1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113   llvm::FastMathFlags FMF;
114   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121   Builder.setFastMathFlags(FMF);
122 }
123 
124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                   const Expr *E)
126     : CGF(CGF) {
127   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128 }
129 
130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                   FPOptions FPFeatures)
132     : CGF(CGF) {
133   ConstructorHelper(FPFeatures);
134 }
135 
136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137   OldFPFeatures = CGF.CurFPFeatures;
138   CGF.CurFPFeatures = FPFeatures;
139 
140   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142 
143   if (OldFPFeatures == FPFeatures)
144     return;
145 
146   FMFGuard.emplace(CGF.Builder);
147 
148   llvm::RoundingMode NewRoundingBehavior =
149       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getFPExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   // Emit debug descriptor for function end.
387   if (CGDebugInfo *DI = getDebugInfo())
388     DI->EmitFunctionEnd(Builder, CurFn);
389 
390   // Reset the debug location to that of the simple 'return' expression, if any
391   // rather than that of the end of the function's scope '}'.
392   ApplyDebugLocation AL(*this, Loc);
393   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394   EmitEndEHSpec(CurCodeDecl);
395 
396   assert(EHStack.empty() &&
397          "did not remove all scopes from cleanup stack!");
398 
399   // If someone did an indirect goto, emit the indirect goto block at the end of
400   // the function.
401   if (IndirectBranch) {
402     EmitBlock(IndirectBranch->getParent());
403     Builder.ClearInsertionPoint();
404   }
405 
406   // If some of our locals escaped, insert a call to llvm.localescape in the
407   // entry block.
408   if (!EscapedLocals.empty()) {
409     // Invert the map from local to index into a simple vector. There should be
410     // no holes.
411     SmallVector<llvm::Value *, 4> EscapeArgs;
412     EscapeArgs.resize(EscapedLocals.size());
413     for (auto &Pair : EscapedLocals)
414       EscapeArgs[Pair.second] = Pair.first;
415     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416         &CGM.getModule(), llvm::Intrinsic::localescape);
417     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418   }
419 
420   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421   llvm::Instruction *Ptr = AllocaInsertPt;
422   AllocaInsertPt = nullptr;
423   Ptr->eraseFromParent();
424 
425   // PostAllocaInsertPt, if created, was lazily created when it was required,
426   // remove it now since it was just created for our own convenience.
427   if (PostAllocaInsertPt) {
428     llvm::Instruction *PostPtr = PostAllocaInsertPt;
429     PostAllocaInsertPt = nullptr;
430     PostPtr->eraseFromParent();
431   }
432 
433   // If someone took the address of a label but never did an indirect goto, we
434   // made a zero entry PHI node, which is illegal, zap it now.
435   if (IndirectBranch) {
436     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437     if (PN->getNumIncomingValues() == 0) {
438       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439       PN->eraseFromParent();
440     }
441   }
442 
443   EmitIfUsed(*this, EHResumeBlock);
444   EmitIfUsed(*this, TerminateLandingPad);
445   EmitIfUsed(*this, TerminateHandler);
446   EmitIfUsed(*this, UnreachableBlock);
447 
448   for (const auto &FuncletAndParent : TerminateFunclets)
449     EmitIfUsed(*this, FuncletAndParent.second);
450 
451   if (CGM.getCodeGenOpts().EmitDeclMetadata)
452     EmitDeclMetadata();
453 
454   for (const auto &R : DeferredReplacements) {
455     if (llvm::Value *Old = R.first) {
456       Old->replaceAllUsesWith(R.second);
457       cast<llvm::Instruction>(Old)->eraseFromParent();
458     }
459   }
460   DeferredReplacements.clear();
461 
462   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463   // PHIs if the current function is a coroutine. We don't do it for all
464   // functions as it may result in slight increase in numbers of instructions
465   // if compiled with no optimizations. We do it for coroutine as the lifetime
466   // of CleanupDestSlot alloca make correct coroutine frame building very
467   // difficult.
468   if (NormalCleanupDest.isValid() && isCoroutine()) {
469     llvm::DominatorTree DT(*CurFn);
470     llvm::PromoteMemToReg(
471         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472     NormalCleanupDest = Address::invalid();
473   }
474 
475   // Scan function arguments for vector width.
476   for (llvm::Argument &A : CurFn->args())
477     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478       LargestVectorWidth =
479           std::max((uint64_t)LargestVectorWidth,
480                    VT->getPrimitiveSizeInBits().getKnownMinSize());
481 
482   // Update vector width based on return type.
483   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484     LargestVectorWidth =
485         std::max((uint64_t)LargestVectorWidth,
486                  VT->getPrimitiveSizeInBits().getKnownMinSize());
487 
488   // Add the required-vector-width attribute. This contains the max width from:
489   // 1. min-vector-width attribute used in the source program.
490   // 2. Any builtins used that have a vector width specified.
491   // 3. Values passed in and out of inline assembly.
492   // 4. Width of vector arguments and return types for this function.
493   // 5. Width of vector aguments and return types for functions called by this
494   //    function.
495   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
496 
497   // Add vscale_range attribute if appropriate.
498   Optional<std::pair<unsigned, unsigned>> VScaleRange =
499       getContext().getTargetInfo().getVScaleRange(getLangOpts());
500   if (VScaleRange) {
501     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
502         getLLVMContext(), VScaleRange.getValue().first,
503         VScaleRange.getValue().second));
504   }
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
533   if (!CurFuncDecl)
534     return false;
535   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
536 }
537 
538 /// ShouldXRayInstrument - Return true if the current function should be
539 /// instrumented with XRay nop sleds.
540 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
542 }
543 
544 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
545 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
546 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
547   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
548          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
549           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
550               XRayInstrKind::Custom);
551 }
552 
553 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
554   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
555          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
556           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
557               XRayInstrKind::Typed);
558 }
559 
560 llvm::Constant *
561 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
562                                             llvm::Constant *Addr) {
563   // Addresses stored in prologue data can't require run-time fixups and must
564   // be PC-relative. Run-time fixups are undesirable because they necessitate
565   // writable text segments, which are unsafe. And absolute addresses are
566   // undesirable because they break PIE mode.
567 
568   // Add a layer of indirection through a private global. Taking its address
569   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
570   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
571                                       /*isConstant=*/true,
572                                       llvm::GlobalValue::PrivateLinkage, Addr);
573 
574   // Create a PC-relative address.
575   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
576   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
577   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
578   return (IntPtrTy == Int32Ty)
579              ? PCRelAsInt
580              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
581 }
582 
583 llvm::Value *
584 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
585                                           llvm::Value *EncodedAddr) {
586   // Reconstruct the address of the global.
587   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
588   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
589   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
590   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
591 
592   // Load the original pointer through the global.
593   return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
594                             "decoded_addr");
595 }
596 
597 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
598                                                llvm::Function *Fn)
599 {
600   if (!FD->hasAttr<OpenCLKernelAttr>())
601     return;
602 
603   llvm::LLVMContext &Context = getLLVMContext();
604 
605   CGM.GenOpenCLArgMetadata(Fn, FD, this);
606 
607   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
608     QualType HintQTy = A->getTypeHint();
609     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
610     bool IsSignedInteger =
611         HintQTy->isSignedIntegerType() ||
612         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
613     llvm::Metadata *AttrMDArgs[] = {
614         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
615             CGM.getTypes().ConvertType(A->getTypeHint()))),
616         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
617             llvm::IntegerType::get(Context, 32),
618             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
619     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
620   }
621 
622   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
623     llvm::Metadata *AttrMDArgs[] = {
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
625         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
627     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
628   }
629 
630   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
631     llvm::Metadata *AttrMDArgs[] = {
632         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
633         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
634         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
635     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
636   }
637 
638   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
639           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
640     llvm::Metadata *AttrMDArgs[] = {
641         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
642     Fn->setMetadata("intel_reqd_sub_group_size",
643                     llvm::MDNode::get(Context, AttrMDArgs));
644   }
645 }
646 
647 /// Determine whether the function F ends with a return stmt.
648 static bool endsWithReturn(const Decl* F) {
649   const Stmt *Body = nullptr;
650   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
651     Body = FD->getBody();
652   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
653     Body = OMD->getBody();
654 
655   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
656     auto LastStmt = CS->body_rbegin();
657     if (LastStmt != CS->body_rend())
658       return isa<ReturnStmt>(*LastStmt);
659   }
660   return false;
661 }
662 
663 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
664   if (SanOpts.has(SanitizerKind::Thread)) {
665     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
666     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
667   }
668 }
669 
670 /// Check if the return value of this function requires sanitization.
671 bool CodeGenFunction::requiresReturnValueCheck() const {
672   return requiresReturnValueNullabilityCheck() ||
673          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
674           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
675 }
676 
677 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
678   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
679   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
680       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
681       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
682     return false;
683 
684   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
685     return false;
686 
687   if (MD->getNumParams() == 2) {
688     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
689     if (!PT || !PT->isVoidPointerType() ||
690         !PT->getPointeeType().isConstQualified())
691       return false;
692   }
693 
694   return true;
695 }
696 
697 /// Return the UBSan prologue signature for \p FD if one is available.
698 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
699                                             const FunctionDecl *FD) {
700   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
701     if (!MD->isStatic())
702       return nullptr;
703   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
704 }
705 
706 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
707                                     llvm::Function *Fn,
708                                     const CGFunctionInfo &FnInfo,
709                                     const FunctionArgList &Args,
710                                     SourceLocation Loc,
711                                     SourceLocation StartLoc) {
712   assert(!CurFn &&
713          "Do not use a CodeGenFunction object for more than one function");
714 
715   const Decl *D = GD.getDecl();
716 
717   DidCallStackSave = false;
718   CurCodeDecl = D;
719   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
720   if (FD && FD->usesSEHTry())
721     CurSEHParent = FD;
722   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
723   FnRetTy = RetTy;
724   CurFn = Fn;
725   CurFnInfo = &FnInfo;
726   assert(CurFn->isDeclaration() && "Function already has body?");
727 
728   // If this function is ignored for any of the enabled sanitizers,
729   // disable the sanitizer for the function.
730   do {
731 #define SANITIZER(NAME, ID)                                                    \
732   if (SanOpts.empty())                                                         \
733     break;                                                                     \
734   if (SanOpts.has(SanitizerKind::ID))                                          \
735     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
736       SanOpts.set(SanitizerKind::ID, false);
737 
738 #include "clang/Basic/Sanitizers.def"
739 #undef SANITIZER
740   } while (false);
741 
742   if (D) {
743     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
744     bool NoSanitizeCoverage = false;
745 
746     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
747       // Apply the no_sanitize* attributes to SanOpts.
748       SanitizerMask mask = Attr->getMask();
749       SanOpts.Mask &= ~mask;
750       if (mask & SanitizerKind::Address)
751         SanOpts.set(SanitizerKind::KernelAddress, false);
752       if (mask & SanitizerKind::KernelAddress)
753         SanOpts.set(SanitizerKind::Address, false);
754       if (mask & SanitizerKind::HWAddress)
755         SanOpts.set(SanitizerKind::KernelHWAddress, false);
756       if (mask & SanitizerKind::KernelHWAddress)
757         SanOpts.set(SanitizerKind::HWAddress, false);
758 
759       // SanitizeCoverage is not handled by SanOpts.
760       if (Attr->hasCoverage())
761         NoSanitizeCoverage = true;
762     }
763 
764     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
765       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
766 
767     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
768       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
769   }
770 
771   if (ShouldSkipSanitizerInstrumentation()) {
772     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
773   } else {
774     // Apply sanitizer attributes to the function.
775     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
776       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
777     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
778                          SanitizerKind::KernelHWAddress))
779       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
780     if (SanOpts.has(SanitizerKind::MemTag))
781       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
782     if (SanOpts.has(SanitizerKind::Thread))
783       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
784     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
785       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
786   }
787   if (SanOpts.has(SanitizerKind::SafeStack))
788     Fn->addFnAttr(llvm::Attribute::SafeStack);
789   if (SanOpts.has(SanitizerKind::ShadowCallStack))
790     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
791 
792   // Apply fuzzing attribute to the function.
793   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
794     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
795 
796   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
797   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
798   if (SanOpts.has(SanitizerKind::Thread)) {
799     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
800       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
801       if (OMD->getMethodFamily() == OMF_dealloc ||
802           OMD->getMethodFamily() == OMF_initialize ||
803           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
804         markAsIgnoreThreadCheckingAtRuntime(Fn);
805       }
806     }
807   }
808 
809   // Ignore unrelated casts in STL allocate() since the allocator must cast
810   // from void* to T* before object initialization completes. Don't match on the
811   // namespace because not all allocators are in std::
812   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
813     if (matchesStlAllocatorFn(D, getContext()))
814       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
815   }
816 
817   // Ignore null checks in coroutine functions since the coroutines passes
818   // are not aware of how to move the extra UBSan instructions across the split
819   // coroutine boundaries.
820   if (D && SanOpts.has(SanitizerKind::Null))
821     if (FD && FD->getBody() &&
822         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
823       SanOpts.Mask &= ~SanitizerKind::Null;
824 
825   // Apply xray attributes to the function (as a string, for now)
826   bool AlwaysXRayAttr = false;
827   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
828     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
829             XRayInstrKind::FunctionEntry) ||
830         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
831             XRayInstrKind::FunctionExit)) {
832       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
833         Fn->addFnAttr("function-instrument", "xray-always");
834         AlwaysXRayAttr = true;
835       }
836       if (XRayAttr->neverXRayInstrument())
837         Fn->addFnAttr("function-instrument", "xray-never");
838       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
839         if (ShouldXRayInstrumentFunction())
840           Fn->addFnAttr("xray-log-args",
841                         llvm::utostr(LogArgs->getArgumentCount()));
842     }
843   } else {
844     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
845       Fn->addFnAttr(
846           "xray-instruction-threshold",
847           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
848   }
849 
850   if (ShouldXRayInstrumentFunction()) {
851     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
852       Fn->addFnAttr("xray-ignore-loops");
853 
854     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
855             XRayInstrKind::FunctionExit))
856       Fn->addFnAttr("xray-skip-exit");
857 
858     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
859             XRayInstrKind::FunctionEntry))
860       Fn->addFnAttr("xray-skip-entry");
861 
862     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
863     if (FuncGroups > 1) {
864       auto FuncName = llvm::makeArrayRef<uint8_t>(
865           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
866       auto Group = crc32(FuncName) % FuncGroups;
867       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
868           !AlwaysXRayAttr)
869         Fn->addFnAttr("function-instrument", "xray-never");
870     }
871   }
872 
873   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
874     if (CGM.isProfileInstrExcluded(Fn, Loc))
875       Fn->addFnAttr(llvm::Attribute::NoProfile);
876 
877   unsigned Count, Offset;
878   if (const auto *Attr =
879           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
880     Count = Attr->getCount();
881     Offset = Attr->getOffset();
882   } else {
883     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
884     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
885   }
886   if (Count && Offset <= Count) {
887     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
888     if (Offset)
889       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
890   }
891   // Instruct that functions for COFF/CodeView targets should start with a
892   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
893   // backends as they don't need it -- instructions on these architectures are
894   // always atomically patchable at runtime.
895   if (CGM.getCodeGenOpts().HotPatch &&
896       getContext().getTargetInfo().getTriple().isX86())
897     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
898 
899   // Add no-jump-tables value.
900   if (CGM.getCodeGenOpts().NoUseJumpTables)
901     Fn->addFnAttr("no-jump-tables", "true");
902 
903   // Add no-inline-line-tables value.
904   if (CGM.getCodeGenOpts().NoInlineLineTables)
905     Fn->addFnAttr("no-inline-line-tables");
906 
907   // Add profile-sample-accurate value.
908   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
909     Fn->addFnAttr("profile-sample-accurate");
910 
911   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
912     Fn->addFnAttr("use-sample-profile");
913 
914   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
915     Fn->addFnAttr("cfi-canonical-jump-table");
916 
917   if (D && D->hasAttr<NoProfileFunctionAttr>())
918     Fn->addFnAttr(llvm::Attribute::NoProfile);
919 
920   if (FD && getLangOpts().OpenCL) {
921     // Add metadata for a kernel function.
922     EmitOpenCLKernelMetadata(FD, Fn);
923   }
924 
925   // If we are checking function types, emit a function type signature as
926   // prologue data.
927   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
928     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
929       // Remove any (C++17) exception specifications, to allow calling e.g. a
930       // noexcept function through a non-noexcept pointer.
931       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
932           FD->getType(), EST_None);
933       llvm::Constant *FTRTTIConst =
934           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
935       llvm::Constant *FTRTTIConstEncoded =
936           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
937       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
938       llvm::Constant *PrologueStructConst =
939           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
940       Fn->setPrologueData(PrologueStructConst);
941     }
942   }
943 
944   // If we're checking nullability, we need to know whether we can check the
945   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
946   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
947     auto Nullability = FnRetTy->getNullability(getContext());
948     if (Nullability && *Nullability == NullabilityKind::NonNull) {
949       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
950             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
951         RetValNullabilityPrecondition =
952             llvm::ConstantInt::getTrue(getLLVMContext());
953     }
954   }
955 
956   // If we're in C++ mode and the function name is "main", it is guaranteed
957   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
958   // used within a program").
959   //
960   // OpenCL C 2.0 v2.2-11 s6.9.i:
961   //     Recursion is not supported.
962   //
963   // SYCL v1.2.1 s3.10:
964   //     kernels cannot include RTTI information, exception classes,
965   //     recursive code, virtual functions or make use of C++ libraries that
966   //     are not compiled for the device.
967   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
968              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
969              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
970     Fn->addFnAttr(llvm::Attribute::NoRecurse);
971 
972   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
973   llvm::fp::ExceptionBehavior FPExceptionBehavior =
974       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
975   Builder.setDefaultConstrainedRounding(RM);
976   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
977   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
978       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
979                RM != llvm::RoundingMode::NearestTiesToEven))) {
980     Builder.setIsFPConstrained(true);
981     Fn->addFnAttr(llvm::Attribute::StrictFP);
982   }
983 
984   // If a custom alignment is used, force realigning to this alignment on
985   // any main function which certainly will need it.
986   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
987              CGM.getCodeGenOpts().StackAlignment))
988     Fn->addFnAttr("stackrealign");
989 
990   // "main" doesn't need to zero out call-used registers.
991   if (FD && FD->isMain())
992     Fn->removeFnAttr("zero-call-used-regs");
993 
994   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
995 
996   // Create a marker to make it easy to insert allocas into the entryblock
997   // later.  Don't create this with the builder, because we don't want it
998   // folded.
999   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1000   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1001 
1002   ReturnBlock = getJumpDestInCurrentScope("return");
1003 
1004   Builder.SetInsertPoint(EntryBB);
1005 
1006   // If we're checking the return value, allocate space for a pointer to a
1007   // precise source location of the checked return statement.
1008   if (requiresReturnValueCheck()) {
1009     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1010     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1011                         ReturnLocation);
1012   }
1013 
1014   // Emit subprogram debug descriptor.
1015   if (CGDebugInfo *DI = getDebugInfo()) {
1016     // Reconstruct the type from the argument list so that implicit parameters,
1017     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1018     // convention.
1019     DI->emitFunctionStart(GD, Loc, StartLoc,
1020                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1021                           CurFuncIsThunk);
1022   }
1023 
1024   if (ShouldInstrumentFunction()) {
1025     if (CGM.getCodeGenOpts().InstrumentFunctions)
1026       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1027     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1028       CurFn->addFnAttr("instrument-function-entry-inlined",
1029                        "__cyg_profile_func_enter");
1030     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1031       CurFn->addFnAttr("instrument-function-entry-inlined",
1032                        "__cyg_profile_func_enter_bare");
1033   }
1034 
1035   // Since emitting the mcount call here impacts optimizations such as function
1036   // inlining, we just add an attribute to insert a mcount call in backend.
1037   // The attribute "counting-function" is set to mcount function name which is
1038   // architecture dependent.
1039   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1040     // Calls to fentry/mcount should not be generated if function has
1041     // the no_instrument_function attribute.
1042     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1043       if (CGM.getCodeGenOpts().CallFEntry)
1044         Fn->addFnAttr("fentry-call", "true");
1045       else {
1046         Fn->addFnAttr("instrument-function-entry-inlined",
1047                       getTarget().getMCountName());
1048       }
1049       if (CGM.getCodeGenOpts().MNopMCount) {
1050         if (!CGM.getCodeGenOpts().CallFEntry)
1051           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1052             << "-mnop-mcount" << "-mfentry";
1053         Fn->addFnAttr("mnop-mcount");
1054       }
1055 
1056       if (CGM.getCodeGenOpts().RecordMCount) {
1057         if (!CGM.getCodeGenOpts().CallFEntry)
1058           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1059             << "-mrecord-mcount" << "-mfentry";
1060         Fn->addFnAttr("mrecord-mcount");
1061       }
1062     }
1063   }
1064 
1065   if (CGM.getCodeGenOpts().PackedStack) {
1066     if (getContext().getTargetInfo().getTriple().getArch() !=
1067         llvm::Triple::systemz)
1068       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1069         << "-mpacked-stack";
1070     Fn->addFnAttr("packed-stack");
1071   }
1072 
1073   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1074       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1075     Fn->addFnAttr("warn-stack-size",
1076                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1077 
1078   if (RetTy->isVoidType()) {
1079     // Void type; nothing to return.
1080     ReturnValue = Address::invalid();
1081 
1082     // Count the implicit return.
1083     if (!endsWithReturn(D))
1084       ++NumReturnExprs;
1085   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1086     // Indirect return; emit returned value directly into sret slot.
1087     // This reduces code size, and affects correctness in C++.
1088     auto AI = CurFn->arg_begin();
1089     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1090       ++AI;
1091     ReturnValue = Address(&*AI, ConvertType(RetTy),
1092                           CurFnInfo->getReturnInfo().getIndirectAlign());
1093     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1094       ReturnValuePointer =
1095           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1096       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1097                               ReturnValue.getPointer(), Int8PtrTy),
1098                           ReturnValuePointer);
1099     }
1100   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1101              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1102     // Load the sret pointer from the argument struct and return into that.
1103     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1104     llvm::Function::arg_iterator EI = CurFn->arg_end();
1105     --EI;
1106     llvm::Value *Addr = Builder.CreateStructGEP(
1107         CurFnInfo->getArgStruct(), &*EI, Idx);
1108     llvm::Type *Ty =
1109         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1110     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1111     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1112     ReturnValue =
1113         Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1114   } else {
1115     ReturnValue = CreateIRTemp(RetTy, "retval");
1116 
1117     // Tell the epilog emitter to autorelease the result.  We do this
1118     // now so that various specialized functions can suppress it
1119     // during their IR-generation.
1120     if (getLangOpts().ObjCAutoRefCount &&
1121         !CurFnInfo->isReturnsRetained() &&
1122         RetTy->isObjCRetainableType())
1123       AutoreleaseResult = true;
1124   }
1125 
1126   EmitStartEHSpec(CurCodeDecl);
1127 
1128   PrologueCleanupDepth = EHStack.stable_begin();
1129 
1130   // Emit OpenMP specific initialization of the device functions.
1131   if (getLangOpts().OpenMP && CurCodeDecl)
1132     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1133 
1134   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1135 
1136   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1137     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1138     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1139     if (MD->getParent()->isLambda() &&
1140         MD->getOverloadedOperator() == OO_Call) {
1141       // We're in a lambda; figure out the captures.
1142       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1143                                         LambdaThisCaptureField);
1144       if (LambdaThisCaptureField) {
1145         // If the lambda captures the object referred to by '*this' - either by
1146         // value or by reference, make sure CXXThisValue points to the correct
1147         // object.
1148 
1149         // Get the lvalue for the field (which is a copy of the enclosing object
1150         // or contains the address of the enclosing object).
1151         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1152         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1153           // If the enclosing object was captured by value, just use its address.
1154           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1155         } else {
1156           // Load the lvalue pointed to by the field, since '*this' was captured
1157           // by reference.
1158           CXXThisValue =
1159               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1160         }
1161       }
1162       for (auto *FD : MD->getParent()->fields()) {
1163         if (FD->hasCapturedVLAType()) {
1164           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1165                                            SourceLocation()).getScalarVal();
1166           auto VAT = FD->getCapturedVLAType();
1167           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1168         }
1169       }
1170     } else {
1171       // Not in a lambda; just use 'this' from the method.
1172       // FIXME: Should we generate a new load for each use of 'this'?  The
1173       // fast register allocator would be happier...
1174       CXXThisValue = CXXABIThisValue;
1175     }
1176 
1177     // Check the 'this' pointer once per function, if it's available.
1178     if (CXXABIThisValue) {
1179       SanitizerSet SkippedChecks;
1180       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1181       QualType ThisTy = MD->getThisType();
1182 
1183       // If this is the call operator of a lambda with no capture-default, it
1184       // may have a static invoker function, which may call this operator with
1185       // a null 'this' pointer.
1186       if (isLambdaCallOperator(MD) &&
1187           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1188         SkippedChecks.set(SanitizerKind::Null, true);
1189 
1190       EmitTypeCheck(
1191           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1192           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1193     }
1194   }
1195 
1196   // If any of the arguments have a variably modified type, make sure to
1197   // emit the type size.
1198   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1199        i != e; ++i) {
1200     const VarDecl *VD = *i;
1201 
1202     // Dig out the type as written from ParmVarDecls; it's unclear whether
1203     // the standard (C99 6.9.1p10) requires this, but we're following the
1204     // precedent set by gcc.
1205     QualType Ty;
1206     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1207       Ty = PVD->getOriginalType();
1208     else
1209       Ty = VD->getType();
1210 
1211     if (Ty->isVariablyModifiedType())
1212       EmitVariablyModifiedType(Ty);
1213   }
1214   // Emit a location at the end of the prologue.
1215   if (CGDebugInfo *DI = getDebugInfo())
1216     DI->EmitLocation(Builder, StartLoc);
1217 
1218   // TODO: Do we need to handle this in two places like we do with
1219   // target-features/target-cpu?
1220   if (CurFuncDecl)
1221     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1222       LargestVectorWidth = VecWidth->getVectorWidth();
1223 }
1224 
1225 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1226   incrementProfileCounter(Body);
1227   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1228     EmitCompoundStmtWithoutScope(*S);
1229   else
1230     EmitStmt(Body);
1231 
1232   // This is checked after emitting the function body so we know if there
1233   // are any permitted infinite loops.
1234   if (checkIfFunctionMustProgress())
1235     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1236 }
1237 
1238 /// When instrumenting to collect profile data, the counts for some blocks
1239 /// such as switch cases need to not include the fall-through counts, so
1240 /// emit a branch around the instrumentation code. When not instrumenting,
1241 /// this just calls EmitBlock().
1242 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1243                                                const Stmt *S) {
1244   llvm::BasicBlock *SkipCountBB = nullptr;
1245   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1246     // When instrumenting for profiling, the fallthrough to certain
1247     // statements needs to skip over the instrumentation code so that we
1248     // get an accurate count.
1249     SkipCountBB = createBasicBlock("skipcount");
1250     EmitBranch(SkipCountBB);
1251   }
1252   EmitBlock(BB);
1253   uint64_t CurrentCount = getCurrentProfileCount();
1254   incrementProfileCounter(S);
1255   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1256   if (SkipCountBB)
1257     EmitBlock(SkipCountBB);
1258 }
1259 
1260 /// Tries to mark the given function nounwind based on the
1261 /// non-existence of any throwing calls within it.  We believe this is
1262 /// lightweight enough to do at -O0.
1263 static void TryMarkNoThrow(llvm::Function *F) {
1264   // LLVM treats 'nounwind' on a function as part of the type, so we
1265   // can't do this on functions that can be overwritten.
1266   if (F->isInterposable()) return;
1267 
1268   for (llvm::BasicBlock &BB : *F)
1269     for (llvm::Instruction &I : BB)
1270       if (I.mayThrow())
1271         return;
1272 
1273   F->setDoesNotThrow();
1274 }
1275 
1276 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1277                                                FunctionArgList &Args) {
1278   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1279   QualType ResTy = FD->getReturnType();
1280 
1281   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1282   if (MD && MD->isInstance()) {
1283     if (CGM.getCXXABI().HasThisReturn(GD))
1284       ResTy = MD->getThisType();
1285     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1286       ResTy = CGM.getContext().VoidPtrTy;
1287     CGM.getCXXABI().buildThisParam(*this, Args);
1288   }
1289 
1290   // The base version of an inheriting constructor whose constructed base is a
1291   // virtual base is not passed any arguments (because it doesn't actually call
1292   // the inherited constructor).
1293   bool PassedParams = true;
1294   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1295     if (auto Inherited = CD->getInheritedConstructor())
1296       PassedParams =
1297           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1298 
1299   if (PassedParams) {
1300     for (auto *Param : FD->parameters()) {
1301       Args.push_back(Param);
1302       if (!Param->hasAttr<PassObjectSizeAttr>())
1303         continue;
1304 
1305       auto *Implicit = ImplicitParamDecl::Create(
1306           getContext(), Param->getDeclContext(), Param->getLocation(),
1307           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1308       SizeArguments[Param] = Implicit;
1309       Args.push_back(Implicit);
1310     }
1311   }
1312 
1313   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1314     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1315 
1316   return ResTy;
1317 }
1318 
1319 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1320                                    const CGFunctionInfo &FnInfo) {
1321   assert(Fn && "generating code for null Function");
1322   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1323   CurGD = GD;
1324 
1325   FunctionArgList Args;
1326   QualType ResTy = BuildFunctionArgList(GD, Args);
1327 
1328   if (FD->isInlineBuiltinDeclaration()) {
1329     // When generating code for a builtin with an inline declaration, use a
1330     // mangled name to hold the actual body, while keeping an external
1331     // definition in case the function pointer is referenced somewhere.
1332     std::string FDInlineName = (Fn->getName() + ".inline").str();
1333     llvm::Module *M = Fn->getParent();
1334     llvm::Function *Clone = M->getFunction(FDInlineName);
1335     if (!Clone) {
1336       Clone = llvm::Function::Create(Fn->getFunctionType(),
1337                                      llvm::GlobalValue::InternalLinkage,
1338                                      Fn->getAddressSpace(), FDInlineName, M);
1339       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1340     }
1341     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1342     Fn = Clone;
1343   } else {
1344     // Detect the unusual situation where an inline version is shadowed by a
1345     // non-inline version. In that case we should pick the external one
1346     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1347     // to detect that situation before we reach codegen, so do some late
1348     // replacement.
1349     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1350          PD = PD->getPreviousDecl()) {
1351       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1352         std::string FDInlineName = (Fn->getName() + ".inline").str();
1353         llvm::Module *M = Fn->getParent();
1354         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1355           Clone->replaceAllUsesWith(Fn);
1356           Clone->eraseFromParent();
1357         }
1358         break;
1359       }
1360     }
1361   }
1362 
1363   // Check if we should generate debug info for this function.
1364   if (FD->hasAttr<NoDebugAttr>()) {
1365     // Clear non-distinct debug info that was possibly attached to the function
1366     // due to an earlier declaration without the nodebug attribute
1367     Fn->setSubprogram(nullptr);
1368     // Disable debug info indefinitely for this function
1369     DebugInfo = nullptr;
1370   }
1371 
1372   // The function might not have a body if we're generating thunks for a
1373   // function declaration.
1374   SourceRange BodyRange;
1375   if (Stmt *Body = FD->getBody())
1376     BodyRange = Body->getSourceRange();
1377   else
1378     BodyRange = FD->getLocation();
1379   CurEHLocation = BodyRange.getEnd();
1380 
1381   // Use the location of the start of the function to determine where
1382   // the function definition is located. By default use the location
1383   // of the declaration as the location for the subprogram. A function
1384   // may lack a declaration in the source code if it is created by code
1385   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1386   SourceLocation Loc = FD->getLocation();
1387 
1388   // If this is a function specialization then use the pattern body
1389   // as the location for the function.
1390   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1391     if (SpecDecl->hasBody(SpecDecl))
1392       Loc = SpecDecl->getLocation();
1393 
1394   Stmt *Body = FD->getBody();
1395 
1396   if (Body) {
1397     // Coroutines always emit lifetime markers.
1398     if (isa<CoroutineBodyStmt>(Body))
1399       ShouldEmitLifetimeMarkers = true;
1400 
1401     // Initialize helper which will detect jumps which can cause invalid
1402     // lifetime markers.
1403     if (ShouldEmitLifetimeMarkers)
1404       Bypasses.Init(Body);
1405   }
1406 
1407   // Emit the standard function prologue.
1408   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1409 
1410   // Save parameters for coroutine function.
1411   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1412     for (const auto *ParamDecl : FD->parameters())
1413       FnArgs.push_back(ParamDecl);
1414 
1415   // Generate the body of the function.
1416   PGO.assignRegionCounters(GD, CurFn);
1417   if (isa<CXXDestructorDecl>(FD))
1418     EmitDestructorBody(Args);
1419   else if (isa<CXXConstructorDecl>(FD))
1420     EmitConstructorBody(Args);
1421   else if (getLangOpts().CUDA &&
1422            !getLangOpts().CUDAIsDevice &&
1423            FD->hasAttr<CUDAGlobalAttr>())
1424     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1425   else if (isa<CXXMethodDecl>(FD) &&
1426            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1427     // The lambda static invoker function is special, because it forwards or
1428     // clones the body of the function call operator (but is actually static).
1429     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1430   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1431              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1432               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1433     // Implicit copy-assignment gets the same special treatment as implicit
1434     // copy-constructors.
1435     emitImplicitAssignmentOperatorBody(Args);
1436   } else if (Body) {
1437     EmitFunctionBody(Body);
1438   } else
1439     llvm_unreachable("no definition for emitted function");
1440 
1441   // C++11 [stmt.return]p2:
1442   //   Flowing off the end of a function [...] results in undefined behavior in
1443   //   a value-returning function.
1444   // C11 6.9.1p12:
1445   //   If the '}' that terminates a function is reached, and the value of the
1446   //   function call is used by the caller, the behavior is undefined.
1447   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1448       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1449     bool ShouldEmitUnreachable =
1450         CGM.getCodeGenOpts().StrictReturn ||
1451         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1452     if (SanOpts.has(SanitizerKind::Return)) {
1453       SanitizerScope SanScope(this);
1454       llvm::Value *IsFalse = Builder.getFalse();
1455       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1456                 SanitizerHandler::MissingReturn,
1457                 EmitCheckSourceLocation(FD->getLocation()), None);
1458     } else if (ShouldEmitUnreachable) {
1459       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1460         EmitTrapCall(llvm::Intrinsic::trap);
1461     }
1462     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1463       Builder.CreateUnreachable();
1464       Builder.ClearInsertionPoint();
1465     }
1466   }
1467 
1468   // Emit the standard function epilogue.
1469   FinishFunction(BodyRange.getEnd());
1470 
1471   // If we haven't marked the function nothrow through other means, do
1472   // a quick pass now to see if we can.
1473   if (!CurFn->doesNotThrow())
1474     TryMarkNoThrow(CurFn);
1475 }
1476 
1477 /// ContainsLabel - Return true if the statement contains a label in it.  If
1478 /// this statement is not executed normally, it not containing a label means
1479 /// that we can just remove the code.
1480 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1481   // Null statement, not a label!
1482   if (!S) return false;
1483 
1484   // If this is a label, we have to emit the code, consider something like:
1485   // if (0) {  ...  foo:  bar(); }  goto foo;
1486   //
1487   // TODO: If anyone cared, we could track __label__'s, since we know that you
1488   // can't jump to one from outside their declared region.
1489   if (isa<LabelStmt>(S))
1490     return true;
1491 
1492   // If this is a case/default statement, and we haven't seen a switch, we have
1493   // to emit the code.
1494   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1495     return true;
1496 
1497   // If this is a switch statement, we want to ignore cases below it.
1498   if (isa<SwitchStmt>(S))
1499     IgnoreCaseStmts = true;
1500 
1501   // Scan subexpressions for verboten labels.
1502   for (const Stmt *SubStmt : S->children())
1503     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1504       return true;
1505 
1506   return false;
1507 }
1508 
1509 /// containsBreak - Return true if the statement contains a break out of it.
1510 /// If the statement (recursively) contains a switch or loop with a break
1511 /// inside of it, this is fine.
1512 bool CodeGenFunction::containsBreak(const Stmt *S) {
1513   // Null statement, not a label!
1514   if (!S) return false;
1515 
1516   // If this is a switch or loop that defines its own break scope, then we can
1517   // include it and anything inside of it.
1518   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1519       isa<ForStmt>(S))
1520     return false;
1521 
1522   if (isa<BreakStmt>(S))
1523     return true;
1524 
1525   // Scan subexpressions for verboten breaks.
1526   for (const Stmt *SubStmt : S->children())
1527     if (containsBreak(SubStmt))
1528       return true;
1529 
1530   return false;
1531 }
1532 
1533 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1534   if (!S) return false;
1535 
1536   // Some statement kinds add a scope and thus never add a decl to the current
1537   // scope. Note, this list is longer than the list of statements that might
1538   // have an unscoped decl nested within them, but this way is conservatively
1539   // correct even if more statement kinds are added.
1540   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1541       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1542       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1543       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1544     return false;
1545 
1546   if (isa<DeclStmt>(S))
1547     return true;
1548 
1549   for (const Stmt *SubStmt : S->children())
1550     if (mightAddDeclToScope(SubStmt))
1551       return true;
1552 
1553   return false;
1554 }
1555 
1556 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1557 /// to a constant, or if it does but contains a label, return false.  If it
1558 /// constant folds return true and set the boolean result in Result.
1559 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1560                                                    bool &ResultBool,
1561                                                    bool AllowLabels) {
1562   llvm::APSInt ResultInt;
1563   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1564     return false;
1565 
1566   ResultBool = ResultInt.getBoolValue();
1567   return true;
1568 }
1569 
1570 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1571 /// to a constant, or if it does but contains a label, return false.  If it
1572 /// constant folds return true and set the folded value.
1573 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1574                                                    llvm::APSInt &ResultInt,
1575                                                    bool AllowLabels) {
1576   // FIXME: Rename and handle conversion of other evaluatable things
1577   // to bool.
1578   Expr::EvalResult Result;
1579   if (!Cond->EvaluateAsInt(Result, getContext()))
1580     return false;  // Not foldable, not integer or not fully evaluatable.
1581 
1582   llvm::APSInt Int = Result.Val.getInt();
1583   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1584     return false;  // Contains a label.
1585 
1586   ResultInt = Int;
1587   return true;
1588 }
1589 
1590 /// Determine whether the given condition is an instrumentable condition
1591 /// (i.e. no "&&" or "||").
1592 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1593   // Bypass simplistic logical-NOT operator before determining whether the
1594   // condition contains any other logical operator.
1595   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1596     if (UnOp->getOpcode() == UO_LNot)
1597       C = UnOp->getSubExpr();
1598 
1599   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1600   return (!BOp || !BOp->isLogicalOp());
1601 }
1602 
1603 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1604 /// increments a profile counter based on the semantics of the given logical
1605 /// operator opcode.  This is used to instrument branch condition coverage for
1606 /// logical operators.
1607 void CodeGenFunction::EmitBranchToCounterBlock(
1608     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1609     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1610     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1611   // If not instrumenting, just emit a branch.
1612   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1613   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1614     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1615 
1616   llvm::BasicBlock *ThenBlock = nullptr;
1617   llvm::BasicBlock *ElseBlock = nullptr;
1618   llvm::BasicBlock *NextBlock = nullptr;
1619 
1620   // Create the block we'll use to increment the appropriate counter.
1621   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1622 
1623   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1624   // means we need to evaluate the condition and increment the counter on TRUE:
1625   //
1626   // if (Cond)
1627   //   goto CounterIncrBlock;
1628   // else
1629   //   goto FalseBlock;
1630   //
1631   // CounterIncrBlock:
1632   //   Counter++;
1633   //   goto TrueBlock;
1634 
1635   if (LOp == BO_LAnd) {
1636     ThenBlock = CounterIncrBlock;
1637     ElseBlock = FalseBlock;
1638     NextBlock = TrueBlock;
1639   }
1640 
1641   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1642   // we need to evaluate the condition and increment the counter on FALSE:
1643   //
1644   // if (Cond)
1645   //   goto TrueBlock;
1646   // else
1647   //   goto CounterIncrBlock;
1648   //
1649   // CounterIncrBlock:
1650   //   Counter++;
1651   //   goto FalseBlock;
1652 
1653   else if (LOp == BO_LOr) {
1654     ThenBlock = TrueBlock;
1655     ElseBlock = CounterIncrBlock;
1656     NextBlock = FalseBlock;
1657   } else {
1658     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1659   }
1660 
1661   // Emit Branch based on condition.
1662   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1663 
1664   // Emit the block containing the counter increment(s).
1665   EmitBlock(CounterIncrBlock);
1666 
1667   // Increment corresponding counter; if index not provided, use Cond as index.
1668   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1669 
1670   // Go to the next block.
1671   EmitBranch(NextBlock);
1672 }
1673 
1674 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1675 /// statement) to the specified blocks.  Based on the condition, this might try
1676 /// to simplify the codegen of the conditional based on the branch.
1677 /// \param LH The value of the likelihood attribute on the True branch.
1678 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1679                                            llvm::BasicBlock *TrueBlock,
1680                                            llvm::BasicBlock *FalseBlock,
1681                                            uint64_t TrueCount,
1682                                            Stmt::Likelihood LH) {
1683   Cond = Cond->IgnoreParens();
1684 
1685   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1686 
1687     // Handle X && Y in a condition.
1688     if (CondBOp->getOpcode() == BO_LAnd) {
1689       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1690       // folded if the case was simple enough.
1691       bool ConstantBool = false;
1692       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1693           ConstantBool) {
1694         // br(1 && X) -> br(X).
1695         incrementProfileCounter(CondBOp);
1696         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1697                                         FalseBlock, TrueCount, LH);
1698       }
1699 
1700       // If we have "X && 1", simplify the code to use an uncond branch.
1701       // "X && 0" would have been constant folded to 0.
1702       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1703           ConstantBool) {
1704         // br(X && 1) -> br(X).
1705         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1706                                         FalseBlock, TrueCount, LH, CondBOp);
1707       }
1708 
1709       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1710       // want to jump to the FalseBlock.
1711       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1712       // The counter tells us how often we evaluate RHS, and all of TrueCount
1713       // can be propagated to that branch.
1714       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1715 
1716       ConditionalEvaluation eval(*this);
1717       {
1718         ApplyDebugLocation DL(*this, Cond);
1719         // Propagate the likelihood attribute like __builtin_expect
1720         // __builtin_expect(X && Y, 1) -> X and Y are likely
1721         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1722         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1723                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1724         EmitBlock(LHSTrue);
1725       }
1726 
1727       incrementProfileCounter(CondBOp);
1728       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1729 
1730       // Any temporaries created here are conditional.
1731       eval.begin(*this);
1732       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1733                                FalseBlock, TrueCount, LH);
1734       eval.end(*this);
1735 
1736       return;
1737     }
1738 
1739     if (CondBOp->getOpcode() == BO_LOr) {
1740       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1741       // folded if the case was simple enough.
1742       bool ConstantBool = false;
1743       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1744           !ConstantBool) {
1745         // br(0 || X) -> br(X).
1746         incrementProfileCounter(CondBOp);
1747         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1748                                         FalseBlock, TrueCount, LH);
1749       }
1750 
1751       // If we have "X || 0", simplify the code to use an uncond branch.
1752       // "X || 1" would have been constant folded to 1.
1753       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1754           !ConstantBool) {
1755         // br(X || 0) -> br(X).
1756         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1757                                         FalseBlock, TrueCount, LH, CondBOp);
1758       }
1759 
1760       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1761       // want to jump to the TrueBlock.
1762       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1763       // We have the count for entry to the RHS and for the whole expression
1764       // being true, so we can divy up True count between the short circuit and
1765       // the RHS.
1766       uint64_t LHSCount =
1767           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1768       uint64_t RHSCount = TrueCount - LHSCount;
1769 
1770       ConditionalEvaluation eval(*this);
1771       {
1772         // Propagate the likelihood attribute like __builtin_expect
1773         // __builtin_expect(X || Y, 1) -> only Y is likely
1774         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1775         ApplyDebugLocation DL(*this, Cond);
1776         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1777                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1778         EmitBlock(LHSFalse);
1779       }
1780 
1781       incrementProfileCounter(CondBOp);
1782       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1783 
1784       // Any temporaries created here are conditional.
1785       eval.begin(*this);
1786       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1787                                RHSCount, LH);
1788 
1789       eval.end(*this);
1790 
1791       return;
1792     }
1793   }
1794 
1795   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1796     // br(!x, t, f) -> br(x, f, t)
1797     if (CondUOp->getOpcode() == UO_LNot) {
1798       // Negate the count.
1799       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1800       // The values of the enum are chosen to make this negation possible.
1801       LH = static_cast<Stmt::Likelihood>(-LH);
1802       // Negate the condition and swap the destination blocks.
1803       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1804                                   FalseCount, LH);
1805     }
1806   }
1807 
1808   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1809     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1810     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1811     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1812 
1813     // The ConditionalOperator itself has no likelihood information for its
1814     // true and false branches. This matches the behavior of __builtin_expect.
1815     ConditionalEvaluation cond(*this);
1816     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1817                          getProfileCount(CondOp), Stmt::LH_None);
1818 
1819     // When computing PGO branch weights, we only know the overall count for
1820     // the true block. This code is essentially doing tail duplication of the
1821     // naive code-gen, introducing new edges for which counts are not
1822     // available. Divide the counts proportionally between the LHS and RHS of
1823     // the conditional operator.
1824     uint64_t LHSScaledTrueCount = 0;
1825     if (TrueCount) {
1826       double LHSRatio =
1827           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1828       LHSScaledTrueCount = TrueCount * LHSRatio;
1829     }
1830 
1831     cond.begin(*this);
1832     EmitBlock(LHSBlock);
1833     incrementProfileCounter(CondOp);
1834     {
1835       ApplyDebugLocation DL(*this, Cond);
1836       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1837                            LHSScaledTrueCount, LH);
1838     }
1839     cond.end(*this);
1840 
1841     cond.begin(*this);
1842     EmitBlock(RHSBlock);
1843     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1844                          TrueCount - LHSScaledTrueCount, LH);
1845     cond.end(*this);
1846 
1847     return;
1848   }
1849 
1850   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1851     // Conditional operator handling can give us a throw expression as a
1852     // condition for a case like:
1853     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1854     // Fold this to:
1855     //   br(c, throw x, br(y, t, f))
1856     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1857     return;
1858   }
1859 
1860   // Emit the code with the fully general case.
1861   llvm::Value *CondV;
1862   {
1863     ApplyDebugLocation DL(*this, Cond);
1864     CondV = EvaluateExprAsBool(Cond);
1865   }
1866 
1867   llvm::MDNode *Weights = nullptr;
1868   llvm::MDNode *Unpredictable = nullptr;
1869 
1870   // If the branch has a condition wrapped by __builtin_unpredictable,
1871   // create metadata that specifies that the branch is unpredictable.
1872   // Don't bother if not optimizing because that metadata would not be used.
1873   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1874   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1875     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1876     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1877       llvm::MDBuilder MDHelper(getLLVMContext());
1878       Unpredictable = MDHelper.createUnpredictable();
1879     }
1880   }
1881 
1882   // If there is a Likelihood knowledge for the cond, lower it.
1883   // Note that if not optimizing this won't emit anything.
1884   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1885   if (CondV != NewCondV)
1886     CondV = NewCondV;
1887   else {
1888     // Otherwise, lower profile counts. Note that we do this even at -O0.
1889     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1890     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1891   }
1892 
1893   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1894 }
1895 
1896 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1897 /// specified stmt yet.
1898 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1899   CGM.ErrorUnsupported(S, Type);
1900 }
1901 
1902 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1903 /// variable-length array whose elements have a non-zero bit-pattern.
1904 ///
1905 /// \param baseType the inner-most element type of the array
1906 /// \param src - a char* pointing to the bit-pattern for a single
1907 /// base element of the array
1908 /// \param sizeInChars - the total size of the VLA, in chars
1909 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1910                                Address dest, Address src,
1911                                llvm::Value *sizeInChars) {
1912   CGBuilderTy &Builder = CGF.Builder;
1913 
1914   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1915   llvm::Value *baseSizeInChars
1916     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1917 
1918   Address begin =
1919     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1920   llvm::Value *end = Builder.CreateInBoundsGEP(
1921       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1922 
1923   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1924   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1925   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1926 
1927   // Make a loop over the VLA.  C99 guarantees that the VLA element
1928   // count must be nonzero.
1929   CGF.EmitBlock(loopBB);
1930 
1931   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1932   cur->addIncoming(begin.getPointer(), originBB);
1933 
1934   CharUnits curAlign =
1935     dest.getAlignment().alignmentOfArrayElement(baseSize);
1936 
1937   // memcpy the individual element bit-pattern.
1938   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1939                        /*volatile*/ false);
1940 
1941   // Go to the next element.
1942   llvm::Value *next =
1943     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1944 
1945   // Leave if that's the end of the VLA.
1946   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1947   Builder.CreateCondBr(done, contBB, loopBB);
1948   cur->addIncoming(next, loopBB);
1949 
1950   CGF.EmitBlock(contBB);
1951 }
1952 
1953 void
1954 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1955   // Ignore empty classes in C++.
1956   if (getLangOpts().CPlusPlus) {
1957     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1958       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1959         return;
1960     }
1961   }
1962 
1963   // Cast the dest ptr to the appropriate i8 pointer type.
1964   if (DestPtr.getElementType() != Int8Ty)
1965     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1966 
1967   // Get size and alignment info for this aggregate.
1968   CharUnits size = getContext().getTypeSizeInChars(Ty);
1969 
1970   llvm::Value *SizeVal;
1971   const VariableArrayType *vla;
1972 
1973   // Don't bother emitting a zero-byte memset.
1974   if (size.isZero()) {
1975     // But note that getTypeInfo returns 0 for a VLA.
1976     if (const VariableArrayType *vlaType =
1977           dyn_cast_or_null<VariableArrayType>(
1978                                           getContext().getAsArrayType(Ty))) {
1979       auto VlaSize = getVLASize(vlaType);
1980       SizeVal = VlaSize.NumElts;
1981       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1982       if (!eltSize.isOne())
1983         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1984       vla = vlaType;
1985     } else {
1986       return;
1987     }
1988   } else {
1989     SizeVal = CGM.getSize(size);
1990     vla = nullptr;
1991   }
1992 
1993   // If the type contains a pointer to data member we can't memset it to zero.
1994   // Instead, create a null constant and copy it to the destination.
1995   // TODO: there are other patterns besides zero that we can usefully memset,
1996   // like -1, which happens to be the pattern used by member-pointers.
1997   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1998     // For a VLA, emit a single element, then splat that over the VLA.
1999     if (vla) Ty = getContext().getBaseElementType(vla);
2000 
2001     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2002 
2003     llvm::GlobalVariable *NullVariable =
2004       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2005                                /*isConstant=*/true,
2006                                llvm::GlobalVariable::PrivateLinkage,
2007                                NullConstant, Twine());
2008     CharUnits NullAlign = DestPtr.getAlignment();
2009     NullVariable->setAlignment(NullAlign.getAsAlign());
2010     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2011                    Builder.getInt8Ty(), NullAlign);
2012 
2013     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2014 
2015     // Get and call the appropriate llvm.memcpy overload.
2016     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2017     return;
2018   }
2019 
2020   // Otherwise, just memset the whole thing to zero.  This is legal
2021   // because in LLVM, all default initializers (other than the ones we just
2022   // handled above) are guaranteed to have a bit pattern of all zeros.
2023   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2024 }
2025 
2026 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2027   // Make sure that there is a block for the indirect goto.
2028   if (!IndirectBranch)
2029     GetIndirectGotoBlock();
2030 
2031   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2032 
2033   // Make sure the indirect branch includes all of the address-taken blocks.
2034   IndirectBranch->addDestination(BB);
2035   return llvm::BlockAddress::get(CurFn, BB);
2036 }
2037 
2038 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2039   // If we already made the indirect branch for indirect goto, return its block.
2040   if (IndirectBranch) return IndirectBranch->getParent();
2041 
2042   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2043 
2044   // Create the PHI node that indirect gotos will add entries to.
2045   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2046                                               "indirect.goto.dest");
2047 
2048   // Create the indirect branch instruction.
2049   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2050   return IndirectBranch->getParent();
2051 }
2052 
2053 /// Computes the length of an array in elements, as well as the base
2054 /// element type and a properly-typed first element pointer.
2055 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2056                                               QualType &baseType,
2057                                               Address &addr) {
2058   const ArrayType *arrayType = origArrayType;
2059 
2060   // If it's a VLA, we have to load the stored size.  Note that
2061   // this is the size of the VLA in bytes, not its size in elements.
2062   llvm::Value *numVLAElements = nullptr;
2063   if (isa<VariableArrayType>(arrayType)) {
2064     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2065 
2066     // Walk into all VLAs.  This doesn't require changes to addr,
2067     // which has type T* where T is the first non-VLA element type.
2068     do {
2069       QualType elementType = arrayType->getElementType();
2070       arrayType = getContext().getAsArrayType(elementType);
2071 
2072       // If we only have VLA components, 'addr' requires no adjustment.
2073       if (!arrayType) {
2074         baseType = elementType;
2075         return numVLAElements;
2076       }
2077     } while (isa<VariableArrayType>(arrayType));
2078 
2079     // We get out here only if we find a constant array type
2080     // inside the VLA.
2081   }
2082 
2083   // We have some number of constant-length arrays, so addr should
2084   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2085   // down to the first element of addr.
2086   SmallVector<llvm::Value*, 8> gepIndices;
2087 
2088   // GEP down to the array type.
2089   llvm::ConstantInt *zero = Builder.getInt32(0);
2090   gepIndices.push_back(zero);
2091 
2092   uint64_t countFromCLAs = 1;
2093   QualType eltType;
2094 
2095   llvm::ArrayType *llvmArrayType =
2096     dyn_cast<llvm::ArrayType>(addr.getElementType());
2097   while (llvmArrayType) {
2098     assert(isa<ConstantArrayType>(arrayType));
2099     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2100              == llvmArrayType->getNumElements());
2101 
2102     gepIndices.push_back(zero);
2103     countFromCLAs *= llvmArrayType->getNumElements();
2104     eltType = arrayType->getElementType();
2105 
2106     llvmArrayType =
2107       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2108     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2109     assert((!llvmArrayType || arrayType) &&
2110            "LLVM and Clang types are out-of-synch");
2111   }
2112 
2113   if (arrayType) {
2114     // From this point onwards, the Clang array type has been emitted
2115     // as some other type (probably a packed struct). Compute the array
2116     // size, and just emit the 'begin' expression as a bitcast.
2117     while (arrayType) {
2118       countFromCLAs *=
2119           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2120       eltType = arrayType->getElementType();
2121       arrayType = getContext().getAsArrayType(eltType);
2122     }
2123 
2124     llvm::Type *baseType = ConvertType(eltType);
2125     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2126   } else {
2127     // Create the actual GEP.
2128     addr = Address(Builder.CreateInBoundsGEP(
2129         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2130         ConvertTypeForMem(eltType),
2131         addr.getAlignment());
2132   }
2133 
2134   baseType = eltType;
2135 
2136   llvm::Value *numElements
2137     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2138 
2139   // If we had any VLA dimensions, factor them in.
2140   if (numVLAElements)
2141     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2142 
2143   return numElements;
2144 }
2145 
2146 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2147   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2148   assert(vla && "type was not a variable array type!");
2149   return getVLASize(vla);
2150 }
2151 
2152 CodeGenFunction::VlaSizePair
2153 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2154   // The number of elements so far; always size_t.
2155   llvm::Value *numElements = nullptr;
2156 
2157   QualType elementType;
2158   do {
2159     elementType = type->getElementType();
2160     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2161     assert(vlaSize && "no size for VLA!");
2162     assert(vlaSize->getType() == SizeTy);
2163 
2164     if (!numElements) {
2165       numElements = vlaSize;
2166     } else {
2167       // It's undefined behavior if this wraps around, so mark it that way.
2168       // FIXME: Teach -fsanitize=undefined to trap this.
2169       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2170     }
2171   } while ((type = getContext().getAsVariableArrayType(elementType)));
2172 
2173   return { numElements, elementType };
2174 }
2175 
2176 CodeGenFunction::VlaSizePair
2177 CodeGenFunction::getVLAElements1D(QualType type) {
2178   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2179   assert(vla && "type was not a variable array type!");
2180   return getVLAElements1D(vla);
2181 }
2182 
2183 CodeGenFunction::VlaSizePair
2184 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2185   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2186   assert(VlaSize && "no size for VLA!");
2187   assert(VlaSize->getType() == SizeTy);
2188   return { VlaSize, Vla->getElementType() };
2189 }
2190 
2191 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2192   assert(type->isVariablyModifiedType() &&
2193          "Must pass variably modified type to EmitVLASizes!");
2194 
2195   EnsureInsertPoint();
2196 
2197   // We're going to walk down into the type and look for VLA
2198   // expressions.
2199   do {
2200     assert(type->isVariablyModifiedType());
2201 
2202     const Type *ty = type.getTypePtr();
2203     switch (ty->getTypeClass()) {
2204 
2205 #define TYPE(Class, Base)
2206 #define ABSTRACT_TYPE(Class, Base)
2207 #define NON_CANONICAL_TYPE(Class, Base)
2208 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2209 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2210 #include "clang/AST/TypeNodes.inc"
2211       llvm_unreachable("unexpected dependent type!");
2212 
2213     // These types are never variably-modified.
2214     case Type::Builtin:
2215     case Type::Complex:
2216     case Type::Vector:
2217     case Type::ExtVector:
2218     case Type::ConstantMatrix:
2219     case Type::Record:
2220     case Type::Enum:
2221     case Type::Elaborated:
2222     case Type::Using:
2223     case Type::TemplateSpecialization:
2224     case Type::ObjCTypeParam:
2225     case Type::ObjCObject:
2226     case Type::ObjCInterface:
2227     case Type::ObjCObjectPointer:
2228     case Type::BitInt:
2229       llvm_unreachable("type class is never variably-modified!");
2230 
2231     case Type::Adjusted:
2232       type = cast<AdjustedType>(ty)->getAdjustedType();
2233       break;
2234 
2235     case Type::Decayed:
2236       type = cast<DecayedType>(ty)->getPointeeType();
2237       break;
2238 
2239     case Type::Pointer:
2240       type = cast<PointerType>(ty)->getPointeeType();
2241       break;
2242 
2243     case Type::BlockPointer:
2244       type = cast<BlockPointerType>(ty)->getPointeeType();
2245       break;
2246 
2247     case Type::LValueReference:
2248     case Type::RValueReference:
2249       type = cast<ReferenceType>(ty)->getPointeeType();
2250       break;
2251 
2252     case Type::MemberPointer:
2253       type = cast<MemberPointerType>(ty)->getPointeeType();
2254       break;
2255 
2256     case Type::ConstantArray:
2257     case Type::IncompleteArray:
2258       // Losing element qualification here is fine.
2259       type = cast<ArrayType>(ty)->getElementType();
2260       break;
2261 
2262     case Type::VariableArray: {
2263       // Losing element qualification here is fine.
2264       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2265 
2266       // Unknown size indication requires no size computation.
2267       // Otherwise, evaluate and record it.
2268       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2269         // It's possible that we might have emitted this already,
2270         // e.g. with a typedef and a pointer to it.
2271         llvm::Value *&entry = VLASizeMap[sizeExpr];
2272         if (!entry) {
2273           llvm::Value *size = EmitScalarExpr(sizeExpr);
2274 
2275           // C11 6.7.6.2p5:
2276           //   If the size is an expression that is not an integer constant
2277           //   expression [...] each time it is evaluated it shall have a value
2278           //   greater than zero.
2279           if (SanOpts.has(SanitizerKind::VLABound)) {
2280             SanitizerScope SanScope(this);
2281             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2282             clang::QualType SEType = sizeExpr->getType();
2283             llvm::Value *CheckCondition =
2284                 SEType->isSignedIntegerType()
2285                     ? Builder.CreateICmpSGT(size, Zero)
2286                     : Builder.CreateICmpUGT(size, Zero);
2287             llvm::Constant *StaticArgs[] = {
2288                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2289                 EmitCheckTypeDescriptor(SEType)};
2290             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2291                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2292           }
2293 
2294           // Always zexting here would be wrong if it weren't
2295           // undefined behavior to have a negative bound.
2296           // FIXME: What about when size's type is larger than size_t?
2297           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2298         }
2299       }
2300       type = vat->getElementType();
2301       break;
2302     }
2303 
2304     case Type::FunctionProto:
2305     case Type::FunctionNoProto:
2306       type = cast<FunctionType>(ty)->getReturnType();
2307       break;
2308 
2309     case Type::Paren:
2310     case Type::TypeOf:
2311     case Type::UnaryTransform:
2312     case Type::Attributed:
2313     case Type::BTFTagAttributed:
2314     case Type::SubstTemplateTypeParm:
2315     case Type::MacroQualified:
2316       // Keep walking after single level desugaring.
2317       type = type.getSingleStepDesugaredType(getContext());
2318       break;
2319 
2320     case Type::Typedef:
2321     case Type::Decltype:
2322     case Type::Auto:
2323     case Type::DeducedTemplateSpecialization:
2324       // Stop walking: nothing to do.
2325       return;
2326 
2327     case Type::TypeOfExpr:
2328       // Stop walking: emit typeof expression.
2329       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2330       return;
2331 
2332     case Type::Atomic:
2333       type = cast<AtomicType>(ty)->getValueType();
2334       break;
2335 
2336     case Type::Pipe:
2337       type = cast<PipeType>(ty)->getElementType();
2338       break;
2339     }
2340   } while (type->isVariablyModifiedType());
2341 }
2342 
2343 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2344   if (getContext().getBuiltinVaListType()->isArrayType())
2345     return EmitPointerWithAlignment(E);
2346   return EmitLValue(E).getAddress(*this);
2347 }
2348 
2349 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2350   return EmitLValue(E).getAddress(*this);
2351 }
2352 
2353 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2354                                               const APValue &Init) {
2355   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2356   if (CGDebugInfo *Dbg = getDebugInfo())
2357     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2358       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2359 }
2360 
2361 CodeGenFunction::PeepholeProtection
2362 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2363   // At the moment, the only aggressive peephole we do in IR gen
2364   // is trunc(zext) folding, but if we add more, we can easily
2365   // extend this protection.
2366 
2367   if (!rvalue.isScalar()) return PeepholeProtection();
2368   llvm::Value *value = rvalue.getScalarVal();
2369   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2370 
2371   // Just make an extra bitcast.
2372   assert(HaveInsertPoint());
2373   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2374                                                   Builder.GetInsertBlock());
2375 
2376   PeepholeProtection protection;
2377   protection.Inst = inst;
2378   return protection;
2379 }
2380 
2381 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2382   if (!protection.Inst) return;
2383 
2384   // In theory, we could try to duplicate the peepholes now, but whatever.
2385   protection.Inst->eraseFromParent();
2386 }
2387 
2388 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2389                                               QualType Ty, SourceLocation Loc,
2390                                               SourceLocation AssumptionLoc,
2391                                               llvm::Value *Alignment,
2392                                               llvm::Value *OffsetValue) {
2393   if (Alignment->getType() != IntPtrTy)
2394     Alignment =
2395         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2396   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2397     OffsetValue =
2398         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2399   llvm::Value *TheCheck = nullptr;
2400   if (SanOpts.has(SanitizerKind::Alignment)) {
2401     llvm::Value *PtrIntValue =
2402         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2403 
2404     if (OffsetValue) {
2405       bool IsOffsetZero = false;
2406       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2407         IsOffsetZero = CI->isZero();
2408 
2409       if (!IsOffsetZero)
2410         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2411     }
2412 
2413     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2414     llvm::Value *Mask =
2415         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2416     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2417     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2418   }
2419   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2420       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2421 
2422   if (!SanOpts.has(SanitizerKind::Alignment))
2423     return;
2424   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2425                                OffsetValue, TheCheck, Assumption);
2426 }
2427 
2428 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2429                                               const Expr *E,
2430                                               SourceLocation AssumptionLoc,
2431                                               llvm::Value *Alignment,
2432                                               llvm::Value *OffsetValue) {
2433   if (auto *CE = dyn_cast<CastExpr>(E))
2434     E = CE->getSubExprAsWritten();
2435   QualType Ty = E->getType();
2436   SourceLocation Loc = E->getExprLoc();
2437 
2438   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2439                           OffsetValue);
2440 }
2441 
2442 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2443                                                  llvm::Value *AnnotatedVal,
2444                                                  StringRef AnnotationStr,
2445                                                  SourceLocation Location,
2446                                                  const AnnotateAttr *Attr) {
2447   SmallVector<llvm::Value *, 5> Args = {
2448       AnnotatedVal,
2449       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2450       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2451       CGM.EmitAnnotationLineNo(Location),
2452   };
2453   if (Attr)
2454     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2455   return Builder.CreateCall(AnnotationFn, Args);
2456 }
2457 
2458 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2459   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2460   // FIXME We create a new bitcast for every annotation because that's what
2461   // llvm-gcc was doing.
2462   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2463     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2464                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2465                        I->getAnnotation(), D->getLocation(), I);
2466 }
2467 
2468 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2469                                               Address Addr) {
2470   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2471   llvm::Value *V = Addr.getPointer();
2472   llvm::Type *VTy = V->getType();
2473   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2474   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2475   llvm::PointerType *IntrinTy =
2476       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2477   llvm::Function *F =
2478       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2479 
2480   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2481     // FIXME Always emit the cast inst so we can differentiate between
2482     // annotation on the first field of a struct and annotation on the struct
2483     // itself.
2484     if (VTy != IntrinTy)
2485       V = Builder.CreateBitCast(V, IntrinTy);
2486     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2487     V = Builder.CreateBitCast(V, VTy);
2488   }
2489 
2490   return Address(V, Addr.getElementType(), Addr.getAlignment());
2491 }
2492 
2493 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2494 
2495 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2496     : CGF(CGF) {
2497   assert(!CGF->IsSanitizerScope);
2498   CGF->IsSanitizerScope = true;
2499 }
2500 
2501 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2502   CGF->IsSanitizerScope = false;
2503 }
2504 
2505 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2506                                    const llvm::Twine &Name,
2507                                    llvm::BasicBlock *BB,
2508                                    llvm::BasicBlock::iterator InsertPt) const {
2509   LoopStack.InsertHelper(I);
2510   if (IsSanitizerScope)
2511     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2512 }
2513 
2514 void CGBuilderInserter::InsertHelper(
2515     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2516     llvm::BasicBlock::iterator InsertPt) const {
2517   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2518   if (CGF)
2519     CGF->InsertHelper(I, Name, BB, InsertPt);
2520 }
2521 
2522 // Emits an error if we don't have a valid set of target features for the
2523 // called function.
2524 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2525                                           const FunctionDecl *TargetDecl) {
2526   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2527 }
2528 
2529 // Emits an error if we don't have a valid set of target features for the
2530 // called function.
2531 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2532                                           const FunctionDecl *TargetDecl) {
2533   // Early exit if this is an indirect call.
2534   if (!TargetDecl)
2535     return;
2536 
2537   // Get the current enclosing function if it exists. If it doesn't
2538   // we can't check the target features anyhow.
2539   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2540   if (!FD)
2541     return;
2542 
2543   // Grab the required features for the call. For a builtin this is listed in
2544   // the td file with the default cpu, for an always_inline function this is any
2545   // listed cpu and any listed features.
2546   unsigned BuiltinID = TargetDecl->getBuiltinID();
2547   std::string MissingFeature;
2548   llvm::StringMap<bool> CallerFeatureMap;
2549   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2550   if (BuiltinID) {
2551     StringRef FeatureList(
2552         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2553     // Return if the builtin doesn't have any required features.
2554     if (FeatureList.empty())
2555       return;
2556     assert(!FeatureList.contains(' ') && "Space in feature list");
2557     TargetFeatures TF(CallerFeatureMap);
2558     if (!TF.hasRequiredFeatures(FeatureList))
2559       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2560           << TargetDecl->getDeclName() << FeatureList;
2561   } else if (!TargetDecl->isMultiVersion() &&
2562              TargetDecl->hasAttr<TargetAttr>()) {
2563     // Get the required features for the callee.
2564 
2565     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2566     ParsedTargetAttr ParsedAttr =
2567         CGM.getContext().filterFunctionTargetAttrs(TD);
2568 
2569     SmallVector<StringRef, 1> ReqFeatures;
2570     llvm::StringMap<bool> CalleeFeatureMap;
2571     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2572 
2573     for (const auto &F : ParsedAttr.Features) {
2574       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2575         ReqFeatures.push_back(StringRef(F).substr(1));
2576     }
2577 
2578     for (const auto &F : CalleeFeatureMap) {
2579       // Only positive features are "required".
2580       if (F.getValue())
2581         ReqFeatures.push_back(F.getKey());
2582     }
2583     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2584       if (!CallerFeatureMap.lookup(Feature)) {
2585         MissingFeature = Feature.str();
2586         return false;
2587       }
2588       return true;
2589     }))
2590       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2591           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2592   }
2593 }
2594 
2595 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2596   if (!CGM.getCodeGenOpts().SanitizeStats)
2597     return;
2598 
2599   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2600   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2601   CGM.getSanStats().create(IRB, SSK);
2602 }
2603 
2604 llvm::Value *
2605 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2606   llvm::Value *Condition = nullptr;
2607 
2608   if (!RO.Conditions.Architecture.empty())
2609     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2610 
2611   if (!RO.Conditions.Features.empty()) {
2612     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2613     Condition =
2614         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2615   }
2616   return Condition;
2617 }
2618 
2619 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2620                                              llvm::Function *Resolver,
2621                                              CGBuilderTy &Builder,
2622                                              llvm::Function *FuncToReturn,
2623                                              bool SupportsIFunc) {
2624   if (SupportsIFunc) {
2625     Builder.CreateRet(FuncToReturn);
2626     return;
2627   }
2628 
2629   llvm::SmallVector<llvm::Value *, 10> Args;
2630   llvm::for_each(Resolver->args(),
2631                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2632 
2633   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2634   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2635 
2636   if (Resolver->getReturnType()->isVoidTy())
2637     Builder.CreateRetVoid();
2638   else
2639     Builder.CreateRet(Result);
2640 }
2641 
2642 void CodeGenFunction::EmitMultiVersionResolver(
2643     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2644   assert(getContext().getTargetInfo().getTriple().isX86() &&
2645          "Only implemented for x86 targets");
2646 
2647   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2648 
2649   // Main function's basic block.
2650   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2651   Builder.SetInsertPoint(CurBlock);
2652   EmitX86CpuInit();
2653 
2654   for (const MultiVersionResolverOption &RO : Options) {
2655     Builder.SetInsertPoint(CurBlock);
2656     llvm::Value *Condition = FormResolverCondition(RO);
2657 
2658     // The 'default' or 'generic' case.
2659     if (!Condition) {
2660       assert(&RO == Options.end() - 1 &&
2661              "Default or Generic case must be last");
2662       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2663                                        SupportsIFunc);
2664       return;
2665     }
2666 
2667     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2668     CGBuilderTy RetBuilder(*this, RetBlock);
2669     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2670                                      SupportsIFunc);
2671     CurBlock = createBasicBlock("resolver_else", Resolver);
2672     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2673   }
2674 
2675   // If no generic/default, emit an unreachable.
2676   Builder.SetInsertPoint(CurBlock);
2677   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2678   TrapCall->setDoesNotReturn();
2679   TrapCall->setDoesNotThrow();
2680   Builder.CreateUnreachable();
2681   Builder.ClearInsertionPoint();
2682 }
2683 
2684 // Loc - where the diagnostic will point, where in the source code this
2685 //  alignment has failed.
2686 // SecondaryLoc - if present (will be present if sufficiently different from
2687 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2688 //  It should be the location where the __attribute__((assume_aligned))
2689 //  was written e.g.
2690 void CodeGenFunction::emitAlignmentAssumptionCheck(
2691     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2692     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2693     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2694     llvm::Instruction *Assumption) {
2695   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2696          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2697              llvm::Intrinsic::getDeclaration(
2698                  Builder.GetInsertBlock()->getParent()->getParent(),
2699                  llvm::Intrinsic::assume) &&
2700          "Assumption should be a call to llvm.assume().");
2701   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2702          "Assumption should be the last instruction of the basic block, "
2703          "since the basic block is still being generated.");
2704 
2705   if (!SanOpts.has(SanitizerKind::Alignment))
2706     return;
2707 
2708   // Don't check pointers to volatile data. The behavior here is implementation-
2709   // defined.
2710   if (Ty->getPointeeType().isVolatileQualified())
2711     return;
2712 
2713   // We need to temorairly remove the assumption so we can insert the
2714   // sanitizer check before it, else the check will be dropped by optimizations.
2715   Assumption->removeFromParent();
2716 
2717   {
2718     SanitizerScope SanScope(this);
2719 
2720     if (!OffsetValue)
2721       OffsetValue = Builder.getInt1(false); // no offset.
2722 
2723     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2724                                     EmitCheckSourceLocation(SecondaryLoc),
2725                                     EmitCheckTypeDescriptor(Ty)};
2726     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2727                                   EmitCheckValue(Alignment),
2728                                   EmitCheckValue(OffsetValue)};
2729     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2730               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2731   }
2732 
2733   // We are now in the (new, empty) "cont" basic block.
2734   // Reintroduce the assumption.
2735   Builder.Insert(Assumption);
2736   // FIXME: Assumption still has it's original basic block as it's Parent.
2737 }
2738 
2739 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2740   if (CGDebugInfo *DI = getDebugInfo())
2741     return DI->SourceLocToDebugLoc(Location);
2742 
2743   return llvm::DebugLoc();
2744 }
2745 
2746 llvm::Value *
2747 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2748                                                       Stmt::Likelihood LH) {
2749   switch (LH) {
2750   case Stmt::LH_None:
2751     return Cond;
2752   case Stmt::LH_Likely:
2753   case Stmt::LH_Unlikely:
2754     // Don't generate llvm.expect on -O0 as the backend won't use it for
2755     // anything.
2756     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2757       return Cond;
2758     llvm::Type *CondTy = Cond->getType();
2759     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2760     llvm::Function *FnExpect =
2761         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2762     llvm::Value *ExpectedValueOfCond =
2763         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2764     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2765                               Cond->getName() + ".expval");
2766   }
2767   llvm_unreachable("Unknown Likelihood");
2768 }
2769 
2770 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2771                                                     unsigned NumElementsDst,
2772                                                     const llvm::Twine &Name) {
2773   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2774   unsigned NumElementsSrc = SrcTy->getNumElements();
2775   if (NumElementsSrc == NumElementsDst)
2776     return SrcVec;
2777 
2778   std::vector<int> ShuffleMask(NumElementsDst, -1);
2779   for (unsigned MaskIdx = 0;
2780        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2781     ShuffleMask[MaskIdx] = MaskIdx;
2782 
2783   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2784 }
2785