1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "llvm/Support/CFG.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 26 : CGM(cgm), Target(CGM.getContext().Target), SwitchInsn(NULL), 27 CaseRangeBlock(NULL) { 28 LLVMIntTy = ConvertType(getContext().IntTy); 29 LLVMPointerWidth = Target.getPointerWidth(0); 30 } 31 32 ASTContext &CodeGenFunction::getContext() const { 33 return CGM.getContext(); 34 } 35 36 37 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 38 llvm::BasicBlock *&BB = LabelMap[S]; 39 if (BB) return BB; 40 41 // Create, but don't insert, the new block. 42 return BB = createBasicBlock(S->getName()); 43 } 44 45 llvm::Constant * 46 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 47 return cast<llvm::Constant>(LocalDeclMap[BVD]); 48 } 49 50 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) 51 { 52 return LocalDeclMap[VD]; 53 } 54 55 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 56 return CGM.getTypes().ConvertType(T); 57 } 58 59 bool CodeGenFunction::isObjCPointerType(QualType T) { 60 // All Objective-C types are pointers. 61 return T->isObjCInterfaceType() || 62 T->isObjCQualifiedInterfaceType() || T->isObjCQualifiedIdType(); 63 } 64 65 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 66 return !isObjCPointerType(T) &&!T->isRealType() && !T->isPointerLikeType() && 67 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType(); 68 } 69 70 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 71 // Finish emission of indirect switches. 72 EmitIndirectSwitches(); 73 74 assert(BreakContinueStack.empty() && 75 "mismatched push/pop in break/continue stack!"); 76 77 // Emit function epilog (to return). This has the nice side effect 78 // of also automatically handling code that falls off the end. 79 EmitBlock(ReturnBlock); 80 81 // Emit debug descriptor for function end. 82 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 83 DI->setLocation(EndLoc); 84 DI->EmitRegionEnd(CurFn, Builder); 85 } 86 87 EmitFunctionEpilog(FnRetTy, ReturnValue); 88 89 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 90 AllocaInsertPt->eraseFromParent(); 91 AllocaInsertPt = 0; 92 } 93 94 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, 95 llvm::Function *Fn, 96 const FunctionArgList &Args, 97 SourceLocation StartLoc) { 98 CurFuncDecl = D; 99 FnRetTy = RetTy; 100 CurFn = Fn; 101 assert(CurFn->isDeclaration() && "Function already has body?"); 102 103 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 104 105 // Create a marker to make it easy to insert allocas into the entryblock 106 // later. Don't create this with the builder, because we don't want it 107 // folded. 108 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty); 109 AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "allocapt", 110 EntryBB); 111 112 ReturnBlock = createBasicBlock("return"); 113 ReturnValue = 0; 114 if (!RetTy->isVoidType()) 115 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 116 117 Builder.SetInsertPoint(EntryBB); 118 119 // Emit subprogram debug descriptor. 120 // FIXME: The cast here is a huge hack. 121 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 122 DI->setLocation(StartLoc); 123 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 124 DI->EmitFunctionStart(FD->getIdentifier()->getName(), 125 RetTy, CurFn, Builder); 126 } else { 127 // Just use LLVM function name. 128 DI->EmitFunctionStart(Fn->getName().c_str(), 129 RetTy, CurFn, Builder); 130 } 131 } 132 133 EmitFunctionProlog(CurFn, FnRetTy, Args); 134 135 // If any of the arguments have a variably modified type, make sure to 136 // emit the type size. 137 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 138 i != e; ++i) { 139 QualType Ty = i->second; 140 141 if (Ty->isVariablyModifiedType()) 142 EmitVLASize(Ty); 143 } 144 } 145 146 void CodeGenFunction::GenerateCode(const FunctionDecl *FD, 147 llvm::Function *Fn) { 148 FunctionArgList Args; 149 if (FD->getNumParams()) { 150 const FunctionTypeProto* FProto = FD->getType()->getAsFunctionTypeProto(); 151 assert(FProto && "Function def must have prototype!"); 152 153 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 154 Args.push_back(std::make_pair(FD->getParamDecl(i), 155 FProto->getArgType(i))); 156 } 157 158 StartFunction(FD, FD->getResultType(), Fn, Args, 159 cast<CompoundStmt>(FD->getBody())->getLBracLoc()); 160 161 EmitStmt(FD->getBody()); 162 163 const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()); 164 if (S) { 165 FinishFunction(S->getRBracLoc()); 166 } else { 167 FinishFunction(); 168 } 169 } 170 171 /// ContainsLabel - Return true if the statement contains a label in it. If 172 /// this statement is not executed normally, it not containing a label means 173 /// that we can just remove the code. 174 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 175 // Null statement, not a label! 176 if (S == 0) return false; 177 178 // If this is a label, we have to emit the code, consider something like: 179 // if (0) { ... foo: bar(); } goto foo; 180 if (isa<LabelStmt>(S)) 181 return true; 182 183 // If this is a case/default statement, and we haven't seen a switch, we have 184 // to emit the code. 185 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 186 return true; 187 188 // If this is a switch statement, we want to ignore cases below it. 189 if (isa<SwitchStmt>(S)) 190 IgnoreCaseStmts = true; 191 192 // Scan subexpressions for verboten labels. 193 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 194 I != E; ++I) 195 if (ContainsLabel(*I, IgnoreCaseStmts)) 196 return true; 197 198 return false; 199 } 200 201 202 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 203 /// a constant, or if it does but contains a label, return 0. If it constant 204 /// folds to 'true' and does not contain a label, return 1, if it constant folds 205 /// to 'false' and does not contain a label, return -1. 206 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 207 // FIXME: Rename and handle conversion of other evaluatable things 208 // to bool. 209 Expr::EvalResult Result; 210 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 211 Result.HasSideEffects) 212 return 0; // Not foldable, not integer or not fully evaluatable. 213 214 if (CodeGenFunction::ContainsLabel(Cond)) 215 return 0; // Contains a label. 216 217 return Result.Val.getInt().getBoolValue() ? 1 : -1; 218 } 219 220 221 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 222 /// statement) to the specified blocks. Based on the condition, this might try 223 /// to simplify the codegen of the conditional based on the branch. 224 /// 225 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 226 llvm::BasicBlock *TrueBlock, 227 llvm::BasicBlock *FalseBlock) { 228 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 229 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 230 231 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 232 // Handle X && Y in a condition. 233 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 234 // If we have "1 && X", simplify the code. "0 && X" would have constant 235 // folded if the case was simple enough. 236 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 237 // br(1 && X) -> br(X). 238 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 239 } 240 241 // If we have "X && 1", simplify the code to use an uncond branch. 242 // "X && 0" would have been constant folded to 0. 243 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 244 // br(X && 1) -> br(X). 245 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 246 } 247 248 // Emit the LHS as a conditional. If the LHS conditional is false, we 249 // want to jump to the FalseBlock. 250 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 251 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 252 EmitBlock(LHSTrue); 253 254 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 255 return; 256 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 257 // If we have "0 || X", simplify the code. "1 || X" would have constant 258 // folded if the case was simple enough. 259 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 260 // br(0 || X) -> br(X). 261 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 262 } 263 264 // If we have "X || 0", simplify the code to use an uncond branch. 265 // "X || 1" would have been constant folded to 1. 266 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 267 // br(X || 0) -> br(X). 268 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 269 } 270 271 // Emit the LHS as a conditional. If the LHS conditional is true, we 272 // want to jump to the TrueBlock. 273 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 274 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 275 EmitBlock(LHSFalse); 276 277 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 278 return; 279 } 280 } 281 282 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 283 // br(!x, t, f) -> br(x, f, t) 284 if (CondUOp->getOpcode() == UnaryOperator::LNot) 285 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 286 } 287 288 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 289 // Handle ?: operator. 290 291 // Just ignore GNU ?: extension. 292 if (CondOp->getLHS()) { 293 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 294 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 295 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 296 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 297 EmitBlock(LHSBlock); 298 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 299 EmitBlock(RHSBlock); 300 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 301 return; 302 } 303 } 304 305 // Emit the code with the fully general case. 306 llvm::Value *CondV = EvaluateExprAsBool(Cond); 307 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 308 } 309 310 /// getCGRecordLayout - Return record layout info. 311 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, 312 QualType Ty) { 313 const RecordType *RTy = Ty->getAsRecordType(); 314 assert (RTy && "Unexpected type. RecordType expected here."); 315 316 return CGT.getCGRecordLayout(RTy->getDecl()); 317 } 318 319 /// ErrorUnsupported - Print out an error that codegen doesn't support the 320 /// specified stmt yet. 321 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 322 bool OmitOnError) { 323 CGM.ErrorUnsupported(S, Type, OmitOnError); 324 } 325 326 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 327 // Use LabelIDs.size() as the new ID if one hasn't been assigned. 328 return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; 329 } 330 331 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) 332 { 333 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 334 if (DestPtr->getType() != BP) 335 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 336 337 // Get size and alignment info for this aggregate. 338 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 339 340 // FIXME: Handle variable sized types. 341 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 342 343 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 344 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 345 // TypeInfo.first describes size in bits. 346 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 347 llvm::ConstantInt::get(llvm::Type::Int32Ty, 348 TypeInfo.second/8)); 349 } 350 351 void CodeGenFunction::EmitIndirectSwitches() { 352 llvm::BasicBlock *Default; 353 354 if (IndirectSwitches.empty()) 355 return; 356 357 if (!LabelIDs.empty()) { 358 Default = getBasicBlockForLabel(LabelIDs.begin()->first); 359 } else { 360 // No possible targets for indirect goto, just emit an infinite 361 // loop. 362 Default = createBasicBlock("indirectgoto.loop", CurFn); 363 llvm::BranchInst::Create(Default, Default); 364 } 365 366 for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(), 367 e = IndirectSwitches.end(); i != e; ++i) { 368 llvm::SwitchInst *I = *i; 369 370 I->setSuccessor(0, Default); 371 for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(), 372 LE = LabelIDs.end(); LI != LE; ++LI) { 373 I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty, 374 LI->second), 375 getBasicBlockForLabel(LI->first)); 376 } 377 } 378 } 379 380 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) 381 { 382 // FIXME: This entire method is hardcoded for 32-bit X86. 383 384 const char *TargetPrefix = getContext().Target.getTargetPrefix(); 385 386 if (strcmp(TargetPrefix, "x86") != 0 || 387 getContext().Target.getPointerWidth(0) != 32) 388 return 0; 389 390 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 391 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 392 393 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 394 "ap"); 395 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 396 llvm::Value *AddrTyped = 397 Builder.CreateBitCast(Addr, 398 llvm::PointerType::getUnqual(ConvertType(Ty))); 399 400 uint64_t SizeInBytes = getContext().getTypeSize(Ty) / 8; 401 const unsigned ArgumentSizeInBytes = 4; 402 if (SizeInBytes < ArgumentSizeInBytes) 403 SizeInBytes = ArgumentSizeInBytes; 404 405 llvm::Value *NextAddr = 406 Builder.CreateGEP(Addr, 407 llvm::ConstantInt::get(llvm::Type::Int32Ty, SizeInBytes), 408 "ap.next"); 409 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 410 411 return AddrTyped; 412 } 413 414 415 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) 416 { 417 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 418 419 assert(SizeEntry && "Did not emit size for type"); 420 return SizeEntry; 421 } 422 423 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) 424 { 425 assert(Ty->isVariablyModifiedType() && 426 "Must pass variably modified type to EmitVLASizes!"); 427 428 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 429 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 430 431 if (!SizeEntry) { 432 // Get the element size; 433 llvm::Value *ElemSize; 434 435 QualType ElemTy = VAT->getElementType(); 436 437 if (ElemTy->isVariableArrayType()) 438 ElemSize = EmitVLASize(ElemTy); 439 else { 440 // FIXME: We use Int32Ty here because the alloca instruction takes a 441 // 32-bit integer. What should we do about overflow? 442 ElemSize = llvm::ConstantInt::get(llvm::Type::Int32Ty, 443 getContext().getTypeSize(ElemTy) / 8); 444 } 445 446 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 447 448 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 449 } 450 451 return SizeEntry; 452 } else if (const PointerType *PT = Ty->getAsPointerType()) 453 EmitVLASize(PT->getPointeeType()); 454 else { 455 assert(0 && "unknown VM type!"); 456 } 457 458 return 0; 459 } 460