1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Operator.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 38 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 39 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 40 CGBuilderInserterTy(this)), 41 CurFn(nullptr), CapturedStmtInfo(nullptr), 42 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 43 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 44 IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr), 45 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 46 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 47 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 48 ChildAbnormalTerminationSlot(nullptr), AbnormalTerminationSlot(nullptr), 49 SEHPointersDecl(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 50 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 51 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 52 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 53 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 54 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 55 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 56 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 57 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 58 TerminateHandler(nullptr), TrapBB(nullptr) { 59 if (!suppressNewContext) 60 CGM.getCXXABI().getMangleContext().startNewFunction(); 61 62 llvm::FastMathFlags FMF; 63 if (CGM.getLangOpts().FastMath) 64 FMF.setUnsafeAlgebra(); 65 if (CGM.getLangOpts().FiniteMathOnly) { 66 FMF.setNoNaNs(); 67 FMF.setNoInfs(); 68 } 69 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 70 FMF.setNoNaNs(); 71 } 72 if (CGM.getCodeGenOpts().NoSignedZeros) { 73 FMF.setNoSignedZeros(); 74 } 75 if (CGM.getCodeGenOpts().ReciprocalMath) { 76 FMF.setAllowReciprocal(); 77 } 78 Builder.SetFastMathFlags(FMF); 79 } 80 81 CodeGenFunction::~CodeGenFunction() { 82 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 83 84 // If there are any unclaimed block infos, go ahead and destroy them 85 // now. This can happen if IR-gen gets clever and skips evaluating 86 // something. 87 if (FirstBlockInfo) 88 destroyBlockInfos(FirstBlockInfo); 89 90 if (getLangOpts().OpenMP) { 91 CGM.getOpenMPRuntime().functionFinished(*this); 92 } 93 } 94 95 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 96 CharUnits Alignment; 97 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 98 Alignment = getContext().getTypeAlignInChars(T); 99 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 100 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 101 !getContext().isAlignmentRequired(T)) 102 Alignment = CharUnits::fromQuantity(MaxAlign); 103 } 104 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 105 } 106 107 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 108 return CGM.getTypes().ConvertTypeForMem(T); 109 } 110 111 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 112 return CGM.getTypes().ConvertType(T); 113 } 114 115 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 116 type = type.getCanonicalType(); 117 while (true) { 118 switch (type->getTypeClass()) { 119 #define TYPE(name, parent) 120 #define ABSTRACT_TYPE(name, parent) 121 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 122 #define DEPENDENT_TYPE(name, parent) case Type::name: 123 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 124 #include "clang/AST/TypeNodes.def" 125 llvm_unreachable("non-canonical or dependent type in IR-generation"); 126 127 case Type::Auto: 128 llvm_unreachable("undeduced auto type in IR-generation"); 129 130 // Various scalar types. 131 case Type::Builtin: 132 case Type::Pointer: 133 case Type::BlockPointer: 134 case Type::LValueReference: 135 case Type::RValueReference: 136 case Type::MemberPointer: 137 case Type::Vector: 138 case Type::ExtVector: 139 case Type::FunctionProto: 140 case Type::FunctionNoProto: 141 case Type::Enum: 142 case Type::ObjCObjectPointer: 143 return TEK_Scalar; 144 145 // Complexes. 146 case Type::Complex: 147 return TEK_Complex; 148 149 // Arrays, records, and Objective-C objects. 150 case Type::ConstantArray: 151 case Type::IncompleteArray: 152 case Type::VariableArray: 153 case Type::Record: 154 case Type::ObjCObject: 155 case Type::ObjCInterface: 156 return TEK_Aggregate; 157 158 // We operate on atomic values according to their underlying type. 159 case Type::Atomic: 160 type = cast<AtomicType>(type)->getValueType(); 161 continue; 162 } 163 llvm_unreachable("unknown type kind!"); 164 } 165 } 166 167 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 168 // For cleanliness, we try to avoid emitting the return block for 169 // simple cases. 170 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 171 172 if (CurBB) { 173 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 174 175 // We have a valid insert point, reuse it if it is empty or there are no 176 // explicit jumps to the return block. 177 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 178 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 179 delete ReturnBlock.getBlock(); 180 } else 181 EmitBlock(ReturnBlock.getBlock()); 182 return llvm::DebugLoc(); 183 } 184 185 // Otherwise, if the return block is the target of a single direct 186 // branch then we can just put the code in that block instead. This 187 // cleans up functions which started with a unified return block. 188 if (ReturnBlock.getBlock()->hasOneUse()) { 189 llvm::BranchInst *BI = 190 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 191 if (BI && BI->isUnconditional() && 192 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 193 // Record/return the DebugLoc of the simple 'return' expression to be used 194 // later by the actual 'ret' instruction. 195 llvm::DebugLoc Loc = BI->getDebugLoc(); 196 Builder.SetInsertPoint(BI->getParent()); 197 BI->eraseFromParent(); 198 delete ReturnBlock.getBlock(); 199 return Loc; 200 } 201 } 202 203 // FIXME: We are at an unreachable point, there is no reason to emit the block 204 // unless it has uses. However, we still need a place to put the debug 205 // region.end for now. 206 207 EmitBlock(ReturnBlock.getBlock()); 208 return llvm::DebugLoc(); 209 } 210 211 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 212 if (!BB) return; 213 if (!BB->use_empty()) 214 return CGF.CurFn->getBasicBlockList().push_back(BB); 215 delete BB; 216 } 217 218 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 219 assert(BreakContinueStack.empty() && 220 "mismatched push/pop in break/continue stack!"); 221 222 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 223 && NumSimpleReturnExprs == NumReturnExprs 224 && ReturnBlock.getBlock()->use_empty(); 225 // Usually the return expression is evaluated before the cleanup 226 // code. If the function contains only a simple return statement, 227 // such as a constant, the location before the cleanup code becomes 228 // the last useful breakpoint in the function, because the simple 229 // return expression will be evaluated after the cleanup code. To be 230 // safe, set the debug location for cleanup code to the location of 231 // the return statement. Otherwise the cleanup code should be at the 232 // end of the function's lexical scope. 233 // 234 // If there are multiple branches to the return block, the branch 235 // instructions will get the location of the return statements and 236 // all will be fine. 237 if (CGDebugInfo *DI = getDebugInfo()) { 238 if (OnlySimpleReturnStmts) 239 DI->EmitLocation(Builder, LastStopPoint); 240 else 241 DI->EmitLocation(Builder, EndLoc); 242 } 243 244 // Pop any cleanups that might have been associated with the 245 // parameters. Do this in whatever block we're currently in; it's 246 // important to do this before we enter the return block or return 247 // edges will be *really* confused. 248 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 249 bool HasOnlyLifetimeMarkers = 250 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 251 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 252 if (HasCleanups) { 253 // Make sure the line table doesn't jump back into the body for 254 // the ret after it's been at EndLoc. 255 if (CGDebugInfo *DI = getDebugInfo()) 256 if (OnlySimpleReturnStmts) 257 DI->EmitLocation(Builder, EndLoc); 258 259 PopCleanupBlocks(PrologueCleanupDepth); 260 } 261 262 // Emit function epilog (to return). 263 llvm::DebugLoc Loc = EmitReturnBlock(); 264 265 if (ShouldInstrumentFunction()) 266 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 267 268 // Emit debug descriptor for function end. 269 if (CGDebugInfo *DI = getDebugInfo()) 270 DI->EmitFunctionEnd(Builder); 271 272 // Reset the debug location to that of the simple 'return' expression, if any 273 // rather than that of the end of the function's scope '}'. 274 ApplyDebugLocation AL(*this, Loc); 275 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 276 EmitEndEHSpec(CurCodeDecl); 277 278 assert(EHStack.empty() && 279 "did not remove all scopes from cleanup stack!"); 280 281 // If someone did an indirect goto, emit the indirect goto block at the end of 282 // the function. 283 if (IndirectBranch) { 284 EmitBlock(IndirectBranch->getParent()); 285 Builder.ClearInsertionPoint(); 286 } 287 288 // If some of our locals escaped, insert a call to llvm.frameescape in the 289 // entry block. 290 if (!EscapedLocals.empty()) { 291 // Invert the map from local to index into a simple vector. There should be 292 // no holes. 293 SmallVector<llvm::Value *, 4> EscapeArgs; 294 EscapeArgs.resize(EscapedLocals.size()); 295 for (auto &Pair : EscapedLocals) 296 EscapeArgs[Pair.second] = Pair.first; 297 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 298 &CGM.getModule(), llvm::Intrinsic::frameescape); 299 CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 300 } 301 302 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 303 llvm::Instruction *Ptr = AllocaInsertPt; 304 AllocaInsertPt = nullptr; 305 Ptr->eraseFromParent(); 306 307 // If someone took the address of a label but never did an indirect goto, we 308 // made a zero entry PHI node, which is illegal, zap it now. 309 if (IndirectBranch) { 310 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 311 if (PN->getNumIncomingValues() == 0) { 312 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 313 PN->eraseFromParent(); 314 } 315 } 316 317 EmitIfUsed(*this, EHResumeBlock); 318 EmitIfUsed(*this, TerminateLandingPad); 319 EmitIfUsed(*this, TerminateHandler); 320 EmitIfUsed(*this, UnreachableBlock); 321 322 if (CGM.getCodeGenOpts().EmitDeclMetadata) 323 EmitDeclMetadata(); 324 325 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 326 I = DeferredReplacements.begin(), 327 E = DeferredReplacements.end(); 328 I != E; ++I) { 329 I->first->replaceAllUsesWith(I->second); 330 I->first->eraseFromParent(); 331 } 332 } 333 334 /// ShouldInstrumentFunction - Return true if the current function should be 335 /// instrumented with __cyg_profile_func_* calls 336 bool CodeGenFunction::ShouldInstrumentFunction() { 337 if (!CGM.getCodeGenOpts().InstrumentFunctions) 338 return false; 339 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 340 return false; 341 return true; 342 } 343 344 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 345 /// instrumentation function with the current function and the call site, if 346 /// function instrumentation is enabled. 347 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 348 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 349 llvm::PointerType *PointerTy = Int8PtrTy; 350 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 351 llvm::FunctionType *FunctionTy = 352 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 353 354 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 355 llvm::CallInst *CallSite = Builder.CreateCall( 356 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 357 llvm::ConstantInt::get(Int32Ty, 0), 358 "callsite"); 359 360 llvm::Value *args[] = { 361 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 362 CallSite 363 }; 364 365 EmitNounwindRuntimeCall(F, args); 366 } 367 368 void CodeGenFunction::EmitMCountInstrumentation() { 369 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 370 371 llvm::Constant *MCountFn = 372 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 373 EmitNounwindRuntimeCall(MCountFn); 374 } 375 376 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 377 // information in the program executable. The argument information stored 378 // includes the argument name, its type, the address and access qualifiers used. 379 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 380 CodeGenModule &CGM, llvm::LLVMContext &Context, 381 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 382 CGBuilderTy &Builder, ASTContext &ASTCtx) { 383 // Create MDNodes that represent the kernel arg metadata. 384 // Each MDNode is a list in the form of "key", N number of values which is 385 // the same number of values as their are kernel arguments. 386 387 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 388 389 // MDNode for the kernel argument address space qualifiers. 390 SmallVector<llvm::Metadata *, 8> addressQuals; 391 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 392 393 // MDNode for the kernel argument access qualifiers (images only). 394 SmallVector<llvm::Metadata *, 8> accessQuals; 395 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 396 397 // MDNode for the kernel argument type names. 398 SmallVector<llvm::Metadata *, 8> argTypeNames; 399 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 400 401 // MDNode for the kernel argument base type names. 402 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 403 argBaseTypeNames.push_back( 404 llvm::MDString::get(Context, "kernel_arg_base_type")); 405 406 // MDNode for the kernel argument type qualifiers. 407 SmallVector<llvm::Metadata *, 8> argTypeQuals; 408 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 409 410 // MDNode for the kernel argument names. 411 SmallVector<llvm::Metadata *, 8> argNames; 412 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 413 414 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 415 const ParmVarDecl *parm = FD->getParamDecl(i); 416 QualType ty = parm->getType(); 417 std::string typeQuals; 418 419 if (ty->isPointerType()) { 420 QualType pointeeTy = ty->getPointeeType(); 421 422 // Get address qualifier. 423 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 424 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 425 426 // Get argument type name. 427 std::string typeName = 428 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 429 430 // Turn "unsigned type" to "utype" 431 std::string::size_type pos = typeName.find("unsigned"); 432 if (pointeeTy.isCanonical() && pos != std::string::npos) 433 typeName.erase(pos+1, 8); 434 435 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 436 437 std::string baseTypeName = 438 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 439 Policy) + 440 "*"; 441 442 // Turn "unsigned type" to "utype" 443 pos = baseTypeName.find("unsigned"); 444 if (pos != std::string::npos) 445 baseTypeName.erase(pos+1, 8); 446 447 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 448 449 // Get argument type qualifiers: 450 if (ty.isRestrictQualified()) 451 typeQuals = "restrict"; 452 if (pointeeTy.isConstQualified() || 453 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 454 typeQuals += typeQuals.empty() ? "const" : " const"; 455 if (pointeeTy.isVolatileQualified()) 456 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 457 } else { 458 uint32_t AddrSpc = 0; 459 if (ty->isImageType()) 460 AddrSpc = 461 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 462 463 addressQuals.push_back( 464 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 465 466 // Get argument type name. 467 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 468 469 // Turn "unsigned type" to "utype" 470 std::string::size_type pos = typeName.find("unsigned"); 471 if (ty.isCanonical() && pos != std::string::npos) 472 typeName.erase(pos+1, 8); 473 474 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 475 476 std::string baseTypeName = 477 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 478 479 // Turn "unsigned type" to "utype" 480 pos = baseTypeName.find("unsigned"); 481 if (pos != std::string::npos) 482 baseTypeName.erase(pos+1, 8); 483 484 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 485 486 // Get argument type qualifiers: 487 if (ty.isConstQualified()) 488 typeQuals = "const"; 489 if (ty.isVolatileQualified()) 490 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 491 } 492 493 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 494 495 // Get image access qualifier: 496 if (ty->isImageType()) { 497 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 498 if (A && A->isWriteOnly()) 499 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 500 else 501 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 502 // FIXME: what about read_write? 503 } else 504 accessQuals.push_back(llvm::MDString::get(Context, "none")); 505 506 // Get argument name. 507 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 508 } 509 510 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 511 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 512 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 513 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 514 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 515 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 516 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 517 } 518 519 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 520 llvm::Function *Fn) 521 { 522 if (!FD->hasAttr<OpenCLKernelAttr>()) 523 return; 524 525 llvm::LLVMContext &Context = getLLVMContext(); 526 527 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 528 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 529 530 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 531 getContext()); 532 533 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 534 QualType hintQTy = A->getTypeHint(); 535 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 536 bool isSignedInteger = 537 hintQTy->isSignedIntegerType() || 538 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 539 llvm::Metadata *attrMDArgs[] = { 540 llvm::MDString::get(Context, "vec_type_hint"), 541 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 542 CGM.getTypes().ConvertType(A->getTypeHint()))), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 llvm::IntegerType::get(Context, 32), 545 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 546 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 547 } 548 549 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 550 llvm::Metadata *attrMDArgs[] = { 551 llvm::MDString::get(Context, "work_group_size_hint"), 552 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 553 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 554 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 555 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 556 } 557 558 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 559 llvm::Metadata *attrMDArgs[] = { 560 llvm::MDString::get(Context, "reqd_work_group_size"), 561 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 562 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 563 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 564 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 565 } 566 567 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 568 llvm::NamedMDNode *OpenCLKernelMetadata = 569 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 570 OpenCLKernelMetadata->addOperand(kernelMDNode); 571 } 572 573 /// Determine whether the function F ends with a return stmt. 574 static bool endsWithReturn(const Decl* F) { 575 const Stmt *Body = nullptr; 576 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 577 Body = FD->getBody(); 578 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 579 Body = OMD->getBody(); 580 581 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 582 auto LastStmt = CS->body_rbegin(); 583 if (LastStmt != CS->body_rend()) 584 return isa<ReturnStmt>(*LastStmt); 585 } 586 return false; 587 } 588 589 void CodeGenFunction::StartFunction(GlobalDecl GD, 590 QualType RetTy, 591 llvm::Function *Fn, 592 const CGFunctionInfo &FnInfo, 593 const FunctionArgList &Args, 594 SourceLocation Loc, 595 SourceLocation StartLoc) { 596 assert(!CurFn && 597 "Do not use a CodeGenFunction object for more than one function"); 598 599 const Decl *D = GD.getDecl(); 600 601 DidCallStackSave = false; 602 CurCodeDecl = D; 603 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 604 FnRetTy = RetTy; 605 CurFn = Fn; 606 CurFnInfo = &FnInfo; 607 assert(CurFn->isDeclaration() && "Function already has body?"); 608 609 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 610 SanOpts.clear(); 611 612 if (D) { 613 // Apply the no_sanitize* attributes to SanOpts. 614 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 615 SanOpts.Mask &= ~Attr->getMask(); 616 } 617 618 // Apply sanitizer attributes to the function. 619 if (SanOpts.has(SanitizerKind::Address)) 620 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 621 if (SanOpts.has(SanitizerKind::Thread)) 622 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 623 if (SanOpts.has(SanitizerKind::Memory)) 624 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 625 626 // Pass inline keyword to optimizer if it appears explicitly on any 627 // declaration. Also, in the case of -fno-inline attach NoInline 628 // attribute to all function that are not marked AlwaysInline. 629 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 630 if (!CGM.getCodeGenOpts().NoInline) { 631 for (auto RI : FD->redecls()) 632 if (RI->isInlineSpecified()) { 633 Fn->addFnAttr(llvm::Attribute::InlineHint); 634 break; 635 } 636 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 637 Fn->addFnAttr(llvm::Attribute::NoInline); 638 } 639 640 if (getLangOpts().OpenCL) { 641 // Add metadata for a kernel function. 642 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 643 EmitOpenCLKernelMetadata(FD, Fn); 644 } 645 646 // If we are checking function types, emit a function type signature as 647 // prologue data. 648 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 649 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 650 if (llvm::Constant *PrologueSig = 651 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 652 llvm::Constant *FTRTTIConst = 653 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 654 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 655 llvm::Constant *PrologueStructConst = 656 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 657 Fn->setPrologueData(PrologueStructConst); 658 } 659 } 660 } 661 662 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 663 664 // Create a marker to make it easy to insert allocas into the entryblock 665 // later. Don't create this with the builder, because we don't want it 666 // folded. 667 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 668 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 669 if (Builder.isNamePreserving()) 670 AllocaInsertPt->setName("allocapt"); 671 672 ReturnBlock = getJumpDestInCurrentScope("return"); 673 674 Builder.SetInsertPoint(EntryBB); 675 676 // Emit subprogram debug descriptor. 677 if (CGDebugInfo *DI = getDebugInfo()) { 678 SmallVector<QualType, 16> ArgTypes; 679 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 680 i != e; ++i) { 681 ArgTypes.push_back((*i)->getType()); 682 } 683 684 QualType FnType = 685 getContext().getFunctionType(RetTy, ArgTypes, 686 FunctionProtoType::ExtProtoInfo()); 687 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 688 } 689 690 if (ShouldInstrumentFunction()) 691 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 692 693 if (CGM.getCodeGenOpts().InstrumentForProfiling) 694 EmitMCountInstrumentation(); 695 696 if (RetTy->isVoidType()) { 697 // Void type; nothing to return. 698 ReturnValue = nullptr; 699 700 // Count the implicit return. 701 if (!endsWithReturn(D)) 702 ++NumReturnExprs; 703 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 704 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 705 // Indirect aggregate return; emit returned value directly into sret slot. 706 // This reduces code size, and affects correctness in C++. 707 auto AI = CurFn->arg_begin(); 708 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 709 ++AI; 710 ReturnValue = AI; 711 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 712 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 713 // Load the sret pointer from the argument struct and return into that. 714 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 715 llvm::Function::arg_iterator EI = CurFn->arg_end(); 716 --EI; 717 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx); 718 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 719 } else { 720 ReturnValue = CreateIRTemp(RetTy, "retval"); 721 722 // Tell the epilog emitter to autorelease the result. We do this 723 // now so that various specialized functions can suppress it 724 // during their IR-generation. 725 if (getLangOpts().ObjCAutoRefCount && 726 !CurFnInfo->isReturnsRetained() && 727 RetTy->isObjCRetainableType()) 728 AutoreleaseResult = true; 729 } 730 731 EmitStartEHSpec(CurCodeDecl); 732 733 PrologueCleanupDepth = EHStack.stable_begin(); 734 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 735 736 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 737 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 738 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 739 if (MD->getParent()->isLambda() && 740 MD->getOverloadedOperator() == OO_Call) { 741 // We're in a lambda; figure out the captures. 742 MD->getParent()->getCaptureFields(LambdaCaptureFields, 743 LambdaThisCaptureField); 744 if (LambdaThisCaptureField) { 745 // If this lambda captures this, load it. 746 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 747 CXXThisValue = EmitLoadOfLValue(ThisLValue, 748 SourceLocation()).getScalarVal(); 749 } 750 for (auto *FD : MD->getParent()->fields()) { 751 if (FD->hasCapturedVLAType()) { 752 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 753 SourceLocation()).getScalarVal(); 754 auto VAT = FD->getCapturedVLAType(); 755 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 756 } 757 } 758 } else { 759 // Not in a lambda; just use 'this' from the method. 760 // FIXME: Should we generate a new load for each use of 'this'? The 761 // fast register allocator would be happier... 762 CXXThisValue = CXXABIThisValue; 763 } 764 } 765 766 // If any of the arguments have a variably modified type, make sure to 767 // emit the type size. 768 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 769 i != e; ++i) { 770 const VarDecl *VD = *i; 771 772 // Dig out the type as written from ParmVarDecls; it's unclear whether 773 // the standard (C99 6.9.1p10) requires this, but we're following the 774 // precedent set by gcc. 775 QualType Ty; 776 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 777 Ty = PVD->getOriginalType(); 778 else 779 Ty = VD->getType(); 780 781 if (Ty->isVariablyModifiedType()) 782 EmitVariablyModifiedType(Ty); 783 } 784 // Emit a location at the end of the prologue. 785 if (CGDebugInfo *DI = getDebugInfo()) 786 DI->EmitLocation(Builder, StartLoc); 787 } 788 789 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 790 const Stmt *Body) { 791 incrementProfileCounter(Body); 792 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 793 EmitCompoundStmtWithoutScope(*S); 794 else 795 EmitStmt(Body); 796 } 797 798 /// When instrumenting to collect profile data, the counts for some blocks 799 /// such as switch cases need to not include the fall-through counts, so 800 /// emit a branch around the instrumentation code. When not instrumenting, 801 /// this just calls EmitBlock(). 802 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 803 const Stmt *S) { 804 llvm::BasicBlock *SkipCountBB = nullptr; 805 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 806 // When instrumenting for profiling, the fallthrough to certain 807 // statements needs to skip over the instrumentation code so that we 808 // get an accurate count. 809 SkipCountBB = createBasicBlock("skipcount"); 810 EmitBranch(SkipCountBB); 811 } 812 EmitBlock(BB); 813 uint64_t CurrentCount = getCurrentProfileCount(); 814 incrementProfileCounter(S); 815 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 816 if (SkipCountBB) 817 EmitBlock(SkipCountBB); 818 } 819 820 /// Tries to mark the given function nounwind based on the 821 /// non-existence of any throwing calls within it. We believe this is 822 /// lightweight enough to do at -O0. 823 static void TryMarkNoThrow(llvm::Function *F) { 824 // LLVM treats 'nounwind' on a function as part of the type, so we 825 // can't do this on functions that can be overwritten. 826 if (F->mayBeOverridden()) return; 827 828 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 829 for (llvm::BasicBlock::iterator 830 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 831 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 832 if (!Call->doesNotThrow()) 833 return; 834 } else if (isa<llvm::ResumeInst>(&*BI)) { 835 return; 836 } 837 F->setDoesNotThrow(); 838 } 839 840 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 841 const CGFunctionInfo &FnInfo) { 842 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 843 844 // Check if we should generate debug info for this function. 845 if (FD->hasAttr<NoDebugAttr>()) 846 DebugInfo = nullptr; // disable debug info indefinitely for this function 847 848 FunctionArgList Args; 849 QualType ResTy = FD->getReturnType(); 850 851 CurGD = GD; 852 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 853 if (MD && MD->isInstance()) { 854 if (CGM.getCXXABI().HasThisReturn(GD)) 855 ResTy = MD->getThisType(getContext()); 856 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 857 ResTy = CGM.getContext().VoidPtrTy; 858 CGM.getCXXABI().buildThisParam(*this, Args); 859 } 860 861 Args.append(FD->param_begin(), FD->param_end()); 862 863 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 864 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 865 866 SourceRange BodyRange; 867 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 868 CurEHLocation = BodyRange.getEnd(); 869 870 // Use the location of the start of the function to determine where 871 // the function definition is located. By default use the location 872 // of the declaration as the location for the subprogram. A function 873 // may lack a declaration in the source code if it is created by code 874 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 875 SourceLocation Loc = FD->getLocation(); 876 877 // If this is a function specialization then use the pattern body 878 // as the location for the function. 879 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 880 if (SpecDecl->hasBody(SpecDecl)) 881 Loc = SpecDecl->getLocation(); 882 883 // Emit the standard function prologue. 884 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 885 886 // Generate the body of the function. 887 PGO.checkGlobalDecl(GD); 888 PGO.assignRegionCounters(GD.getDecl(), CurFn); 889 if (isa<CXXDestructorDecl>(FD)) 890 EmitDestructorBody(Args); 891 else if (isa<CXXConstructorDecl>(FD)) 892 EmitConstructorBody(Args); 893 else if (getLangOpts().CUDA && 894 !getLangOpts().CUDAIsDevice && 895 FD->hasAttr<CUDAGlobalAttr>()) 896 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 897 else if (isa<CXXConversionDecl>(FD) && 898 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 899 // The lambda conversion to block pointer is special; the semantics can't be 900 // expressed in the AST, so IRGen needs to special-case it. 901 EmitLambdaToBlockPointerBody(Args); 902 } else if (isa<CXXMethodDecl>(FD) && 903 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 904 // The lambda static invoker function is special, because it forwards or 905 // clones the body of the function call operator (but is actually static). 906 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 907 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 908 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 909 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 910 // Implicit copy-assignment gets the same special treatment as implicit 911 // copy-constructors. 912 emitImplicitAssignmentOperatorBody(Args); 913 } else if (Stmt *Body = FD->getBody()) { 914 EmitFunctionBody(Args, Body); 915 } else 916 llvm_unreachable("no definition for emitted function"); 917 918 // C++11 [stmt.return]p2: 919 // Flowing off the end of a function [...] results in undefined behavior in 920 // a value-returning function. 921 // C11 6.9.1p12: 922 // If the '}' that terminates a function is reached, and the value of the 923 // function call is used by the caller, the behavior is undefined. 924 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 925 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 926 if (SanOpts.has(SanitizerKind::Return)) { 927 SanitizerScope SanScope(this); 928 llvm::Value *IsFalse = Builder.getFalse(); 929 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 930 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 931 None); 932 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 933 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap), {}); 934 Builder.CreateUnreachable(); 935 Builder.ClearInsertionPoint(); 936 } 937 938 // Emit the standard function epilogue. 939 FinishFunction(BodyRange.getEnd()); 940 941 // If we haven't marked the function nothrow through other means, do 942 // a quick pass now to see if we can. 943 if (!CurFn->doesNotThrow()) 944 TryMarkNoThrow(CurFn); 945 } 946 947 /// ContainsLabel - Return true if the statement contains a label in it. If 948 /// this statement is not executed normally, it not containing a label means 949 /// that we can just remove the code. 950 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 951 // Null statement, not a label! 952 if (!S) return false; 953 954 // If this is a label, we have to emit the code, consider something like: 955 // if (0) { ... foo: bar(); } goto foo; 956 // 957 // TODO: If anyone cared, we could track __label__'s, since we know that you 958 // can't jump to one from outside their declared region. 959 if (isa<LabelStmt>(S)) 960 return true; 961 962 // If this is a case/default statement, and we haven't seen a switch, we have 963 // to emit the code. 964 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 965 return true; 966 967 // If this is a switch statement, we want to ignore cases below it. 968 if (isa<SwitchStmt>(S)) 969 IgnoreCaseStmts = true; 970 971 // Scan subexpressions for verboten labels. 972 for (Stmt::const_child_range I = S->children(); I; ++I) 973 if (ContainsLabel(*I, IgnoreCaseStmts)) 974 return true; 975 976 return false; 977 } 978 979 /// containsBreak - Return true if the statement contains a break out of it. 980 /// If the statement (recursively) contains a switch or loop with a break 981 /// inside of it, this is fine. 982 bool CodeGenFunction::containsBreak(const Stmt *S) { 983 // Null statement, not a label! 984 if (!S) return false; 985 986 // If this is a switch or loop that defines its own break scope, then we can 987 // include it and anything inside of it. 988 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 989 isa<ForStmt>(S)) 990 return false; 991 992 if (isa<BreakStmt>(S)) 993 return true; 994 995 // Scan subexpressions for verboten breaks. 996 for (Stmt::const_child_range I = S->children(); I; ++I) 997 if (containsBreak(*I)) 998 return true; 999 1000 return false; 1001 } 1002 1003 1004 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1005 /// to a constant, or if it does but contains a label, return false. If it 1006 /// constant folds return true and set the boolean result in Result. 1007 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1008 bool &ResultBool) { 1009 llvm::APSInt ResultInt; 1010 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1011 return false; 1012 1013 ResultBool = ResultInt.getBoolValue(); 1014 return true; 1015 } 1016 1017 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1018 /// to a constant, or if it does but contains a label, return false. If it 1019 /// constant folds return true and set the folded value. 1020 bool CodeGenFunction:: 1021 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1022 // FIXME: Rename and handle conversion of other evaluatable things 1023 // to bool. 1024 llvm::APSInt Int; 1025 if (!Cond->EvaluateAsInt(Int, getContext())) 1026 return false; // Not foldable, not integer or not fully evaluatable. 1027 1028 if (CodeGenFunction::ContainsLabel(Cond)) 1029 return false; // Contains a label. 1030 1031 ResultInt = Int; 1032 return true; 1033 } 1034 1035 1036 1037 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1038 /// statement) to the specified blocks. Based on the condition, this might try 1039 /// to simplify the codegen of the conditional based on the branch. 1040 /// 1041 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1042 llvm::BasicBlock *TrueBlock, 1043 llvm::BasicBlock *FalseBlock, 1044 uint64_t TrueCount) { 1045 Cond = Cond->IgnoreParens(); 1046 1047 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1048 1049 // Handle X && Y in a condition. 1050 if (CondBOp->getOpcode() == BO_LAnd) { 1051 // If we have "1 && X", simplify the code. "0 && X" would have constant 1052 // folded if the case was simple enough. 1053 bool ConstantBool = false; 1054 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1055 ConstantBool) { 1056 // br(1 && X) -> br(X). 1057 incrementProfileCounter(CondBOp); 1058 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1059 TrueCount); 1060 } 1061 1062 // If we have "X && 1", simplify the code to use an uncond branch. 1063 // "X && 0" would have been constant folded to 0. 1064 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1065 ConstantBool) { 1066 // br(X && 1) -> br(X). 1067 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1068 TrueCount); 1069 } 1070 1071 // Emit the LHS as a conditional. If the LHS conditional is false, we 1072 // want to jump to the FalseBlock. 1073 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1074 // The counter tells us how often we evaluate RHS, and all of TrueCount 1075 // can be propagated to that branch. 1076 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1077 1078 ConditionalEvaluation eval(*this); 1079 { 1080 ApplyDebugLocation DL(*this, Cond); 1081 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1082 EmitBlock(LHSTrue); 1083 } 1084 1085 incrementProfileCounter(CondBOp); 1086 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1087 1088 // Any temporaries created here are conditional. 1089 eval.begin(*this); 1090 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1091 eval.end(*this); 1092 1093 return; 1094 } 1095 1096 if (CondBOp->getOpcode() == BO_LOr) { 1097 // If we have "0 || X", simplify the code. "1 || X" would have constant 1098 // folded if the case was simple enough. 1099 bool ConstantBool = false; 1100 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1101 !ConstantBool) { 1102 // br(0 || X) -> br(X). 1103 incrementProfileCounter(CondBOp); 1104 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1105 TrueCount); 1106 } 1107 1108 // If we have "X || 0", simplify the code to use an uncond branch. 1109 // "X || 1" would have been constant folded to 1. 1110 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1111 !ConstantBool) { 1112 // br(X || 0) -> br(X). 1113 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1114 TrueCount); 1115 } 1116 1117 // Emit the LHS as a conditional. If the LHS conditional is true, we 1118 // want to jump to the TrueBlock. 1119 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1120 // We have the count for entry to the RHS and for the whole expression 1121 // being true, so we can divy up True count between the short circuit and 1122 // the RHS. 1123 uint64_t LHSCount = 1124 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1125 uint64_t RHSCount = TrueCount - LHSCount; 1126 1127 ConditionalEvaluation eval(*this); 1128 { 1129 ApplyDebugLocation DL(*this, Cond); 1130 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1131 EmitBlock(LHSFalse); 1132 } 1133 1134 incrementProfileCounter(CondBOp); 1135 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1136 1137 // Any temporaries created here are conditional. 1138 eval.begin(*this); 1139 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1140 1141 eval.end(*this); 1142 1143 return; 1144 } 1145 } 1146 1147 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1148 // br(!x, t, f) -> br(x, f, t) 1149 if (CondUOp->getOpcode() == UO_LNot) { 1150 // Negate the count. 1151 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1152 // Negate the condition and swap the destination blocks. 1153 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1154 FalseCount); 1155 } 1156 } 1157 1158 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1159 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1160 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1161 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1162 1163 ConditionalEvaluation cond(*this); 1164 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1165 getProfileCount(CondOp)); 1166 1167 // When computing PGO branch weights, we only know the overall count for 1168 // the true block. This code is essentially doing tail duplication of the 1169 // naive code-gen, introducing new edges for which counts are not 1170 // available. Divide the counts proportionally between the LHS and RHS of 1171 // the conditional operator. 1172 uint64_t LHSScaledTrueCount = 0; 1173 if (TrueCount) { 1174 double LHSRatio = 1175 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1176 LHSScaledTrueCount = TrueCount * LHSRatio; 1177 } 1178 1179 cond.begin(*this); 1180 EmitBlock(LHSBlock); 1181 incrementProfileCounter(CondOp); 1182 { 1183 ApplyDebugLocation DL(*this, Cond); 1184 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1185 LHSScaledTrueCount); 1186 } 1187 cond.end(*this); 1188 1189 cond.begin(*this); 1190 EmitBlock(RHSBlock); 1191 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1192 TrueCount - LHSScaledTrueCount); 1193 cond.end(*this); 1194 1195 return; 1196 } 1197 1198 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1199 // Conditional operator handling can give us a throw expression as a 1200 // condition for a case like: 1201 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1202 // Fold this to: 1203 // br(c, throw x, br(y, t, f)) 1204 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1205 return; 1206 } 1207 1208 // Create branch weights based on the number of times we get here and the 1209 // number of times the condition should be true. 1210 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1211 llvm::MDNode *Weights = 1212 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1213 1214 // Emit the code with the fully general case. 1215 llvm::Value *CondV; 1216 { 1217 ApplyDebugLocation DL(*this, Cond); 1218 CondV = EvaluateExprAsBool(Cond); 1219 } 1220 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1221 } 1222 1223 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1224 /// specified stmt yet. 1225 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1226 CGM.ErrorUnsupported(S, Type); 1227 } 1228 1229 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1230 /// variable-length array whose elements have a non-zero bit-pattern. 1231 /// 1232 /// \param baseType the inner-most element type of the array 1233 /// \param src - a char* pointing to the bit-pattern for a single 1234 /// base element of the array 1235 /// \param sizeInChars - the total size of the VLA, in chars 1236 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1237 llvm::Value *dest, llvm::Value *src, 1238 llvm::Value *sizeInChars) { 1239 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1240 = CGF.getContext().getTypeInfoInChars(baseType); 1241 1242 CGBuilderTy &Builder = CGF.Builder; 1243 1244 llvm::Value *baseSizeInChars 1245 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1246 1247 llvm::Type *i8p = Builder.getInt8PtrTy(); 1248 1249 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1250 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1251 1252 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1253 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1254 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1255 1256 // Make a loop over the VLA. C99 guarantees that the VLA element 1257 // count must be nonzero. 1258 CGF.EmitBlock(loopBB); 1259 1260 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1261 cur->addIncoming(begin, originBB); 1262 1263 // memcpy the individual element bit-pattern. 1264 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1265 baseSizeAndAlign.second.getQuantity(), 1266 /*volatile*/ false); 1267 1268 // Go to the next element. 1269 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), 1270 cur, 1, "vla.next"); 1271 1272 // Leave if that's the end of the VLA. 1273 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1274 Builder.CreateCondBr(done, contBB, loopBB); 1275 cur->addIncoming(next, loopBB); 1276 1277 CGF.EmitBlock(contBB); 1278 } 1279 1280 void 1281 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1282 // Ignore empty classes in C++. 1283 if (getLangOpts().CPlusPlus) { 1284 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1285 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1286 return; 1287 } 1288 } 1289 1290 // Cast the dest ptr to the appropriate i8 pointer type. 1291 unsigned DestAS = 1292 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1293 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1294 if (DestPtr->getType() != BP) 1295 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1296 1297 // Get size and alignment info for this aggregate. 1298 std::pair<CharUnits, CharUnits> TypeInfo = 1299 getContext().getTypeInfoInChars(Ty); 1300 CharUnits Size = TypeInfo.first; 1301 CharUnits Align = TypeInfo.second; 1302 1303 llvm::Value *SizeVal; 1304 const VariableArrayType *vla; 1305 1306 // Don't bother emitting a zero-byte memset. 1307 if (Size.isZero()) { 1308 // But note that getTypeInfo returns 0 for a VLA. 1309 if (const VariableArrayType *vlaType = 1310 dyn_cast_or_null<VariableArrayType>( 1311 getContext().getAsArrayType(Ty))) { 1312 QualType eltType; 1313 llvm::Value *numElts; 1314 std::tie(numElts, eltType) = getVLASize(vlaType); 1315 1316 SizeVal = numElts; 1317 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1318 if (!eltSize.isOne()) 1319 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1320 vla = vlaType; 1321 } else { 1322 return; 1323 } 1324 } else { 1325 SizeVal = CGM.getSize(Size); 1326 vla = nullptr; 1327 } 1328 1329 // If the type contains a pointer to data member we can't memset it to zero. 1330 // Instead, create a null constant and copy it to the destination. 1331 // TODO: there are other patterns besides zero that we can usefully memset, 1332 // like -1, which happens to be the pattern used by member-pointers. 1333 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1334 // For a VLA, emit a single element, then splat that over the VLA. 1335 if (vla) Ty = getContext().getBaseElementType(vla); 1336 1337 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1338 1339 llvm::GlobalVariable *NullVariable = 1340 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1341 /*isConstant=*/true, 1342 llvm::GlobalVariable::PrivateLinkage, 1343 NullConstant, Twine()); 1344 llvm::Value *SrcPtr = 1345 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1346 1347 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1348 1349 // Get and call the appropriate llvm.memcpy overload. 1350 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1351 return; 1352 } 1353 1354 // Otherwise, just memset the whole thing to zero. This is legal 1355 // because in LLVM, all default initializers (other than the ones we just 1356 // handled above) are guaranteed to have a bit pattern of all zeros. 1357 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1358 Align.getQuantity(), false); 1359 } 1360 1361 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1362 // Make sure that there is a block for the indirect goto. 1363 if (!IndirectBranch) 1364 GetIndirectGotoBlock(); 1365 1366 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1367 1368 // Make sure the indirect branch includes all of the address-taken blocks. 1369 IndirectBranch->addDestination(BB); 1370 return llvm::BlockAddress::get(CurFn, BB); 1371 } 1372 1373 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1374 // If we already made the indirect branch for indirect goto, return its block. 1375 if (IndirectBranch) return IndirectBranch->getParent(); 1376 1377 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1378 1379 // Create the PHI node that indirect gotos will add entries to. 1380 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1381 "indirect.goto.dest"); 1382 1383 // Create the indirect branch instruction. 1384 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1385 return IndirectBranch->getParent(); 1386 } 1387 1388 /// Computes the length of an array in elements, as well as the base 1389 /// element type and a properly-typed first element pointer. 1390 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1391 QualType &baseType, 1392 llvm::Value *&addr) { 1393 const ArrayType *arrayType = origArrayType; 1394 1395 // If it's a VLA, we have to load the stored size. Note that 1396 // this is the size of the VLA in bytes, not its size in elements. 1397 llvm::Value *numVLAElements = nullptr; 1398 if (isa<VariableArrayType>(arrayType)) { 1399 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1400 1401 // Walk into all VLAs. This doesn't require changes to addr, 1402 // which has type T* where T is the first non-VLA element type. 1403 do { 1404 QualType elementType = arrayType->getElementType(); 1405 arrayType = getContext().getAsArrayType(elementType); 1406 1407 // If we only have VLA components, 'addr' requires no adjustment. 1408 if (!arrayType) { 1409 baseType = elementType; 1410 return numVLAElements; 1411 } 1412 } while (isa<VariableArrayType>(arrayType)); 1413 1414 // We get out here only if we find a constant array type 1415 // inside the VLA. 1416 } 1417 1418 // We have some number of constant-length arrays, so addr should 1419 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1420 // down to the first element of addr. 1421 SmallVector<llvm::Value*, 8> gepIndices; 1422 1423 // GEP down to the array type. 1424 llvm::ConstantInt *zero = Builder.getInt32(0); 1425 gepIndices.push_back(zero); 1426 1427 uint64_t countFromCLAs = 1; 1428 QualType eltType; 1429 1430 llvm::ArrayType *llvmArrayType = 1431 dyn_cast<llvm::ArrayType>( 1432 cast<llvm::PointerType>(addr->getType())->getElementType()); 1433 while (llvmArrayType) { 1434 assert(isa<ConstantArrayType>(arrayType)); 1435 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1436 == llvmArrayType->getNumElements()); 1437 1438 gepIndices.push_back(zero); 1439 countFromCLAs *= llvmArrayType->getNumElements(); 1440 eltType = arrayType->getElementType(); 1441 1442 llvmArrayType = 1443 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1444 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1445 assert((!llvmArrayType || arrayType) && 1446 "LLVM and Clang types are out-of-synch"); 1447 } 1448 1449 if (arrayType) { 1450 // From this point onwards, the Clang array type has been emitted 1451 // as some other type (probably a packed struct). Compute the array 1452 // size, and just emit the 'begin' expression as a bitcast. 1453 while (arrayType) { 1454 countFromCLAs *= 1455 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1456 eltType = arrayType->getElementType(); 1457 arrayType = getContext().getAsArrayType(eltType); 1458 } 1459 1460 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1461 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1462 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1463 } else { 1464 // Create the actual GEP. 1465 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1466 } 1467 1468 baseType = eltType; 1469 1470 llvm::Value *numElements 1471 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1472 1473 // If we had any VLA dimensions, factor them in. 1474 if (numVLAElements) 1475 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1476 1477 return numElements; 1478 } 1479 1480 std::pair<llvm::Value*, QualType> 1481 CodeGenFunction::getVLASize(QualType type) { 1482 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1483 assert(vla && "type was not a variable array type!"); 1484 return getVLASize(vla); 1485 } 1486 1487 std::pair<llvm::Value*, QualType> 1488 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1489 // The number of elements so far; always size_t. 1490 llvm::Value *numElements = nullptr; 1491 1492 QualType elementType; 1493 do { 1494 elementType = type->getElementType(); 1495 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1496 assert(vlaSize && "no size for VLA!"); 1497 assert(vlaSize->getType() == SizeTy); 1498 1499 if (!numElements) { 1500 numElements = vlaSize; 1501 } else { 1502 // It's undefined behavior if this wraps around, so mark it that way. 1503 // FIXME: Teach -fsanitize=undefined to trap this. 1504 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1505 } 1506 } while ((type = getContext().getAsVariableArrayType(elementType))); 1507 1508 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1509 } 1510 1511 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1512 assert(type->isVariablyModifiedType() && 1513 "Must pass variably modified type to EmitVLASizes!"); 1514 1515 EnsureInsertPoint(); 1516 1517 // We're going to walk down into the type and look for VLA 1518 // expressions. 1519 do { 1520 assert(type->isVariablyModifiedType()); 1521 1522 const Type *ty = type.getTypePtr(); 1523 switch (ty->getTypeClass()) { 1524 1525 #define TYPE(Class, Base) 1526 #define ABSTRACT_TYPE(Class, Base) 1527 #define NON_CANONICAL_TYPE(Class, Base) 1528 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1529 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1530 #include "clang/AST/TypeNodes.def" 1531 llvm_unreachable("unexpected dependent type!"); 1532 1533 // These types are never variably-modified. 1534 case Type::Builtin: 1535 case Type::Complex: 1536 case Type::Vector: 1537 case Type::ExtVector: 1538 case Type::Record: 1539 case Type::Enum: 1540 case Type::Elaborated: 1541 case Type::TemplateSpecialization: 1542 case Type::ObjCObject: 1543 case Type::ObjCInterface: 1544 case Type::ObjCObjectPointer: 1545 llvm_unreachable("type class is never variably-modified!"); 1546 1547 case Type::Adjusted: 1548 type = cast<AdjustedType>(ty)->getAdjustedType(); 1549 break; 1550 1551 case Type::Decayed: 1552 type = cast<DecayedType>(ty)->getPointeeType(); 1553 break; 1554 1555 case Type::Pointer: 1556 type = cast<PointerType>(ty)->getPointeeType(); 1557 break; 1558 1559 case Type::BlockPointer: 1560 type = cast<BlockPointerType>(ty)->getPointeeType(); 1561 break; 1562 1563 case Type::LValueReference: 1564 case Type::RValueReference: 1565 type = cast<ReferenceType>(ty)->getPointeeType(); 1566 break; 1567 1568 case Type::MemberPointer: 1569 type = cast<MemberPointerType>(ty)->getPointeeType(); 1570 break; 1571 1572 case Type::ConstantArray: 1573 case Type::IncompleteArray: 1574 // Losing element qualification here is fine. 1575 type = cast<ArrayType>(ty)->getElementType(); 1576 break; 1577 1578 case Type::VariableArray: { 1579 // Losing element qualification here is fine. 1580 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1581 1582 // Unknown size indication requires no size computation. 1583 // Otherwise, evaluate and record it. 1584 if (const Expr *size = vat->getSizeExpr()) { 1585 // It's possible that we might have emitted this already, 1586 // e.g. with a typedef and a pointer to it. 1587 llvm::Value *&entry = VLASizeMap[size]; 1588 if (!entry) { 1589 llvm::Value *Size = EmitScalarExpr(size); 1590 1591 // C11 6.7.6.2p5: 1592 // If the size is an expression that is not an integer constant 1593 // expression [...] each time it is evaluated it shall have a value 1594 // greater than zero. 1595 if (SanOpts.has(SanitizerKind::VLABound) && 1596 size->getType()->isSignedIntegerType()) { 1597 SanitizerScope SanScope(this); 1598 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1599 llvm::Constant *StaticArgs[] = { 1600 EmitCheckSourceLocation(size->getLocStart()), 1601 EmitCheckTypeDescriptor(size->getType()) 1602 }; 1603 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1604 SanitizerKind::VLABound), 1605 "vla_bound_not_positive", StaticArgs, Size); 1606 } 1607 1608 // Always zexting here would be wrong if it weren't 1609 // undefined behavior to have a negative bound. 1610 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1611 } 1612 } 1613 type = vat->getElementType(); 1614 break; 1615 } 1616 1617 case Type::FunctionProto: 1618 case Type::FunctionNoProto: 1619 type = cast<FunctionType>(ty)->getReturnType(); 1620 break; 1621 1622 case Type::Paren: 1623 case Type::TypeOf: 1624 case Type::UnaryTransform: 1625 case Type::Attributed: 1626 case Type::SubstTemplateTypeParm: 1627 case Type::PackExpansion: 1628 // Keep walking after single level desugaring. 1629 type = type.getSingleStepDesugaredType(getContext()); 1630 break; 1631 1632 case Type::Typedef: 1633 case Type::Decltype: 1634 case Type::Auto: 1635 // Stop walking: nothing to do. 1636 return; 1637 1638 case Type::TypeOfExpr: 1639 // Stop walking: emit typeof expression. 1640 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1641 return; 1642 1643 case Type::Atomic: 1644 type = cast<AtomicType>(ty)->getValueType(); 1645 break; 1646 } 1647 } while (type->isVariablyModifiedType()); 1648 } 1649 1650 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1651 if (getContext().getBuiltinVaListType()->isArrayType()) 1652 return EmitScalarExpr(E); 1653 return EmitLValue(E).getAddress(); 1654 } 1655 1656 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1657 llvm::Constant *Init) { 1658 assert (Init && "Invalid DeclRefExpr initializer!"); 1659 if (CGDebugInfo *Dbg = getDebugInfo()) 1660 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1661 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1662 } 1663 1664 CodeGenFunction::PeepholeProtection 1665 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1666 // At the moment, the only aggressive peephole we do in IR gen 1667 // is trunc(zext) folding, but if we add more, we can easily 1668 // extend this protection. 1669 1670 if (!rvalue.isScalar()) return PeepholeProtection(); 1671 llvm::Value *value = rvalue.getScalarVal(); 1672 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1673 1674 // Just make an extra bitcast. 1675 assert(HaveInsertPoint()); 1676 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1677 Builder.GetInsertBlock()); 1678 1679 PeepholeProtection protection; 1680 protection.Inst = inst; 1681 return protection; 1682 } 1683 1684 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1685 if (!protection.Inst) return; 1686 1687 // In theory, we could try to duplicate the peepholes now, but whatever. 1688 protection.Inst->eraseFromParent(); 1689 } 1690 1691 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1692 llvm::Value *AnnotatedVal, 1693 StringRef AnnotationStr, 1694 SourceLocation Location) { 1695 llvm::Value *Args[4] = { 1696 AnnotatedVal, 1697 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1698 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1699 CGM.EmitAnnotationLineNo(Location) 1700 }; 1701 return Builder.CreateCall(AnnotationFn, Args); 1702 } 1703 1704 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1705 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1706 // FIXME We create a new bitcast for every annotation because that's what 1707 // llvm-gcc was doing. 1708 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1709 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1710 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1711 I->getAnnotation(), D->getLocation()); 1712 } 1713 1714 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1715 llvm::Value *V) { 1716 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1717 llvm::Type *VTy = V->getType(); 1718 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1719 CGM.Int8PtrTy); 1720 1721 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1722 // FIXME Always emit the cast inst so we can differentiate between 1723 // annotation on the first field of a struct and annotation on the struct 1724 // itself. 1725 if (VTy != CGM.Int8PtrTy) 1726 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1727 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1728 V = Builder.CreateBitCast(V, VTy); 1729 } 1730 1731 return V; 1732 } 1733 1734 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1735 1736 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1737 : CGF(CGF) { 1738 assert(!CGF->IsSanitizerScope); 1739 CGF->IsSanitizerScope = true; 1740 } 1741 1742 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1743 CGF->IsSanitizerScope = false; 1744 } 1745 1746 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1747 const llvm::Twine &Name, 1748 llvm::BasicBlock *BB, 1749 llvm::BasicBlock::iterator InsertPt) const { 1750 LoopStack.InsertHelper(I); 1751 if (IsSanitizerScope) 1752 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1753 } 1754 1755 template <bool PreserveNames> 1756 void CGBuilderInserter<PreserveNames>::InsertHelper( 1757 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1758 llvm::BasicBlock::iterator InsertPt) const { 1759 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1760 InsertPt); 1761 if (CGF) 1762 CGF->InsertHelper(I, Name, BB, InsertPt); 1763 } 1764 1765 #ifdef NDEBUG 1766 #define PreserveNames false 1767 #else 1768 #define PreserveNames true 1769 #endif 1770 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1771 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1772 llvm::BasicBlock::iterator InsertPt) const; 1773 #undef PreserveNames 1774