1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94   SetFPModel();
95 }
96 
97 CodeGenFunction::~CodeGenFunction() {
98   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
99 
100   // If there are any unclaimed block infos, go ahead and destroy them
101   // now.  This can happen if IR-gen gets clever and skips evaluating
102   // something.
103   if (FirstBlockInfo)
104     destroyBlockInfos(FirstBlockInfo);
105 
106   if (getLangOpts().OpenMP && CurFn)
107     CGM.getOpenMPRuntime().functionFinished(*this);
108 
109   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
110   // outlining etc) at some point. Doing it once the function codegen is done
111   // seems to be a reasonable spot. We do it here, as opposed to the deletion
112   // time of the CodeGenModule, because we have to ensure the IR has not yet
113   // been "emitted" to the outside, thus, modifications are still sensible.
114   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
115     OMPBuilder->finalize();
116 }
117 
118 // Map the LangOption for exception behavior into
119 // the corresponding enum in the IR.
120 llvm::fp::ExceptionBehavior
121 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
122 
123   switch (Kind) {
124   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
125   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
126   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
127   }
128   llvm_unreachable("Unsupported FP Exception Behavior");
129 }
130 
131 void CodeGenFunction::SetFPModel() {
132   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
133   auto fpExceptionBehavior = ToConstrainedExceptMD(
134                                getLangOpts().getFPExceptionMode());
135 
136   Builder.setDefaultConstrainedRounding(RM);
137   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
138   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
139                              RM != llvm::RoundingMode::NearestTiesToEven);
140 }
141 
142 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
143                                                     LValueBaseInfo *BaseInfo,
144                                                     TBAAAccessInfo *TBAAInfo) {
145   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
146                                  /* forPointeeType= */ true);
147 }
148 
149 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
150                                                    LValueBaseInfo *BaseInfo,
151                                                    TBAAAccessInfo *TBAAInfo,
152                                                    bool forPointeeType) {
153   if (TBAAInfo)
154     *TBAAInfo = CGM.getTBAAAccessInfo(T);
155 
156   // Honor alignment typedef attributes even on incomplete types.
157   // We also honor them straight for C++ class types, even as pointees;
158   // there's an expressivity gap here.
159   if (auto TT = T->getAs<TypedefType>()) {
160     if (auto Align = TT->getDecl()->getMaxAlignment()) {
161       if (BaseInfo)
162         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
163       return getContext().toCharUnitsFromBits(Align);
164     }
165   }
166 
167   if (BaseInfo)
168     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
169 
170   CharUnits Alignment;
171   if (T->isIncompleteType()) {
172     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
173   } else {
174     // For C++ class pointees, we don't know whether we're pointing at a
175     // base or a complete object, so we generally need to use the
176     // non-virtual alignment.
177     const CXXRecordDecl *RD;
178     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
179       Alignment = CGM.getClassPointerAlignment(RD);
180     } else {
181       Alignment = getContext().getTypeAlignInChars(T);
182       if (T.getQualifiers().hasUnaligned())
183         Alignment = CharUnits::One();
184     }
185 
186     // Cap to the global maximum type alignment unless the alignment
187     // was somehow explicit on the type.
188     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
189       if (Alignment.getQuantity() > MaxAlign &&
190           !getContext().isAlignmentRequired(T))
191         Alignment = CharUnits::fromQuantity(MaxAlign);
192     }
193   }
194   return Alignment;
195 }
196 
197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
201   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
202                           TBAAInfo);
203 }
204 
205 /// Given a value of type T* that may not be to a complete object,
206 /// construct an l-value with the natural pointee alignment of T.
207 LValue
208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
212                                             /* forPointeeType= */ true);
213   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
214 }
215 
216 
217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
218   return CGM.getTypes().ConvertTypeForMem(T);
219 }
220 
221 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
222   return CGM.getTypes().ConvertType(T);
223 }
224 
225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
226   type = type.getCanonicalType();
227   while (true) {
228     switch (type->getTypeClass()) {
229 #define TYPE(name, parent)
230 #define ABSTRACT_TYPE(name, parent)
231 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
232 #define DEPENDENT_TYPE(name, parent) case Type::name:
233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
234 #include "clang/AST/TypeNodes.inc"
235       llvm_unreachable("non-canonical or dependent type in IR-generation");
236 
237     case Type::Auto:
238     case Type::DeducedTemplateSpecialization:
239       llvm_unreachable("undeduced type in IR-generation");
240 
241     // Various scalar types.
242     case Type::Builtin:
243     case Type::Pointer:
244     case Type::BlockPointer:
245     case Type::LValueReference:
246     case Type::RValueReference:
247     case Type::MemberPointer:
248     case Type::Vector:
249     case Type::ExtVector:
250     case Type::ConstantMatrix:
251     case Type::FunctionProto:
252     case Type::FunctionNoProto:
253     case Type::Enum:
254     case Type::ObjCObjectPointer:
255     case Type::Pipe:
256     case Type::ExtInt:
257       return TEK_Scalar;
258 
259     // Complexes.
260     case Type::Complex:
261       return TEK_Complex;
262 
263     // Arrays, records, and Objective-C objects.
264     case Type::ConstantArray:
265     case Type::IncompleteArray:
266     case Type::VariableArray:
267     case Type::Record:
268     case Type::ObjCObject:
269     case Type::ObjCInterface:
270       return TEK_Aggregate;
271 
272     // We operate on atomic values according to their underlying type.
273     case Type::Atomic:
274       type = cast<AtomicType>(type)->getValueType();
275       continue;
276     }
277     llvm_unreachable("unknown type kind!");
278   }
279 }
280 
281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
282   // For cleanliness, we try to avoid emitting the return block for
283   // simple cases.
284   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
285 
286   if (CurBB) {
287     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
288 
289     // We have a valid insert point, reuse it if it is empty or there are no
290     // explicit jumps to the return block.
291     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
292       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
293       delete ReturnBlock.getBlock();
294       ReturnBlock = JumpDest();
295     } else
296       EmitBlock(ReturnBlock.getBlock());
297     return llvm::DebugLoc();
298   }
299 
300   // Otherwise, if the return block is the target of a single direct
301   // branch then we can just put the code in that block instead. This
302   // cleans up functions which started with a unified return block.
303   if (ReturnBlock.getBlock()->hasOneUse()) {
304     llvm::BranchInst *BI =
305       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
306     if (BI && BI->isUnconditional() &&
307         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
308       // Record/return the DebugLoc of the simple 'return' expression to be used
309       // later by the actual 'ret' instruction.
310       llvm::DebugLoc Loc = BI->getDebugLoc();
311       Builder.SetInsertPoint(BI->getParent());
312       BI->eraseFromParent();
313       delete ReturnBlock.getBlock();
314       ReturnBlock = JumpDest();
315       return Loc;
316     }
317   }
318 
319   // FIXME: We are at an unreachable point, there is no reason to emit the block
320   // unless it has uses. However, we still need a place to put the debug
321   // region.end for now.
322 
323   EmitBlock(ReturnBlock.getBlock());
324   return llvm::DebugLoc();
325 }
326 
327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
328   if (!BB) return;
329   if (!BB->use_empty())
330     return CGF.CurFn->getBasicBlockList().push_back(BB);
331   delete BB;
332 }
333 
334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
335   assert(BreakContinueStack.empty() &&
336          "mismatched push/pop in break/continue stack!");
337 
338   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
339     && NumSimpleReturnExprs == NumReturnExprs
340     && ReturnBlock.getBlock()->use_empty();
341   // Usually the return expression is evaluated before the cleanup
342   // code.  If the function contains only a simple return statement,
343   // such as a constant, the location before the cleanup code becomes
344   // the last useful breakpoint in the function, because the simple
345   // return expression will be evaluated after the cleanup code. To be
346   // safe, set the debug location for cleanup code to the location of
347   // the return statement.  Otherwise the cleanup code should be at the
348   // end of the function's lexical scope.
349   //
350   // If there are multiple branches to the return block, the branch
351   // instructions will get the location of the return statements and
352   // all will be fine.
353   if (CGDebugInfo *DI = getDebugInfo()) {
354     if (OnlySimpleReturnStmts)
355       DI->EmitLocation(Builder, LastStopPoint);
356     else
357       DI->EmitLocation(Builder, EndLoc);
358   }
359 
360   // Pop any cleanups that might have been associated with the
361   // parameters.  Do this in whatever block we're currently in; it's
362   // important to do this before we enter the return block or return
363   // edges will be *really* confused.
364   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
365   bool HasOnlyLifetimeMarkers =
366       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
367   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
368   if (HasCleanups) {
369     // Make sure the line table doesn't jump back into the body for
370     // the ret after it's been at EndLoc.
371     Optional<ApplyDebugLocation> AL;
372     if (CGDebugInfo *DI = getDebugInfo()) {
373       if (OnlySimpleReturnStmts)
374         DI->EmitLocation(Builder, EndLoc);
375       else
376         // We may not have a valid end location. Try to apply it anyway, and
377         // fall back to an artificial location if needed.
378         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379     }
380 
381     PopCleanupBlocks(PrologueCleanupDepth);
382   }
383 
384   // Emit function epilog (to return).
385   llvm::DebugLoc Loc = EmitReturnBlock();
386 
387   if (ShouldInstrumentFunction()) {
388     if (CGM.getCodeGenOpts().InstrumentFunctions)
389       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
390     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
391       CurFn->addFnAttr("instrument-function-exit-inlined",
392                        "__cyg_profile_func_exit");
393   }
394 
395   // Emit debug descriptor for function end.
396   if (CGDebugInfo *DI = getDebugInfo())
397     DI->EmitFunctionEnd(Builder, CurFn);
398 
399   // Reset the debug location to that of the simple 'return' expression, if any
400   // rather than that of the end of the function's scope '}'.
401   ApplyDebugLocation AL(*this, Loc);
402   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
403   EmitEndEHSpec(CurCodeDecl);
404 
405   assert(EHStack.empty() &&
406          "did not remove all scopes from cleanup stack!");
407 
408   // If someone did an indirect goto, emit the indirect goto block at the end of
409   // the function.
410   if (IndirectBranch) {
411     EmitBlock(IndirectBranch->getParent());
412     Builder.ClearInsertionPoint();
413   }
414 
415   // If some of our locals escaped, insert a call to llvm.localescape in the
416   // entry block.
417   if (!EscapedLocals.empty()) {
418     // Invert the map from local to index into a simple vector. There should be
419     // no holes.
420     SmallVector<llvm::Value *, 4> EscapeArgs;
421     EscapeArgs.resize(EscapedLocals.size());
422     for (auto &Pair : EscapedLocals)
423       EscapeArgs[Pair.second] = Pair.first;
424     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
425         &CGM.getModule(), llvm::Intrinsic::localescape);
426     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427   }
428 
429   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
430   llvm::Instruction *Ptr = AllocaInsertPt;
431   AllocaInsertPt = nullptr;
432   Ptr->eraseFromParent();
433 
434   // If someone took the address of a label but never did an indirect goto, we
435   // made a zero entry PHI node, which is illegal, zap it now.
436   if (IndirectBranch) {
437     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
438     if (PN->getNumIncomingValues() == 0) {
439       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
440       PN->eraseFromParent();
441     }
442   }
443 
444   EmitIfUsed(*this, EHResumeBlock);
445   EmitIfUsed(*this, TerminateLandingPad);
446   EmitIfUsed(*this, TerminateHandler);
447   EmitIfUsed(*this, UnreachableBlock);
448 
449   for (const auto &FuncletAndParent : TerminateFunclets)
450     EmitIfUsed(*this, FuncletAndParent.second);
451 
452   if (CGM.getCodeGenOpts().EmitDeclMetadata)
453     EmitDeclMetadata();
454 
455   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
456            I = DeferredReplacements.begin(),
457            E = DeferredReplacements.end();
458        I != E; ++I) {
459     I->first->replaceAllUsesWith(I->second);
460     I->first->eraseFromParent();
461   }
462 
463   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
464   // PHIs if the current function is a coroutine. We don't do it for all
465   // functions as it may result in slight increase in numbers of instructions
466   // if compiled with no optimizations. We do it for coroutine as the lifetime
467   // of CleanupDestSlot alloca make correct coroutine frame building very
468   // difficult.
469   if (NormalCleanupDest.isValid() && isCoroutine()) {
470     llvm::DominatorTree DT(*CurFn);
471     llvm::PromoteMemToReg(
472         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
473     NormalCleanupDest = Address::invalid();
474   }
475 
476   // Scan function arguments for vector width.
477   for (llvm::Argument &A : CurFn->args())
478     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
479       LargestVectorWidth =
480           std::max((uint64_t)LargestVectorWidth,
481                    VT->getPrimitiveSizeInBits().getKnownMinSize());
482 
483   // Update vector width based on return type.
484   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
485     LargestVectorWidth =
486         std::max((uint64_t)LargestVectorWidth,
487                  VT->getPrimitiveSizeInBits().getKnownMinSize());
488 
489   // Add the required-vector-width attribute. This contains the max width from:
490   // 1. min-vector-width attribute used in the source program.
491   // 2. Any builtins used that have a vector width specified.
492   // 3. Values passed in and out of inline assembly.
493   // 4. Width of vector arguments and return types for this function.
494   // 5. Width of vector aguments and return types for functions called by this
495   //    function.
496   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
497 
498   // If we generated an unreachable return block, delete it now.
499   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
500     Builder.ClearInsertionPoint();
501     ReturnBlock.getBlock()->eraseFromParent();
502   }
503   if (ReturnValue.isValid()) {
504     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
505     if (RetAlloca && RetAlloca->use_empty()) {
506       RetAlloca->eraseFromParent();
507       ReturnValue = Address::invalid();
508     }
509   }
510 }
511 
512 /// ShouldInstrumentFunction - Return true if the current function should be
513 /// instrumented with __cyg_profile_func_* calls
514 bool CodeGenFunction::ShouldInstrumentFunction() {
515   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
516       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
517       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
518     return false;
519   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
520     return false;
521   return true;
522 }
523 
524 /// ShouldXRayInstrument - Return true if the current function should be
525 /// instrumented with XRay nop sleds.
526 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
527   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
528 }
529 
530 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
531 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
532 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
533   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
534          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
535           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
536               XRayInstrKind::Custom);
537 }
538 
539 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
540   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
541          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
542           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
543               XRayInstrKind::Typed);
544 }
545 
546 llvm::Constant *
547 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
548                                             llvm::Constant *Addr) {
549   // Addresses stored in prologue data can't require run-time fixups and must
550   // be PC-relative. Run-time fixups are undesirable because they necessitate
551   // writable text segments, which are unsafe. And absolute addresses are
552   // undesirable because they break PIE mode.
553 
554   // Add a layer of indirection through a private global. Taking its address
555   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
556   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
557                                       /*isConstant=*/true,
558                                       llvm::GlobalValue::PrivateLinkage, Addr);
559 
560   // Create a PC-relative address.
561   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
562   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
563   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
564   return (IntPtrTy == Int32Ty)
565              ? PCRelAsInt
566              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
567 }
568 
569 llvm::Value *
570 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
571                                           llvm::Value *EncodedAddr) {
572   // Reconstruct the address of the global.
573   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
574   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
575   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
576   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
577 
578   // Load the original pointer through the global.
579   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
580                             "decoded_addr");
581 }
582 
583 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
584                                                llvm::Function *Fn)
585 {
586   if (!FD->hasAttr<OpenCLKernelAttr>())
587     return;
588 
589   llvm::LLVMContext &Context = getLLVMContext();
590 
591   CGM.GenOpenCLArgMetadata(Fn, FD, this);
592 
593   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
594     QualType HintQTy = A->getTypeHint();
595     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
596     bool IsSignedInteger =
597         HintQTy->isSignedIntegerType() ||
598         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
599     llvm::Metadata *AttrMDArgs[] = {
600         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
601             CGM.getTypes().ConvertType(A->getTypeHint()))),
602         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
603             llvm::IntegerType::get(Context, 32),
604             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
605     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
606   }
607 
608   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
609     llvm::Metadata *AttrMDArgs[] = {
610         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
611         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
612         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
613     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
625           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
628     Fn->setMetadata("intel_reqd_sub_group_size",
629                     llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 }
632 
633 /// Determine whether the function F ends with a return stmt.
634 static bool endsWithReturn(const Decl* F) {
635   const Stmt *Body = nullptr;
636   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
637     Body = FD->getBody();
638   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
639     Body = OMD->getBody();
640 
641   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
642     auto LastStmt = CS->body_rbegin();
643     if (LastStmt != CS->body_rend())
644       return isa<ReturnStmt>(*LastStmt);
645   }
646   return false;
647 }
648 
649 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
650   if (SanOpts.has(SanitizerKind::Thread)) {
651     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
652     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
653   }
654 }
655 
656 /// Check if the return value of this function requires sanitization.
657 bool CodeGenFunction::requiresReturnValueCheck() const {
658   return requiresReturnValueNullabilityCheck() ||
659          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
660           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
661 }
662 
663 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
664   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
665   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
666       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
667       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
668     return false;
669 
670   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
671     return false;
672 
673   if (MD->getNumParams() == 2) {
674     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
675     if (!PT || !PT->isVoidPointerType() ||
676         !PT->getPointeeType().isConstQualified())
677       return false;
678   }
679 
680   return true;
681 }
682 
683 /// Return the UBSan prologue signature for \p FD if one is available.
684 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
685                                             const FunctionDecl *FD) {
686   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
687     if (!MD->isStatic())
688       return nullptr;
689   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
690 }
691 
692 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
693                                     llvm::Function *Fn,
694                                     const CGFunctionInfo &FnInfo,
695                                     const FunctionArgList &Args,
696                                     SourceLocation Loc,
697                                     SourceLocation StartLoc) {
698   assert(!CurFn &&
699          "Do not use a CodeGenFunction object for more than one function");
700 
701   const Decl *D = GD.getDecl();
702 
703   DidCallStackSave = false;
704   CurCodeDecl = D;
705   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
706     if (FD->usesSEHTry())
707       CurSEHParent = FD;
708   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
709   FnRetTy = RetTy;
710   CurFn = Fn;
711   CurFnInfo = &FnInfo;
712   assert(CurFn->isDeclaration() && "Function already has body?");
713 
714   // If this function has been blacklisted for any of the enabled sanitizers,
715   // disable the sanitizer for the function.
716   do {
717 #define SANITIZER(NAME, ID)                                                    \
718   if (SanOpts.empty())                                                         \
719     break;                                                                     \
720   if (SanOpts.has(SanitizerKind::ID))                                          \
721     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
722       SanOpts.set(SanitizerKind::ID, false);
723 
724 #include "clang/Basic/Sanitizers.def"
725 #undef SANITIZER
726   } while (0);
727 
728   if (D) {
729     // Apply the no_sanitize* attributes to SanOpts.
730     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
731       SanitizerMask mask = Attr->getMask();
732       SanOpts.Mask &= ~mask;
733       if (mask & SanitizerKind::Address)
734         SanOpts.set(SanitizerKind::KernelAddress, false);
735       if (mask & SanitizerKind::KernelAddress)
736         SanOpts.set(SanitizerKind::Address, false);
737       if (mask & SanitizerKind::HWAddress)
738         SanOpts.set(SanitizerKind::KernelHWAddress, false);
739       if (mask & SanitizerKind::KernelHWAddress)
740         SanOpts.set(SanitizerKind::HWAddress, false);
741     }
742   }
743 
744   // Apply sanitizer attributes to the function.
745   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
746     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
747   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
748     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
749   if (SanOpts.has(SanitizerKind::MemTag))
750     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
751   if (SanOpts.has(SanitizerKind::Thread))
752     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
753   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
754     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
755   if (SanOpts.has(SanitizerKind::SafeStack))
756     Fn->addFnAttr(llvm::Attribute::SafeStack);
757   if (SanOpts.has(SanitizerKind::ShadowCallStack))
758     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
759 
760   // Apply fuzzing attribute to the function.
761   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
762     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
763 
764   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
765   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
766   if (SanOpts.has(SanitizerKind::Thread)) {
767     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
768       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
769       if (OMD->getMethodFamily() == OMF_dealloc ||
770           OMD->getMethodFamily() == OMF_initialize ||
771           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
772         markAsIgnoreThreadCheckingAtRuntime(Fn);
773       }
774     }
775   }
776 
777   // Ignore unrelated casts in STL allocate() since the allocator must cast
778   // from void* to T* before object initialization completes. Don't match on the
779   // namespace because not all allocators are in std::
780   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
781     if (matchesStlAllocatorFn(D, getContext()))
782       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
783   }
784 
785   // Ignore null checks in coroutine functions since the coroutines passes
786   // are not aware of how to move the extra UBSan instructions across the split
787   // coroutine boundaries.
788   if (D && SanOpts.has(SanitizerKind::Null))
789     if (const auto *FD = dyn_cast<FunctionDecl>(D))
790       if (FD->getBody() &&
791           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
792         SanOpts.Mask &= ~SanitizerKind::Null;
793 
794   // Apply xray attributes to the function (as a string, for now)
795   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
796     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
797             XRayInstrKind::FunctionEntry) ||
798         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
799             XRayInstrKind::FunctionExit)) {
800       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
801         Fn->addFnAttr("function-instrument", "xray-always");
802       if (XRayAttr->neverXRayInstrument())
803         Fn->addFnAttr("function-instrument", "xray-never");
804       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
805         if (ShouldXRayInstrumentFunction())
806           Fn->addFnAttr("xray-log-args",
807                         llvm::utostr(LogArgs->getArgumentCount()));
808     }
809   } else {
810     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
811       Fn->addFnAttr(
812           "xray-instruction-threshold",
813           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
814   }
815 
816   if (ShouldXRayInstrumentFunction()) {
817     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
818       Fn->addFnAttr("xray-ignore-loops");
819 
820     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
821             XRayInstrKind::FunctionExit))
822       Fn->addFnAttr("xray-skip-exit");
823 
824     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
825             XRayInstrKind::FunctionEntry))
826       Fn->addFnAttr("xray-skip-entry");
827   }
828 
829   unsigned Count, Offset;
830   if (const auto *Attr =
831           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
832     Count = Attr->getCount();
833     Offset = Attr->getOffset();
834   } else {
835     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
836     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
837   }
838   if (Count && Offset <= Count) {
839     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
840     if (Offset)
841       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
842   }
843 
844   // Add no-jump-tables value.
845   Fn->addFnAttr("no-jump-tables",
846                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
847 
848   // Add no-inline-line-tables value.
849   if (CGM.getCodeGenOpts().NoInlineLineTables)
850     Fn->addFnAttr("no-inline-line-tables");
851 
852   // Add profile-sample-accurate value.
853   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
854     Fn->addFnAttr("profile-sample-accurate");
855 
856   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
857     Fn->addFnAttr("cfi-canonical-jump-table");
858 
859   if (getLangOpts().OpenCL) {
860     // Add metadata for a kernel function.
861     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
862       EmitOpenCLKernelMetadata(FD, Fn);
863   }
864 
865   // If we are checking function types, emit a function type signature as
866   // prologue data.
867   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
868     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
869       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
870         // Remove any (C++17) exception specifications, to allow calling e.g. a
871         // noexcept function through a non-noexcept pointer.
872         auto ProtoTy =
873           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
874                                                         EST_None);
875         llvm::Constant *FTRTTIConst =
876             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
877         llvm::Constant *FTRTTIConstEncoded =
878             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
879         llvm::Constant *PrologueStructElems[] = {PrologueSig,
880                                                  FTRTTIConstEncoded};
881         llvm::Constant *PrologueStructConst =
882             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
883         Fn->setPrologueData(PrologueStructConst);
884       }
885     }
886   }
887 
888   // If we're checking nullability, we need to know whether we can check the
889   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
890   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
891     auto Nullability = FnRetTy->getNullability(getContext());
892     if (Nullability && *Nullability == NullabilityKind::NonNull) {
893       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
894             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
895         RetValNullabilityPrecondition =
896             llvm::ConstantInt::getTrue(getLLVMContext());
897     }
898   }
899 
900   // If we're in C++ mode and the function name is "main", it is guaranteed
901   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
902   // used within a program").
903   //
904   // OpenCL C 2.0 v2.2-11 s6.9.i:
905   //     Recursion is not supported.
906   //
907   // SYCL v1.2.1 s3.10:
908   //     kernels cannot include RTTI information, exception classes,
909   //     recursive code, virtual functions or make use of C++ libraries that
910   //     are not compiled for the device.
911   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
912     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
913         getLangOpts().SYCLIsDevice ||
914         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
915       Fn->addFnAttr(llvm::Attribute::NoRecurse);
916   }
917 
918   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
919     Builder.setIsFPConstrained(FD->usesFPIntrin());
920     if (FD->usesFPIntrin())
921       Fn->addFnAttr(llvm::Attribute::StrictFP);
922   }
923 
924   // If a custom alignment is used, force realigning to this alignment on
925   // any main function which certainly will need it.
926   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
927     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
928         CGM.getCodeGenOpts().StackAlignment)
929       Fn->addFnAttr("stackrealign");
930 
931   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
932 
933   // Create a marker to make it easy to insert allocas into the entryblock
934   // later.  Don't create this with the builder, because we don't want it
935   // folded.
936   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
937   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
938 
939   ReturnBlock = getJumpDestInCurrentScope("return");
940 
941   Builder.SetInsertPoint(EntryBB);
942 
943   // If we're checking the return value, allocate space for a pointer to a
944   // precise source location of the checked return statement.
945   if (requiresReturnValueCheck()) {
946     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
947     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
948   }
949 
950   // Emit subprogram debug descriptor.
951   if (CGDebugInfo *DI = getDebugInfo()) {
952     // Reconstruct the type from the argument list so that implicit parameters,
953     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
954     // convention.
955     CallingConv CC = CallingConv::CC_C;
956     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
957       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
958         CC = SrcFnTy->getCallConv();
959     SmallVector<QualType, 16> ArgTypes;
960     for (const VarDecl *VD : Args)
961       ArgTypes.push_back(VD->getType());
962     QualType FnType = getContext().getFunctionType(
963         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
964     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
965                           Builder);
966   }
967 
968   if (ShouldInstrumentFunction()) {
969     if (CGM.getCodeGenOpts().InstrumentFunctions)
970       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
971     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
972       CurFn->addFnAttr("instrument-function-entry-inlined",
973                        "__cyg_profile_func_enter");
974     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
975       CurFn->addFnAttr("instrument-function-entry-inlined",
976                        "__cyg_profile_func_enter_bare");
977   }
978 
979   // Since emitting the mcount call here impacts optimizations such as function
980   // inlining, we just add an attribute to insert a mcount call in backend.
981   // The attribute "counting-function" is set to mcount function name which is
982   // architecture dependent.
983   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
984     // Calls to fentry/mcount should not be generated if function has
985     // the no_instrument_function attribute.
986     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
987       if (CGM.getCodeGenOpts().CallFEntry)
988         Fn->addFnAttr("fentry-call", "true");
989       else {
990         Fn->addFnAttr("instrument-function-entry-inlined",
991                       getTarget().getMCountName());
992       }
993       if (CGM.getCodeGenOpts().MNopMCount) {
994         if (!CGM.getCodeGenOpts().CallFEntry)
995           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
996             << "-mnop-mcount" << "-mfentry";
997         Fn->addFnAttr("mnop-mcount");
998       }
999 
1000       if (CGM.getCodeGenOpts().RecordMCount) {
1001         if (!CGM.getCodeGenOpts().CallFEntry)
1002           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1003             << "-mrecord-mcount" << "-mfentry";
1004         Fn->addFnAttr("mrecord-mcount");
1005       }
1006     }
1007   }
1008 
1009   if (CGM.getCodeGenOpts().PackedStack) {
1010     if (getContext().getTargetInfo().getTriple().getArch() !=
1011         llvm::Triple::systemz)
1012       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1013         << "-mpacked-stack";
1014     Fn->addFnAttr("packed-stack");
1015   }
1016 
1017   if (RetTy->isVoidType()) {
1018     // Void type; nothing to return.
1019     ReturnValue = Address::invalid();
1020 
1021     // Count the implicit return.
1022     if (!endsWithReturn(D))
1023       ++NumReturnExprs;
1024   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1025     // Indirect return; emit returned value directly into sret slot.
1026     // This reduces code size, and affects correctness in C++.
1027     auto AI = CurFn->arg_begin();
1028     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1029       ++AI;
1030     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1031     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1032       ReturnValuePointer =
1033           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1034       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1035                               ReturnValue.getPointer(), Int8PtrTy),
1036                           ReturnValuePointer);
1037     }
1038   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1039              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1040     // Load the sret pointer from the argument struct and return into that.
1041     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1042     llvm::Function::arg_iterator EI = CurFn->arg_end();
1043     --EI;
1044     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1045     ReturnValuePointer = Address(Addr, getPointerAlign());
1046     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1047     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1048   } else {
1049     ReturnValue = CreateIRTemp(RetTy, "retval");
1050 
1051     // Tell the epilog emitter to autorelease the result.  We do this
1052     // now so that various specialized functions can suppress it
1053     // during their IR-generation.
1054     if (getLangOpts().ObjCAutoRefCount &&
1055         !CurFnInfo->isReturnsRetained() &&
1056         RetTy->isObjCRetainableType())
1057       AutoreleaseResult = true;
1058   }
1059 
1060   EmitStartEHSpec(CurCodeDecl);
1061 
1062   PrologueCleanupDepth = EHStack.stable_begin();
1063 
1064   // Emit OpenMP specific initialization of the device functions.
1065   if (getLangOpts().OpenMP && CurCodeDecl)
1066     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1067 
1068   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1069 
1070   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1071     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1072     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1073     if (MD->getParent()->isLambda() &&
1074         MD->getOverloadedOperator() == OO_Call) {
1075       // We're in a lambda; figure out the captures.
1076       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1077                                         LambdaThisCaptureField);
1078       if (LambdaThisCaptureField) {
1079         // If the lambda captures the object referred to by '*this' - either by
1080         // value or by reference, make sure CXXThisValue points to the correct
1081         // object.
1082 
1083         // Get the lvalue for the field (which is a copy of the enclosing object
1084         // or contains the address of the enclosing object).
1085         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1086         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1087           // If the enclosing object was captured by value, just use its address.
1088           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1089         } else {
1090           // Load the lvalue pointed to by the field, since '*this' was captured
1091           // by reference.
1092           CXXThisValue =
1093               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1094         }
1095       }
1096       for (auto *FD : MD->getParent()->fields()) {
1097         if (FD->hasCapturedVLAType()) {
1098           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1099                                            SourceLocation()).getScalarVal();
1100           auto VAT = FD->getCapturedVLAType();
1101           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1102         }
1103       }
1104     } else {
1105       // Not in a lambda; just use 'this' from the method.
1106       // FIXME: Should we generate a new load for each use of 'this'?  The
1107       // fast register allocator would be happier...
1108       CXXThisValue = CXXABIThisValue;
1109     }
1110 
1111     // Check the 'this' pointer once per function, if it's available.
1112     if (CXXABIThisValue) {
1113       SanitizerSet SkippedChecks;
1114       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1115       QualType ThisTy = MD->getThisType();
1116 
1117       // If this is the call operator of a lambda with no capture-default, it
1118       // may have a static invoker function, which may call this operator with
1119       // a null 'this' pointer.
1120       if (isLambdaCallOperator(MD) &&
1121           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1122         SkippedChecks.set(SanitizerKind::Null, true);
1123 
1124       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1125                                                 : TCK_MemberCall,
1126                     Loc, CXXABIThisValue, ThisTy,
1127                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1128                     SkippedChecks);
1129     }
1130   }
1131 
1132   // If any of the arguments have a variably modified type, make sure to
1133   // emit the type size.
1134   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1135        i != e; ++i) {
1136     const VarDecl *VD = *i;
1137 
1138     // Dig out the type as written from ParmVarDecls; it's unclear whether
1139     // the standard (C99 6.9.1p10) requires this, but we're following the
1140     // precedent set by gcc.
1141     QualType Ty;
1142     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1143       Ty = PVD->getOriginalType();
1144     else
1145       Ty = VD->getType();
1146 
1147     if (Ty->isVariablyModifiedType())
1148       EmitVariablyModifiedType(Ty);
1149   }
1150   // Emit a location at the end of the prologue.
1151   if (CGDebugInfo *DI = getDebugInfo())
1152     DI->EmitLocation(Builder, StartLoc);
1153 
1154   // TODO: Do we need to handle this in two places like we do with
1155   // target-features/target-cpu?
1156   if (CurFuncDecl)
1157     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1158       LargestVectorWidth = VecWidth->getVectorWidth();
1159 }
1160 
1161 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1162   incrementProfileCounter(Body);
1163   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1164     EmitCompoundStmtWithoutScope(*S);
1165   else
1166     EmitStmt(Body);
1167 }
1168 
1169 /// When instrumenting to collect profile data, the counts for some blocks
1170 /// such as switch cases need to not include the fall-through counts, so
1171 /// emit a branch around the instrumentation code. When not instrumenting,
1172 /// this just calls EmitBlock().
1173 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1174                                                const Stmt *S) {
1175   llvm::BasicBlock *SkipCountBB = nullptr;
1176   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1177     // When instrumenting for profiling, the fallthrough to certain
1178     // statements needs to skip over the instrumentation code so that we
1179     // get an accurate count.
1180     SkipCountBB = createBasicBlock("skipcount");
1181     EmitBranch(SkipCountBB);
1182   }
1183   EmitBlock(BB);
1184   uint64_t CurrentCount = getCurrentProfileCount();
1185   incrementProfileCounter(S);
1186   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1187   if (SkipCountBB)
1188     EmitBlock(SkipCountBB);
1189 }
1190 
1191 /// Tries to mark the given function nounwind based on the
1192 /// non-existence of any throwing calls within it.  We believe this is
1193 /// lightweight enough to do at -O0.
1194 static void TryMarkNoThrow(llvm::Function *F) {
1195   // LLVM treats 'nounwind' on a function as part of the type, so we
1196   // can't do this on functions that can be overwritten.
1197   if (F->isInterposable()) return;
1198 
1199   for (llvm::BasicBlock &BB : *F)
1200     for (llvm::Instruction &I : BB)
1201       if (I.mayThrow())
1202         return;
1203 
1204   F->setDoesNotThrow();
1205 }
1206 
1207 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1208                                                FunctionArgList &Args) {
1209   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1210   QualType ResTy = FD->getReturnType();
1211 
1212   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1213   if (MD && MD->isInstance()) {
1214     if (CGM.getCXXABI().HasThisReturn(GD))
1215       ResTy = MD->getThisType();
1216     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1217       ResTy = CGM.getContext().VoidPtrTy;
1218     CGM.getCXXABI().buildThisParam(*this, Args);
1219   }
1220 
1221   // The base version of an inheriting constructor whose constructed base is a
1222   // virtual base is not passed any arguments (because it doesn't actually call
1223   // the inherited constructor).
1224   bool PassedParams = true;
1225   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1226     if (auto Inherited = CD->getInheritedConstructor())
1227       PassedParams =
1228           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1229 
1230   if (PassedParams) {
1231     for (auto *Param : FD->parameters()) {
1232       Args.push_back(Param);
1233       if (!Param->hasAttr<PassObjectSizeAttr>())
1234         continue;
1235 
1236       auto *Implicit = ImplicitParamDecl::Create(
1237           getContext(), Param->getDeclContext(), Param->getLocation(),
1238           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1239       SizeArguments[Param] = Implicit;
1240       Args.push_back(Implicit);
1241     }
1242   }
1243 
1244   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1245     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1246 
1247   return ResTy;
1248 }
1249 
1250 static bool
1251 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1252                                              const ASTContext &Context) {
1253   QualType T = FD->getReturnType();
1254   // Avoid the optimization for functions that return a record type with a
1255   // trivial destructor or another trivially copyable type.
1256   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1257     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1258       return !ClassDecl->hasTrivialDestructor();
1259   }
1260   return !T.isTriviallyCopyableType(Context);
1261 }
1262 
1263 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1264                                    const CGFunctionInfo &FnInfo) {
1265   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1266   CurGD = GD;
1267 
1268   FunctionArgList Args;
1269   QualType ResTy = BuildFunctionArgList(GD, Args);
1270 
1271   // Check if we should generate debug info for this function.
1272   if (FD->hasAttr<NoDebugAttr>())
1273     DebugInfo = nullptr; // disable debug info indefinitely for this function
1274 
1275   // The function might not have a body if we're generating thunks for a
1276   // function declaration.
1277   SourceRange BodyRange;
1278   if (Stmt *Body = FD->getBody())
1279     BodyRange = Body->getSourceRange();
1280   else
1281     BodyRange = FD->getLocation();
1282   CurEHLocation = BodyRange.getEnd();
1283 
1284   // Use the location of the start of the function to determine where
1285   // the function definition is located. By default use the location
1286   // of the declaration as the location for the subprogram. A function
1287   // may lack a declaration in the source code if it is created by code
1288   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1289   SourceLocation Loc = FD->getLocation();
1290 
1291   // If this is a function specialization then use the pattern body
1292   // as the location for the function.
1293   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1294     if (SpecDecl->hasBody(SpecDecl))
1295       Loc = SpecDecl->getLocation();
1296 
1297   Stmt *Body = FD->getBody();
1298 
1299   // Initialize helper which will detect jumps which can cause invalid lifetime
1300   // markers.
1301   if (Body && ShouldEmitLifetimeMarkers)
1302     Bypasses.Init(Body);
1303 
1304   // Emit the standard function prologue.
1305   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1306 
1307   // Generate the body of the function.
1308   PGO.assignRegionCounters(GD, CurFn);
1309   if (isa<CXXDestructorDecl>(FD))
1310     EmitDestructorBody(Args);
1311   else if (isa<CXXConstructorDecl>(FD))
1312     EmitConstructorBody(Args);
1313   else if (getLangOpts().CUDA &&
1314            !getLangOpts().CUDAIsDevice &&
1315            FD->hasAttr<CUDAGlobalAttr>())
1316     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1317   else if (isa<CXXMethodDecl>(FD) &&
1318            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1319     // The lambda static invoker function is special, because it forwards or
1320     // clones the body of the function call operator (but is actually static).
1321     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1322   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1323              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1324               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1325     // Implicit copy-assignment gets the same special treatment as implicit
1326     // copy-constructors.
1327     emitImplicitAssignmentOperatorBody(Args);
1328   } else if (Body) {
1329     EmitFunctionBody(Body);
1330   } else
1331     llvm_unreachable("no definition for emitted function");
1332 
1333   // C++11 [stmt.return]p2:
1334   //   Flowing off the end of a function [...] results in undefined behavior in
1335   //   a value-returning function.
1336   // C11 6.9.1p12:
1337   //   If the '}' that terminates a function is reached, and the value of the
1338   //   function call is used by the caller, the behavior is undefined.
1339   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1340       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1341     bool ShouldEmitUnreachable =
1342         CGM.getCodeGenOpts().StrictReturn ||
1343         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1344     if (SanOpts.has(SanitizerKind::Return)) {
1345       SanitizerScope SanScope(this);
1346       llvm::Value *IsFalse = Builder.getFalse();
1347       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1348                 SanitizerHandler::MissingReturn,
1349                 EmitCheckSourceLocation(FD->getLocation()), None);
1350     } else if (ShouldEmitUnreachable) {
1351       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1352         EmitTrapCall(llvm::Intrinsic::trap);
1353     }
1354     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1355       Builder.CreateUnreachable();
1356       Builder.ClearInsertionPoint();
1357     }
1358   }
1359 
1360   // Emit the standard function epilogue.
1361   FinishFunction(BodyRange.getEnd());
1362 
1363   // If we haven't marked the function nothrow through other means, do
1364   // a quick pass now to see if we can.
1365   if (!CurFn->doesNotThrow())
1366     TryMarkNoThrow(CurFn);
1367 }
1368 
1369 /// ContainsLabel - Return true if the statement contains a label in it.  If
1370 /// this statement is not executed normally, it not containing a label means
1371 /// that we can just remove the code.
1372 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1373   // Null statement, not a label!
1374   if (!S) return false;
1375 
1376   // If this is a label, we have to emit the code, consider something like:
1377   // if (0) {  ...  foo:  bar(); }  goto foo;
1378   //
1379   // TODO: If anyone cared, we could track __label__'s, since we know that you
1380   // can't jump to one from outside their declared region.
1381   if (isa<LabelStmt>(S))
1382     return true;
1383 
1384   // If this is a case/default statement, and we haven't seen a switch, we have
1385   // to emit the code.
1386   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1387     return true;
1388 
1389   // If this is a switch statement, we want to ignore cases below it.
1390   if (isa<SwitchStmt>(S))
1391     IgnoreCaseStmts = true;
1392 
1393   // Scan subexpressions for verboten labels.
1394   for (const Stmt *SubStmt : S->children())
1395     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1396       return true;
1397 
1398   return false;
1399 }
1400 
1401 /// containsBreak - Return true if the statement contains a break out of it.
1402 /// If the statement (recursively) contains a switch or loop with a break
1403 /// inside of it, this is fine.
1404 bool CodeGenFunction::containsBreak(const Stmt *S) {
1405   // Null statement, not a label!
1406   if (!S) return false;
1407 
1408   // If this is a switch or loop that defines its own break scope, then we can
1409   // include it and anything inside of it.
1410   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1411       isa<ForStmt>(S))
1412     return false;
1413 
1414   if (isa<BreakStmt>(S))
1415     return true;
1416 
1417   // Scan subexpressions for verboten breaks.
1418   for (const Stmt *SubStmt : S->children())
1419     if (containsBreak(SubStmt))
1420       return true;
1421 
1422   return false;
1423 }
1424 
1425 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1426   if (!S) return false;
1427 
1428   // Some statement kinds add a scope and thus never add a decl to the current
1429   // scope. Note, this list is longer than the list of statements that might
1430   // have an unscoped decl nested within them, but this way is conservatively
1431   // correct even if more statement kinds are added.
1432   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1433       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1434       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1435       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1436     return false;
1437 
1438   if (isa<DeclStmt>(S))
1439     return true;
1440 
1441   for (const Stmt *SubStmt : S->children())
1442     if (mightAddDeclToScope(SubStmt))
1443       return true;
1444 
1445   return false;
1446 }
1447 
1448 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1449 /// to a constant, or if it does but contains a label, return false.  If it
1450 /// constant folds return true and set the boolean result in Result.
1451 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1452                                                    bool &ResultBool,
1453                                                    bool AllowLabels) {
1454   llvm::APSInt ResultInt;
1455   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1456     return false;
1457 
1458   ResultBool = ResultInt.getBoolValue();
1459   return true;
1460 }
1461 
1462 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1463 /// to a constant, or if it does but contains a label, return false.  If it
1464 /// constant folds return true and set the folded value.
1465 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1466                                                    llvm::APSInt &ResultInt,
1467                                                    bool AllowLabels) {
1468   // FIXME: Rename and handle conversion of other evaluatable things
1469   // to bool.
1470   Expr::EvalResult Result;
1471   if (!Cond->EvaluateAsInt(Result, getContext()))
1472     return false;  // Not foldable, not integer or not fully evaluatable.
1473 
1474   llvm::APSInt Int = Result.Val.getInt();
1475   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1476     return false;  // Contains a label.
1477 
1478   ResultInt = Int;
1479   return true;
1480 }
1481 
1482 
1483 
1484 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1485 /// statement) to the specified blocks.  Based on the condition, this might try
1486 /// to simplify the codegen of the conditional based on the branch.
1487 ///
1488 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1489                                            llvm::BasicBlock *TrueBlock,
1490                                            llvm::BasicBlock *FalseBlock,
1491                                            uint64_t TrueCount) {
1492   Cond = Cond->IgnoreParens();
1493 
1494   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1495 
1496     // Handle X && Y in a condition.
1497     if (CondBOp->getOpcode() == BO_LAnd) {
1498       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1499       // folded if the case was simple enough.
1500       bool ConstantBool = false;
1501       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1502           ConstantBool) {
1503         // br(1 && X) -> br(X).
1504         incrementProfileCounter(CondBOp);
1505         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1506                                     TrueCount);
1507       }
1508 
1509       // If we have "X && 1", simplify the code to use an uncond branch.
1510       // "X && 0" would have been constant folded to 0.
1511       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1512           ConstantBool) {
1513         // br(X && 1) -> br(X).
1514         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1515                                     TrueCount);
1516       }
1517 
1518       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1519       // want to jump to the FalseBlock.
1520       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1521       // The counter tells us how often we evaluate RHS, and all of TrueCount
1522       // can be propagated to that branch.
1523       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1524 
1525       ConditionalEvaluation eval(*this);
1526       {
1527         ApplyDebugLocation DL(*this, Cond);
1528         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1529         EmitBlock(LHSTrue);
1530       }
1531 
1532       incrementProfileCounter(CondBOp);
1533       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1534 
1535       // Any temporaries created here are conditional.
1536       eval.begin(*this);
1537       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1538       eval.end(*this);
1539 
1540       return;
1541     }
1542 
1543     if (CondBOp->getOpcode() == BO_LOr) {
1544       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1545       // folded if the case was simple enough.
1546       bool ConstantBool = false;
1547       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1548           !ConstantBool) {
1549         // br(0 || X) -> br(X).
1550         incrementProfileCounter(CondBOp);
1551         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1552                                     TrueCount);
1553       }
1554 
1555       // If we have "X || 0", simplify the code to use an uncond branch.
1556       // "X || 1" would have been constant folded to 1.
1557       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1558           !ConstantBool) {
1559         // br(X || 0) -> br(X).
1560         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1561                                     TrueCount);
1562       }
1563 
1564       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1565       // want to jump to the TrueBlock.
1566       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1567       // We have the count for entry to the RHS and for the whole expression
1568       // being true, so we can divy up True count between the short circuit and
1569       // the RHS.
1570       uint64_t LHSCount =
1571           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1572       uint64_t RHSCount = TrueCount - LHSCount;
1573 
1574       ConditionalEvaluation eval(*this);
1575       {
1576         ApplyDebugLocation DL(*this, Cond);
1577         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1578         EmitBlock(LHSFalse);
1579       }
1580 
1581       incrementProfileCounter(CondBOp);
1582       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1583 
1584       // Any temporaries created here are conditional.
1585       eval.begin(*this);
1586       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1587 
1588       eval.end(*this);
1589 
1590       return;
1591     }
1592   }
1593 
1594   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1595     // br(!x, t, f) -> br(x, f, t)
1596     if (CondUOp->getOpcode() == UO_LNot) {
1597       // Negate the count.
1598       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1599       // Negate the condition and swap the destination blocks.
1600       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1601                                   FalseCount);
1602     }
1603   }
1604 
1605   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1606     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1607     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1608     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1609 
1610     ConditionalEvaluation cond(*this);
1611     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1612                          getProfileCount(CondOp));
1613 
1614     // When computing PGO branch weights, we only know the overall count for
1615     // the true block. This code is essentially doing tail duplication of the
1616     // naive code-gen, introducing new edges for which counts are not
1617     // available. Divide the counts proportionally between the LHS and RHS of
1618     // the conditional operator.
1619     uint64_t LHSScaledTrueCount = 0;
1620     if (TrueCount) {
1621       double LHSRatio =
1622           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1623       LHSScaledTrueCount = TrueCount * LHSRatio;
1624     }
1625 
1626     cond.begin(*this);
1627     EmitBlock(LHSBlock);
1628     incrementProfileCounter(CondOp);
1629     {
1630       ApplyDebugLocation DL(*this, Cond);
1631       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1632                            LHSScaledTrueCount);
1633     }
1634     cond.end(*this);
1635 
1636     cond.begin(*this);
1637     EmitBlock(RHSBlock);
1638     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1639                          TrueCount - LHSScaledTrueCount);
1640     cond.end(*this);
1641 
1642     return;
1643   }
1644 
1645   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1646     // Conditional operator handling can give us a throw expression as a
1647     // condition for a case like:
1648     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1649     // Fold this to:
1650     //   br(c, throw x, br(y, t, f))
1651     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1652     return;
1653   }
1654 
1655   // If the branch has a condition wrapped by __builtin_unpredictable,
1656   // create metadata that specifies that the branch is unpredictable.
1657   // Don't bother if not optimizing because that metadata would not be used.
1658   llvm::MDNode *Unpredictable = nullptr;
1659   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1660   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1661     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1662     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1663       llvm::MDBuilder MDHelper(getLLVMContext());
1664       Unpredictable = MDHelper.createUnpredictable();
1665     }
1666   }
1667 
1668   // Create branch weights based on the number of times we get here and the
1669   // number of times the condition should be true.
1670   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1671   llvm::MDNode *Weights =
1672       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1673 
1674   // Emit the code with the fully general case.
1675   llvm::Value *CondV;
1676   {
1677     ApplyDebugLocation DL(*this, Cond);
1678     CondV = EvaluateExprAsBool(Cond);
1679   }
1680   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1681 }
1682 
1683 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1684 /// specified stmt yet.
1685 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1686   CGM.ErrorUnsupported(S, Type);
1687 }
1688 
1689 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1690 /// variable-length array whose elements have a non-zero bit-pattern.
1691 ///
1692 /// \param baseType the inner-most element type of the array
1693 /// \param src - a char* pointing to the bit-pattern for a single
1694 /// base element of the array
1695 /// \param sizeInChars - the total size of the VLA, in chars
1696 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1697                                Address dest, Address src,
1698                                llvm::Value *sizeInChars) {
1699   CGBuilderTy &Builder = CGF.Builder;
1700 
1701   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1702   llvm::Value *baseSizeInChars
1703     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1704 
1705   Address begin =
1706     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1707   llvm::Value *end =
1708     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1709 
1710   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1711   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1712   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1713 
1714   // Make a loop over the VLA.  C99 guarantees that the VLA element
1715   // count must be nonzero.
1716   CGF.EmitBlock(loopBB);
1717 
1718   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1719   cur->addIncoming(begin.getPointer(), originBB);
1720 
1721   CharUnits curAlign =
1722     dest.getAlignment().alignmentOfArrayElement(baseSize);
1723 
1724   // memcpy the individual element bit-pattern.
1725   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1726                        /*volatile*/ false);
1727 
1728   // Go to the next element.
1729   llvm::Value *next =
1730     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1731 
1732   // Leave if that's the end of the VLA.
1733   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1734   Builder.CreateCondBr(done, contBB, loopBB);
1735   cur->addIncoming(next, loopBB);
1736 
1737   CGF.EmitBlock(contBB);
1738 }
1739 
1740 void
1741 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1742   // Ignore empty classes in C++.
1743   if (getLangOpts().CPlusPlus) {
1744     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1745       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1746         return;
1747     }
1748   }
1749 
1750   // Cast the dest ptr to the appropriate i8 pointer type.
1751   if (DestPtr.getElementType() != Int8Ty)
1752     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1753 
1754   // Get size and alignment info for this aggregate.
1755   CharUnits size = getContext().getTypeSizeInChars(Ty);
1756 
1757   llvm::Value *SizeVal;
1758   const VariableArrayType *vla;
1759 
1760   // Don't bother emitting a zero-byte memset.
1761   if (size.isZero()) {
1762     // But note that getTypeInfo returns 0 for a VLA.
1763     if (const VariableArrayType *vlaType =
1764           dyn_cast_or_null<VariableArrayType>(
1765                                           getContext().getAsArrayType(Ty))) {
1766       auto VlaSize = getVLASize(vlaType);
1767       SizeVal = VlaSize.NumElts;
1768       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1769       if (!eltSize.isOne())
1770         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1771       vla = vlaType;
1772     } else {
1773       return;
1774     }
1775   } else {
1776     SizeVal = CGM.getSize(size);
1777     vla = nullptr;
1778   }
1779 
1780   // If the type contains a pointer to data member we can't memset it to zero.
1781   // Instead, create a null constant and copy it to the destination.
1782   // TODO: there are other patterns besides zero that we can usefully memset,
1783   // like -1, which happens to be the pattern used by member-pointers.
1784   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1785     // For a VLA, emit a single element, then splat that over the VLA.
1786     if (vla) Ty = getContext().getBaseElementType(vla);
1787 
1788     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1789 
1790     llvm::GlobalVariable *NullVariable =
1791       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1792                                /*isConstant=*/true,
1793                                llvm::GlobalVariable::PrivateLinkage,
1794                                NullConstant, Twine());
1795     CharUnits NullAlign = DestPtr.getAlignment();
1796     NullVariable->setAlignment(NullAlign.getAsAlign());
1797     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1798                    NullAlign);
1799 
1800     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1801 
1802     // Get and call the appropriate llvm.memcpy overload.
1803     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1804     return;
1805   }
1806 
1807   // Otherwise, just memset the whole thing to zero.  This is legal
1808   // because in LLVM, all default initializers (other than the ones we just
1809   // handled above) are guaranteed to have a bit pattern of all zeros.
1810   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1811 }
1812 
1813 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1814   // Make sure that there is a block for the indirect goto.
1815   if (!IndirectBranch)
1816     GetIndirectGotoBlock();
1817 
1818   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1819 
1820   // Make sure the indirect branch includes all of the address-taken blocks.
1821   IndirectBranch->addDestination(BB);
1822   return llvm::BlockAddress::get(CurFn, BB);
1823 }
1824 
1825 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1826   // If we already made the indirect branch for indirect goto, return its block.
1827   if (IndirectBranch) return IndirectBranch->getParent();
1828 
1829   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1830 
1831   // Create the PHI node that indirect gotos will add entries to.
1832   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1833                                               "indirect.goto.dest");
1834 
1835   // Create the indirect branch instruction.
1836   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1837   return IndirectBranch->getParent();
1838 }
1839 
1840 /// Computes the length of an array in elements, as well as the base
1841 /// element type and a properly-typed first element pointer.
1842 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1843                                               QualType &baseType,
1844                                               Address &addr) {
1845   const ArrayType *arrayType = origArrayType;
1846 
1847   // If it's a VLA, we have to load the stored size.  Note that
1848   // this is the size of the VLA in bytes, not its size in elements.
1849   llvm::Value *numVLAElements = nullptr;
1850   if (isa<VariableArrayType>(arrayType)) {
1851     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1852 
1853     // Walk into all VLAs.  This doesn't require changes to addr,
1854     // which has type T* where T is the first non-VLA element type.
1855     do {
1856       QualType elementType = arrayType->getElementType();
1857       arrayType = getContext().getAsArrayType(elementType);
1858 
1859       // If we only have VLA components, 'addr' requires no adjustment.
1860       if (!arrayType) {
1861         baseType = elementType;
1862         return numVLAElements;
1863       }
1864     } while (isa<VariableArrayType>(arrayType));
1865 
1866     // We get out here only if we find a constant array type
1867     // inside the VLA.
1868   }
1869 
1870   // We have some number of constant-length arrays, so addr should
1871   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1872   // down to the first element of addr.
1873   SmallVector<llvm::Value*, 8> gepIndices;
1874 
1875   // GEP down to the array type.
1876   llvm::ConstantInt *zero = Builder.getInt32(0);
1877   gepIndices.push_back(zero);
1878 
1879   uint64_t countFromCLAs = 1;
1880   QualType eltType;
1881 
1882   llvm::ArrayType *llvmArrayType =
1883     dyn_cast<llvm::ArrayType>(addr.getElementType());
1884   while (llvmArrayType) {
1885     assert(isa<ConstantArrayType>(arrayType));
1886     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1887              == llvmArrayType->getNumElements());
1888 
1889     gepIndices.push_back(zero);
1890     countFromCLAs *= llvmArrayType->getNumElements();
1891     eltType = arrayType->getElementType();
1892 
1893     llvmArrayType =
1894       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1895     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1896     assert((!llvmArrayType || arrayType) &&
1897            "LLVM and Clang types are out-of-synch");
1898   }
1899 
1900   if (arrayType) {
1901     // From this point onwards, the Clang array type has been emitted
1902     // as some other type (probably a packed struct). Compute the array
1903     // size, and just emit the 'begin' expression as a bitcast.
1904     while (arrayType) {
1905       countFromCLAs *=
1906           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1907       eltType = arrayType->getElementType();
1908       arrayType = getContext().getAsArrayType(eltType);
1909     }
1910 
1911     llvm::Type *baseType = ConvertType(eltType);
1912     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1913   } else {
1914     // Create the actual GEP.
1915     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1916                                              gepIndices, "array.begin"),
1917                    addr.getAlignment());
1918   }
1919 
1920   baseType = eltType;
1921 
1922   llvm::Value *numElements
1923     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1924 
1925   // If we had any VLA dimensions, factor them in.
1926   if (numVLAElements)
1927     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1928 
1929   return numElements;
1930 }
1931 
1932 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1933   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1934   assert(vla && "type was not a variable array type!");
1935   return getVLASize(vla);
1936 }
1937 
1938 CodeGenFunction::VlaSizePair
1939 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1940   // The number of elements so far; always size_t.
1941   llvm::Value *numElements = nullptr;
1942 
1943   QualType elementType;
1944   do {
1945     elementType = type->getElementType();
1946     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1947     assert(vlaSize && "no size for VLA!");
1948     assert(vlaSize->getType() == SizeTy);
1949 
1950     if (!numElements) {
1951       numElements = vlaSize;
1952     } else {
1953       // It's undefined behavior if this wraps around, so mark it that way.
1954       // FIXME: Teach -fsanitize=undefined to trap this.
1955       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1956     }
1957   } while ((type = getContext().getAsVariableArrayType(elementType)));
1958 
1959   return { numElements, elementType };
1960 }
1961 
1962 CodeGenFunction::VlaSizePair
1963 CodeGenFunction::getVLAElements1D(QualType type) {
1964   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1965   assert(vla && "type was not a variable array type!");
1966   return getVLAElements1D(vla);
1967 }
1968 
1969 CodeGenFunction::VlaSizePair
1970 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1971   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1972   assert(VlaSize && "no size for VLA!");
1973   assert(VlaSize->getType() == SizeTy);
1974   return { VlaSize, Vla->getElementType() };
1975 }
1976 
1977 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1978   assert(type->isVariablyModifiedType() &&
1979          "Must pass variably modified type to EmitVLASizes!");
1980 
1981   EnsureInsertPoint();
1982 
1983   // We're going to walk down into the type and look for VLA
1984   // expressions.
1985   do {
1986     assert(type->isVariablyModifiedType());
1987 
1988     const Type *ty = type.getTypePtr();
1989     switch (ty->getTypeClass()) {
1990 
1991 #define TYPE(Class, Base)
1992 #define ABSTRACT_TYPE(Class, Base)
1993 #define NON_CANONICAL_TYPE(Class, Base)
1994 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1995 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1996 #include "clang/AST/TypeNodes.inc"
1997       llvm_unreachable("unexpected dependent type!");
1998 
1999     // These types are never variably-modified.
2000     case Type::Builtin:
2001     case Type::Complex:
2002     case Type::Vector:
2003     case Type::ExtVector:
2004     case Type::ConstantMatrix:
2005     case Type::Record:
2006     case Type::Enum:
2007     case Type::Elaborated:
2008     case Type::TemplateSpecialization:
2009     case Type::ObjCTypeParam:
2010     case Type::ObjCObject:
2011     case Type::ObjCInterface:
2012     case Type::ObjCObjectPointer:
2013     case Type::ExtInt:
2014       llvm_unreachable("type class is never variably-modified!");
2015 
2016     case Type::Adjusted:
2017       type = cast<AdjustedType>(ty)->getAdjustedType();
2018       break;
2019 
2020     case Type::Decayed:
2021       type = cast<DecayedType>(ty)->getPointeeType();
2022       break;
2023 
2024     case Type::Pointer:
2025       type = cast<PointerType>(ty)->getPointeeType();
2026       break;
2027 
2028     case Type::BlockPointer:
2029       type = cast<BlockPointerType>(ty)->getPointeeType();
2030       break;
2031 
2032     case Type::LValueReference:
2033     case Type::RValueReference:
2034       type = cast<ReferenceType>(ty)->getPointeeType();
2035       break;
2036 
2037     case Type::MemberPointer:
2038       type = cast<MemberPointerType>(ty)->getPointeeType();
2039       break;
2040 
2041     case Type::ConstantArray:
2042     case Type::IncompleteArray:
2043       // Losing element qualification here is fine.
2044       type = cast<ArrayType>(ty)->getElementType();
2045       break;
2046 
2047     case Type::VariableArray: {
2048       // Losing element qualification here is fine.
2049       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2050 
2051       // Unknown size indication requires no size computation.
2052       // Otherwise, evaluate and record it.
2053       if (const Expr *size = vat->getSizeExpr()) {
2054         // It's possible that we might have emitted this already,
2055         // e.g. with a typedef and a pointer to it.
2056         llvm::Value *&entry = VLASizeMap[size];
2057         if (!entry) {
2058           llvm::Value *Size = EmitScalarExpr(size);
2059 
2060           // C11 6.7.6.2p5:
2061           //   If the size is an expression that is not an integer constant
2062           //   expression [...] each time it is evaluated it shall have a value
2063           //   greater than zero.
2064           if (SanOpts.has(SanitizerKind::VLABound) &&
2065               size->getType()->isSignedIntegerType()) {
2066             SanitizerScope SanScope(this);
2067             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2068             llvm::Constant *StaticArgs[] = {
2069                 EmitCheckSourceLocation(size->getBeginLoc()),
2070                 EmitCheckTypeDescriptor(size->getType())};
2071             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2072                                      SanitizerKind::VLABound),
2073                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2074           }
2075 
2076           // Always zexting here would be wrong if it weren't
2077           // undefined behavior to have a negative bound.
2078           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2079         }
2080       }
2081       type = vat->getElementType();
2082       break;
2083     }
2084 
2085     case Type::FunctionProto:
2086     case Type::FunctionNoProto:
2087       type = cast<FunctionType>(ty)->getReturnType();
2088       break;
2089 
2090     case Type::Paren:
2091     case Type::TypeOf:
2092     case Type::UnaryTransform:
2093     case Type::Attributed:
2094     case Type::SubstTemplateTypeParm:
2095     case Type::PackExpansion:
2096     case Type::MacroQualified:
2097       // Keep walking after single level desugaring.
2098       type = type.getSingleStepDesugaredType(getContext());
2099       break;
2100 
2101     case Type::Typedef:
2102     case Type::Decltype:
2103     case Type::Auto:
2104     case Type::DeducedTemplateSpecialization:
2105       // Stop walking: nothing to do.
2106       return;
2107 
2108     case Type::TypeOfExpr:
2109       // Stop walking: emit typeof expression.
2110       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2111       return;
2112 
2113     case Type::Atomic:
2114       type = cast<AtomicType>(ty)->getValueType();
2115       break;
2116 
2117     case Type::Pipe:
2118       type = cast<PipeType>(ty)->getElementType();
2119       break;
2120     }
2121   } while (type->isVariablyModifiedType());
2122 }
2123 
2124 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2125   if (getContext().getBuiltinVaListType()->isArrayType())
2126     return EmitPointerWithAlignment(E);
2127   return EmitLValue(E).getAddress(*this);
2128 }
2129 
2130 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2131   return EmitLValue(E).getAddress(*this);
2132 }
2133 
2134 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2135                                               const APValue &Init) {
2136   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2137   if (CGDebugInfo *Dbg = getDebugInfo())
2138     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2139       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2140 }
2141 
2142 CodeGenFunction::PeepholeProtection
2143 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2144   // At the moment, the only aggressive peephole we do in IR gen
2145   // is trunc(zext) folding, but if we add more, we can easily
2146   // extend this protection.
2147 
2148   if (!rvalue.isScalar()) return PeepholeProtection();
2149   llvm::Value *value = rvalue.getScalarVal();
2150   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2151 
2152   // Just make an extra bitcast.
2153   assert(HaveInsertPoint());
2154   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2155                                                   Builder.GetInsertBlock());
2156 
2157   PeepholeProtection protection;
2158   protection.Inst = inst;
2159   return protection;
2160 }
2161 
2162 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2163   if (!protection.Inst) return;
2164 
2165   // In theory, we could try to duplicate the peepholes now, but whatever.
2166   protection.Inst->eraseFromParent();
2167 }
2168 
2169 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2170                                               QualType Ty, SourceLocation Loc,
2171                                               SourceLocation AssumptionLoc,
2172                                               llvm::Value *Alignment,
2173                                               llvm::Value *OffsetValue) {
2174   llvm::Value *TheCheck;
2175   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2176       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2177   if (SanOpts.has(SanitizerKind::Alignment)) {
2178     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2179                                  OffsetValue, TheCheck, Assumption);
2180   }
2181 }
2182 
2183 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2184                                               const Expr *E,
2185                                               SourceLocation AssumptionLoc,
2186                                               llvm::Value *Alignment,
2187                                               llvm::Value *OffsetValue) {
2188   if (auto *CE = dyn_cast<CastExpr>(E))
2189     E = CE->getSubExprAsWritten();
2190   QualType Ty = E->getType();
2191   SourceLocation Loc = E->getExprLoc();
2192 
2193   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2194                           OffsetValue);
2195 }
2196 
2197 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2198                                                  llvm::Value *AnnotatedVal,
2199                                                  StringRef AnnotationStr,
2200                                                  SourceLocation Location) {
2201   llvm::Value *Args[4] = {
2202     AnnotatedVal,
2203     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2204     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2205     CGM.EmitAnnotationLineNo(Location)
2206   };
2207   return Builder.CreateCall(AnnotationFn, Args);
2208 }
2209 
2210 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2211   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2212   // FIXME We create a new bitcast for every annotation because that's what
2213   // llvm-gcc was doing.
2214   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2215     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2216                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2217                        I->getAnnotation(), D->getLocation());
2218 }
2219 
2220 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2221                                               Address Addr) {
2222   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2223   llvm::Value *V = Addr.getPointer();
2224   llvm::Type *VTy = V->getType();
2225   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2226                                     CGM.Int8PtrTy);
2227 
2228   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2229     // FIXME Always emit the cast inst so we can differentiate between
2230     // annotation on the first field of a struct and annotation on the struct
2231     // itself.
2232     if (VTy != CGM.Int8PtrTy)
2233       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2234     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2235     V = Builder.CreateBitCast(V, VTy);
2236   }
2237 
2238   return Address(V, Addr.getAlignment());
2239 }
2240 
2241 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2242 
2243 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2244     : CGF(CGF) {
2245   assert(!CGF->IsSanitizerScope);
2246   CGF->IsSanitizerScope = true;
2247 }
2248 
2249 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2250   CGF->IsSanitizerScope = false;
2251 }
2252 
2253 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2254                                    const llvm::Twine &Name,
2255                                    llvm::BasicBlock *BB,
2256                                    llvm::BasicBlock::iterator InsertPt) const {
2257   LoopStack.InsertHelper(I);
2258   if (IsSanitizerScope)
2259     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2260 }
2261 
2262 void CGBuilderInserter::InsertHelper(
2263     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2264     llvm::BasicBlock::iterator InsertPt) const {
2265   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2266   if (CGF)
2267     CGF->InsertHelper(I, Name, BB, InsertPt);
2268 }
2269 
2270 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2271                                 CodeGenModule &CGM, const FunctionDecl *FD,
2272                                 std::string &FirstMissing) {
2273   // If there aren't any required features listed then go ahead and return.
2274   if (ReqFeatures.empty())
2275     return false;
2276 
2277   // Now build up the set of caller features and verify that all the required
2278   // features are there.
2279   llvm::StringMap<bool> CallerFeatureMap;
2280   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2281 
2282   // If we have at least one of the features in the feature list return
2283   // true, otherwise return false.
2284   return std::all_of(
2285       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2286         SmallVector<StringRef, 1> OrFeatures;
2287         Feature.split(OrFeatures, '|');
2288         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2289           if (!CallerFeatureMap.lookup(Feature)) {
2290             FirstMissing = Feature.str();
2291             return false;
2292           }
2293           return true;
2294         });
2295       });
2296 }
2297 
2298 // Emits an error if we don't have a valid set of target features for the
2299 // called function.
2300 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2301                                           const FunctionDecl *TargetDecl) {
2302   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2303 }
2304 
2305 // Emits an error if we don't have a valid set of target features for the
2306 // called function.
2307 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2308                                           const FunctionDecl *TargetDecl) {
2309   // Early exit if this is an indirect call.
2310   if (!TargetDecl)
2311     return;
2312 
2313   // Get the current enclosing function if it exists. If it doesn't
2314   // we can't check the target features anyhow.
2315   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2316   if (!FD)
2317     return;
2318 
2319   // Grab the required features for the call. For a builtin this is listed in
2320   // the td file with the default cpu, for an always_inline function this is any
2321   // listed cpu and any listed features.
2322   unsigned BuiltinID = TargetDecl->getBuiltinID();
2323   std::string MissingFeature;
2324   if (BuiltinID) {
2325     SmallVector<StringRef, 1> ReqFeatures;
2326     const char *FeatureList =
2327         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2328     // Return if the builtin doesn't have any required features.
2329     if (!FeatureList || StringRef(FeatureList) == "")
2330       return;
2331     StringRef(FeatureList).split(ReqFeatures, ',');
2332     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2333       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2334           << TargetDecl->getDeclName()
2335           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2336 
2337   } else if (!TargetDecl->isMultiVersion() &&
2338              TargetDecl->hasAttr<TargetAttr>()) {
2339     // Get the required features for the callee.
2340 
2341     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2342     ParsedTargetAttr ParsedAttr =
2343         CGM.getContext().filterFunctionTargetAttrs(TD);
2344 
2345     SmallVector<StringRef, 1> ReqFeatures;
2346     llvm::StringMap<bool> CalleeFeatureMap;
2347     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2348 
2349     for (const auto &F : ParsedAttr.Features) {
2350       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2351         ReqFeatures.push_back(StringRef(F).substr(1));
2352     }
2353 
2354     for (const auto &F : CalleeFeatureMap) {
2355       // Only positive features are "required".
2356       if (F.getValue())
2357         ReqFeatures.push_back(F.getKey());
2358     }
2359     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2360       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2361           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2362   }
2363 }
2364 
2365 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2366   if (!CGM.getCodeGenOpts().SanitizeStats)
2367     return;
2368 
2369   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2370   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2371   CGM.getSanStats().create(IRB, SSK);
2372 }
2373 
2374 llvm::Value *
2375 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2376   llvm::Value *Condition = nullptr;
2377 
2378   if (!RO.Conditions.Architecture.empty())
2379     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2380 
2381   if (!RO.Conditions.Features.empty()) {
2382     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2383     Condition =
2384         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2385   }
2386   return Condition;
2387 }
2388 
2389 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2390                                              llvm::Function *Resolver,
2391                                              CGBuilderTy &Builder,
2392                                              llvm::Function *FuncToReturn,
2393                                              bool SupportsIFunc) {
2394   if (SupportsIFunc) {
2395     Builder.CreateRet(FuncToReturn);
2396     return;
2397   }
2398 
2399   llvm::SmallVector<llvm::Value *, 10> Args;
2400   llvm::for_each(Resolver->args(),
2401                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2402 
2403   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2404   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2405 
2406   if (Resolver->getReturnType()->isVoidTy())
2407     Builder.CreateRetVoid();
2408   else
2409     Builder.CreateRet(Result);
2410 }
2411 
2412 void CodeGenFunction::EmitMultiVersionResolver(
2413     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2414   assert(getContext().getTargetInfo().getTriple().isX86() &&
2415          "Only implemented for x86 targets");
2416 
2417   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2418 
2419   // Main function's basic block.
2420   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2421   Builder.SetInsertPoint(CurBlock);
2422   EmitX86CpuInit();
2423 
2424   for (const MultiVersionResolverOption &RO : Options) {
2425     Builder.SetInsertPoint(CurBlock);
2426     llvm::Value *Condition = FormResolverCondition(RO);
2427 
2428     // The 'default' or 'generic' case.
2429     if (!Condition) {
2430       assert(&RO == Options.end() - 1 &&
2431              "Default or Generic case must be last");
2432       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2433                                        SupportsIFunc);
2434       return;
2435     }
2436 
2437     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2438     CGBuilderTy RetBuilder(*this, RetBlock);
2439     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2440                                      SupportsIFunc);
2441     CurBlock = createBasicBlock("resolver_else", Resolver);
2442     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2443   }
2444 
2445   // If no generic/default, emit an unreachable.
2446   Builder.SetInsertPoint(CurBlock);
2447   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2448   TrapCall->setDoesNotReturn();
2449   TrapCall->setDoesNotThrow();
2450   Builder.CreateUnreachable();
2451   Builder.ClearInsertionPoint();
2452 }
2453 
2454 // Loc - where the diagnostic will point, where in the source code this
2455 //  alignment has failed.
2456 // SecondaryLoc - if present (will be present if sufficiently different from
2457 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2458 //  It should be the location where the __attribute__((assume_aligned))
2459 //  was written e.g.
2460 void CodeGenFunction::emitAlignmentAssumptionCheck(
2461     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2462     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2463     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2464     llvm::Instruction *Assumption) {
2465   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2466          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2467              llvm::Intrinsic::getDeclaration(
2468                  Builder.GetInsertBlock()->getParent()->getParent(),
2469                  llvm::Intrinsic::assume) &&
2470          "Assumption should be a call to llvm.assume().");
2471   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2472          "Assumption should be the last instruction of the basic block, "
2473          "since the basic block is still being generated.");
2474 
2475   if (!SanOpts.has(SanitizerKind::Alignment))
2476     return;
2477 
2478   // Don't check pointers to volatile data. The behavior here is implementation-
2479   // defined.
2480   if (Ty->getPointeeType().isVolatileQualified())
2481     return;
2482 
2483   // We need to temorairly remove the assumption so we can insert the
2484   // sanitizer check before it, else the check will be dropped by optimizations.
2485   Assumption->removeFromParent();
2486 
2487   {
2488     SanitizerScope SanScope(this);
2489 
2490     if (!OffsetValue)
2491       OffsetValue = Builder.getInt1(0); // no offset.
2492 
2493     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2494                                     EmitCheckSourceLocation(SecondaryLoc),
2495                                     EmitCheckTypeDescriptor(Ty)};
2496     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2497                                   EmitCheckValue(Alignment),
2498                                   EmitCheckValue(OffsetValue)};
2499     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2500               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2501   }
2502 
2503   // We are now in the (new, empty) "cont" basic block.
2504   // Reintroduce the assumption.
2505   Builder.Insert(Assumption);
2506   // FIXME: Assumption still has it's original basic block as it's Parent.
2507 }
2508 
2509 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2510   if (CGDebugInfo *DI = getDebugInfo())
2511     return DI->SourceLocToDebugLoc(Location);
2512 
2513   return llvm::DebugLoc();
2514 }
2515