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2015 2016 // Get and call the appropriate llvm.memcpy overload. 2017 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2018 return; 2019 } 2020 2021 // Otherwise, just memset the whole thing to zero. This is legal 2022 // because in LLVM, all default initializers (other than the ones we just 2023 // handled above) are guaranteed to have a bit pattern of all zeros. 2024 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2025 } 2026 2027 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2028 // Make sure that there is a block for the indirect goto. 2029 if (!IndirectBranch) 2030 GetIndirectGotoBlock(); 2031 2032 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2033 2034 // Make sure the indirect branch includes all of the address-taken blocks. 2035 IndirectBranch->addDestination(BB); 2036 return llvm::BlockAddress::get(CurFn, BB); 2037 } 2038 2039 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2040 // If we already made the indirect branch for indirect goto, return its block. 2041 if (IndirectBranch) return IndirectBranch->getParent(); 2042 2043 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2044 2045 // Create the PHI node that indirect gotos will add entries to. 2046 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2047 "indirect.goto.dest"); 2048 2049 // Create the indirect branch instruction. 2050 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2051 return IndirectBranch->getParent(); 2052 } 2053 2054 /// Computes the length of an array in elements, as well as the base 2055 /// element type and a properly-typed first element pointer. 2056 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2057 QualType &baseType, 2058 Address &addr) { 2059 const ArrayType *arrayType = origArrayType; 2060 2061 // If it's a VLA, we have to load the stored size. Note that 2062 // this is the size of the VLA in bytes, not its size in elements. 2063 llvm::Value *numVLAElements = nullptr; 2064 if (isa<VariableArrayType>(arrayType)) { 2065 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2066 2067 // Walk into all VLAs. This doesn't require changes to addr, 2068 // which has type T* where T is the first non-VLA element type. 2069 do { 2070 QualType elementType = arrayType->getElementType(); 2071 arrayType = getContext().getAsArrayType(elementType); 2072 2073 // If we only have VLA components, 'addr' requires no adjustment. 2074 if (!arrayType) { 2075 baseType = elementType; 2076 return numVLAElements; 2077 } 2078 } while (isa<VariableArrayType>(arrayType)); 2079 2080 // We get out here only if we find a constant array type 2081 // inside the VLA. 2082 } 2083 2084 // We have some number of constant-length arrays, so addr should 2085 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2086 // down to the first element of addr. 2087 SmallVector<llvm::Value*, 8> gepIndices; 2088 2089 // GEP down to the array type. 2090 llvm::ConstantInt *zero = Builder.getInt32(0); 2091 gepIndices.push_back(zero); 2092 2093 uint64_t countFromCLAs = 1; 2094 QualType eltType; 2095 2096 llvm::ArrayType *llvmArrayType = 2097 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2098 while (llvmArrayType) { 2099 assert(isa<ConstantArrayType>(arrayType)); 2100 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2101 == llvmArrayType->getNumElements()); 2102 2103 gepIndices.push_back(zero); 2104 countFromCLAs *= llvmArrayType->getNumElements(); 2105 eltType = arrayType->getElementType(); 2106 2107 llvmArrayType = 2108 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2109 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2110 assert((!llvmArrayType || arrayType) && 2111 "LLVM and Clang types are out-of-synch"); 2112 } 2113 2114 if (arrayType) { 2115 // From this point onwards, the Clang array type has been emitted 2116 // as some other type (probably a packed struct). Compute the array 2117 // size, and just emit the 'begin' expression as a bitcast. 2118 while (arrayType) { 2119 countFromCLAs *= 2120 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2121 eltType = arrayType->getElementType(); 2122 arrayType = getContext().getAsArrayType(eltType); 2123 } 2124 2125 llvm::Type *baseType = ConvertType(eltType); 2126 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2127 } else { 2128 // Create the actual GEP. 2129 addr = Address(Builder.CreateInBoundsGEP( 2130 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2131 ConvertTypeForMem(eltType), 2132 addr.getAlignment()); 2133 } 2134 2135 baseType = eltType; 2136 2137 llvm::Value *numElements 2138 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2139 2140 // If we had any VLA dimensions, factor them in. 2141 if (numVLAElements) 2142 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2143 2144 return numElements; 2145 } 2146 2147 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2148 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2149 assert(vla && "type was not a variable array type!"); 2150 return getVLASize(vla); 2151 } 2152 2153 CodeGenFunction::VlaSizePair 2154 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2155 // The number of elements so far; always size_t. 2156 llvm::Value *numElements = nullptr; 2157 2158 QualType elementType; 2159 do { 2160 elementType = type->getElementType(); 2161 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2162 assert(vlaSize && "no size for VLA!"); 2163 assert(vlaSize->getType() == SizeTy); 2164 2165 if (!numElements) { 2166 numElements = vlaSize; 2167 } else { 2168 // It's undefined behavior if this wraps around, so mark it that way. 2169 // FIXME: Teach -fsanitize=undefined to trap this. 2170 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2171 } 2172 } while ((type = getContext().getAsVariableArrayType(elementType))); 2173 2174 return { numElements, elementType }; 2175 } 2176 2177 CodeGenFunction::VlaSizePair 2178 CodeGenFunction::getVLAElements1D(QualType type) { 2179 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2180 assert(vla && "type was not a variable array type!"); 2181 return getVLAElements1D(vla); 2182 } 2183 2184 CodeGenFunction::VlaSizePair 2185 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2186 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2187 assert(VlaSize && "no size for VLA!"); 2188 assert(VlaSize->getType() == SizeTy); 2189 return { VlaSize, Vla->getElementType() }; 2190 } 2191 2192 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2193 assert(type->isVariablyModifiedType() && 2194 "Must pass variably modified type to EmitVLASizes!"); 2195 2196 EnsureInsertPoint(); 2197 2198 // We're going to walk down into the type and look for VLA 2199 // expressions. 2200 do { 2201 assert(type->isVariablyModifiedType()); 2202 2203 const Type *ty = type.getTypePtr(); 2204 switch (ty->getTypeClass()) { 2205 2206 #define TYPE(Class, Base) 2207 #define ABSTRACT_TYPE(Class, Base) 2208 #define NON_CANONICAL_TYPE(Class, Base) 2209 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2210 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2211 #include "clang/AST/TypeNodes.inc" 2212 llvm_unreachable("unexpected dependent type!"); 2213 2214 // These types are never variably-modified. 2215 case Type::Builtin: 2216 case Type::Complex: 2217 case Type::Vector: 2218 case Type::ExtVector: 2219 case Type::ConstantMatrix: 2220 case Type::Record: 2221 case Type::Enum: 2222 case Type::Elaborated: 2223 case Type::Using: 2224 case Type::TemplateSpecialization: 2225 case Type::ObjCTypeParam: 2226 case Type::ObjCObject: 2227 case Type::ObjCInterface: 2228 case Type::ObjCObjectPointer: 2229 case Type::BitInt: 2230 llvm_unreachable("type class is never variably-modified!"); 2231 2232 case Type::Adjusted: 2233 type = cast<AdjustedType>(ty)->getAdjustedType(); 2234 break; 2235 2236 case Type::Decayed: 2237 type = cast<DecayedType>(ty)->getPointeeType(); 2238 break; 2239 2240 case Type::Pointer: 2241 type = cast<PointerType>(ty)->getPointeeType(); 2242 break; 2243 2244 case Type::BlockPointer: 2245 type = cast<BlockPointerType>(ty)->getPointeeType(); 2246 break; 2247 2248 case Type::LValueReference: 2249 case Type::RValueReference: 2250 type = cast<ReferenceType>(ty)->getPointeeType(); 2251 break; 2252 2253 case Type::MemberPointer: 2254 type = cast<MemberPointerType>(ty)->getPointeeType(); 2255 break; 2256 2257 case Type::ConstantArray: 2258 case Type::IncompleteArray: 2259 // Losing element qualification here is fine. 2260 type = cast<ArrayType>(ty)->getElementType(); 2261 break; 2262 2263 case Type::VariableArray: { 2264 // Losing element qualification here is fine. 2265 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2266 2267 // Unknown size indication requires no size computation. 2268 // Otherwise, evaluate and record it. 2269 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2270 // It's possible that we might have emitted this already, 2271 // e.g. with a typedef and a pointer to it. 2272 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2273 if (!entry) { 2274 llvm::Value *size = EmitScalarExpr(sizeExpr); 2275 2276 // C11 6.7.6.2p5: 2277 // If the size is an expression that is not an integer constant 2278 // expression [...] each time it is evaluated it shall have a value 2279 // greater than zero. 2280 if (SanOpts.has(SanitizerKind::VLABound)) { 2281 SanitizerScope SanScope(this); 2282 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2283 clang::QualType SEType = sizeExpr->getType(); 2284 llvm::Value *CheckCondition = 2285 SEType->isSignedIntegerType() 2286 ? Builder.CreateICmpSGT(size, Zero) 2287 : Builder.CreateICmpUGT(size, Zero); 2288 llvm::Constant *StaticArgs[] = { 2289 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2290 EmitCheckTypeDescriptor(SEType)}; 2291 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2292 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2293 } 2294 2295 // Always zexting here would be wrong if it weren't 2296 // undefined behavior to have a negative bound. 2297 // FIXME: What about when size's type is larger than size_t? 2298 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2299 } 2300 } 2301 type = vat->getElementType(); 2302 break; 2303 } 2304 2305 case Type::FunctionProto: 2306 case Type::FunctionNoProto: 2307 type = cast<FunctionType>(ty)->getReturnType(); 2308 break; 2309 2310 case Type::Paren: 2311 case Type::TypeOf: 2312 case Type::UnaryTransform: 2313 case Type::Attributed: 2314 case Type::BTFTagAttributed: 2315 case Type::SubstTemplateTypeParm: 2316 case Type::MacroQualified: 2317 // Keep walking after single level desugaring. 2318 type = type.getSingleStepDesugaredType(getContext()); 2319 break; 2320 2321 case Type::Typedef: 2322 case Type::Decltype: 2323 case Type::Auto: 2324 case Type::DeducedTemplateSpecialization: 2325 // Stop walking: nothing to do. 2326 return; 2327 2328 case Type::TypeOfExpr: 2329 // Stop walking: emit typeof expression. 2330 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2331 return; 2332 2333 case Type::Atomic: 2334 type = cast<AtomicType>(ty)->getValueType(); 2335 break; 2336 2337 case Type::Pipe: 2338 type = cast<PipeType>(ty)->getElementType(); 2339 break; 2340 } 2341 } while (type->isVariablyModifiedType()); 2342 } 2343 2344 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2345 if (getContext().getBuiltinVaListType()->isArrayType()) 2346 return EmitPointerWithAlignment(E); 2347 return EmitLValue(E).getAddress(*this); 2348 } 2349 2350 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2351 return EmitLValue(E).getAddress(*this); 2352 } 2353 2354 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2355 const APValue &Init) { 2356 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2357 if (CGDebugInfo *Dbg = getDebugInfo()) 2358 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2359 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2360 } 2361 2362 CodeGenFunction::PeepholeProtection 2363 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2364 // At the moment, the only aggressive peephole we do in IR gen 2365 // is trunc(zext) folding, but if we add more, we can easily 2366 // extend this protection. 2367 2368 if (!rvalue.isScalar()) return PeepholeProtection(); 2369 llvm::Value *value = rvalue.getScalarVal(); 2370 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2371 2372 // Just make an extra bitcast. 2373 assert(HaveInsertPoint()); 2374 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2375 Builder.GetInsertBlock()); 2376 2377 PeepholeProtection protection; 2378 protection.Inst = inst; 2379 return protection; 2380 } 2381 2382 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2383 if (!protection.Inst) return; 2384 2385 // In theory, we could try to duplicate the peepholes now, but whatever. 2386 protection.Inst->eraseFromParent(); 2387 } 2388 2389 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2390 QualType Ty, SourceLocation Loc, 2391 SourceLocation AssumptionLoc, 2392 llvm::Value *Alignment, 2393 llvm::Value *OffsetValue) { 2394 if (Alignment->getType() != IntPtrTy) 2395 Alignment = 2396 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2397 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2398 OffsetValue = 2399 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2400 llvm::Value *TheCheck = nullptr; 2401 if (SanOpts.has(SanitizerKind::Alignment)) { 2402 llvm::Value *PtrIntValue = 2403 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2404 2405 if (OffsetValue) { 2406 bool IsOffsetZero = false; 2407 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2408 IsOffsetZero = CI->isZero(); 2409 2410 if (!IsOffsetZero) 2411 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2412 } 2413 2414 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2415 llvm::Value *Mask = 2416 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2417 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2418 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2419 } 2420 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2421 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2422 2423 if (!SanOpts.has(SanitizerKind::Alignment)) 2424 return; 2425 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2426 OffsetValue, TheCheck, Assumption); 2427 } 2428 2429 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2430 const Expr *E, 2431 SourceLocation AssumptionLoc, 2432 llvm::Value *Alignment, 2433 llvm::Value *OffsetValue) { 2434 if (auto *CE = dyn_cast<CastExpr>(E)) 2435 E = CE->getSubExprAsWritten(); 2436 QualType Ty = E->getType(); 2437 SourceLocation Loc = E->getExprLoc(); 2438 2439 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2440 OffsetValue); 2441 } 2442 2443 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2444 llvm::Value *AnnotatedVal, 2445 StringRef AnnotationStr, 2446 SourceLocation Location, 2447 const AnnotateAttr *Attr) { 2448 SmallVector<llvm::Value *, 5> Args = { 2449 AnnotatedVal, 2450 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2451 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2452 CGM.EmitAnnotationLineNo(Location), 2453 }; 2454 if (Attr) 2455 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2456 return Builder.CreateCall(AnnotationFn, Args); 2457 } 2458 2459 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2460 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2461 // FIXME We create a new bitcast for every annotation because that's what 2462 // llvm-gcc was doing. 2463 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2464 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2465 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2466 I->getAnnotation(), D->getLocation(), I); 2467 } 2468 2469 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2470 Address Addr) { 2471 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2472 llvm::Value *V = Addr.getPointer(); 2473 llvm::Type *VTy = V->getType(); 2474 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2475 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2476 llvm::PointerType *IntrinTy = 2477 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2478 llvm::Function *F = 2479 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2480 2481 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2482 // FIXME Always emit the cast inst so we can differentiate between 2483 // annotation on the first field of a struct and annotation on the struct 2484 // itself. 2485 if (VTy != IntrinTy) 2486 V = Builder.CreateBitCast(V, IntrinTy); 2487 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2488 V = Builder.CreateBitCast(V, VTy); 2489 } 2490 2491 return Address(V, Addr.getElementType(), Addr.getAlignment()); 2492 } 2493 2494 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2495 2496 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2497 : CGF(CGF) { 2498 assert(!CGF->IsSanitizerScope); 2499 CGF->IsSanitizerScope = true; 2500 } 2501 2502 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2503 CGF->IsSanitizerScope = false; 2504 } 2505 2506 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2507 const llvm::Twine &Name, 2508 llvm::BasicBlock *BB, 2509 llvm::BasicBlock::iterator InsertPt) const { 2510 LoopStack.InsertHelper(I); 2511 if (IsSanitizerScope) 2512 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2513 } 2514 2515 void CGBuilderInserter::InsertHelper( 2516 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2517 llvm::BasicBlock::iterator InsertPt) const { 2518 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2519 if (CGF) 2520 CGF->InsertHelper(I, Name, BB, InsertPt); 2521 } 2522 2523 // Emits an error if we don't have a valid set of target features for the 2524 // called function. 2525 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2526 const FunctionDecl *TargetDecl) { 2527 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2528 } 2529 2530 // Emits an error if we don't have a valid set of target features for the 2531 // called function. 2532 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2533 const FunctionDecl *TargetDecl) { 2534 // Early exit if this is an indirect call. 2535 if (!TargetDecl) 2536 return; 2537 2538 // Get the current enclosing function if it exists. If it doesn't 2539 // we can't check the target features anyhow. 2540 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2541 if (!FD) 2542 return; 2543 2544 // Grab the required features for the call. For a builtin this is listed in 2545 // the td file with the default cpu, for an always_inline function this is any 2546 // listed cpu and any listed features. 2547 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2548 std::string MissingFeature; 2549 llvm::StringMap<bool> CallerFeatureMap; 2550 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2551 if (BuiltinID) { 2552 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2553 if (!Builtin::evaluateRequiredTargetFeatures( 2554 FeatureList, CallerFeatureMap)) { 2555 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2556 << TargetDecl->getDeclName() 2557 << FeatureList; 2558 } 2559 } else if (!TargetDecl->isMultiVersion() && 2560 TargetDecl->hasAttr<TargetAttr>()) { 2561 // Get the required features for the callee. 2562 2563 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2564 ParsedTargetAttr ParsedAttr = 2565 CGM.getContext().filterFunctionTargetAttrs(TD); 2566 2567 SmallVector<StringRef, 1> ReqFeatures; 2568 llvm::StringMap<bool> CalleeFeatureMap; 2569 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2570 2571 for (const auto &F : ParsedAttr.Features) { 2572 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2573 ReqFeatures.push_back(StringRef(F).substr(1)); 2574 } 2575 2576 for (const auto &F : CalleeFeatureMap) { 2577 // Only positive features are "required". 2578 if (F.getValue()) 2579 ReqFeatures.push_back(F.getKey()); 2580 } 2581 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2582 if (!CallerFeatureMap.lookup(Feature)) { 2583 MissingFeature = Feature.str(); 2584 return false; 2585 } 2586 return true; 2587 })) 2588 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2589 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2590 } 2591 } 2592 2593 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2594 if (!CGM.getCodeGenOpts().SanitizeStats) 2595 return; 2596 2597 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2598 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2599 CGM.getSanStats().create(IRB, SSK); 2600 } 2601 2602 llvm::Value * 2603 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2604 llvm::Value *Condition = nullptr; 2605 2606 if (!RO.Conditions.Architecture.empty()) 2607 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2608 2609 if (!RO.Conditions.Features.empty()) { 2610 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2611 Condition = 2612 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2613 } 2614 return Condition; 2615 } 2616 2617 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2618 llvm::Function *Resolver, 2619 CGBuilderTy &Builder, 2620 llvm::Function *FuncToReturn, 2621 bool SupportsIFunc) { 2622 if (SupportsIFunc) { 2623 Builder.CreateRet(FuncToReturn); 2624 return; 2625 } 2626 2627 llvm::SmallVector<llvm::Value *, 10> Args( 2628 llvm::make_pointer_range(Resolver->args())); 2629 2630 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2631 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2632 2633 if (Resolver->getReturnType()->isVoidTy()) 2634 Builder.CreateRetVoid(); 2635 else 2636 Builder.CreateRet(Result); 2637 } 2638 2639 void CodeGenFunction::EmitMultiVersionResolver( 2640 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2641 assert(getContext().getTargetInfo().getTriple().isX86() && 2642 "Only implemented for x86 targets"); 2643 2644 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2645 2646 // Main function's basic block. 2647 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2648 Builder.SetInsertPoint(CurBlock); 2649 EmitX86CpuInit(); 2650 2651 for (const MultiVersionResolverOption &RO : Options) { 2652 Builder.SetInsertPoint(CurBlock); 2653 llvm::Value *Condition = FormResolverCondition(RO); 2654 2655 // The 'default' or 'generic' case. 2656 if (!Condition) { 2657 assert(&RO == Options.end() - 1 && 2658 "Default or Generic case must be last"); 2659 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2660 SupportsIFunc); 2661 return; 2662 } 2663 2664 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2665 CGBuilderTy RetBuilder(*this, RetBlock); 2666 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2667 SupportsIFunc); 2668 CurBlock = createBasicBlock("resolver_else", Resolver); 2669 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2670 } 2671 2672 // If no generic/default, emit an unreachable. 2673 Builder.SetInsertPoint(CurBlock); 2674 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2675 TrapCall->setDoesNotReturn(); 2676 TrapCall->setDoesNotThrow(); 2677 Builder.CreateUnreachable(); 2678 Builder.ClearInsertionPoint(); 2679 } 2680 2681 // Loc - where the diagnostic will point, where in the source code this 2682 // alignment has failed. 2683 // SecondaryLoc - if present (will be present if sufficiently different from 2684 // Loc), the diagnostic will additionally point a "Note:" to this location. 2685 // It should be the location where the __attribute__((assume_aligned)) 2686 // was written e.g. 2687 void CodeGenFunction::emitAlignmentAssumptionCheck( 2688 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2689 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2690 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2691 llvm::Instruction *Assumption) { 2692 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2693 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2694 llvm::Intrinsic::getDeclaration( 2695 Builder.GetInsertBlock()->getParent()->getParent(), 2696 llvm::Intrinsic::assume) && 2697 "Assumption should be a call to llvm.assume()."); 2698 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2699 "Assumption should be the last instruction of the basic block, " 2700 "since the basic block is still being generated."); 2701 2702 if (!SanOpts.has(SanitizerKind::Alignment)) 2703 return; 2704 2705 // Don't check pointers to volatile data. The behavior here is implementation- 2706 // defined. 2707 if (Ty->getPointeeType().isVolatileQualified()) 2708 return; 2709 2710 // We need to temorairly remove the assumption so we can insert the 2711 // sanitizer check before it, else the check will be dropped by optimizations. 2712 Assumption->removeFromParent(); 2713 2714 { 2715 SanitizerScope SanScope(this); 2716 2717 if (!OffsetValue) 2718 OffsetValue = Builder.getInt1(false); // no offset. 2719 2720 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2721 EmitCheckSourceLocation(SecondaryLoc), 2722 EmitCheckTypeDescriptor(Ty)}; 2723 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2724 EmitCheckValue(Alignment), 2725 EmitCheckValue(OffsetValue)}; 2726 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2727 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2728 } 2729 2730 // We are now in the (new, empty) "cont" basic block. 2731 // Reintroduce the assumption. 2732 Builder.Insert(Assumption); 2733 // FIXME: Assumption still has it's original basic block as it's Parent. 2734 } 2735 2736 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2737 if (CGDebugInfo *DI = getDebugInfo()) 2738 return DI->SourceLocToDebugLoc(Location); 2739 2740 return llvm::DebugLoc(); 2741 } 2742 2743 llvm::Value * 2744 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2745 Stmt::Likelihood LH) { 2746 switch (LH) { 2747 case Stmt::LH_None: 2748 return Cond; 2749 case Stmt::LH_Likely: 2750 case Stmt::LH_Unlikely: 2751 // Don't generate llvm.expect on -O0 as the backend won't use it for 2752 // anything. 2753 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2754 return Cond; 2755 llvm::Type *CondTy = Cond->getType(); 2756 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2757 llvm::Function *FnExpect = 2758 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2759 llvm::Value *ExpectedValueOfCond = 2760 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2761 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2762 Cond->getName() + ".expval"); 2763 } 2764 llvm_unreachable("Unknown Likelihood"); 2765 } 2766 2767 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, 2768 unsigned NumElementsDst, 2769 const llvm::Twine &Name) { 2770 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); 2771 unsigned NumElementsSrc = SrcTy->getNumElements(); 2772 if (NumElementsSrc == NumElementsDst) 2773 return SrcVec; 2774 2775 std::vector<int> ShuffleMask(NumElementsDst, -1); 2776 for (unsigned MaskIdx = 0; 2777 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) 2778 ShuffleMask[MaskIdx] = MaskIdx; 2779 2780 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); 2781 } 2782