1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39               CGBuilderInserterTy(this)),
40       CapturedStmtInfo(nullptr), SanOpts(&CGM.getLangOpts().Sanitize),
41       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
42       BlockInfo(nullptr), BlockPointer(nullptr),
43       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
44       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
45       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
46       DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
47       DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
48       SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
49       UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
50       CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
51       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
52       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
53       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
54       TerminateHandler(nullptr), TrapBB(nullptr) {
55   if (!suppressNewContext)
56     CGM.getCXXABI().getMangleContext().startNewFunction();
57 
58   llvm::FastMathFlags FMF;
59   if (CGM.getLangOpts().FastMath)
60     FMF.setUnsafeAlgebra();
61   if (CGM.getLangOpts().FiniteMathOnly) {
62     FMF.setNoNaNs();
63     FMF.setNoInfs();
64   }
65   Builder.SetFastMathFlags(FMF);
66 }
67 
68 CodeGenFunction::~CodeGenFunction() {
69   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
70 
71   // If there are any unclaimed block infos, go ahead and destroy them
72   // now.  This can happen if IR-gen gets clever and skips evaluating
73   // something.
74   if (FirstBlockInfo)
75     destroyBlockInfos(FirstBlockInfo);
76 
77   if (getLangOpts().OpenMP) {
78     CGM.getOpenMPRuntime().FunctionFinished(*this);
79   }
80 }
81 
82 
83 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
84   return CGM.getTypes().ConvertTypeForMem(T);
85 }
86 
87 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
88   return CGM.getTypes().ConvertType(T);
89 }
90 
91 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
92   type = type.getCanonicalType();
93   while (true) {
94     switch (type->getTypeClass()) {
95 #define TYPE(name, parent)
96 #define ABSTRACT_TYPE(name, parent)
97 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
98 #define DEPENDENT_TYPE(name, parent) case Type::name:
99 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
100 #include "clang/AST/TypeNodes.def"
101       llvm_unreachable("non-canonical or dependent type in IR-generation");
102 
103     case Type::Auto:
104       llvm_unreachable("undeduced auto type in IR-generation");
105 
106     // Various scalar types.
107     case Type::Builtin:
108     case Type::Pointer:
109     case Type::BlockPointer:
110     case Type::LValueReference:
111     case Type::RValueReference:
112     case Type::MemberPointer:
113     case Type::Vector:
114     case Type::ExtVector:
115     case Type::FunctionProto:
116     case Type::FunctionNoProto:
117     case Type::Enum:
118     case Type::ObjCObjectPointer:
119       return TEK_Scalar;
120 
121     // Complexes.
122     case Type::Complex:
123       return TEK_Complex;
124 
125     // Arrays, records, and Objective-C objects.
126     case Type::ConstantArray:
127     case Type::IncompleteArray:
128     case Type::VariableArray:
129     case Type::Record:
130     case Type::ObjCObject:
131     case Type::ObjCInterface:
132       return TEK_Aggregate;
133 
134     // We operate on atomic values according to their underlying type.
135     case Type::Atomic:
136       type = cast<AtomicType>(type)->getValueType();
137       continue;
138     }
139     llvm_unreachable("unknown type kind!");
140   }
141 }
142 
143 void CodeGenFunction::EmitReturnBlock() {
144   // For cleanliness, we try to avoid emitting the return block for
145   // simple cases.
146   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
147 
148   if (CurBB) {
149     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
150 
151     // We have a valid insert point, reuse it if it is empty or there are no
152     // explicit jumps to the return block.
153     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
154       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
155       delete ReturnBlock.getBlock();
156     } else
157       EmitBlock(ReturnBlock.getBlock());
158     return;
159   }
160 
161   // Otherwise, if the return block is the target of a single direct
162   // branch then we can just put the code in that block instead. This
163   // cleans up functions which started with a unified return block.
164   if (ReturnBlock.getBlock()->hasOneUse()) {
165     llvm::BranchInst *BI =
166       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
167     if (BI && BI->isUnconditional() &&
168         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
169       // Reset insertion point, including debug location, and delete the
170       // branch.  This is really subtle and only works because the next change
171       // in location will hit the caching in CGDebugInfo::EmitLocation and not
172       // override this.
173       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
174       Builder.SetInsertPoint(BI->getParent());
175       BI->eraseFromParent();
176       delete ReturnBlock.getBlock();
177       return;
178     }
179   }
180 
181   // FIXME: We are at an unreachable point, there is no reason to emit the block
182   // unless it has uses. However, we still need a place to put the debug
183   // region.end for now.
184 
185   EmitBlock(ReturnBlock.getBlock());
186 }
187 
188 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
189   if (!BB) return;
190   if (!BB->use_empty())
191     return CGF.CurFn->getBasicBlockList().push_back(BB);
192   delete BB;
193 }
194 
195 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
196   assert(BreakContinueStack.empty() &&
197          "mismatched push/pop in break/continue stack!");
198 
199   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
200     && NumSimpleReturnExprs == NumReturnExprs
201     && ReturnBlock.getBlock()->use_empty();
202   // Usually the return expression is evaluated before the cleanup
203   // code.  If the function contains only a simple return statement,
204   // such as a constant, the location before the cleanup code becomes
205   // the last useful breakpoint in the function, because the simple
206   // return expression will be evaluated after the cleanup code. To be
207   // safe, set the debug location for cleanup code to the location of
208   // the return statement.  Otherwise the cleanup code should be at the
209   // end of the function's lexical scope.
210   //
211   // If there are multiple branches to the return block, the branch
212   // instructions will get the location of the return statements and
213   // all will be fine.
214   if (CGDebugInfo *DI = getDebugInfo()) {
215     if (OnlySimpleReturnStmts)
216       DI->EmitLocation(Builder, LastStopPoint);
217     else
218       DI->EmitLocation(Builder, EndLoc);
219   }
220 
221   // Pop any cleanups that might have been associated with the
222   // parameters.  Do this in whatever block we're currently in; it's
223   // important to do this before we enter the return block or return
224   // edges will be *really* confused.
225   bool EmitRetDbgLoc = true;
226   if (EHStack.stable_begin() != PrologueCleanupDepth) {
227     PopCleanupBlocks(PrologueCleanupDepth);
228 
229     // Make sure the line table doesn't jump back into the body for
230     // the ret after it's been at EndLoc.
231     EmitRetDbgLoc = false;
232 
233     if (CGDebugInfo *DI = getDebugInfo())
234       if (OnlySimpleReturnStmts)
235         DI->EmitLocation(Builder, EndLoc);
236   }
237 
238   // Emit function epilog (to return).
239   EmitReturnBlock();
240 
241   if (ShouldInstrumentFunction())
242     EmitFunctionInstrumentation("__cyg_profile_func_exit");
243 
244   // Emit debug descriptor for function end.
245   if (CGDebugInfo *DI = getDebugInfo()) {
246     DI->EmitFunctionEnd(Builder);
247   }
248 
249   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
250   EmitEndEHSpec(CurCodeDecl);
251 
252   assert(EHStack.empty() &&
253          "did not remove all scopes from cleanup stack!");
254 
255   // If someone did an indirect goto, emit the indirect goto block at the end of
256   // the function.
257   if (IndirectBranch) {
258     EmitBlock(IndirectBranch->getParent());
259     Builder.ClearInsertionPoint();
260   }
261 
262   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
263   llvm::Instruction *Ptr = AllocaInsertPt;
264   AllocaInsertPt = nullptr;
265   Ptr->eraseFromParent();
266 
267   // If someone took the address of a label but never did an indirect goto, we
268   // made a zero entry PHI node, which is illegal, zap it now.
269   if (IndirectBranch) {
270     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
271     if (PN->getNumIncomingValues() == 0) {
272       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
273       PN->eraseFromParent();
274     }
275   }
276 
277   EmitIfUsed(*this, EHResumeBlock);
278   EmitIfUsed(*this, TerminateLandingPad);
279   EmitIfUsed(*this, TerminateHandler);
280   EmitIfUsed(*this, UnreachableBlock);
281 
282   if (CGM.getCodeGenOpts().EmitDeclMetadata)
283     EmitDeclMetadata();
284 
285   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
286            I = DeferredReplacements.begin(),
287            E = DeferredReplacements.end();
288        I != E; ++I) {
289     I->first->replaceAllUsesWith(I->second);
290     I->first->eraseFromParent();
291   }
292 }
293 
294 /// ShouldInstrumentFunction - Return true if the current function should be
295 /// instrumented with __cyg_profile_func_* calls
296 bool CodeGenFunction::ShouldInstrumentFunction() {
297   if (!CGM.getCodeGenOpts().InstrumentFunctions)
298     return false;
299   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
300     return false;
301   return true;
302 }
303 
304 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
305 /// instrumentation function with the current function and the call site, if
306 /// function instrumentation is enabled.
307 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
308   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
309   llvm::PointerType *PointerTy = Int8PtrTy;
310   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
311   llvm::FunctionType *FunctionTy =
312     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
313 
314   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
315   llvm::CallInst *CallSite = Builder.CreateCall(
316     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
317     llvm::ConstantInt::get(Int32Ty, 0),
318     "callsite");
319 
320   llvm::Value *args[] = {
321     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
322     CallSite
323   };
324 
325   EmitNounwindRuntimeCall(F, args);
326 }
327 
328 void CodeGenFunction::EmitMCountInstrumentation() {
329   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
330 
331   llvm::Constant *MCountFn =
332     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
333   EmitNounwindRuntimeCall(MCountFn);
334 }
335 
336 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
337 // information in the program executable. The argument information stored
338 // includes the argument name, its type, the address and access qualifiers used.
339 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
340                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
341                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
342                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
343   // Create MDNodes that represent the kernel arg metadata.
344   // Each MDNode is a list in the form of "key", N number of values which is
345   // the same number of values as their are kernel arguments.
346 
347   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
348 
349   // MDNode for the kernel argument address space qualifiers.
350   SmallVector<llvm::Value*, 8> addressQuals;
351   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
352 
353   // MDNode for the kernel argument access qualifiers (images only).
354   SmallVector<llvm::Value*, 8> accessQuals;
355   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
356 
357   // MDNode for the kernel argument type names.
358   SmallVector<llvm::Value*, 8> argTypeNames;
359   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
360 
361   // MDNode for the kernel argument base type names.
362   SmallVector<llvm::Value*, 8> argBaseTypeNames;
363   argBaseTypeNames.push_back(
364       llvm::MDString::get(Context, "kernel_arg_base_type"));
365 
366   // MDNode for the kernel argument type qualifiers.
367   SmallVector<llvm::Value*, 8> argTypeQuals;
368   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
369 
370   // MDNode for the kernel argument names.
371   SmallVector<llvm::Value*, 8> argNames;
372   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
373 
374   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
375     const ParmVarDecl *parm = FD->getParamDecl(i);
376     QualType ty = parm->getType();
377     std::string typeQuals;
378 
379     if (ty->isPointerType()) {
380       QualType pointeeTy = ty->getPointeeType();
381 
382       // Get address qualifier.
383       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
384         pointeeTy.getAddressSpace())));
385 
386       // Get argument type name.
387       std::string typeName =
388           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
389 
390       // Turn "unsigned type" to "utype"
391       std::string::size_type pos = typeName.find("unsigned");
392       if (pointeeTy.isCanonical() && pos != std::string::npos)
393         typeName.erase(pos+1, 8);
394 
395       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
396 
397       std::string baseTypeName =
398           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
399               Policy) +
400           "*";
401 
402       // Turn "unsigned type" to "utype"
403       pos = baseTypeName.find("unsigned");
404       if (pos != std::string::npos)
405         baseTypeName.erase(pos+1, 8);
406 
407       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
408 
409       // Get argument type qualifiers:
410       if (ty.isRestrictQualified())
411         typeQuals = "restrict";
412       if (pointeeTy.isConstQualified() ||
413           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
414         typeQuals += typeQuals.empty() ? "const" : " const";
415       if (pointeeTy.isVolatileQualified())
416         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
417     } else {
418       uint32_t AddrSpc = 0;
419       if (ty->isImageType())
420         AddrSpc =
421           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
422 
423       addressQuals.push_back(Builder.getInt32(AddrSpc));
424 
425       // Get argument type name.
426       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
427 
428       // Turn "unsigned type" to "utype"
429       std::string::size_type pos = typeName.find("unsigned");
430       if (ty.isCanonical() && pos != std::string::npos)
431         typeName.erase(pos+1, 8);
432 
433       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
434 
435       std::string baseTypeName =
436           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
437 
438       // Turn "unsigned type" to "utype"
439       pos = baseTypeName.find("unsigned");
440       if (pos != std::string::npos)
441         baseTypeName.erase(pos+1, 8);
442 
443       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
444 
445       // Get argument type qualifiers:
446       if (ty.isConstQualified())
447         typeQuals = "const";
448       if (ty.isVolatileQualified())
449         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
450     }
451 
452     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
453 
454     // Get image access qualifier:
455     if (ty->isImageType()) {
456       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
457       if (A && A->isWriteOnly())
458         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
459       else
460         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
461       // FIXME: what about read_write?
462     } else
463       accessQuals.push_back(llvm::MDString::get(Context, "none"));
464 
465     // Get argument name.
466     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
467   }
468 
469   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
470   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
471   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
472   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
473   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
474   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
475 }
476 
477 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
478                                                llvm::Function *Fn)
479 {
480   if (!FD->hasAttr<OpenCLKernelAttr>())
481     return;
482 
483   llvm::LLVMContext &Context = getLLVMContext();
484 
485   SmallVector <llvm::Value*, 5> kernelMDArgs;
486   kernelMDArgs.push_back(Fn);
487 
488   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
489     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
490                          Builder, getContext());
491 
492   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
493     QualType hintQTy = A->getTypeHint();
494     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
495     bool isSignedInteger =
496         hintQTy->isSignedIntegerType() ||
497         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
498     llvm::Value *attrMDArgs[] = {
499       llvm::MDString::get(Context, "vec_type_hint"),
500       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
501       llvm::ConstantInt::get(
502           llvm::IntegerType::get(Context, 32),
503           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
504     };
505     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
506   }
507 
508   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
509     llvm::Value *attrMDArgs[] = {
510       llvm::MDString::get(Context, "work_group_size_hint"),
511       Builder.getInt32(A->getXDim()),
512       Builder.getInt32(A->getYDim()),
513       Builder.getInt32(A->getZDim())
514     };
515     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
516   }
517 
518   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
519     llvm::Value *attrMDArgs[] = {
520       llvm::MDString::get(Context, "reqd_work_group_size"),
521       Builder.getInt32(A->getXDim()),
522       Builder.getInt32(A->getYDim()),
523       Builder.getInt32(A->getZDim())
524     };
525     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
526   }
527 
528   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
529   llvm::NamedMDNode *OpenCLKernelMetadata =
530     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
531   OpenCLKernelMetadata->addOperand(kernelMDNode);
532 }
533 
534 /// Determine whether the function F ends with a return stmt.
535 static bool endsWithReturn(const Decl* F) {
536   const Stmt *Body = nullptr;
537   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
538     Body = FD->getBody();
539   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
540     Body = OMD->getBody();
541 
542   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
543     auto LastStmt = CS->body_rbegin();
544     if (LastStmt != CS->body_rend())
545       return isa<ReturnStmt>(*LastStmt);
546   }
547   return false;
548 }
549 
550 void CodeGenFunction::StartFunction(GlobalDecl GD,
551                                     QualType RetTy,
552                                     llvm::Function *Fn,
553                                     const CGFunctionInfo &FnInfo,
554                                     const FunctionArgList &Args,
555                                     SourceLocation Loc,
556                                     SourceLocation StartLoc) {
557   const Decl *D = GD.getDecl();
558 
559   DidCallStackSave = false;
560   CurCodeDecl = D;
561   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
562   FnRetTy = RetTy;
563   CurFn = Fn;
564   CurFnInfo = &FnInfo;
565   assert(CurFn->isDeclaration() && "Function already has body?");
566 
567   if (CGM.getSanitizerBlacklist().isIn(*Fn))
568     SanOpts = &SanitizerOptions::Disabled;
569 
570   // Pass inline keyword to optimizer if it appears explicitly on any
571   // declaration. Also, in the case of -fno-inline attach NoInline
572   // attribute to all function that are not marked AlwaysInline.
573   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
574     if (!CGM.getCodeGenOpts().NoInline) {
575       for (auto RI : FD->redecls())
576         if (RI->isInlineSpecified()) {
577           Fn->addFnAttr(llvm::Attribute::InlineHint);
578           break;
579         }
580     } else if (!FD->hasAttr<AlwaysInlineAttr>())
581       Fn->addFnAttr(llvm::Attribute::NoInline);
582   }
583 
584   if (getLangOpts().OpenCL) {
585     // Add metadata for a kernel function.
586     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
587       EmitOpenCLKernelMetadata(FD, Fn);
588   }
589 
590   // If we are checking function types, emit a function type signature as
591   // prefix data.
592   if (getLangOpts().CPlusPlus && SanOpts->Function) {
593     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
594       if (llvm::Constant *PrefixSig =
595               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
596         llvm::Constant *FTRTTIConst =
597             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
598         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
599         llvm::Constant *PrefixStructConst =
600             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
601         Fn->setPrefixData(PrefixStructConst);
602       }
603     }
604   }
605 
606   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
607 
608   // Create a marker to make it easy to insert allocas into the entryblock
609   // later.  Don't create this with the builder, because we don't want it
610   // folded.
611   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
612   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
613   if (Builder.isNamePreserving())
614     AllocaInsertPt->setName("allocapt");
615 
616   ReturnBlock = getJumpDestInCurrentScope("return");
617 
618   Builder.SetInsertPoint(EntryBB);
619 
620   // Emit subprogram debug descriptor.
621   if (CGDebugInfo *DI = getDebugInfo()) {
622     SmallVector<QualType, 16> ArgTypes;
623     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
624 	 i != e; ++i) {
625       ArgTypes.push_back((*i)->getType());
626     }
627 
628     QualType FnType =
629       getContext().getFunctionType(RetTy, ArgTypes,
630                                    FunctionProtoType::ExtProtoInfo());
631     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
632   }
633 
634   if (ShouldInstrumentFunction())
635     EmitFunctionInstrumentation("__cyg_profile_func_enter");
636 
637   if (CGM.getCodeGenOpts().InstrumentForProfiling)
638     EmitMCountInstrumentation();
639 
640   if (RetTy->isVoidType()) {
641     // Void type; nothing to return.
642     ReturnValue = nullptr;
643 
644     // Count the implicit return.
645     if (!endsWithReturn(D))
646       ++NumReturnExprs;
647   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
648              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
649     // Indirect aggregate return; emit returned value directly into sret slot.
650     // This reduces code size, and affects correctness in C++.
651     auto AI = CurFn->arg_begin();
652     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
653       ++AI;
654     ReturnValue = AI;
655   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
656              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
657     // Load the sret pointer from the argument struct and return into that.
658     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
659     llvm::Function::arg_iterator EI = CurFn->arg_end();
660     --EI;
661     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
662     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
663   } else {
664     ReturnValue = CreateIRTemp(RetTy, "retval");
665 
666     // Tell the epilog emitter to autorelease the result.  We do this
667     // now so that various specialized functions can suppress it
668     // during their IR-generation.
669     if (getLangOpts().ObjCAutoRefCount &&
670         !CurFnInfo->isReturnsRetained() &&
671         RetTy->isObjCRetainableType())
672       AutoreleaseResult = true;
673   }
674 
675   EmitStartEHSpec(CurCodeDecl);
676 
677   PrologueCleanupDepth = EHStack.stable_begin();
678   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
679 
680   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
681     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
682     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
683     if (MD->getParent()->isLambda() &&
684         MD->getOverloadedOperator() == OO_Call) {
685       // We're in a lambda; figure out the captures.
686       MD->getParent()->getCaptureFields(LambdaCaptureFields,
687                                         LambdaThisCaptureField);
688       if (LambdaThisCaptureField) {
689         // If this lambda captures this, load it.
690         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
691         CXXThisValue = EmitLoadOfLValue(ThisLValue,
692                                         SourceLocation()).getScalarVal();
693       }
694     } else {
695       // Not in a lambda; just use 'this' from the method.
696       // FIXME: Should we generate a new load for each use of 'this'?  The
697       // fast register allocator would be happier...
698       CXXThisValue = CXXABIThisValue;
699     }
700   }
701 
702   // If any of the arguments have a variably modified type, make sure to
703   // emit the type size.
704   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
705        i != e; ++i) {
706     const VarDecl *VD = *i;
707 
708     // Dig out the type as written from ParmVarDecls; it's unclear whether
709     // the standard (C99 6.9.1p10) requires this, but we're following the
710     // precedent set by gcc.
711     QualType Ty;
712     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
713       Ty = PVD->getOriginalType();
714     else
715       Ty = VD->getType();
716 
717     if (Ty->isVariablyModifiedType())
718       EmitVariablyModifiedType(Ty);
719   }
720   // Emit a location at the end of the prologue.
721   if (CGDebugInfo *DI = getDebugInfo())
722     DI->EmitLocation(Builder, StartLoc);
723 }
724 
725 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
726                                        const Stmt *Body) {
727   RegionCounter Cnt = getPGORegionCounter(Body);
728   Cnt.beginRegion(Builder);
729   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
730     EmitCompoundStmtWithoutScope(*S);
731   else
732     EmitStmt(Body);
733 }
734 
735 /// When instrumenting to collect profile data, the counts for some blocks
736 /// such as switch cases need to not include the fall-through counts, so
737 /// emit a branch around the instrumentation code. When not instrumenting,
738 /// this just calls EmitBlock().
739 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
740                                                RegionCounter &Cnt) {
741   llvm::BasicBlock *SkipCountBB = nullptr;
742   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
743     // When instrumenting for profiling, the fallthrough to certain
744     // statements needs to skip over the instrumentation code so that we
745     // get an accurate count.
746     SkipCountBB = createBasicBlock("skipcount");
747     EmitBranch(SkipCountBB);
748   }
749   EmitBlock(BB);
750   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
751   if (SkipCountBB)
752     EmitBlock(SkipCountBB);
753 }
754 
755 /// Tries to mark the given function nounwind based on the
756 /// non-existence of any throwing calls within it.  We believe this is
757 /// lightweight enough to do at -O0.
758 static void TryMarkNoThrow(llvm::Function *F) {
759   // LLVM treats 'nounwind' on a function as part of the type, so we
760   // can't do this on functions that can be overwritten.
761   if (F->mayBeOverridden()) return;
762 
763   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
764     for (llvm::BasicBlock::iterator
765            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
766       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
767         if (!Call->doesNotThrow())
768           return;
769       } else if (isa<llvm::ResumeInst>(&*BI)) {
770         return;
771       }
772   F->setDoesNotThrow();
773 }
774 
775 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
776                                           const FunctionDecl *UnsizedDealloc) {
777   // This is a weak discardable definition of the sized deallocation function.
778   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
779 
780   // Call the unsized deallocation function and forward the first argument
781   // unchanged.
782   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
783   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
784 }
785 
786 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
787                                    const CGFunctionInfo &FnInfo) {
788   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
789 
790   // Check if we should generate debug info for this function.
791   if (FD->hasAttr<NoDebugAttr>())
792     DebugInfo = nullptr; // disable debug info indefinitely for this function
793 
794   FunctionArgList Args;
795   QualType ResTy = FD->getReturnType();
796 
797   CurGD = GD;
798   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
799   if (MD && MD->isInstance()) {
800     if (CGM.getCXXABI().HasThisReturn(GD))
801       ResTy = MD->getThisType(getContext());
802     CGM.getCXXABI().buildThisParam(*this, Args);
803   }
804 
805   Args.append(FD->param_begin(), FD->param_end());
806 
807   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
808     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
809 
810   SourceRange BodyRange;
811   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
812   CurEHLocation = BodyRange.getEnd();
813 
814   // Use the location of the start of the function to determine where
815   // the function definition is located. By default use the location
816   // of the declaration as the location for the subprogram. A function
817   // may lack a declaration in the source code if it is created by code
818   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
819   SourceLocation Loc = FD->getLocation();
820 
821   // If this is a function specialization then use the pattern body
822   // as the location for the function.
823   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
824     if (SpecDecl->hasBody(SpecDecl))
825       Loc = SpecDecl->getLocation();
826 
827   // Emit the standard function prologue.
828   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
829 
830   // Generate the body of the function.
831   PGO.checkGlobalDecl(GD);
832   PGO.assignRegionCounters(GD.getDecl(), CurFn);
833   if (isa<CXXDestructorDecl>(FD))
834     EmitDestructorBody(Args);
835   else if (isa<CXXConstructorDecl>(FD))
836     EmitConstructorBody(Args);
837   else if (getLangOpts().CUDA &&
838            !CGM.getCodeGenOpts().CUDAIsDevice &&
839            FD->hasAttr<CUDAGlobalAttr>())
840     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
841   else if (isa<CXXConversionDecl>(FD) &&
842            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
843     // The lambda conversion to block pointer is special; the semantics can't be
844     // expressed in the AST, so IRGen needs to special-case it.
845     EmitLambdaToBlockPointerBody(Args);
846   } else if (isa<CXXMethodDecl>(FD) &&
847              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
848     // The lambda static invoker function is special, because it forwards or
849     // clones the body of the function call operator (but is actually static).
850     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
851   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
852              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
853               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
854     // Implicit copy-assignment gets the same special treatment as implicit
855     // copy-constructors.
856     emitImplicitAssignmentOperatorBody(Args);
857   } else if (Stmt *Body = FD->getBody()) {
858     EmitFunctionBody(Args, Body);
859   } else if (FunctionDecl *UnsizedDealloc =
860                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
861     // Global sized deallocation functions get an implicit weak definition if
862     // they don't have an explicit definition.
863     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
864   } else
865     llvm_unreachable("no definition for emitted function");
866 
867   // C++11 [stmt.return]p2:
868   //   Flowing off the end of a function [...] results in undefined behavior in
869   //   a value-returning function.
870   // C11 6.9.1p12:
871   //   If the '}' that terminates a function is reached, and the value of the
872   //   function call is used by the caller, the behavior is undefined.
873   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
874       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
875     if (SanOpts->Return) {
876       SanitizerScope SanScope(this);
877       EmitCheck(Builder.getFalse(), "missing_return",
878                 EmitCheckSourceLocation(FD->getLocation()),
879                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
880     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
881       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
882     Builder.CreateUnreachable();
883     Builder.ClearInsertionPoint();
884   }
885 
886   // Emit the standard function epilogue.
887   FinishFunction(BodyRange.getEnd());
888 
889   // If we haven't marked the function nothrow through other means, do
890   // a quick pass now to see if we can.
891   if (!CurFn->doesNotThrow())
892     TryMarkNoThrow(CurFn);
893 
894   PGO.emitInstrumentationData();
895   PGO.destroyRegionCounters();
896 }
897 
898 /// ContainsLabel - Return true if the statement contains a label in it.  If
899 /// this statement is not executed normally, it not containing a label means
900 /// that we can just remove the code.
901 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
902   // Null statement, not a label!
903   if (!S) return false;
904 
905   // If this is a label, we have to emit the code, consider something like:
906   // if (0) {  ...  foo:  bar(); }  goto foo;
907   //
908   // TODO: If anyone cared, we could track __label__'s, since we know that you
909   // can't jump to one from outside their declared region.
910   if (isa<LabelStmt>(S))
911     return true;
912 
913   // If this is a case/default statement, and we haven't seen a switch, we have
914   // to emit the code.
915   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
916     return true;
917 
918   // If this is a switch statement, we want to ignore cases below it.
919   if (isa<SwitchStmt>(S))
920     IgnoreCaseStmts = true;
921 
922   // Scan subexpressions for verboten labels.
923   for (Stmt::const_child_range I = S->children(); I; ++I)
924     if (ContainsLabel(*I, IgnoreCaseStmts))
925       return true;
926 
927   return false;
928 }
929 
930 /// containsBreak - Return true if the statement contains a break out of it.
931 /// If the statement (recursively) contains a switch or loop with a break
932 /// inside of it, this is fine.
933 bool CodeGenFunction::containsBreak(const Stmt *S) {
934   // Null statement, not a label!
935   if (!S) return false;
936 
937   // If this is a switch or loop that defines its own break scope, then we can
938   // include it and anything inside of it.
939   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
940       isa<ForStmt>(S))
941     return false;
942 
943   if (isa<BreakStmt>(S))
944     return true;
945 
946   // Scan subexpressions for verboten breaks.
947   for (Stmt::const_child_range I = S->children(); I; ++I)
948     if (containsBreak(*I))
949       return true;
950 
951   return false;
952 }
953 
954 
955 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
956 /// to a constant, or if it does but contains a label, return false.  If it
957 /// constant folds return true and set the boolean result in Result.
958 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
959                                                    bool &ResultBool) {
960   llvm::APSInt ResultInt;
961   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
962     return false;
963 
964   ResultBool = ResultInt.getBoolValue();
965   return true;
966 }
967 
968 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
969 /// to a constant, or if it does but contains a label, return false.  If it
970 /// constant folds return true and set the folded value.
971 bool CodeGenFunction::
972 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
973   // FIXME: Rename and handle conversion of other evaluatable things
974   // to bool.
975   llvm::APSInt Int;
976   if (!Cond->EvaluateAsInt(Int, getContext()))
977     return false;  // Not foldable, not integer or not fully evaluatable.
978 
979   if (CodeGenFunction::ContainsLabel(Cond))
980     return false;  // Contains a label.
981 
982   ResultInt = Int;
983   return true;
984 }
985 
986 
987 
988 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
989 /// statement) to the specified blocks.  Based on the condition, this might try
990 /// to simplify the codegen of the conditional based on the branch.
991 ///
992 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
993                                            llvm::BasicBlock *TrueBlock,
994                                            llvm::BasicBlock *FalseBlock,
995                                            uint64_t TrueCount) {
996   Cond = Cond->IgnoreParens();
997 
998   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
999 
1000     // Handle X && Y in a condition.
1001     if (CondBOp->getOpcode() == BO_LAnd) {
1002       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1003 
1004       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1005       // folded if the case was simple enough.
1006       bool ConstantBool = false;
1007       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1008           ConstantBool) {
1009         // br(1 && X) -> br(X).
1010         Cnt.beginRegion(Builder);
1011         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1012                                     TrueCount);
1013       }
1014 
1015       // If we have "X && 1", simplify the code to use an uncond branch.
1016       // "X && 0" would have been constant folded to 0.
1017       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1018           ConstantBool) {
1019         // br(X && 1) -> br(X).
1020         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1021                                     TrueCount);
1022       }
1023 
1024       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1025       // want to jump to the FalseBlock.
1026       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1027       // The counter tells us how often we evaluate RHS, and all of TrueCount
1028       // can be propagated to that branch.
1029       uint64_t RHSCount = Cnt.getCount();
1030 
1031       ConditionalEvaluation eval(*this);
1032       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1033       EmitBlock(LHSTrue);
1034 
1035       // Any temporaries created here are conditional.
1036       Cnt.beginRegion(Builder);
1037       eval.begin(*this);
1038       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1039       eval.end(*this);
1040 
1041       return;
1042     }
1043 
1044     if (CondBOp->getOpcode() == BO_LOr) {
1045       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1046 
1047       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1048       // folded if the case was simple enough.
1049       bool ConstantBool = false;
1050       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1051           !ConstantBool) {
1052         // br(0 || X) -> br(X).
1053         Cnt.beginRegion(Builder);
1054         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1055                                     TrueCount);
1056       }
1057 
1058       // If we have "X || 0", simplify the code to use an uncond branch.
1059       // "X || 1" would have been constant folded to 1.
1060       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1061           !ConstantBool) {
1062         // br(X || 0) -> br(X).
1063         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1064                                     TrueCount);
1065       }
1066 
1067       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1068       // want to jump to the TrueBlock.
1069       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1070       // We have the count for entry to the RHS and for the whole expression
1071       // being true, so we can divy up True count between the short circuit and
1072       // the RHS.
1073       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1074       uint64_t RHSCount = TrueCount - LHSCount;
1075 
1076       ConditionalEvaluation eval(*this);
1077       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1078       EmitBlock(LHSFalse);
1079 
1080       // Any temporaries created here are conditional.
1081       Cnt.beginRegion(Builder);
1082       eval.begin(*this);
1083       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1084 
1085       eval.end(*this);
1086 
1087       return;
1088     }
1089   }
1090 
1091   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1092     // br(!x, t, f) -> br(x, f, t)
1093     if (CondUOp->getOpcode() == UO_LNot) {
1094       // Negate the count.
1095       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1096       // Negate the condition and swap the destination blocks.
1097       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1098                                   FalseCount);
1099     }
1100   }
1101 
1102   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1103     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1104     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1105     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1106 
1107     RegionCounter Cnt = getPGORegionCounter(CondOp);
1108     ConditionalEvaluation cond(*this);
1109     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1110 
1111     // When computing PGO branch weights, we only know the overall count for
1112     // the true block. This code is essentially doing tail duplication of the
1113     // naive code-gen, introducing new edges for which counts are not
1114     // available. Divide the counts proportionally between the LHS and RHS of
1115     // the conditional operator.
1116     uint64_t LHSScaledTrueCount = 0;
1117     if (TrueCount) {
1118       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1119       LHSScaledTrueCount = TrueCount * LHSRatio;
1120     }
1121 
1122     cond.begin(*this);
1123     EmitBlock(LHSBlock);
1124     Cnt.beginRegion(Builder);
1125     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1126                          LHSScaledTrueCount);
1127     cond.end(*this);
1128 
1129     cond.begin(*this);
1130     EmitBlock(RHSBlock);
1131     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1132                          TrueCount - LHSScaledTrueCount);
1133     cond.end(*this);
1134 
1135     return;
1136   }
1137 
1138   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1139     // Conditional operator handling can give us a throw expression as a
1140     // condition for a case like:
1141     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1142     // Fold this to:
1143     //   br(c, throw x, br(y, t, f))
1144     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1145     return;
1146   }
1147 
1148   // Create branch weights based on the number of times we get here and the
1149   // number of times the condition should be true.
1150   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1151   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1152                                                   CurrentCount - TrueCount);
1153 
1154   // Emit the code with the fully general case.
1155   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1156   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1157 }
1158 
1159 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1160 /// specified stmt yet.
1161 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1162   CGM.ErrorUnsupported(S, Type);
1163 }
1164 
1165 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1166 /// variable-length array whose elements have a non-zero bit-pattern.
1167 ///
1168 /// \param baseType the inner-most element type of the array
1169 /// \param src - a char* pointing to the bit-pattern for a single
1170 /// base element of the array
1171 /// \param sizeInChars - the total size of the VLA, in chars
1172 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1173                                llvm::Value *dest, llvm::Value *src,
1174                                llvm::Value *sizeInChars) {
1175   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1176     = CGF.getContext().getTypeInfoInChars(baseType);
1177 
1178   CGBuilderTy &Builder = CGF.Builder;
1179 
1180   llvm::Value *baseSizeInChars
1181     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1182 
1183   llvm::Type *i8p = Builder.getInt8PtrTy();
1184 
1185   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1186   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1187 
1188   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1189   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1190   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1191 
1192   // Make a loop over the VLA.  C99 guarantees that the VLA element
1193   // count must be nonzero.
1194   CGF.EmitBlock(loopBB);
1195 
1196   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1197   cur->addIncoming(begin, originBB);
1198 
1199   // memcpy the individual element bit-pattern.
1200   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1201                        baseSizeAndAlign.second.getQuantity(),
1202                        /*volatile*/ false);
1203 
1204   // Go to the next element.
1205   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1206 
1207   // Leave if that's the end of the VLA.
1208   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1209   Builder.CreateCondBr(done, contBB, loopBB);
1210   cur->addIncoming(next, loopBB);
1211 
1212   CGF.EmitBlock(contBB);
1213 }
1214 
1215 void
1216 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1217   // Ignore empty classes in C++.
1218   if (getLangOpts().CPlusPlus) {
1219     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1220       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1221         return;
1222     }
1223   }
1224 
1225   // Cast the dest ptr to the appropriate i8 pointer type.
1226   unsigned DestAS =
1227     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1228   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1229   if (DestPtr->getType() != BP)
1230     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1231 
1232   // Get size and alignment info for this aggregate.
1233   std::pair<CharUnits, CharUnits> TypeInfo =
1234     getContext().getTypeInfoInChars(Ty);
1235   CharUnits Size = TypeInfo.first;
1236   CharUnits Align = TypeInfo.second;
1237 
1238   llvm::Value *SizeVal;
1239   const VariableArrayType *vla;
1240 
1241   // Don't bother emitting a zero-byte memset.
1242   if (Size.isZero()) {
1243     // But note that getTypeInfo returns 0 for a VLA.
1244     if (const VariableArrayType *vlaType =
1245           dyn_cast_or_null<VariableArrayType>(
1246                                           getContext().getAsArrayType(Ty))) {
1247       QualType eltType;
1248       llvm::Value *numElts;
1249       std::tie(numElts, eltType) = getVLASize(vlaType);
1250 
1251       SizeVal = numElts;
1252       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1253       if (!eltSize.isOne())
1254         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1255       vla = vlaType;
1256     } else {
1257       return;
1258     }
1259   } else {
1260     SizeVal = CGM.getSize(Size);
1261     vla = nullptr;
1262   }
1263 
1264   // If the type contains a pointer to data member we can't memset it to zero.
1265   // Instead, create a null constant and copy it to the destination.
1266   // TODO: there are other patterns besides zero that we can usefully memset,
1267   // like -1, which happens to be the pattern used by member-pointers.
1268   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1269     // For a VLA, emit a single element, then splat that over the VLA.
1270     if (vla) Ty = getContext().getBaseElementType(vla);
1271 
1272     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1273 
1274     llvm::GlobalVariable *NullVariable =
1275       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1276                                /*isConstant=*/true,
1277                                llvm::GlobalVariable::PrivateLinkage,
1278                                NullConstant, Twine());
1279     llvm::Value *SrcPtr =
1280       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1281 
1282     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1283 
1284     // Get and call the appropriate llvm.memcpy overload.
1285     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1286     return;
1287   }
1288 
1289   // Otherwise, just memset the whole thing to zero.  This is legal
1290   // because in LLVM, all default initializers (other than the ones we just
1291   // handled above) are guaranteed to have a bit pattern of all zeros.
1292   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1293                        Align.getQuantity(), false);
1294 }
1295 
1296 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1297   // Make sure that there is a block for the indirect goto.
1298   if (!IndirectBranch)
1299     GetIndirectGotoBlock();
1300 
1301   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1302 
1303   // Make sure the indirect branch includes all of the address-taken blocks.
1304   IndirectBranch->addDestination(BB);
1305   return llvm::BlockAddress::get(CurFn, BB);
1306 }
1307 
1308 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1309   // If we already made the indirect branch for indirect goto, return its block.
1310   if (IndirectBranch) return IndirectBranch->getParent();
1311 
1312   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1313 
1314   // Create the PHI node that indirect gotos will add entries to.
1315   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1316                                               "indirect.goto.dest");
1317 
1318   // Create the indirect branch instruction.
1319   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1320   return IndirectBranch->getParent();
1321 }
1322 
1323 /// Computes the length of an array in elements, as well as the base
1324 /// element type and a properly-typed first element pointer.
1325 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1326                                               QualType &baseType,
1327                                               llvm::Value *&addr) {
1328   const ArrayType *arrayType = origArrayType;
1329 
1330   // If it's a VLA, we have to load the stored size.  Note that
1331   // this is the size of the VLA in bytes, not its size in elements.
1332   llvm::Value *numVLAElements = nullptr;
1333   if (isa<VariableArrayType>(arrayType)) {
1334     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1335 
1336     // Walk into all VLAs.  This doesn't require changes to addr,
1337     // which has type T* where T is the first non-VLA element type.
1338     do {
1339       QualType elementType = arrayType->getElementType();
1340       arrayType = getContext().getAsArrayType(elementType);
1341 
1342       // If we only have VLA components, 'addr' requires no adjustment.
1343       if (!arrayType) {
1344         baseType = elementType;
1345         return numVLAElements;
1346       }
1347     } while (isa<VariableArrayType>(arrayType));
1348 
1349     // We get out here only if we find a constant array type
1350     // inside the VLA.
1351   }
1352 
1353   // We have some number of constant-length arrays, so addr should
1354   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1355   // down to the first element of addr.
1356   SmallVector<llvm::Value*, 8> gepIndices;
1357 
1358   // GEP down to the array type.
1359   llvm::ConstantInt *zero = Builder.getInt32(0);
1360   gepIndices.push_back(zero);
1361 
1362   uint64_t countFromCLAs = 1;
1363   QualType eltType;
1364 
1365   llvm::ArrayType *llvmArrayType =
1366     dyn_cast<llvm::ArrayType>(
1367       cast<llvm::PointerType>(addr->getType())->getElementType());
1368   while (llvmArrayType) {
1369     assert(isa<ConstantArrayType>(arrayType));
1370     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1371              == llvmArrayType->getNumElements());
1372 
1373     gepIndices.push_back(zero);
1374     countFromCLAs *= llvmArrayType->getNumElements();
1375     eltType = arrayType->getElementType();
1376 
1377     llvmArrayType =
1378       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1379     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1380     assert((!llvmArrayType || arrayType) &&
1381            "LLVM and Clang types are out-of-synch");
1382   }
1383 
1384   if (arrayType) {
1385     // From this point onwards, the Clang array type has been emitted
1386     // as some other type (probably a packed struct). Compute the array
1387     // size, and just emit the 'begin' expression as a bitcast.
1388     while (arrayType) {
1389       countFromCLAs *=
1390           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1391       eltType = arrayType->getElementType();
1392       arrayType = getContext().getAsArrayType(eltType);
1393     }
1394 
1395     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1396     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1397     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1398   } else {
1399     // Create the actual GEP.
1400     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1401   }
1402 
1403   baseType = eltType;
1404 
1405   llvm::Value *numElements
1406     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1407 
1408   // If we had any VLA dimensions, factor them in.
1409   if (numVLAElements)
1410     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1411 
1412   return numElements;
1413 }
1414 
1415 std::pair<llvm::Value*, QualType>
1416 CodeGenFunction::getVLASize(QualType type) {
1417   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1418   assert(vla && "type was not a variable array type!");
1419   return getVLASize(vla);
1420 }
1421 
1422 std::pair<llvm::Value*, QualType>
1423 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1424   // The number of elements so far; always size_t.
1425   llvm::Value *numElements = nullptr;
1426 
1427   QualType elementType;
1428   do {
1429     elementType = type->getElementType();
1430     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1431     assert(vlaSize && "no size for VLA!");
1432     assert(vlaSize->getType() == SizeTy);
1433 
1434     if (!numElements) {
1435       numElements = vlaSize;
1436     } else {
1437       // It's undefined behavior if this wraps around, so mark it that way.
1438       // FIXME: Teach -fsanitize=undefined to trap this.
1439       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1440     }
1441   } while ((type = getContext().getAsVariableArrayType(elementType)));
1442 
1443   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1444 }
1445 
1446 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1447   assert(type->isVariablyModifiedType() &&
1448          "Must pass variably modified type to EmitVLASizes!");
1449 
1450   EnsureInsertPoint();
1451 
1452   // We're going to walk down into the type and look for VLA
1453   // expressions.
1454   do {
1455     assert(type->isVariablyModifiedType());
1456 
1457     const Type *ty = type.getTypePtr();
1458     switch (ty->getTypeClass()) {
1459 
1460 #define TYPE(Class, Base)
1461 #define ABSTRACT_TYPE(Class, Base)
1462 #define NON_CANONICAL_TYPE(Class, Base)
1463 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1464 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1465 #include "clang/AST/TypeNodes.def"
1466       llvm_unreachable("unexpected dependent type!");
1467 
1468     // These types are never variably-modified.
1469     case Type::Builtin:
1470     case Type::Complex:
1471     case Type::Vector:
1472     case Type::ExtVector:
1473     case Type::Record:
1474     case Type::Enum:
1475     case Type::Elaborated:
1476     case Type::TemplateSpecialization:
1477     case Type::ObjCObject:
1478     case Type::ObjCInterface:
1479     case Type::ObjCObjectPointer:
1480       llvm_unreachable("type class is never variably-modified!");
1481 
1482     case Type::Adjusted:
1483       type = cast<AdjustedType>(ty)->getAdjustedType();
1484       break;
1485 
1486     case Type::Decayed:
1487       type = cast<DecayedType>(ty)->getPointeeType();
1488       break;
1489 
1490     case Type::Pointer:
1491       type = cast<PointerType>(ty)->getPointeeType();
1492       break;
1493 
1494     case Type::BlockPointer:
1495       type = cast<BlockPointerType>(ty)->getPointeeType();
1496       break;
1497 
1498     case Type::LValueReference:
1499     case Type::RValueReference:
1500       type = cast<ReferenceType>(ty)->getPointeeType();
1501       break;
1502 
1503     case Type::MemberPointer:
1504       type = cast<MemberPointerType>(ty)->getPointeeType();
1505       break;
1506 
1507     case Type::ConstantArray:
1508     case Type::IncompleteArray:
1509       // Losing element qualification here is fine.
1510       type = cast<ArrayType>(ty)->getElementType();
1511       break;
1512 
1513     case Type::VariableArray: {
1514       // Losing element qualification here is fine.
1515       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1516 
1517       // Unknown size indication requires no size computation.
1518       // Otherwise, evaluate and record it.
1519       if (const Expr *size = vat->getSizeExpr()) {
1520         // It's possible that we might have emitted this already,
1521         // e.g. with a typedef and a pointer to it.
1522         llvm::Value *&entry = VLASizeMap[size];
1523         if (!entry) {
1524           llvm::Value *Size = EmitScalarExpr(size);
1525 
1526           // C11 6.7.6.2p5:
1527           //   If the size is an expression that is not an integer constant
1528           //   expression [...] each time it is evaluated it shall have a value
1529           //   greater than zero.
1530           if (SanOpts->VLABound &&
1531               size->getType()->isSignedIntegerType()) {
1532             SanitizerScope SanScope(this);
1533             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1534             llvm::Constant *StaticArgs[] = {
1535               EmitCheckSourceLocation(size->getLocStart()),
1536               EmitCheckTypeDescriptor(size->getType())
1537             };
1538             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1539                       "vla_bound_not_positive", StaticArgs, Size,
1540                       CRK_Recoverable);
1541           }
1542 
1543           // Always zexting here would be wrong if it weren't
1544           // undefined behavior to have a negative bound.
1545           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1546         }
1547       }
1548       type = vat->getElementType();
1549       break;
1550     }
1551 
1552     case Type::FunctionProto:
1553     case Type::FunctionNoProto:
1554       type = cast<FunctionType>(ty)->getReturnType();
1555       break;
1556 
1557     case Type::Paren:
1558     case Type::TypeOf:
1559     case Type::UnaryTransform:
1560     case Type::Attributed:
1561     case Type::SubstTemplateTypeParm:
1562     case Type::PackExpansion:
1563       // Keep walking after single level desugaring.
1564       type = type.getSingleStepDesugaredType(getContext());
1565       break;
1566 
1567     case Type::Typedef:
1568     case Type::Decltype:
1569     case Type::Auto:
1570       // Stop walking: nothing to do.
1571       return;
1572 
1573     case Type::TypeOfExpr:
1574       // Stop walking: emit typeof expression.
1575       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1576       return;
1577 
1578     case Type::Atomic:
1579       type = cast<AtomicType>(ty)->getValueType();
1580       break;
1581     }
1582   } while (type->isVariablyModifiedType());
1583 }
1584 
1585 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1586   if (getContext().getBuiltinVaListType()->isArrayType())
1587     return EmitScalarExpr(E);
1588   return EmitLValue(E).getAddress();
1589 }
1590 
1591 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1592                                               llvm::Constant *Init) {
1593   assert (Init && "Invalid DeclRefExpr initializer!");
1594   if (CGDebugInfo *Dbg = getDebugInfo())
1595     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1596       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1597 }
1598 
1599 CodeGenFunction::PeepholeProtection
1600 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1601   // At the moment, the only aggressive peephole we do in IR gen
1602   // is trunc(zext) folding, but if we add more, we can easily
1603   // extend this protection.
1604 
1605   if (!rvalue.isScalar()) return PeepholeProtection();
1606   llvm::Value *value = rvalue.getScalarVal();
1607   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1608 
1609   // Just make an extra bitcast.
1610   assert(HaveInsertPoint());
1611   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1612                                                   Builder.GetInsertBlock());
1613 
1614   PeepholeProtection protection;
1615   protection.Inst = inst;
1616   return protection;
1617 }
1618 
1619 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1620   if (!protection.Inst) return;
1621 
1622   // In theory, we could try to duplicate the peepholes now, but whatever.
1623   protection.Inst->eraseFromParent();
1624 }
1625 
1626 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1627                                                  llvm::Value *AnnotatedVal,
1628                                                  StringRef AnnotationStr,
1629                                                  SourceLocation Location) {
1630   llvm::Value *Args[4] = {
1631     AnnotatedVal,
1632     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1633     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1634     CGM.EmitAnnotationLineNo(Location)
1635   };
1636   return Builder.CreateCall(AnnotationFn, Args);
1637 }
1638 
1639 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1640   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1641   // FIXME We create a new bitcast for every annotation because that's what
1642   // llvm-gcc was doing.
1643   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1644     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1645                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1646                        I->getAnnotation(), D->getLocation());
1647 }
1648 
1649 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1650                                                    llvm::Value *V) {
1651   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1652   llvm::Type *VTy = V->getType();
1653   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1654                                     CGM.Int8PtrTy);
1655 
1656   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1657     // FIXME Always emit the cast inst so we can differentiate between
1658     // annotation on the first field of a struct and annotation on the struct
1659     // itself.
1660     if (VTy != CGM.Int8PtrTy)
1661       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1662     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1663     V = Builder.CreateBitCast(V, VTy);
1664   }
1665 
1666   return V;
1667 }
1668 
1669 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1670 
1671 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1672     : CGF(CGF) {
1673   assert(!CGF->IsSanitizerScope);
1674   CGF->IsSanitizerScope = true;
1675 }
1676 
1677 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1678   CGF->IsSanitizerScope = false;
1679 }
1680 
1681 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1682                                    const llvm::Twine &Name,
1683                                    llvm::BasicBlock *BB,
1684                                    llvm::BasicBlock::iterator InsertPt) const {
1685   LoopStack.InsertHelper(I);
1686   if (IsSanitizerScope) {
1687     I->setMetadata(
1688         CGM.getModule().getMDKindID("nosanitize"),
1689         llvm::MDNode::get(CGM.getLLVMContext(), ArrayRef<llvm::Value *>()));
1690   }
1691 }
1692 
1693 template <bool PreserveNames>
1694 void CGBuilderInserter<PreserveNames>::InsertHelper(
1695     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1696     llvm::BasicBlock::iterator InsertPt) const {
1697   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1698                                                               InsertPt);
1699   if (CGF)
1700     CGF->InsertHelper(I, Name, BB, InsertPt);
1701 }
1702 
1703 #ifdef NDEBUG
1704 #define PreserveNames false
1705 #else
1706 #define PreserveNames true
1707 #endif
1708 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1709     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1710     llvm::BasicBlock::iterator InsertPt) const;
1711 #undef PreserveNames
1712