1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGDebugInfo.h"
17 #include "CGException.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : BlockFunction(cgm, *this, Builder), CGM(cgm),
32     Target(CGM.getContext().Target),
33     Builder(cgm.getModule().getContext()),
34     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
35     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
36     SwitchInsn(0), CaseRangeBlock(0),
37     DidCallStackSave(false), UnreachableBlock(0),
38     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
39     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
40     TrapBB(0) {
41 
42   // Get some frequently used types.
43   LLVMPointerWidth = Target.getPointerWidth(0);
44   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
45   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
46   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
47   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
48 
49   Exceptions = getContext().getLangOptions().Exceptions;
50   CatchUndefined = getContext().getLangOptions().CatchUndefined;
51   CGM.getMangleContext().startNewFunction();
52 }
53 
54 ASTContext &CodeGenFunction::getContext() const {
55   return CGM.getContext();
56 }
57 
58 
59 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) {
60   llvm::Value *Res = LocalDeclMap[VD];
61   assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
62   return Res;
63 }
64 
65 llvm::Constant *
66 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) {
67   return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
68 }
69 
70 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
71   return CGM.getTypes().ConvertTypeForMem(T);
72 }
73 
74 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
75   return CGM.getTypes().ConvertType(T);
76 }
77 
78 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
79   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
80     T->isObjCObjectType();
81 }
82 
83 void CodeGenFunction::EmitReturnBlock() {
84   // For cleanliness, we try to avoid emitting the return block for
85   // simple cases.
86   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
87 
88   if (CurBB) {
89     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
90 
91     // We have a valid insert point, reuse it if it is empty or there are no
92     // explicit jumps to the return block.
93     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
94       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
95       delete ReturnBlock.getBlock();
96     } else
97       EmitBlock(ReturnBlock.getBlock());
98     return;
99   }
100 
101   // Otherwise, if the return block is the target of a single direct
102   // branch then we can just put the code in that block instead. This
103   // cleans up functions which started with a unified return block.
104   if (ReturnBlock.getBlock()->hasOneUse()) {
105     llvm::BranchInst *BI =
106       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
107     if (BI && BI->isUnconditional() &&
108         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
109       // Reset insertion point and delete the branch.
110       Builder.SetInsertPoint(BI->getParent());
111       BI->eraseFromParent();
112       delete ReturnBlock.getBlock();
113       return;
114     }
115   }
116 
117   // FIXME: We are at an unreachable point, there is no reason to emit the block
118   // unless it has uses. However, we still need a place to put the debug
119   // region.end for now.
120 
121   EmitBlock(ReturnBlock.getBlock());
122 }
123 
124 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
125   if (!BB) return;
126   if (!BB->use_empty())
127     return CGF.CurFn->getBasicBlockList().push_back(BB);
128   delete BB;
129 }
130 
131 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
132   assert(BreakContinueStack.empty() &&
133          "mismatched push/pop in break/continue stack!");
134 
135   // Emit function epilog (to return).
136   EmitReturnBlock();
137 
138   EmitFunctionInstrumentation("__cyg_profile_func_exit");
139 
140   // Emit debug descriptor for function end.
141   if (CGDebugInfo *DI = getDebugInfo()) {
142     DI->setLocation(EndLoc);
143     DI->EmitFunctionEnd(Builder);
144   }
145 
146   EmitFunctionEpilog(*CurFnInfo);
147   EmitEndEHSpec(CurCodeDecl);
148 
149   assert(EHStack.empty() &&
150          "did not remove all scopes from cleanup stack!");
151 
152   // If someone did an indirect goto, emit the indirect goto block at the end of
153   // the function.
154   if (IndirectBranch) {
155     EmitBlock(IndirectBranch->getParent());
156     Builder.ClearInsertionPoint();
157   }
158 
159   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
160   llvm::Instruction *Ptr = AllocaInsertPt;
161   AllocaInsertPt = 0;
162   Ptr->eraseFromParent();
163 
164   // If someone took the address of a label but never did an indirect goto, we
165   // made a zero entry PHI node, which is illegal, zap it now.
166   if (IndirectBranch) {
167     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
168     if (PN->getNumIncomingValues() == 0) {
169       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
170       PN->eraseFromParent();
171     }
172   }
173 
174   EmitIfUsed(*this, RethrowBlock.getBlock());
175   EmitIfUsed(*this, TerminateLandingPad);
176   EmitIfUsed(*this, TerminateHandler);
177   EmitIfUsed(*this, UnreachableBlock);
178 
179   if (CGM.getCodeGenOpts().EmitDeclMetadata)
180     EmitDeclMetadata();
181 }
182 
183 /// ShouldInstrumentFunction - Return true if the current function should be
184 /// instrumented with __cyg_profile_func_* calls
185 bool CodeGenFunction::ShouldInstrumentFunction() {
186   if (!CGM.getCodeGenOpts().InstrumentFunctions)
187     return false;
188   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
189     return false;
190   return true;
191 }
192 
193 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
194 /// instrumentation function with the current function and the call site, if
195 /// function instrumentation is enabled.
196 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
197   if (!ShouldInstrumentFunction())
198     return;
199 
200   const llvm::PointerType *PointerTy;
201   const llvm::FunctionType *FunctionTy;
202   std::vector<const llvm::Type*> ProfileFuncArgs;
203 
204   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
205   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
206   ProfileFuncArgs.push_back(PointerTy);
207   ProfileFuncArgs.push_back(PointerTy);
208   FunctionTy = llvm::FunctionType::get(
209     llvm::Type::getVoidTy(VMContext),
210     ProfileFuncArgs, false);
211 
212   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
213   llvm::CallInst *CallSite = Builder.CreateCall(
214     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
215     llvm::ConstantInt::get(Int32Ty, 0),
216     "callsite");
217 
218   Builder.CreateCall2(F,
219                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
220                       CallSite);
221 }
222 
223 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
224                                     llvm::Function *Fn,
225                                     const FunctionArgList &Args,
226                                     SourceLocation StartLoc) {
227   const Decl *D = GD.getDecl();
228 
229   DidCallStackSave = false;
230   CurCodeDecl = CurFuncDecl = D;
231   FnRetTy = RetTy;
232   CurFn = Fn;
233   assert(CurFn->isDeclaration() && "Function already has body?");
234 
235   // Pass inline keyword to optimizer if it appears explicitly on any
236   // declaration.
237   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
238     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
239            RE = FD->redecls_end(); RI != RE; ++RI)
240       if (RI->isInlineSpecified()) {
241         Fn->addFnAttr(llvm::Attribute::InlineHint);
242         break;
243       }
244 
245   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
246 
247   // Create a marker to make it easy to insert allocas into the entryblock
248   // later.  Don't create this with the builder, because we don't want it
249   // folded.
250   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
251   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
252   if (Builder.isNamePreserving())
253     AllocaInsertPt->setName("allocapt");
254 
255   ReturnBlock = getJumpDestInCurrentScope("return");
256 
257   Builder.SetInsertPoint(EntryBB);
258 
259   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
260                                                  false, false, 0, 0,
261                                                  /*FIXME?*/
262                                                  FunctionType::ExtInfo());
263 
264   // Emit subprogram debug descriptor.
265   if (CGDebugInfo *DI = getDebugInfo()) {
266     DI->setLocation(StartLoc);
267     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
268   }
269 
270   EmitFunctionInstrumentation("__cyg_profile_func_enter");
271 
272   // FIXME: Leaked.
273   // CC info is ignored, hopefully?
274   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
275                                               FunctionType::ExtInfo());
276 
277   if (RetTy->isVoidType()) {
278     // Void type; nothing to return.
279     ReturnValue = 0;
280   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
281              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
282     // Indirect aggregate return; emit returned value directly into sret slot.
283     // This reduces code size, and affects correctness in C++.
284     ReturnValue = CurFn->arg_begin();
285   } else {
286     ReturnValue = CreateIRTemp(RetTy, "retval");
287   }
288 
289   EmitStartEHSpec(CurCodeDecl);
290   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
291 
292   if (CXXThisDecl)
293     CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this");
294   if (CXXVTTDecl)
295     CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt");
296 
297   // If any of the arguments have a variably modified type, make sure to
298   // emit the type size.
299   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
300        i != e; ++i) {
301     QualType Ty = i->second;
302 
303     if (Ty->isVariablyModifiedType())
304       EmitVLASize(Ty);
305   }
306 }
307 
308 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
309   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
310   assert(FD->getBody());
311   EmitStmt(FD->getBody());
312 }
313 
314 /// Tries to mark the given function nounwind based on the
315 /// non-existence of any throwing calls within it.  We believe this is
316 /// lightweight enough to do at -O0.
317 static void TryMarkNoThrow(llvm::Function *F) {
318   // LLVM treats 'nounwind' on a function as part of the type, so we
319   // can't do this on functions that can be overwritten.
320   if (F->mayBeOverridden()) return;
321 
322   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
323     for (llvm::BasicBlock::iterator
324            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
325       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
326         if (!Call->doesNotThrow())
327           return;
328   F->setDoesNotThrow(true);
329 }
330 
331 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
332   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
333 
334   // Check if we should generate debug info for this function.
335   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
336     DebugInfo = CGM.getDebugInfo();
337 
338   FunctionArgList Args;
339 
340   CurGD = GD;
341   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
342     if (MD->isInstance()) {
343       // Create the implicit 'this' decl.
344       // FIXME: I'm not entirely sure I like using a fake decl just for code
345       // generation. Maybe we can come up with a better way?
346       CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0,
347                                               FD->getLocation(),
348                                               &getContext().Idents.get("this"),
349                                               MD->getThisType(getContext()));
350       Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType()));
351 
352       // Check if we need a VTT parameter as well.
353       if (CodeGenVTables::needsVTTParameter(GD)) {
354         // FIXME: The comment about using a fake decl above applies here too.
355         QualType T = getContext().getPointerType(getContext().VoidPtrTy);
356         CXXVTTDecl =
357           ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(),
358                                     &getContext().Idents.get("vtt"), T);
359         Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType()));
360       }
361     }
362   }
363 
364   if (FD->getNumParams()) {
365     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
366     assert(FProto && "Function def must have prototype!");
367 
368     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
369       Args.push_back(std::make_pair(FD->getParamDecl(i),
370                                     FProto->getArgType(i)));
371   }
372 
373   SourceRange BodyRange;
374   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
375 
376   // Emit the standard function prologue.
377   StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin());
378 
379   // Generate the body of the function.
380   if (isa<CXXDestructorDecl>(FD))
381     EmitDestructorBody(Args);
382   else if (isa<CXXConstructorDecl>(FD))
383     EmitConstructorBody(Args);
384   else
385     EmitFunctionBody(Args);
386 
387   // Emit the standard function epilogue.
388   FinishFunction(BodyRange.getEnd());
389 
390   // If we haven't marked the function nothrow through other means, do
391   // a quick pass now to see if we can.
392   if (!CurFn->doesNotThrow())
393     TryMarkNoThrow(CurFn);
394 }
395 
396 /// ContainsLabel - Return true if the statement contains a label in it.  If
397 /// this statement is not executed normally, it not containing a label means
398 /// that we can just remove the code.
399 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
400   // Null statement, not a label!
401   if (S == 0) return false;
402 
403   // If this is a label, we have to emit the code, consider something like:
404   // if (0) {  ...  foo:  bar(); }  goto foo;
405   if (isa<LabelStmt>(S))
406     return true;
407 
408   // If this is a case/default statement, and we haven't seen a switch, we have
409   // to emit the code.
410   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
411     return true;
412 
413   // If this is a switch statement, we want to ignore cases below it.
414   if (isa<SwitchStmt>(S))
415     IgnoreCaseStmts = true;
416 
417   // Scan subexpressions for verboten labels.
418   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
419        I != E; ++I)
420     if (ContainsLabel(*I, IgnoreCaseStmts))
421       return true;
422 
423   return false;
424 }
425 
426 
427 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
428 /// a constant, or if it does but contains a label, return 0.  If it constant
429 /// folds to 'true' and does not contain a label, return 1, if it constant folds
430 /// to 'false' and does not contain a label, return -1.
431 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
432   // FIXME: Rename and handle conversion of other evaluatable things
433   // to bool.
434   Expr::EvalResult Result;
435   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
436       Result.HasSideEffects)
437     return 0;  // Not foldable, not integer or not fully evaluatable.
438 
439   if (CodeGenFunction::ContainsLabel(Cond))
440     return 0;  // Contains a label.
441 
442   return Result.Val.getInt().getBoolValue() ? 1 : -1;
443 }
444 
445 
446 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
447 /// statement) to the specified blocks.  Based on the condition, this might try
448 /// to simplify the codegen of the conditional based on the branch.
449 ///
450 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
451                                            llvm::BasicBlock *TrueBlock,
452                                            llvm::BasicBlock *FalseBlock) {
453   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
454     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
455 
456   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
457     // Handle X && Y in a condition.
458     if (CondBOp->getOpcode() == BinaryOperator::LAnd) {
459       // If we have "1 && X", simplify the code.  "0 && X" would have constant
460       // folded if the case was simple enough.
461       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
462         // br(1 && X) -> br(X).
463         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
464       }
465 
466       // If we have "X && 1", simplify the code to use an uncond branch.
467       // "X && 0" would have been constant folded to 0.
468       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
469         // br(X && 1) -> br(X).
470         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
471       }
472 
473       // Emit the LHS as a conditional.  If the LHS conditional is false, we
474       // want to jump to the FalseBlock.
475       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
476       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
477       EmitBlock(LHSTrue);
478 
479       // Any temporaries created here are conditional.
480       BeginConditionalBranch();
481       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
482       EndConditionalBranch();
483 
484       return;
485     } else if (CondBOp->getOpcode() == BinaryOperator::LOr) {
486       // If we have "0 || X", simplify the code.  "1 || X" would have constant
487       // folded if the case was simple enough.
488       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
489         // br(0 || X) -> br(X).
490         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
491       }
492 
493       // If we have "X || 0", simplify the code to use an uncond branch.
494       // "X || 1" would have been constant folded to 1.
495       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
496         // br(X || 0) -> br(X).
497         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
498       }
499 
500       // Emit the LHS as a conditional.  If the LHS conditional is true, we
501       // want to jump to the TrueBlock.
502       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
503       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
504       EmitBlock(LHSFalse);
505 
506       // Any temporaries created here are conditional.
507       BeginConditionalBranch();
508       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
509       EndConditionalBranch();
510 
511       return;
512     }
513   }
514 
515   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
516     // br(!x, t, f) -> br(x, f, t)
517     if (CondUOp->getOpcode() == UnaryOperator::LNot)
518       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
519   }
520 
521   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
522     // Handle ?: operator.
523 
524     // Just ignore GNU ?: extension.
525     if (CondOp->getLHS()) {
526       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
527       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
528       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
529       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
530       EmitBlock(LHSBlock);
531       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
532       EmitBlock(RHSBlock);
533       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
534       return;
535     }
536   }
537 
538   // Emit the code with the fully general case.
539   llvm::Value *CondV = EvaluateExprAsBool(Cond);
540   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
541 }
542 
543 /// ErrorUnsupported - Print out an error that codegen doesn't support the
544 /// specified stmt yet.
545 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
546                                        bool OmitOnError) {
547   CGM.ErrorUnsupported(S, Type, OmitOnError);
548 }
549 
550 void
551 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
552   // Ignore empty classes in C++.
553   if (getContext().getLangOptions().CPlusPlus) {
554     if (const RecordType *RT = Ty->getAs<RecordType>()) {
555       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
556         return;
557     }
558   }
559 
560   // Cast the dest ptr to the appropriate i8 pointer type.
561   unsigned DestAS =
562     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
563   const llvm::Type *BP =
564     llvm::Type::getInt8PtrTy(VMContext, DestAS);
565   if (DestPtr->getType() != BP)
566     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
567 
568   // Get size and alignment info for this aggregate.
569   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
570   uint64_t Size = TypeInfo.first;
571   unsigned Align = TypeInfo.second;
572 
573   // Don't bother emitting a zero-byte memset.
574   if (Size == 0)
575     return;
576 
577   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
578   llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
579 
580   // If the type contains a pointer to data member we can't memset it to zero.
581   // Instead, create a null constant and copy it to the destination.
582   if (!CGM.getTypes().isZeroInitializable(Ty)) {
583     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
584 
585     llvm::GlobalVariable *NullVariable =
586       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
587                                /*isConstant=*/true,
588                                llvm::GlobalVariable::PrivateLinkage,
589                                NullConstant, llvm::Twine());
590     llvm::Value *SrcPtr =
591       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
592 
593     // FIXME: variable-size types?
594 
595     // Get and call the appropriate llvm.memcpy overload.
596     llvm::Constant *Memcpy =
597       CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
598     Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
599                         /*volatile*/ Builder.getFalse());
600     return;
601   }
602 
603   // Otherwise, just memset the whole thing to zero.  This is legal
604   // because in LLVM, all default initializers (other than the ones we just
605   // handled above) are guaranteed to have a bit pattern of all zeros.
606 
607   // FIXME: Handle variable sized types.
608   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
609                       Builder.getInt8(0),
610                       SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
611 }
612 
613 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
614   // Make sure that there is a block for the indirect goto.
615   if (IndirectBranch == 0)
616     GetIndirectGotoBlock();
617 
618   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
619 
620   // Make sure the indirect branch includes all of the address-taken blocks.
621   IndirectBranch->addDestination(BB);
622   return llvm::BlockAddress::get(CurFn, BB);
623 }
624 
625 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
626   // If we already made the indirect branch for indirect goto, return its block.
627   if (IndirectBranch) return IndirectBranch->getParent();
628 
629   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
630 
631   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
632 
633   // Create the PHI node that indirect gotos will add entries to.
634   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
635 
636   // Create the indirect branch instruction.
637   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
638   return IndirectBranch->getParent();
639 }
640 
641 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
642   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
643 
644   assert(SizeEntry && "Did not emit size for type");
645   return SizeEntry;
646 }
647 
648 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
649   assert(Ty->isVariablyModifiedType() &&
650          "Must pass variably modified type to EmitVLASizes!");
651 
652   EnsureInsertPoint();
653 
654   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
655     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
656 
657     if (!SizeEntry) {
658       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
659 
660       // Get the element size;
661       QualType ElemTy = VAT->getElementType();
662       llvm::Value *ElemSize;
663       if (ElemTy->isVariableArrayType())
664         ElemSize = EmitVLASize(ElemTy);
665       else
666         ElemSize = llvm::ConstantInt::get(SizeTy,
667             getContext().getTypeSizeInChars(ElemTy).getQuantity());
668 
669       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
670       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
671 
672       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
673     }
674 
675     return SizeEntry;
676   }
677 
678   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
679     EmitVLASize(AT->getElementType());
680     return 0;
681   }
682 
683   const PointerType *PT = Ty->getAs<PointerType>();
684   assert(PT && "unknown VM type!");
685   EmitVLASize(PT->getPointeeType());
686   return 0;
687 }
688 
689 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
690   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
691     return EmitScalarExpr(E);
692   return EmitLValue(E).getAddress();
693 }
694 
695 /// Pops cleanup blocks until the given savepoint is reached.
696 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
697   assert(Old.isValid());
698 
699   while (EHStack.stable_begin() != Old) {
700     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
701 
702     // As long as Old strictly encloses the scope's enclosing normal
703     // cleanup, we're going to emit another normal cleanup which
704     // fallthrough can propagate through.
705     bool FallThroughIsBranchThrough =
706       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
707 
708     PopCleanupBlock(FallThroughIsBranchThrough);
709   }
710 }
711 
712 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
713                                            EHCleanupScope &Scope) {
714   assert(Scope.isNormalCleanup());
715   llvm::BasicBlock *Entry = Scope.getNormalBlock();
716   if (!Entry) {
717     Entry = CGF.createBasicBlock("cleanup");
718     Scope.setNormalBlock(Entry);
719   }
720   return Entry;
721 }
722 
723 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
724                                        EHCleanupScope &Scope) {
725   assert(Scope.isEHCleanup());
726   llvm::BasicBlock *Entry = Scope.getEHBlock();
727   if (!Entry) {
728     Entry = CGF.createBasicBlock("eh.cleanup");
729     Scope.setEHBlock(Entry);
730   }
731   return Entry;
732 }
733 
734 /// Transitions the terminator of the given exit-block of a cleanup to
735 /// be a cleanup switch.
736 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
737                                                    llvm::BasicBlock *Block) {
738   // If it's a branch, turn it into a switch whose default
739   // destination is its original target.
740   llvm::TerminatorInst *Term = Block->getTerminator();
741   assert(Term && "can't transition block without terminator");
742 
743   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
744     assert(Br->isUnconditional());
745     llvm::LoadInst *Load =
746       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
747     llvm::SwitchInst *Switch =
748       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
749     Br->eraseFromParent();
750     return Switch;
751   } else {
752     return cast<llvm::SwitchInst>(Term);
753   }
754 }
755 
756 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
757 /// is basically llvm::MergeBlockIntoPredecessor, except
758 /// simplified/optimized for the tighter constraints on cleanup blocks.
759 ///
760 /// Returns the new block, whatever it is.
761 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
762                                               llvm::BasicBlock *Entry) {
763   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
764   if (!Pred) return Entry;
765 
766   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
767   if (!Br || Br->isConditional()) return Entry;
768   assert(Br->getSuccessor(0) == Entry);
769 
770   // If we were previously inserting at the end of the cleanup entry
771   // block, we'll need to continue inserting at the end of the
772   // predecessor.
773   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
774   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
775 
776   // Kill the branch.
777   Br->eraseFromParent();
778 
779   // Merge the blocks.
780   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
781 
782   // Kill the entry block.
783   Entry->eraseFromParent();
784 
785   if (WasInsertBlock)
786     CGF.Builder.SetInsertPoint(Pred);
787 
788   return Pred;
789 }
790 
791 static void EmitCleanup(CodeGenFunction &CGF,
792                         EHScopeStack::Cleanup *Fn,
793                         bool ForEH) {
794   if (ForEH) CGF.EHStack.pushTerminate();
795   Fn->Emit(CGF, ForEH);
796   if (ForEH) CGF.EHStack.popTerminate();
797   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
798 }
799 
800 /// Pops a cleanup block.  If the block includes a normal cleanup, the
801 /// current insertion point is threaded through the cleanup, as are
802 /// any branch fixups on the cleanup.
803 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
804   assert(!EHStack.empty() && "cleanup stack is empty!");
805   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
806   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
807   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
808   assert(Scope.isActive() && "cleanup was still inactive when popped!");
809 
810   // Check whether we need an EH cleanup.  This is only true if we've
811   // generated a lazy EH cleanup block.
812   bool RequiresEHCleanup = Scope.hasEHBranches();
813 
814   // Check the three conditions which might require a normal cleanup:
815 
816   // - whether there are branch fix-ups through this cleanup
817   unsigned FixupDepth = Scope.getFixupDepth();
818   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
819 
820   // - whether there are branch-throughs or branch-afters
821   bool HasExistingBranches = Scope.hasBranches();
822 
823   // - whether there's a fallthrough
824   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
825   bool HasFallthrough = (FallthroughSource != 0);
826 
827   bool RequiresNormalCleanup = false;
828   if (Scope.isNormalCleanup() &&
829       (HasFixups || HasExistingBranches || HasFallthrough)) {
830     RequiresNormalCleanup = true;
831   }
832 
833   // If we don't need the cleanup at all, we're done.
834   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
835     EHStack.popCleanup(); // safe because there are no fixups
836     assert(EHStack.getNumBranchFixups() == 0 ||
837            EHStack.hasNormalCleanups());
838     return;
839   }
840 
841   // Copy the cleanup emission data out.  Note that SmallVector
842   // guarantees maximal alignment for its buffer regardless of its
843   // type parameter.
844   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
845   CleanupBuffer.reserve(Scope.getCleanupSize());
846   memcpy(CleanupBuffer.data(),
847          Scope.getCleanupBuffer(), Scope.getCleanupSize());
848   CleanupBuffer.set_size(Scope.getCleanupSize());
849   EHScopeStack::Cleanup *Fn =
850     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
851 
852   // We want to emit the EH cleanup after the normal cleanup, but go
853   // ahead and do the setup for the EH cleanup while the scope is still
854   // alive.
855   llvm::BasicBlock *EHEntry = 0;
856   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
857   if (RequiresEHCleanup) {
858     EHEntry = CreateEHEntry(*this, Scope);
859 
860     // Figure out the branch-through dest if necessary.
861     llvm::BasicBlock *EHBranchThroughDest = 0;
862     if (Scope.hasEHBranchThroughs()) {
863       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
864       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
865       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
866     }
867 
868     // If we have exactly one branch-after and no branch-throughs, we
869     // can dispatch it without a switch.
870     if (!Scope.hasEHBranchThroughs() &&
871         Scope.getNumEHBranchAfters() == 1) {
872       assert(!EHBranchThroughDest);
873 
874       // TODO: remove the spurious eh.cleanup.dest stores if this edge
875       // never went through any switches.
876       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
877       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
878 
879     // Otherwise, if we have any branch-afters, we need a switch.
880     } else if (Scope.getNumEHBranchAfters()) {
881       // The default of the switch belongs to the branch-throughs if
882       // they exist.
883       llvm::BasicBlock *Default =
884         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
885 
886       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
887 
888       llvm::LoadInst *Load =
889         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
890       llvm::SwitchInst *Switch =
891         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
892 
893       EHInstsToAppend.push_back(Load);
894       EHInstsToAppend.push_back(Switch);
895 
896       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
897         Switch->addCase(Scope.getEHBranchAfterIndex(I),
898                         Scope.getEHBranchAfterBlock(I));
899 
900     // Otherwise, we have only branch-throughs; jump to the next EH
901     // cleanup.
902     } else {
903       assert(EHBranchThroughDest);
904       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
905     }
906   }
907 
908   if (!RequiresNormalCleanup) {
909     EHStack.popCleanup();
910   } else {
911     // As a kindof crazy internal case, branch-through fall-throughs
912     // leave the insertion point set to the end of the last cleanup.
913     bool HasPrebranchedFallthrough =
914       (HasFallthrough && FallthroughSource->getTerminator());
915     assert(!HasPrebranchedFallthrough ||
916            FallthroughSource->getTerminator()->getSuccessor(0)
917              == Scope.getNormalBlock());
918 
919     // If we have a fallthrough and no other need for the cleanup,
920     // emit it directly.
921     if (HasFallthrough && !HasPrebranchedFallthrough &&
922         !HasFixups && !HasExistingBranches) {
923 
924       // Fixups can cause us to optimistically create a normal block,
925       // only to later have no real uses for it.  Just delete it in
926       // this case.
927       // TODO: we can potentially simplify all the uses after this.
928       if (Scope.getNormalBlock()) {
929         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
930         delete Scope.getNormalBlock();
931       }
932 
933       EHStack.popCleanup();
934 
935       EmitCleanup(*this, Fn, /*ForEH*/ false);
936 
937     // Otherwise, the best approach is to thread everything through
938     // the cleanup block and then try to clean up after ourselves.
939     } else {
940       // Force the entry block to exist.
941       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
942 
943       // If there's a fallthrough, we need to store the cleanup
944       // destination index.  For fall-throughs this is always zero.
945       if (HasFallthrough && !HasPrebranchedFallthrough)
946         Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
947 
948       // Emit the entry block.  This implicitly branches to it if we
949       // have fallthrough.  All the fixups and existing branches should
950       // already be branched to it.
951       EmitBlock(NormalEntry);
952 
953       bool HasEnclosingCleanups =
954         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
955 
956       // Compute the branch-through dest if we need it:
957       //   - if there are branch-throughs threaded through the scope
958       //   - if fall-through is a branch-through
959       //   - if there are fixups that will be optimistically forwarded
960       //     to the enclosing cleanup
961       llvm::BasicBlock *BranchThroughDest = 0;
962       if (Scope.hasBranchThroughs() ||
963           (HasFallthrough && FallthroughIsBranchThrough) ||
964           (HasFixups && HasEnclosingCleanups)) {
965         assert(HasEnclosingCleanups);
966         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
967         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
968       }
969 
970       llvm::BasicBlock *FallthroughDest = 0;
971       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
972 
973       // If there's exactly one branch-after and no other threads,
974       // we can route it without a switch.
975       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
976           Scope.getNumBranchAfters() == 1) {
977         assert(!BranchThroughDest);
978 
979         // TODO: clean up the possibly dead stores to the cleanup dest slot.
980         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
981         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
982 
983       // Build a switch-out if we need it:
984       //   - if there are branch-afters threaded through the scope
985       //   - if fall-through is a branch-after
986       //   - if there are fixups that have nowhere left to go and
987       //     so must be immediately resolved
988       } else if (Scope.getNumBranchAfters() ||
989                  (HasFallthrough && !FallthroughIsBranchThrough) ||
990                  (HasFixups && !HasEnclosingCleanups)) {
991 
992         llvm::BasicBlock *Default =
993           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
994 
995         // TODO: base this on the number of branch-afters and fixups
996         const unsigned SwitchCapacity = 10;
997 
998         llvm::LoadInst *Load =
999           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1000         llvm::SwitchInst *Switch =
1001           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1002 
1003         InstsToAppend.push_back(Load);
1004         InstsToAppend.push_back(Switch);
1005 
1006         // Branch-after fallthrough.
1007         if (HasFallthrough && !FallthroughIsBranchThrough) {
1008           FallthroughDest = createBasicBlock("cleanup.cont");
1009           Switch->addCase(Builder.getInt32(0), FallthroughDest);
1010         }
1011 
1012         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1013           Switch->addCase(Scope.getBranchAfterIndex(I),
1014                           Scope.getBranchAfterBlock(I));
1015         }
1016 
1017         if (HasFixups && !HasEnclosingCleanups)
1018           ResolveAllBranchFixups(Switch);
1019       } else {
1020         // We should always have a branch-through destination in this case.
1021         assert(BranchThroughDest);
1022         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1023       }
1024 
1025       // We're finally ready to pop the cleanup.
1026       EHStack.popCleanup();
1027       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1028 
1029       EmitCleanup(*this, Fn, /*ForEH*/ false);
1030 
1031       // Append the prepared cleanup prologue from above.
1032       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1033       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1034         NormalExit->getInstList().push_back(InstsToAppend[I]);
1035 
1036       // Optimistically hope that any fixups will continue falling through.
1037       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1038            I < E; ++I) {
1039         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1040         if (!Fixup.Destination) continue;
1041         if (!Fixup.OptimisticBranchBlock) {
1042           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1043                               getNormalCleanupDestSlot(),
1044                               Fixup.InitialBranch);
1045           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1046         }
1047         Fixup.OptimisticBranchBlock = NormalExit;
1048       }
1049 
1050       if (FallthroughDest)
1051         EmitBlock(FallthroughDest);
1052       else if (!HasFallthrough)
1053         Builder.ClearInsertionPoint();
1054 
1055       // Check whether we can merge NormalEntry into a single predecessor.
1056       // This might invalidate (non-IR) pointers to NormalEntry.
1057       llvm::BasicBlock *NewNormalEntry =
1058         SimplifyCleanupEntry(*this, NormalEntry);
1059 
1060       // If it did invalidate those pointers, and NormalEntry was the same
1061       // as NormalExit, go back and patch up the fixups.
1062       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1063         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1064                I < E; ++I)
1065           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1066     }
1067   }
1068 
1069   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1070 
1071   // Emit the EH cleanup if required.
1072   if (RequiresEHCleanup) {
1073     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1074 
1075     EmitBlock(EHEntry);
1076     EmitCleanup(*this, Fn, /*ForEH*/ true);
1077 
1078     // Append the prepared cleanup prologue from above.
1079     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1080     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1081       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1082 
1083     Builder.restoreIP(SavedIP);
1084 
1085     SimplifyCleanupEntry(*this, EHEntry);
1086   }
1087 }
1088 
1089 /// Terminate the current block by emitting a branch which might leave
1090 /// the current cleanup-protected scope.  The target scope may not yet
1091 /// be known, in which case this will require a fixup.
1092 ///
1093 /// As a side-effect, this method clears the insertion point.
1094 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1095   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1096          && "stale jump destination");
1097 
1098   if (!HaveInsertPoint())
1099     return;
1100 
1101   // Create the branch.
1102   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1103 
1104   // Calculate the innermost active normal cleanup.
1105   EHScopeStack::stable_iterator
1106     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1107 
1108   // If we're not in an active normal cleanup scope, or if the
1109   // destination scope is within the innermost active normal cleanup
1110   // scope, we don't need to worry about fixups.
1111   if (TopCleanup == EHStack.stable_end() ||
1112       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1113     Builder.ClearInsertionPoint();
1114     return;
1115   }
1116 
1117   // If we can't resolve the destination cleanup scope, just add this
1118   // to the current cleanup scope as a branch fixup.
1119   if (!Dest.getScopeDepth().isValid()) {
1120     BranchFixup &Fixup = EHStack.addBranchFixup();
1121     Fixup.Destination = Dest.getBlock();
1122     Fixup.DestinationIndex = Dest.getDestIndex();
1123     Fixup.InitialBranch = BI;
1124     Fixup.OptimisticBranchBlock = 0;
1125 
1126     Builder.ClearInsertionPoint();
1127     return;
1128   }
1129 
1130   // Otherwise, thread through all the normal cleanups in scope.
1131 
1132   // Store the index at the start.
1133   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1134   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1135 
1136   // Adjust BI to point to the first cleanup block.
1137   {
1138     EHCleanupScope &Scope =
1139       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1140     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1141   }
1142 
1143   // Add this destination to all the scopes involved.
1144   EHScopeStack::stable_iterator I = TopCleanup;
1145   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1146   if (E.strictlyEncloses(I)) {
1147     while (true) {
1148       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1149       assert(Scope.isNormalCleanup());
1150       I = Scope.getEnclosingNormalCleanup();
1151 
1152       // If this is the last cleanup we're propagating through, tell it
1153       // that there's a resolved jump moving through it.
1154       if (!E.strictlyEncloses(I)) {
1155         Scope.addBranchAfter(Index, Dest.getBlock());
1156         break;
1157       }
1158 
1159       // Otherwise, tell the scope that there's a jump propoagating
1160       // through it.  If this isn't new information, all the rest of
1161       // the work has been done before.
1162       if (!Scope.addBranchThrough(Dest.getBlock()))
1163         break;
1164     }
1165   }
1166 
1167   Builder.ClearInsertionPoint();
1168 }
1169 
1170 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1171   // We should never get invalid scope depths for an UnwindDest; that
1172   // implies that the destination wasn't set up correctly.
1173   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1174 
1175   if (!HaveInsertPoint())
1176     return;
1177 
1178   // Create the branch.
1179   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1180 
1181   // Calculate the innermost active cleanup.
1182   EHScopeStack::stable_iterator
1183     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1184 
1185   // If the destination is in the same EH cleanup scope as us, we
1186   // don't need to thread through anything.
1187   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1188     Builder.ClearInsertionPoint();
1189     return;
1190   }
1191   assert(InnermostCleanup != EHStack.stable_end());
1192 
1193   // Store the index at the start.
1194   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1195   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1196 
1197   // Adjust BI to point to the first cleanup block.
1198   {
1199     EHCleanupScope &Scope =
1200       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1201     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1202   }
1203 
1204   // Add this destination to all the scopes involved.
1205   for (EHScopeStack::stable_iterator
1206          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1207     assert(E.strictlyEncloses(I));
1208     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1209     assert(Scope.isEHCleanup());
1210     I = Scope.getEnclosingEHCleanup();
1211 
1212     // If this is the last cleanup we're propagating through, add this
1213     // as a branch-after.
1214     if (I == E) {
1215       Scope.addEHBranchAfter(Index, Dest.getBlock());
1216       break;
1217     }
1218 
1219     // Otherwise, add it as a branch-through.  If this isn't new
1220     // information, all the rest of the work has been done before.
1221     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1222       break;
1223   }
1224 
1225   Builder.ClearInsertionPoint();
1226 }
1227 
1228 /// All the branch fixups on the EH stack have propagated out past the
1229 /// outermost normal cleanup; resolve them all by adding cases to the
1230 /// given switch instruction.
1231 void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) {
1232   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1233 
1234   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1235     // Skip this fixup if its destination isn't set or if we've
1236     // already treated it.
1237     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1238     if (Fixup.Destination == 0) continue;
1239     if (!CasesAdded.insert(Fixup.Destination)) continue;
1240 
1241     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex),
1242                     Fixup.Destination);
1243   }
1244 
1245   EHStack.clearFixups();
1246 }
1247 
1248 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1249   assert(Block && "resolving a null target block");
1250   if (!EHStack.getNumBranchFixups()) return;
1251 
1252   assert(EHStack.hasNormalCleanups() &&
1253          "branch fixups exist with no normal cleanups on stack");
1254 
1255   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1256   bool ResolvedAny = false;
1257 
1258   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1259     // Skip this fixup if its destination doesn't match.
1260     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1261     if (Fixup.Destination != Block) continue;
1262 
1263     Fixup.Destination = 0;
1264     ResolvedAny = true;
1265 
1266     // If it doesn't have an optimistic branch block, LatestBranch is
1267     // already pointing to the right place.
1268     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1269     if (!BranchBB)
1270       continue;
1271 
1272     // Don't process the same optimistic branch block twice.
1273     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1274       continue;
1275 
1276     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1277 
1278     // Add a case to the switch.
1279     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1280   }
1281 
1282   if (ResolvedAny)
1283     EHStack.popNullFixups();
1284 }
1285 
1286 /// Activate a cleanup that was created in an inactivated state.
1287 void CodeGenFunction::ActivateCleanup(EHScopeStack::stable_iterator C) {
1288   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1289   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1290   assert(!Scope.isActive() && "double activation");
1291 
1292   // Calculate whether the cleanup was used:
1293   bool Used = false;
1294 
1295   //   - as a normal cleanup
1296   if (Scope.isNormalCleanup()) {
1297     bool NormalUsed = false;
1298     if (Scope.getNormalBlock()) {
1299       NormalUsed = true;
1300     } else {
1301       // Check whether any enclosed cleanups were needed.
1302       for (EHScopeStack::stable_iterator
1303              I = EHStack.getInnermostNormalCleanup(); I != C; ) {
1304         assert(C.strictlyEncloses(I));
1305         EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1306         if (S.getNormalBlock()) {
1307           NormalUsed = true;
1308           break;
1309         }
1310         I = S.getEnclosingNormalCleanup();
1311       }
1312     }
1313 
1314     if (NormalUsed)
1315       Used = true;
1316     else
1317       Scope.setActivatedBeforeNormalUse(true);
1318   }
1319 
1320   //  - as an EH cleanup
1321   if (Scope.isEHCleanup()) {
1322     bool EHUsed = false;
1323     if (Scope.getEHBlock()) {
1324       EHUsed = true;
1325     } else {
1326       // Check whether any enclosed cleanups were needed.
1327       for (EHScopeStack::stable_iterator
1328              I = EHStack.getInnermostEHCleanup(); I != C; ) {
1329         assert(C.strictlyEncloses(I));
1330         EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1331         if (S.getEHBlock()) {
1332           EHUsed = true;
1333           break;
1334         }
1335         I = S.getEnclosingEHCleanup();
1336       }
1337     }
1338 
1339     if (EHUsed)
1340       Used = true;
1341     else
1342       Scope.setActivatedBeforeEHUse(true);
1343   }
1344 
1345   llvm::AllocaInst *Var = EHCleanupScope::activeSentinel();
1346   if (Used) {
1347     Var = CreateTempAlloca(Builder.getInt1Ty());
1348     InitTempAlloca(Var, Builder.getFalse());
1349   }
1350   Scope.setActiveVar(Var);
1351 }
1352 
1353 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1354   if (!NormalCleanupDest)
1355     NormalCleanupDest =
1356       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1357   return NormalCleanupDest;
1358 }
1359 
1360 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1361   if (!EHCleanupDest)
1362     EHCleanupDest =
1363       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1364   return EHCleanupDest;
1365 }
1366 
1367 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1368                                               llvm::ConstantInt *Init) {
1369   assert (Init && "Invalid DeclRefExpr initializer!");
1370   if (CGDebugInfo *Dbg = getDebugInfo())
1371     Dbg->EmitGlobalVariable(E->getDecl(), Init, Builder);
1372 }
1373