1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39               CGBuilderInserterTy(this)),
40       CurFn(nullptr), CapturedStmtInfo(nullptr),
41       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
42       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
43       BlockInfo(nullptr), BlockPointer(nullptr),
44       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
45       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
46       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
47       AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr),
48       DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
49       DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
50       SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
51       UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
52       CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
53       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
54       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
55       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
56       TerminateHandler(nullptr), TrapBB(nullptr) {
57   if (!suppressNewContext)
58     CGM.getCXXABI().getMangleContext().startNewFunction();
59 
60   llvm::FastMathFlags FMF;
61   if (CGM.getLangOpts().FastMath)
62     FMF.setUnsafeAlgebra();
63   if (CGM.getLangOpts().FiniteMathOnly) {
64     FMF.setNoNaNs();
65     FMF.setNoInfs();
66   }
67   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
68     FMF.setNoNaNs();
69   }
70   if (CGM.getCodeGenOpts().NoSignedZeros) {
71     FMF.setNoSignedZeros();
72   }
73   Builder.SetFastMathFlags(FMF);
74 }
75 
76 CodeGenFunction::~CodeGenFunction() {
77   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
78 
79   // If there are any unclaimed block infos, go ahead and destroy them
80   // now.  This can happen if IR-gen gets clever and skips evaluating
81   // something.
82   if (FirstBlockInfo)
83     destroyBlockInfos(FirstBlockInfo);
84 
85   if (getLangOpts().OpenMP) {
86     CGM.getOpenMPRuntime().FunctionFinished(*this);
87   }
88 }
89 
90 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
91   CharUnits Alignment;
92   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
93     Alignment = getContext().getTypeAlignInChars(T);
94     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
95     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
96         !getContext().isAlignmentRequired(T))
97       Alignment = CharUnits::fromQuantity(MaxAlign);
98   }
99   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
100 }
101 
102 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
103   return CGM.getTypes().ConvertTypeForMem(T);
104 }
105 
106 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
107   return CGM.getTypes().ConvertType(T);
108 }
109 
110 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
111   type = type.getCanonicalType();
112   while (true) {
113     switch (type->getTypeClass()) {
114 #define TYPE(name, parent)
115 #define ABSTRACT_TYPE(name, parent)
116 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
117 #define DEPENDENT_TYPE(name, parent) case Type::name:
118 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
119 #include "clang/AST/TypeNodes.def"
120       llvm_unreachable("non-canonical or dependent type in IR-generation");
121 
122     case Type::Auto:
123       llvm_unreachable("undeduced auto type in IR-generation");
124 
125     // Various scalar types.
126     case Type::Builtin:
127     case Type::Pointer:
128     case Type::BlockPointer:
129     case Type::LValueReference:
130     case Type::RValueReference:
131     case Type::MemberPointer:
132     case Type::Vector:
133     case Type::ExtVector:
134     case Type::FunctionProto:
135     case Type::FunctionNoProto:
136     case Type::Enum:
137     case Type::ObjCObjectPointer:
138       return TEK_Scalar;
139 
140     // Complexes.
141     case Type::Complex:
142       return TEK_Complex;
143 
144     // Arrays, records, and Objective-C objects.
145     case Type::ConstantArray:
146     case Type::IncompleteArray:
147     case Type::VariableArray:
148     case Type::Record:
149     case Type::ObjCObject:
150     case Type::ObjCInterface:
151       return TEK_Aggregate;
152 
153     // We operate on atomic values according to their underlying type.
154     case Type::Atomic:
155       type = cast<AtomicType>(type)->getValueType();
156       continue;
157     }
158     llvm_unreachable("unknown type kind!");
159   }
160 }
161 
162 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
163   // For cleanliness, we try to avoid emitting the return block for
164   // simple cases.
165   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
166 
167   if (CurBB) {
168     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
169 
170     // We have a valid insert point, reuse it if it is empty or there are no
171     // explicit jumps to the return block.
172     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
173       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
174       delete ReturnBlock.getBlock();
175     } else
176       EmitBlock(ReturnBlock.getBlock());
177     return llvm::DebugLoc();
178   }
179 
180   // Otherwise, if the return block is the target of a single direct
181   // branch then we can just put the code in that block instead. This
182   // cleans up functions which started with a unified return block.
183   if (ReturnBlock.getBlock()->hasOneUse()) {
184     llvm::BranchInst *BI =
185       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
186     if (BI && BI->isUnconditional() &&
187         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
188       // Record/return the DebugLoc of the simple 'return' expression to be used
189       // later by the actual 'ret' instruction.
190       llvm::DebugLoc Loc = BI->getDebugLoc();
191       Builder.SetInsertPoint(BI->getParent());
192       BI->eraseFromParent();
193       delete ReturnBlock.getBlock();
194       return Loc;
195     }
196   }
197 
198   // FIXME: We are at an unreachable point, there is no reason to emit the block
199   // unless it has uses. However, we still need a place to put the debug
200   // region.end for now.
201 
202   EmitBlock(ReturnBlock.getBlock());
203   return llvm::DebugLoc();
204 }
205 
206 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
207   if (!BB) return;
208   if (!BB->use_empty())
209     return CGF.CurFn->getBasicBlockList().push_back(BB);
210   delete BB;
211 }
212 
213 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
214   assert(BreakContinueStack.empty() &&
215          "mismatched push/pop in break/continue stack!");
216 
217   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
218     && NumSimpleReturnExprs == NumReturnExprs
219     && ReturnBlock.getBlock()->use_empty();
220   // Usually the return expression is evaluated before the cleanup
221   // code.  If the function contains only a simple return statement,
222   // such as a constant, the location before the cleanup code becomes
223   // the last useful breakpoint in the function, because the simple
224   // return expression will be evaluated after the cleanup code. To be
225   // safe, set the debug location for cleanup code to the location of
226   // the return statement.  Otherwise the cleanup code should be at the
227   // end of the function's lexical scope.
228   //
229   // If there are multiple branches to the return block, the branch
230   // instructions will get the location of the return statements and
231   // all will be fine.
232   if (CGDebugInfo *DI = getDebugInfo()) {
233     if (OnlySimpleReturnStmts)
234       DI->EmitLocation(Builder, LastStopPoint);
235     else
236       DI->EmitLocation(Builder, EndLoc);
237   }
238 
239   // Pop any cleanups that might have been associated with the
240   // parameters.  Do this in whatever block we're currently in; it's
241   // important to do this before we enter the return block or return
242   // edges will be *really* confused.
243   bool EmitRetDbgLoc = true;
244   if (EHStack.stable_begin() != PrologueCleanupDepth) {
245     // Make sure the line table doesn't jump back into the body for
246     // the ret after it's been at EndLoc.
247     EmitRetDbgLoc = false;
248 
249     if (CGDebugInfo *DI = getDebugInfo())
250       if (OnlySimpleReturnStmts)
251         DI->EmitLocation(Builder, EndLoc);
252 
253     PopCleanupBlocks(PrologueCleanupDepth);
254   }
255 
256   // Emit function epilog (to return).
257   llvm::DebugLoc Loc = EmitReturnBlock();
258 
259   if (ShouldInstrumentFunction())
260     EmitFunctionInstrumentation("__cyg_profile_func_exit");
261 
262   // Emit debug descriptor for function end.
263   if (CGDebugInfo *DI = getDebugInfo())
264     DI->EmitFunctionEnd(Builder);
265 
266   // Reset the debug location to that of the simple 'return' expression, if any
267   // rather than that of the end of the function's scope '}'.
268   ApplyDebugLocation AL(*this, Loc);
269   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
270   EmitEndEHSpec(CurCodeDecl);
271 
272   assert(EHStack.empty() &&
273          "did not remove all scopes from cleanup stack!");
274 
275   // If someone did an indirect goto, emit the indirect goto block at the end of
276   // the function.
277   if (IndirectBranch) {
278     EmitBlock(IndirectBranch->getParent());
279     Builder.ClearInsertionPoint();
280   }
281 
282   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
283   llvm::Instruction *Ptr = AllocaInsertPt;
284   AllocaInsertPt = nullptr;
285   Ptr->eraseFromParent();
286 
287   // If someone took the address of a label but never did an indirect goto, we
288   // made a zero entry PHI node, which is illegal, zap it now.
289   if (IndirectBranch) {
290     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
291     if (PN->getNumIncomingValues() == 0) {
292       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
293       PN->eraseFromParent();
294     }
295   }
296 
297   EmitIfUsed(*this, EHResumeBlock);
298   EmitIfUsed(*this, TerminateLandingPad);
299   EmitIfUsed(*this, TerminateHandler);
300   EmitIfUsed(*this, UnreachableBlock);
301 
302   if (CGM.getCodeGenOpts().EmitDeclMetadata)
303     EmitDeclMetadata();
304 
305   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
306            I = DeferredReplacements.begin(),
307            E = DeferredReplacements.end();
308        I != E; ++I) {
309     I->first->replaceAllUsesWith(I->second);
310     I->first->eraseFromParent();
311   }
312 }
313 
314 /// ShouldInstrumentFunction - Return true if the current function should be
315 /// instrumented with __cyg_profile_func_* calls
316 bool CodeGenFunction::ShouldInstrumentFunction() {
317   if (!CGM.getCodeGenOpts().InstrumentFunctions)
318     return false;
319   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
320     return false;
321   return true;
322 }
323 
324 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
325 /// instrumentation function with the current function and the call site, if
326 /// function instrumentation is enabled.
327 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
328   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
329   llvm::PointerType *PointerTy = Int8PtrTy;
330   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
331   llvm::FunctionType *FunctionTy =
332     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
333 
334   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
335   llvm::CallInst *CallSite = Builder.CreateCall(
336     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
337     llvm::ConstantInt::get(Int32Ty, 0),
338     "callsite");
339 
340   llvm::Value *args[] = {
341     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
342     CallSite
343   };
344 
345   EmitNounwindRuntimeCall(F, args);
346 }
347 
348 void CodeGenFunction::EmitMCountInstrumentation() {
349   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
350 
351   llvm::Constant *MCountFn =
352     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
353   EmitNounwindRuntimeCall(MCountFn);
354 }
355 
356 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
357 // information in the program executable. The argument information stored
358 // includes the argument name, its type, the address and access qualifiers used.
359 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
360                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
361                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
362                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
363   // Create MDNodes that represent the kernel arg metadata.
364   // Each MDNode is a list in the form of "key", N number of values which is
365   // the same number of values as their are kernel arguments.
366 
367   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
368 
369   // MDNode for the kernel argument address space qualifiers.
370   SmallVector<llvm::Metadata *, 8> addressQuals;
371   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
372 
373   // MDNode for the kernel argument access qualifiers (images only).
374   SmallVector<llvm::Metadata *, 8> accessQuals;
375   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
376 
377   // MDNode for the kernel argument type names.
378   SmallVector<llvm::Metadata *, 8> argTypeNames;
379   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
380 
381   // MDNode for the kernel argument base type names.
382   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
383   argBaseTypeNames.push_back(
384       llvm::MDString::get(Context, "kernel_arg_base_type"));
385 
386   // MDNode for the kernel argument type qualifiers.
387   SmallVector<llvm::Metadata *, 8> argTypeQuals;
388   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
389 
390   // MDNode for the kernel argument names.
391   SmallVector<llvm::Metadata *, 8> argNames;
392   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
393 
394   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
395     const ParmVarDecl *parm = FD->getParamDecl(i);
396     QualType ty = parm->getType();
397     std::string typeQuals;
398 
399     if (ty->isPointerType()) {
400       QualType pointeeTy = ty->getPointeeType();
401 
402       // Get address qualifier.
403       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
404           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
405 
406       // Get argument type name.
407       std::string typeName =
408           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
409 
410       // Turn "unsigned type" to "utype"
411       std::string::size_type pos = typeName.find("unsigned");
412       if (pointeeTy.isCanonical() && pos != std::string::npos)
413         typeName.erase(pos+1, 8);
414 
415       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
416 
417       std::string baseTypeName =
418           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
419               Policy) +
420           "*";
421 
422       // Turn "unsigned type" to "utype"
423       pos = baseTypeName.find("unsigned");
424       if (pos != std::string::npos)
425         baseTypeName.erase(pos+1, 8);
426 
427       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
428 
429       // Get argument type qualifiers:
430       if (ty.isRestrictQualified())
431         typeQuals = "restrict";
432       if (pointeeTy.isConstQualified() ||
433           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
434         typeQuals += typeQuals.empty() ? "const" : " const";
435       if (pointeeTy.isVolatileQualified())
436         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
437     } else {
438       uint32_t AddrSpc = 0;
439       if (ty->isImageType())
440         AddrSpc =
441           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
442 
443       addressQuals.push_back(
444           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
445 
446       // Get argument type name.
447       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
448 
449       // Turn "unsigned type" to "utype"
450       std::string::size_type pos = typeName.find("unsigned");
451       if (ty.isCanonical() && pos != std::string::npos)
452         typeName.erase(pos+1, 8);
453 
454       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
455 
456       std::string baseTypeName =
457           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
458 
459       // Turn "unsigned type" to "utype"
460       pos = baseTypeName.find("unsigned");
461       if (pos != std::string::npos)
462         baseTypeName.erase(pos+1, 8);
463 
464       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
465 
466       // Get argument type qualifiers:
467       if (ty.isConstQualified())
468         typeQuals = "const";
469       if (ty.isVolatileQualified())
470         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
471     }
472 
473     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
474 
475     // Get image access qualifier:
476     if (ty->isImageType()) {
477       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
478       if (A && A->isWriteOnly())
479         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
480       else
481         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
482       // FIXME: what about read_write?
483     } else
484       accessQuals.push_back(llvm::MDString::get(Context, "none"));
485 
486     // Get argument name.
487     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
488   }
489 
490   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
491   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
492   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
493   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
494   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
495   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
496     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
497 }
498 
499 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
500                                                llvm::Function *Fn)
501 {
502   if (!FD->hasAttr<OpenCLKernelAttr>())
503     return;
504 
505   llvm::LLVMContext &Context = getLLVMContext();
506 
507   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
508   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
509 
510   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
511                        getContext());
512 
513   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
514     QualType hintQTy = A->getTypeHint();
515     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
516     bool isSignedInteger =
517         hintQTy->isSignedIntegerType() ||
518         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
519     llvm::Metadata *attrMDArgs[] = {
520         llvm::MDString::get(Context, "vec_type_hint"),
521         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
522             CGM.getTypes().ConvertType(A->getTypeHint()))),
523         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
524             llvm::IntegerType::get(Context, 32),
525             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
526     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
527   }
528 
529   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
530     llvm::Metadata *attrMDArgs[] = {
531         llvm::MDString::get(Context, "work_group_size_hint"),
532         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
533         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
534         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
535     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
536   }
537 
538   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
539     llvm::Metadata *attrMDArgs[] = {
540         llvm::MDString::get(Context, "reqd_work_group_size"),
541         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
542         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
543         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
544     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
545   }
546 
547   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
548   llvm::NamedMDNode *OpenCLKernelMetadata =
549     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
550   OpenCLKernelMetadata->addOperand(kernelMDNode);
551 }
552 
553 /// Determine whether the function F ends with a return stmt.
554 static bool endsWithReturn(const Decl* F) {
555   const Stmt *Body = nullptr;
556   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
557     Body = FD->getBody();
558   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
559     Body = OMD->getBody();
560 
561   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
562     auto LastStmt = CS->body_rbegin();
563     if (LastStmt != CS->body_rend())
564       return isa<ReturnStmt>(*LastStmt);
565   }
566   return false;
567 }
568 
569 void CodeGenFunction::StartFunction(GlobalDecl GD,
570                                     QualType RetTy,
571                                     llvm::Function *Fn,
572                                     const CGFunctionInfo &FnInfo,
573                                     const FunctionArgList &Args,
574                                     SourceLocation Loc,
575                                     SourceLocation StartLoc) {
576   assert(!CurFn &&
577          "Do not use a CodeGenFunction object for more than one function");
578 
579   const Decl *D = GD.getDecl();
580 
581   DidCallStackSave = false;
582   CurCodeDecl = D;
583   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
584   FnRetTy = RetTy;
585   CurFn = Fn;
586   CurFnInfo = &FnInfo;
587   assert(CurFn->isDeclaration() && "Function already has body?");
588 
589   if (CGM.isInSanitizerBlacklist(Fn, Loc))
590     SanOpts.clear();
591 
592   // Pass inline keyword to optimizer if it appears explicitly on any
593   // declaration. Also, in the case of -fno-inline attach NoInline
594   // attribute to all function that are not marked AlwaysInline.
595   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
596     if (!CGM.getCodeGenOpts().NoInline) {
597       for (auto RI : FD->redecls())
598         if (RI->isInlineSpecified()) {
599           Fn->addFnAttr(llvm::Attribute::InlineHint);
600           break;
601         }
602     } else if (!FD->hasAttr<AlwaysInlineAttr>())
603       Fn->addFnAttr(llvm::Attribute::NoInline);
604   }
605 
606   if (getLangOpts().OpenCL) {
607     // Add metadata for a kernel function.
608     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
609       EmitOpenCLKernelMetadata(FD, Fn);
610   }
611 
612   // If we are checking function types, emit a function type signature as
613   // prologue data.
614   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
615     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
616       if (llvm::Constant *PrologueSig =
617               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
618         llvm::Constant *FTRTTIConst =
619             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
620         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
621         llvm::Constant *PrologueStructConst =
622             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
623         Fn->setPrologueData(PrologueStructConst);
624       }
625     }
626   }
627 
628   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
629 
630   // Create a marker to make it easy to insert allocas into the entryblock
631   // later.  Don't create this with the builder, because we don't want it
632   // folded.
633   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
634   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
635   if (Builder.isNamePreserving())
636     AllocaInsertPt->setName("allocapt");
637 
638   ReturnBlock = getJumpDestInCurrentScope("return");
639 
640   Builder.SetInsertPoint(EntryBB);
641 
642   // Emit subprogram debug descriptor.
643   if (CGDebugInfo *DI = getDebugInfo()) {
644     SmallVector<QualType, 16> ArgTypes;
645     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
646 	 i != e; ++i) {
647       ArgTypes.push_back((*i)->getType());
648     }
649 
650     QualType FnType =
651       getContext().getFunctionType(RetTy, ArgTypes,
652                                    FunctionProtoType::ExtProtoInfo());
653     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
654   }
655 
656   if (ShouldInstrumentFunction())
657     EmitFunctionInstrumentation("__cyg_profile_func_enter");
658 
659   if (CGM.getCodeGenOpts().InstrumentForProfiling)
660     EmitMCountInstrumentation();
661 
662   if (RetTy->isVoidType()) {
663     // Void type; nothing to return.
664     ReturnValue = nullptr;
665 
666     // Count the implicit return.
667     if (!endsWithReturn(D))
668       ++NumReturnExprs;
669   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
670              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
671     // Indirect aggregate return; emit returned value directly into sret slot.
672     // This reduces code size, and affects correctness in C++.
673     auto AI = CurFn->arg_begin();
674     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
675       ++AI;
676     ReturnValue = AI;
677   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
678              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
679     // Load the sret pointer from the argument struct and return into that.
680     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
681     llvm::Function::arg_iterator EI = CurFn->arg_end();
682     --EI;
683     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
684     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
685   } else {
686     ReturnValue = CreateIRTemp(RetTy, "retval");
687 
688     // Tell the epilog emitter to autorelease the result.  We do this
689     // now so that various specialized functions can suppress it
690     // during their IR-generation.
691     if (getLangOpts().ObjCAutoRefCount &&
692         !CurFnInfo->isReturnsRetained() &&
693         RetTy->isObjCRetainableType())
694       AutoreleaseResult = true;
695   }
696 
697   EmitStartEHSpec(CurCodeDecl);
698 
699   PrologueCleanupDepth = EHStack.stable_begin();
700   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
701 
702   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
703     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
704     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
705     if (MD->getParent()->isLambda() &&
706         MD->getOverloadedOperator() == OO_Call) {
707       // We're in a lambda; figure out the captures.
708       MD->getParent()->getCaptureFields(LambdaCaptureFields,
709                                         LambdaThisCaptureField);
710       if (LambdaThisCaptureField) {
711         // If this lambda captures this, load it.
712         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
713         CXXThisValue = EmitLoadOfLValue(ThisLValue,
714                                         SourceLocation()).getScalarVal();
715       }
716       for (auto *FD : MD->getParent()->fields()) {
717         if (FD->hasCapturedVLAType()) {
718           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
719                                            SourceLocation()).getScalarVal();
720           auto VAT = FD->getCapturedVLAType();
721           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
722         }
723       }
724     } else {
725       // Not in a lambda; just use 'this' from the method.
726       // FIXME: Should we generate a new load for each use of 'this'?  The
727       // fast register allocator would be happier...
728       CXXThisValue = CXXABIThisValue;
729     }
730   }
731 
732   // If any of the arguments have a variably modified type, make sure to
733   // emit the type size.
734   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
735        i != e; ++i) {
736     const VarDecl *VD = *i;
737 
738     // Dig out the type as written from ParmVarDecls; it's unclear whether
739     // the standard (C99 6.9.1p10) requires this, but we're following the
740     // precedent set by gcc.
741     QualType Ty;
742     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
743       Ty = PVD->getOriginalType();
744     else
745       Ty = VD->getType();
746 
747     if (Ty->isVariablyModifiedType())
748       EmitVariablyModifiedType(Ty);
749   }
750   // Emit a location at the end of the prologue.
751   if (CGDebugInfo *DI = getDebugInfo())
752     DI->EmitLocation(Builder, StartLoc);
753 }
754 
755 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
756                                        const Stmt *Body) {
757   RegionCounter Cnt = getPGORegionCounter(Body);
758   Cnt.beginRegion(Builder);
759   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
760     EmitCompoundStmtWithoutScope(*S);
761   else
762     EmitStmt(Body);
763 }
764 
765 /// When instrumenting to collect profile data, the counts for some blocks
766 /// such as switch cases need to not include the fall-through counts, so
767 /// emit a branch around the instrumentation code. When not instrumenting,
768 /// this just calls EmitBlock().
769 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
770                                                RegionCounter &Cnt) {
771   llvm::BasicBlock *SkipCountBB = nullptr;
772   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
773     // When instrumenting for profiling, the fallthrough to certain
774     // statements needs to skip over the instrumentation code so that we
775     // get an accurate count.
776     SkipCountBB = createBasicBlock("skipcount");
777     EmitBranch(SkipCountBB);
778   }
779   EmitBlock(BB);
780   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
781   if (SkipCountBB)
782     EmitBlock(SkipCountBB);
783 }
784 
785 /// Tries to mark the given function nounwind based on the
786 /// non-existence of any throwing calls within it.  We believe this is
787 /// lightweight enough to do at -O0.
788 static void TryMarkNoThrow(llvm::Function *F) {
789   // LLVM treats 'nounwind' on a function as part of the type, so we
790   // can't do this on functions that can be overwritten.
791   if (F->mayBeOverridden()) return;
792 
793   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
794     for (llvm::BasicBlock::iterator
795            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
796       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
797         if (!Call->doesNotThrow())
798           return;
799       } else if (isa<llvm::ResumeInst>(&*BI)) {
800         return;
801       }
802   F->setDoesNotThrow();
803 }
804 
805 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
806                                           const FunctionDecl *UnsizedDealloc) {
807   // This is a weak discardable definition of the sized deallocation function.
808   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
809   CGF.CurFn->setComdat(
810       CGF.CGM.getModule().getOrInsertComdat(CGF.CurFn->getName()));
811 
812   // Call the unsized deallocation function and forward the first argument
813   // unchanged.
814   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
815   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
816 }
817 
818 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
819                                    const CGFunctionInfo &FnInfo) {
820   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
821 
822   // Check if we should generate debug info for this function.
823   if (FD->hasAttr<NoDebugAttr>())
824     DebugInfo = nullptr; // disable debug info indefinitely for this function
825 
826   FunctionArgList Args;
827   QualType ResTy = FD->getReturnType();
828 
829   CurGD = GD;
830   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
831   if (MD && MD->isInstance()) {
832     if (CGM.getCXXABI().HasThisReturn(GD))
833       ResTy = MD->getThisType(getContext());
834     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
835       ResTy = CGM.getContext().VoidPtrTy;
836     CGM.getCXXABI().buildThisParam(*this, Args);
837   }
838 
839   Args.append(FD->param_begin(), FD->param_end());
840 
841   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
842     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
843 
844   SourceRange BodyRange;
845   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
846   CurEHLocation = BodyRange.getEnd();
847 
848   // Use the location of the start of the function to determine where
849   // the function definition is located. By default use the location
850   // of the declaration as the location for the subprogram. A function
851   // may lack a declaration in the source code if it is created by code
852   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
853   SourceLocation Loc = FD->getLocation();
854 
855   // If this is a function specialization then use the pattern body
856   // as the location for the function.
857   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
858     if (SpecDecl->hasBody(SpecDecl))
859       Loc = SpecDecl->getLocation();
860 
861   // Emit the standard function prologue.
862   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
863 
864   // Generate the body of the function.
865   PGO.checkGlobalDecl(GD);
866   PGO.assignRegionCounters(GD.getDecl(), CurFn);
867   if (isa<CXXDestructorDecl>(FD))
868     EmitDestructorBody(Args);
869   else if (isa<CXXConstructorDecl>(FD))
870     EmitConstructorBody(Args);
871   else if (getLangOpts().CUDA &&
872            !CGM.getCodeGenOpts().CUDAIsDevice &&
873            FD->hasAttr<CUDAGlobalAttr>())
874     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
875   else if (isa<CXXConversionDecl>(FD) &&
876            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
877     // The lambda conversion to block pointer is special; the semantics can't be
878     // expressed in the AST, so IRGen needs to special-case it.
879     EmitLambdaToBlockPointerBody(Args);
880   } else if (isa<CXXMethodDecl>(FD) &&
881              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
882     // The lambda static invoker function is special, because it forwards or
883     // clones the body of the function call operator (but is actually static).
884     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
885   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
886              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
887               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
888     // Implicit copy-assignment gets the same special treatment as implicit
889     // copy-constructors.
890     emitImplicitAssignmentOperatorBody(Args);
891   } else if (Stmt *Body = FD->getBody()) {
892     EmitFunctionBody(Args, Body);
893   } else if (FunctionDecl *UnsizedDealloc =
894                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
895     // Global sized deallocation functions get an implicit weak definition if
896     // they don't have an explicit definition, if allowed.
897     assert(getLangOpts().DefineSizedDeallocation &&
898            "Can't emit unallowed definition.");
899     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
900 
901   } else
902     llvm_unreachable("no definition for emitted function");
903 
904   // C++11 [stmt.return]p2:
905   //   Flowing off the end of a function [...] results in undefined behavior in
906   //   a value-returning function.
907   // C11 6.9.1p12:
908   //   If the '}' that terminates a function is reached, and the value of the
909   //   function call is used by the caller, the behavior is undefined.
910   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
911       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
912     if (SanOpts.has(SanitizerKind::Return)) {
913       SanitizerScope SanScope(this);
914       llvm::Value *IsFalse = Builder.getFalse();
915       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
916                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
917                 None);
918     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
919       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
920     Builder.CreateUnreachable();
921     Builder.ClearInsertionPoint();
922   }
923 
924   // Emit the standard function epilogue.
925   FinishFunction(BodyRange.getEnd());
926 
927   // If we haven't marked the function nothrow through other means, do
928   // a quick pass now to see if we can.
929   if (!CurFn->doesNotThrow())
930     TryMarkNoThrow(CurFn);
931 }
932 
933 /// ContainsLabel - Return true if the statement contains a label in it.  If
934 /// this statement is not executed normally, it not containing a label means
935 /// that we can just remove the code.
936 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
937   // Null statement, not a label!
938   if (!S) return false;
939 
940   // If this is a label, we have to emit the code, consider something like:
941   // if (0) {  ...  foo:  bar(); }  goto foo;
942   //
943   // TODO: If anyone cared, we could track __label__'s, since we know that you
944   // can't jump to one from outside their declared region.
945   if (isa<LabelStmt>(S))
946     return true;
947 
948   // If this is a case/default statement, and we haven't seen a switch, we have
949   // to emit the code.
950   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
951     return true;
952 
953   // If this is a switch statement, we want to ignore cases below it.
954   if (isa<SwitchStmt>(S))
955     IgnoreCaseStmts = true;
956 
957   // Scan subexpressions for verboten labels.
958   for (Stmt::const_child_range I = S->children(); I; ++I)
959     if (ContainsLabel(*I, IgnoreCaseStmts))
960       return true;
961 
962   return false;
963 }
964 
965 /// containsBreak - Return true if the statement contains a break out of it.
966 /// If the statement (recursively) contains a switch or loop with a break
967 /// inside of it, this is fine.
968 bool CodeGenFunction::containsBreak(const Stmt *S) {
969   // Null statement, not a label!
970   if (!S) return false;
971 
972   // If this is a switch or loop that defines its own break scope, then we can
973   // include it and anything inside of it.
974   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
975       isa<ForStmt>(S))
976     return false;
977 
978   if (isa<BreakStmt>(S))
979     return true;
980 
981   // Scan subexpressions for verboten breaks.
982   for (Stmt::const_child_range I = S->children(); I; ++I)
983     if (containsBreak(*I))
984       return true;
985 
986   return false;
987 }
988 
989 
990 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
991 /// to a constant, or if it does but contains a label, return false.  If it
992 /// constant folds return true and set the boolean result in Result.
993 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
994                                                    bool &ResultBool) {
995   llvm::APSInt ResultInt;
996   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
997     return false;
998 
999   ResultBool = ResultInt.getBoolValue();
1000   return true;
1001 }
1002 
1003 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1004 /// to a constant, or if it does but contains a label, return false.  If it
1005 /// constant folds return true and set the folded value.
1006 bool CodeGenFunction::
1007 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1008   // FIXME: Rename and handle conversion of other evaluatable things
1009   // to bool.
1010   llvm::APSInt Int;
1011   if (!Cond->EvaluateAsInt(Int, getContext()))
1012     return false;  // Not foldable, not integer or not fully evaluatable.
1013 
1014   if (CodeGenFunction::ContainsLabel(Cond))
1015     return false;  // Contains a label.
1016 
1017   ResultInt = Int;
1018   return true;
1019 }
1020 
1021 
1022 
1023 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1024 /// statement) to the specified blocks.  Based on the condition, this might try
1025 /// to simplify the codegen of the conditional based on the branch.
1026 ///
1027 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1028                                            llvm::BasicBlock *TrueBlock,
1029                                            llvm::BasicBlock *FalseBlock,
1030                                            uint64_t TrueCount) {
1031   Cond = Cond->IgnoreParens();
1032 
1033   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1034 
1035     // Handle X && Y in a condition.
1036     if (CondBOp->getOpcode() == BO_LAnd) {
1037       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1038 
1039       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1040       // folded if the case was simple enough.
1041       bool ConstantBool = false;
1042       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1043           ConstantBool) {
1044         // br(1 && X) -> br(X).
1045         Cnt.beginRegion(Builder);
1046         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1047                                     TrueCount);
1048       }
1049 
1050       // If we have "X && 1", simplify the code to use an uncond branch.
1051       // "X && 0" would have been constant folded to 0.
1052       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1053           ConstantBool) {
1054         // br(X && 1) -> br(X).
1055         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1056                                     TrueCount);
1057       }
1058 
1059       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1060       // want to jump to the FalseBlock.
1061       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1062       // The counter tells us how often we evaluate RHS, and all of TrueCount
1063       // can be propagated to that branch.
1064       uint64_t RHSCount = Cnt.getCount();
1065 
1066       ConditionalEvaluation eval(*this);
1067       {
1068         ApplyDebugLocation DL(*this, Cond);
1069         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1070         EmitBlock(LHSTrue);
1071       }
1072 
1073       // Any temporaries created here are conditional.
1074       Cnt.beginRegion(Builder);
1075       eval.begin(*this);
1076       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1077       eval.end(*this);
1078 
1079       return;
1080     }
1081 
1082     if (CondBOp->getOpcode() == BO_LOr) {
1083       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1084 
1085       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1086       // folded if the case was simple enough.
1087       bool ConstantBool = false;
1088       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1089           !ConstantBool) {
1090         // br(0 || X) -> br(X).
1091         Cnt.beginRegion(Builder);
1092         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1093                                     TrueCount);
1094       }
1095 
1096       // If we have "X || 0", simplify the code to use an uncond branch.
1097       // "X || 1" would have been constant folded to 1.
1098       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1099           !ConstantBool) {
1100         // br(X || 0) -> br(X).
1101         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1102                                     TrueCount);
1103       }
1104 
1105       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1106       // want to jump to the TrueBlock.
1107       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1108       // We have the count for entry to the RHS and for the whole expression
1109       // being true, so we can divy up True count between the short circuit and
1110       // the RHS.
1111       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1112       uint64_t RHSCount = TrueCount - LHSCount;
1113 
1114       ConditionalEvaluation eval(*this);
1115       {
1116         ApplyDebugLocation DL(*this, Cond);
1117         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1118         EmitBlock(LHSFalse);
1119       }
1120 
1121       // Any temporaries created here are conditional.
1122       Cnt.beginRegion(Builder);
1123       eval.begin(*this);
1124       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1125 
1126       eval.end(*this);
1127 
1128       return;
1129     }
1130   }
1131 
1132   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1133     // br(!x, t, f) -> br(x, f, t)
1134     if (CondUOp->getOpcode() == UO_LNot) {
1135       // Negate the count.
1136       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1137       // Negate the condition and swap the destination blocks.
1138       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1139                                   FalseCount);
1140     }
1141   }
1142 
1143   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1144     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1145     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1146     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1147 
1148     RegionCounter Cnt = getPGORegionCounter(CondOp);
1149     ConditionalEvaluation cond(*this);
1150     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1151 
1152     // When computing PGO branch weights, we only know the overall count for
1153     // the true block. This code is essentially doing tail duplication of the
1154     // naive code-gen, introducing new edges for which counts are not
1155     // available. Divide the counts proportionally between the LHS and RHS of
1156     // the conditional operator.
1157     uint64_t LHSScaledTrueCount = 0;
1158     if (TrueCount) {
1159       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1160       LHSScaledTrueCount = TrueCount * LHSRatio;
1161     }
1162 
1163     cond.begin(*this);
1164     EmitBlock(LHSBlock);
1165     Cnt.beginRegion(Builder);
1166     {
1167       ApplyDebugLocation DL(*this, Cond);
1168       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1169                            LHSScaledTrueCount);
1170     }
1171     cond.end(*this);
1172 
1173     cond.begin(*this);
1174     EmitBlock(RHSBlock);
1175     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1176                          TrueCount - LHSScaledTrueCount);
1177     cond.end(*this);
1178 
1179     return;
1180   }
1181 
1182   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1183     // Conditional operator handling can give us a throw expression as a
1184     // condition for a case like:
1185     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1186     // Fold this to:
1187     //   br(c, throw x, br(y, t, f))
1188     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1189     return;
1190   }
1191 
1192   // Create branch weights based on the number of times we get here and the
1193   // number of times the condition should be true.
1194   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1195   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1196                                                   CurrentCount - TrueCount);
1197 
1198   // Emit the code with the fully general case.
1199   llvm::Value *CondV;
1200   {
1201     ApplyDebugLocation DL(*this, Cond);
1202     CondV = EvaluateExprAsBool(Cond);
1203   }
1204   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1205 }
1206 
1207 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1208 /// specified stmt yet.
1209 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1210   CGM.ErrorUnsupported(S, Type);
1211 }
1212 
1213 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1214 /// variable-length array whose elements have a non-zero bit-pattern.
1215 ///
1216 /// \param baseType the inner-most element type of the array
1217 /// \param src - a char* pointing to the bit-pattern for a single
1218 /// base element of the array
1219 /// \param sizeInChars - the total size of the VLA, in chars
1220 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1221                                llvm::Value *dest, llvm::Value *src,
1222                                llvm::Value *sizeInChars) {
1223   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1224     = CGF.getContext().getTypeInfoInChars(baseType);
1225 
1226   CGBuilderTy &Builder = CGF.Builder;
1227 
1228   llvm::Value *baseSizeInChars
1229     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1230 
1231   llvm::Type *i8p = Builder.getInt8PtrTy();
1232 
1233   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1234   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1235 
1236   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1237   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1238   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1239 
1240   // Make a loop over the VLA.  C99 guarantees that the VLA element
1241   // count must be nonzero.
1242   CGF.EmitBlock(loopBB);
1243 
1244   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1245   cur->addIncoming(begin, originBB);
1246 
1247   // memcpy the individual element bit-pattern.
1248   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1249                        baseSizeAndAlign.second.getQuantity(),
1250                        /*volatile*/ false);
1251 
1252   // Go to the next element.
1253   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1254 
1255   // Leave if that's the end of the VLA.
1256   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1257   Builder.CreateCondBr(done, contBB, loopBB);
1258   cur->addIncoming(next, loopBB);
1259 
1260   CGF.EmitBlock(contBB);
1261 }
1262 
1263 void
1264 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1265   // Ignore empty classes in C++.
1266   if (getLangOpts().CPlusPlus) {
1267     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1268       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1269         return;
1270     }
1271   }
1272 
1273   // Cast the dest ptr to the appropriate i8 pointer type.
1274   unsigned DestAS =
1275     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1276   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1277   if (DestPtr->getType() != BP)
1278     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1279 
1280   // Get size and alignment info for this aggregate.
1281   std::pair<CharUnits, CharUnits> TypeInfo =
1282     getContext().getTypeInfoInChars(Ty);
1283   CharUnits Size = TypeInfo.first;
1284   CharUnits Align = TypeInfo.second;
1285 
1286   llvm::Value *SizeVal;
1287   const VariableArrayType *vla;
1288 
1289   // Don't bother emitting a zero-byte memset.
1290   if (Size.isZero()) {
1291     // But note that getTypeInfo returns 0 for a VLA.
1292     if (const VariableArrayType *vlaType =
1293           dyn_cast_or_null<VariableArrayType>(
1294                                           getContext().getAsArrayType(Ty))) {
1295       QualType eltType;
1296       llvm::Value *numElts;
1297       std::tie(numElts, eltType) = getVLASize(vlaType);
1298 
1299       SizeVal = numElts;
1300       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1301       if (!eltSize.isOne())
1302         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1303       vla = vlaType;
1304     } else {
1305       return;
1306     }
1307   } else {
1308     SizeVal = CGM.getSize(Size);
1309     vla = nullptr;
1310   }
1311 
1312   // If the type contains a pointer to data member we can't memset it to zero.
1313   // Instead, create a null constant and copy it to the destination.
1314   // TODO: there are other patterns besides zero that we can usefully memset,
1315   // like -1, which happens to be the pattern used by member-pointers.
1316   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1317     // For a VLA, emit a single element, then splat that over the VLA.
1318     if (vla) Ty = getContext().getBaseElementType(vla);
1319 
1320     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1321 
1322     llvm::GlobalVariable *NullVariable =
1323       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1324                                /*isConstant=*/true,
1325                                llvm::GlobalVariable::PrivateLinkage,
1326                                NullConstant, Twine());
1327     llvm::Value *SrcPtr =
1328       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1329 
1330     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1331 
1332     // Get and call the appropriate llvm.memcpy overload.
1333     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1334     return;
1335   }
1336 
1337   // Otherwise, just memset the whole thing to zero.  This is legal
1338   // because in LLVM, all default initializers (other than the ones we just
1339   // handled above) are guaranteed to have a bit pattern of all zeros.
1340   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1341                        Align.getQuantity(), false);
1342 }
1343 
1344 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1345   // Make sure that there is a block for the indirect goto.
1346   if (!IndirectBranch)
1347     GetIndirectGotoBlock();
1348 
1349   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1350 
1351   // Make sure the indirect branch includes all of the address-taken blocks.
1352   IndirectBranch->addDestination(BB);
1353   return llvm::BlockAddress::get(CurFn, BB);
1354 }
1355 
1356 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1357   // If we already made the indirect branch for indirect goto, return its block.
1358   if (IndirectBranch) return IndirectBranch->getParent();
1359 
1360   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1361 
1362   // Create the PHI node that indirect gotos will add entries to.
1363   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1364                                               "indirect.goto.dest");
1365 
1366   // Create the indirect branch instruction.
1367   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1368   return IndirectBranch->getParent();
1369 }
1370 
1371 /// Computes the length of an array in elements, as well as the base
1372 /// element type and a properly-typed first element pointer.
1373 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1374                                               QualType &baseType,
1375                                               llvm::Value *&addr) {
1376   const ArrayType *arrayType = origArrayType;
1377 
1378   // If it's a VLA, we have to load the stored size.  Note that
1379   // this is the size of the VLA in bytes, not its size in elements.
1380   llvm::Value *numVLAElements = nullptr;
1381   if (isa<VariableArrayType>(arrayType)) {
1382     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1383 
1384     // Walk into all VLAs.  This doesn't require changes to addr,
1385     // which has type T* where T is the first non-VLA element type.
1386     do {
1387       QualType elementType = arrayType->getElementType();
1388       arrayType = getContext().getAsArrayType(elementType);
1389 
1390       // If we only have VLA components, 'addr' requires no adjustment.
1391       if (!arrayType) {
1392         baseType = elementType;
1393         return numVLAElements;
1394       }
1395     } while (isa<VariableArrayType>(arrayType));
1396 
1397     // We get out here only if we find a constant array type
1398     // inside the VLA.
1399   }
1400 
1401   // We have some number of constant-length arrays, so addr should
1402   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1403   // down to the first element of addr.
1404   SmallVector<llvm::Value*, 8> gepIndices;
1405 
1406   // GEP down to the array type.
1407   llvm::ConstantInt *zero = Builder.getInt32(0);
1408   gepIndices.push_back(zero);
1409 
1410   uint64_t countFromCLAs = 1;
1411   QualType eltType;
1412 
1413   llvm::ArrayType *llvmArrayType =
1414     dyn_cast<llvm::ArrayType>(
1415       cast<llvm::PointerType>(addr->getType())->getElementType());
1416   while (llvmArrayType) {
1417     assert(isa<ConstantArrayType>(arrayType));
1418     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1419              == llvmArrayType->getNumElements());
1420 
1421     gepIndices.push_back(zero);
1422     countFromCLAs *= llvmArrayType->getNumElements();
1423     eltType = arrayType->getElementType();
1424 
1425     llvmArrayType =
1426       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1427     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1428     assert((!llvmArrayType || arrayType) &&
1429            "LLVM and Clang types are out-of-synch");
1430   }
1431 
1432   if (arrayType) {
1433     // From this point onwards, the Clang array type has been emitted
1434     // as some other type (probably a packed struct). Compute the array
1435     // size, and just emit the 'begin' expression as a bitcast.
1436     while (arrayType) {
1437       countFromCLAs *=
1438           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1439       eltType = arrayType->getElementType();
1440       arrayType = getContext().getAsArrayType(eltType);
1441     }
1442 
1443     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1444     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1445     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1446   } else {
1447     // Create the actual GEP.
1448     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1449   }
1450 
1451   baseType = eltType;
1452 
1453   llvm::Value *numElements
1454     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1455 
1456   // If we had any VLA dimensions, factor them in.
1457   if (numVLAElements)
1458     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1459 
1460   return numElements;
1461 }
1462 
1463 std::pair<llvm::Value*, QualType>
1464 CodeGenFunction::getVLASize(QualType type) {
1465   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1466   assert(vla && "type was not a variable array type!");
1467   return getVLASize(vla);
1468 }
1469 
1470 std::pair<llvm::Value*, QualType>
1471 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1472   // The number of elements so far; always size_t.
1473   llvm::Value *numElements = nullptr;
1474 
1475   QualType elementType;
1476   do {
1477     elementType = type->getElementType();
1478     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1479     assert(vlaSize && "no size for VLA!");
1480     assert(vlaSize->getType() == SizeTy);
1481 
1482     if (!numElements) {
1483       numElements = vlaSize;
1484     } else {
1485       // It's undefined behavior if this wraps around, so mark it that way.
1486       // FIXME: Teach -fsanitize=undefined to trap this.
1487       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1488     }
1489   } while ((type = getContext().getAsVariableArrayType(elementType)));
1490 
1491   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1492 }
1493 
1494 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1495   assert(type->isVariablyModifiedType() &&
1496          "Must pass variably modified type to EmitVLASizes!");
1497 
1498   EnsureInsertPoint();
1499 
1500   // We're going to walk down into the type and look for VLA
1501   // expressions.
1502   do {
1503     assert(type->isVariablyModifiedType());
1504 
1505     const Type *ty = type.getTypePtr();
1506     switch (ty->getTypeClass()) {
1507 
1508 #define TYPE(Class, Base)
1509 #define ABSTRACT_TYPE(Class, Base)
1510 #define NON_CANONICAL_TYPE(Class, Base)
1511 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1512 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1513 #include "clang/AST/TypeNodes.def"
1514       llvm_unreachable("unexpected dependent type!");
1515 
1516     // These types are never variably-modified.
1517     case Type::Builtin:
1518     case Type::Complex:
1519     case Type::Vector:
1520     case Type::ExtVector:
1521     case Type::Record:
1522     case Type::Enum:
1523     case Type::Elaborated:
1524     case Type::TemplateSpecialization:
1525     case Type::ObjCObject:
1526     case Type::ObjCInterface:
1527     case Type::ObjCObjectPointer:
1528       llvm_unreachable("type class is never variably-modified!");
1529 
1530     case Type::Adjusted:
1531       type = cast<AdjustedType>(ty)->getAdjustedType();
1532       break;
1533 
1534     case Type::Decayed:
1535       type = cast<DecayedType>(ty)->getPointeeType();
1536       break;
1537 
1538     case Type::Pointer:
1539       type = cast<PointerType>(ty)->getPointeeType();
1540       break;
1541 
1542     case Type::BlockPointer:
1543       type = cast<BlockPointerType>(ty)->getPointeeType();
1544       break;
1545 
1546     case Type::LValueReference:
1547     case Type::RValueReference:
1548       type = cast<ReferenceType>(ty)->getPointeeType();
1549       break;
1550 
1551     case Type::MemberPointer:
1552       type = cast<MemberPointerType>(ty)->getPointeeType();
1553       break;
1554 
1555     case Type::ConstantArray:
1556     case Type::IncompleteArray:
1557       // Losing element qualification here is fine.
1558       type = cast<ArrayType>(ty)->getElementType();
1559       break;
1560 
1561     case Type::VariableArray: {
1562       // Losing element qualification here is fine.
1563       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1564 
1565       // Unknown size indication requires no size computation.
1566       // Otherwise, evaluate and record it.
1567       if (const Expr *size = vat->getSizeExpr()) {
1568         // It's possible that we might have emitted this already,
1569         // e.g. with a typedef and a pointer to it.
1570         llvm::Value *&entry = VLASizeMap[size];
1571         if (!entry) {
1572           llvm::Value *Size = EmitScalarExpr(size);
1573 
1574           // C11 6.7.6.2p5:
1575           //   If the size is an expression that is not an integer constant
1576           //   expression [...] each time it is evaluated it shall have a value
1577           //   greater than zero.
1578           if (SanOpts.has(SanitizerKind::VLABound) &&
1579               size->getType()->isSignedIntegerType()) {
1580             SanitizerScope SanScope(this);
1581             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1582             llvm::Constant *StaticArgs[] = {
1583               EmitCheckSourceLocation(size->getLocStart()),
1584               EmitCheckTypeDescriptor(size->getType())
1585             };
1586             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1587                                      SanitizerKind::VLABound),
1588                       "vla_bound_not_positive", StaticArgs, Size);
1589           }
1590 
1591           // Always zexting here would be wrong if it weren't
1592           // undefined behavior to have a negative bound.
1593           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1594         }
1595       }
1596       type = vat->getElementType();
1597       break;
1598     }
1599 
1600     case Type::FunctionProto:
1601     case Type::FunctionNoProto:
1602       type = cast<FunctionType>(ty)->getReturnType();
1603       break;
1604 
1605     case Type::Paren:
1606     case Type::TypeOf:
1607     case Type::UnaryTransform:
1608     case Type::Attributed:
1609     case Type::SubstTemplateTypeParm:
1610     case Type::PackExpansion:
1611       // Keep walking after single level desugaring.
1612       type = type.getSingleStepDesugaredType(getContext());
1613       break;
1614 
1615     case Type::Typedef:
1616     case Type::Decltype:
1617     case Type::Auto:
1618       // Stop walking: nothing to do.
1619       return;
1620 
1621     case Type::TypeOfExpr:
1622       // Stop walking: emit typeof expression.
1623       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1624       return;
1625 
1626     case Type::Atomic:
1627       type = cast<AtomicType>(ty)->getValueType();
1628       break;
1629     }
1630   } while (type->isVariablyModifiedType());
1631 }
1632 
1633 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1634   if (getContext().getBuiltinVaListType()->isArrayType())
1635     return EmitScalarExpr(E);
1636   return EmitLValue(E).getAddress();
1637 }
1638 
1639 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1640                                               llvm::Constant *Init) {
1641   assert (Init && "Invalid DeclRefExpr initializer!");
1642   if (CGDebugInfo *Dbg = getDebugInfo())
1643     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1644       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1645 }
1646 
1647 CodeGenFunction::PeepholeProtection
1648 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1649   // At the moment, the only aggressive peephole we do in IR gen
1650   // is trunc(zext) folding, but if we add more, we can easily
1651   // extend this protection.
1652 
1653   if (!rvalue.isScalar()) return PeepholeProtection();
1654   llvm::Value *value = rvalue.getScalarVal();
1655   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1656 
1657   // Just make an extra bitcast.
1658   assert(HaveInsertPoint());
1659   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1660                                                   Builder.GetInsertBlock());
1661 
1662   PeepholeProtection protection;
1663   protection.Inst = inst;
1664   return protection;
1665 }
1666 
1667 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1668   if (!protection.Inst) return;
1669 
1670   // In theory, we could try to duplicate the peepholes now, but whatever.
1671   protection.Inst->eraseFromParent();
1672 }
1673 
1674 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1675                                                  llvm::Value *AnnotatedVal,
1676                                                  StringRef AnnotationStr,
1677                                                  SourceLocation Location) {
1678   llvm::Value *Args[4] = {
1679     AnnotatedVal,
1680     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1681     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1682     CGM.EmitAnnotationLineNo(Location)
1683   };
1684   return Builder.CreateCall(AnnotationFn, Args);
1685 }
1686 
1687 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1688   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1689   // FIXME We create a new bitcast for every annotation because that's what
1690   // llvm-gcc was doing.
1691   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1692     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1693                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1694                        I->getAnnotation(), D->getLocation());
1695 }
1696 
1697 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1698                                                    llvm::Value *V) {
1699   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1700   llvm::Type *VTy = V->getType();
1701   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1702                                     CGM.Int8PtrTy);
1703 
1704   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1705     // FIXME Always emit the cast inst so we can differentiate between
1706     // annotation on the first field of a struct and annotation on the struct
1707     // itself.
1708     if (VTy != CGM.Int8PtrTy)
1709       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1710     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1711     V = Builder.CreateBitCast(V, VTy);
1712   }
1713 
1714   return V;
1715 }
1716 
1717 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1718 
1719 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1720     : CGF(CGF) {
1721   assert(!CGF->IsSanitizerScope);
1722   CGF->IsSanitizerScope = true;
1723 }
1724 
1725 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1726   CGF->IsSanitizerScope = false;
1727 }
1728 
1729 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1730                                    const llvm::Twine &Name,
1731                                    llvm::BasicBlock *BB,
1732                                    llvm::BasicBlock::iterator InsertPt) const {
1733   LoopStack.InsertHelper(I);
1734   if (IsSanitizerScope)
1735     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1736 }
1737 
1738 template <bool PreserveNames>
1739 void CGBuilderInserter<PreserveNames>::InsertHelper(
1740     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1741     llvm::BasicBlock::iterator InsertPt) const {
1742   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1743                                                               InsertPt);
1744   if (CGF)
1745     CGF->InsertHelper(I, Name, BB, InsertPt);
1746 }
1747 
1748 #ifdef NDEBUG
1749 #define PreserveNames false
1750 #else
1751 #define PreserveNames true
1752 #endif
1753 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1754     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1755     llvm::BasicBlock::iterator InsertPt) const;
1756 #undef PreserveNames
1757