1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Disable lifetime markers in msan builds. 49 // FIXME: Remove this when msan works with lifetime markers. 50 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 51 return false; 52 53 // Asan uses markers for use-after-scope checks. 54 if (CGOpts.SanitizeAddressUseAfterScope) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 AlignmentSource *Source) { 121 return getNaturalTypeAlignment(T->getPointeeType(), Source, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 AlignmentSource *Source, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (Source) *Source = AlignmentSource::AttributedType; 134 return getContext().toCharUnitsFromBits(Align); 135 } 136 } 137 138 if (Source) *Source = AlignmentSource::Type; 139 140 CharUnits Alignment; 141 if (T->isIncompleteType()) { 142 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 143 } else { 144 // For C++ class pointees, we don't know whether we're pointing at a 145 // base or a complete object, so we generally need to use the 146 // non-virtual alignment. 147 const CXXRecordDecl *RD; 148 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 149 Alignment = CGM.getClassPointerAlignment(RD); 150 } else { 151 Alignment = getContext().getTypeAlignInChars(T); 152 if (T.getQualifiers().hasUnaligned()) 153 Alignment = CharUnits::One(); 154 } 155 156 // Cap to the global maximum type alignment unless the alignment 157 // was somehow explicit on the type. 158 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 159 if (Alignment.getQuantity() > MaxAlign && 160 !getContext().isAlignmentRequired(T)) 161 Alignment = CharUnits::fromQuantity(MaxAlign); 162 } 163 } 164 return Alignment; 165 } 166 167 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 168 AlignmentSource AlignSource; 169 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 170 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 171 CGM.getTBAAInfo(T)); 172 } 173 174 /// Given a value of type T* that may not be to a complete object, 175 /// construct an l-value with the natural pointee alignment of T. 176 LValue 177 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 178 AlignmentSource AlignSource; 179 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 180 return MakeAddrLValue(Address(V, Align), T, AlignSource); 181 } 182 183 184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 185 return CGM.getTypes().ConvertTypeForMem(T); 186 } 187 188 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 189 return CGM.getTypes().ConvertType(T); 190 } 191 192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 193 type = type.getCanonicalType(); 194 while (true) { 195 switch (type->getTypeClass()) { 196 #define TYPE(name, parent) 197 #define ABSTRACT_TYPE(name, parent) 198 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 199 #define DEPENDENT_TYPE(name, parent) case Type::name: 200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 201 #include "clang/AST/TypeNodes.def" 202 llvm_unreachable("non-canonical or dependent type in IR-generation"); 203 204 case Type::Auto: 205 case Type::DeducedTemplateSpecialization: 206 llvm_unreachable("undeduced type in IR-generation"); 207 208 // Various scalar types. 209 case Type::Builtin: 210 case Type::Pointer: 211 case Type::BlockPointer: 212 case Type::LValueReference: 213 case Type::RValueReference: 214 case Type::MemberPointer: 215 case Type::Vector: 216 case Type::ExtVector: 217 case Type::FunctionProto: 218 case Type::FunctionNoProto: 219 case Type::Enum: 220 case Type::ObjCObjectPointer: 221 case Type::Pipe: 222 return TEK_Scalar; 223 224 // Complexes. 225 case Type::Complex: 226 return TEK_Complex; 227 228 // Arrays, records, and Objective-C objects. 229 case Type::ConstantArray: 230 case Type::IncompleteArray: 231 case Type::VariableArray: 232 case Type::Record: 233 case Type::ObjCObject: 234 case Type::ObjCInterface: 235 return TEK_Aggregate; 236 237 // We operate on atomic values according to their underlying type. 238 case Type::Atomic: 239 type = cast<AtomicType>(type)->getValueType(); 240 continue; 241 } 242 llvm_unreachable("unknown type kind!"); 243 } 244 } 245 246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 247 // For cleanliness, we try to avoid emitting the return block for 248 // simple cases. 249 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 250 251 if (CurBB) { 252 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 253 254 // We have a valid insert point, reuse it if it is empty or there are no 255 // explicit jumps to the return block. 256 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 257 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 258 delete ReturnBlock.getBlock(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 return Loc; 279 } 280 } 281 282 // FIXME: We are at an unreachable point, there is no reason to emit the block 283 // unless it has uses. However, we still need a place to put the debug 284 // region.end for now. 285 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 291 if (!BB) return; 292 if (!BB->use_empty()) 293 return CGF.CurFn->getBasicBlockList().push_back(BB); 294 delete BB; 295 } 296 297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 298 assert(BreakContinueStack.empty() && 299 "mismatched push/pop in break/continue stack!"); 300 301 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 302 && NumSimpleReturnExprs == NumReturnExprs 303 && ReturnBlock.getBlock()->use_empty(); 304 // Usually the return expression is evaluated before the cleanup 305 // code. If the function contains only a simple return statement, 306 // such as a constant, the location before the cleanup code becomes 307 // the last useful breakpoint in the function, because the simple 308 // return expression will be evaluated after the cleanup code. To be 309 // safe, set the debug location for cleanup code to the location of 310 // the return statement. Otherwise the cleanup code should be at the 311 // end of the function's lexical scope. 312 // 313 // If there are multiple branches to the return block, the branch 314 // instructions will get the location of the return statements and 315 // all will be fine. 316 if (CGDebugInfo *DI = getDebugInfo()) { 317 if (OnlySimpleReturnStmts) 318 DI->EmitLocation(Builder, LastStopPoint); 319 else 320 DI->EmitLocation(Builder, EndLoc); 321 } 322 323 // Pop any cleanups that might have been associated with the 324 // parameters. Do this in whatever block we're currently in; it's 325 // important to do this before we enter the return block or return 326 // edges will be *really* confused. 327 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 328 bool HasOnlyLifetimeMarkers = 329 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 330 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 331 if (HasCleanups) { 332 // Make sure the line table doesn't jump back into the body for 333 // the ret after it's been at EndLoc. 334 if (CGDebugInfo *DI = getDebugInfo()) 335 if (OnlySimpleReturnStmts) 336 DI->EmitLocation(Builder, EndLoc); 337 338 PopCleanupBlocks(PrologueCleanupDepth); 339 } 340 341 // Emit function epilog (to return). 342 llvm::DebugLoc Loc = EmitReturnBlock(); 343 344 if (ShouldInstrumentFunction()) 345 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 346 347 // Emit debug descriptor for function end. 348 if (CGDebugInfo *DI = getDebugInfo()) 349 DI->EmitFunctionEnd(Builder); 350 351 // Reset the debug location to that of the simple 'return' expression, if any 352 // rather than that of the end of the function's scope '}'. 353 ApplyDebugLocation AL(*this, Loc); 354 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 355 EmitEndEHSpec(CurCodeDecl); 356 357 assert(EHStack.empty() && 358 "did not remove all scopes from cleanup stack!"); 359 360 // If someone did an indirect goto, emit the indirect goto block at the end of 361 // the function. 362 if (IndirectBranch) { 363 EmitBlock(IndirectBranch->getParent()); 364 Builder.ClearInsertionPoint(); 365 } 366 367 // If some of our locals escaped, insert a call to llvm.localescape in the 368 // entry block. 369 if (!EscapedLocals.empty()) { 370 // Invert the map from local to index into a simple vector. There should be 371 // no holes. 372 SmallVector<llvm::Value *, 4> EscapeArgs; 373 EscapeArgs.resize(EscapedLocals.size()); 374 for (auto &Pair : EscapedLocals) 375 EscapeArgs[Pair.second] = Pair.first; 376 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 377 &CGM.getModule(), llvm::Intrinsic::localescape); 378 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 379 } 380 381 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 382 llvm::Instruction *Ptr = AllocaInsertPt; 383 AllocaInsertPt = nullptr; 384 Ptr->eraseFromParent(); 385 386 // If someone took the address of a label but never did an indirect goto, we 387 // made a zero entry PHI node, which is illegal, zap it now. 388 if (IndirectBranch) { 389 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 390 if (PN->getNumIncomingValues() == 0) { 391 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 392 PN->eraseFromParent(); 393 } 394 } 395 396 EmitIfUsed(*this, EHResumeBlock); 397 EmitIfUsed(*this, TerminateLandingPad); 398 EmitIfUsed(*this, TerminateHandler); 399 EmitIfUsed(*this, UnreachableBlock); 400 401 if (CGM.getCodeGenOpts().EmitDeclMetadata) 402 EmitDeclMetadata(); 403 404 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 405 I = DeferredReplacements.begin(), 406 E = DeferredReplacements.end(); 407 I != E; ++I) { 408 I->first->replaceAllUsesWith(I->second); 409 I->first->eraseFromParent(); 410 } 411 } 412 413 /// ShouldInstrumentFunction - Return true if the current function should be 414 /// instrumented with __cyg_profile_func_* calls 415 bool CodeGenFunction::ShouldInstrumentFunction() { 416 if (!CGM.getCodeGenOpts().InstrumentFunctions) 417 return false; 418 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 419 return false; 420 return true; 421 } 422 423 /// ShouldXRayInstrument - Return true if the current function should be 424 /// instrumented with XRay nop sleds. 425 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 426 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 427 } 428 429 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 430 /// instrumentation function with the current function and the call site, if 431 /// function instrumentation is enabled. 432 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 433 auto NL = ApplyDebugLocation::CreateArtificial(*this); 434 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 435 llvm::PointerType *PointerTy = Int8PtrTy; 436 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 437 llvm::FunctionType *FunctionTy = 438 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 439 440 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 441 llvm::CallInst *CallSite = Builder.CreateCall( 442 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 443 llvm::ConstantInt::get(Int32Ty, 0), 444 "callsite"); 445 446 llvm::Value *args[] = { 447 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 448 CallSite 449 }; 450 451 EmitNounwindRuntimeCall(F, args); 452 } 453 454 static void removeImageAccessQualifier(std::string& TyName) { 455 std::string ReadOnlyQual("__read_only"); 456 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 457 if (ReadOnlyPos != std::string::npos) 458 // "+ 1" for the space after access qualifier. 459 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 460 else { 461 std::string WriteOnlyQual("__write_only"); 462 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 463 if (WriteOnlyPos != std::string::npos) 464 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 465 else { 466 std::string ReadWriteQual("__read_write"); 467 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 468 if (ReadWritePos != std::string::npos) 469 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 470 } 471 } 472 } 473 474 // Returns the address space id that should be produced to the 475 // kernel_arg_addr_space metadata. This is always fixed to the ids 476 // as specified in the SPIR 2.0 specification in order to differentiate 477 // for example in clGetKernelArgInfo() implementation between the address 478 // spaces with targets without unique mapping to the OpenCL address spaces 479 // (basically all single AS CPUs). 480 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 481 switch (LangAS) { 482 case LangAS::opencl_global: return 1; 483 case LangAS::opencl_constant: return 2; 484 case LangAS::opencl_local: return 3; 485 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 486 default: 487 return 0; // Assume private. 488 } 489 } 490 491 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 492 // information in the program executable. The argument information stored 493 // includes the argument name, its type, the address and access qualifiers used. 494 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 495 CodeGenModule &CGM, llvm::LLVMContext &Context, 496 CGBuilderTy &Builder, ASTContext &ASTCtx) { 497 // Create MDNodes that represent the kernel arg metadata. 498 // Each MDNode is a list in the form of "key", N number of values which is 499 // the same number of values as their are kernel arguments. 500 501 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 502 503 // MDNode for the kernel argument address space qualifiers. 504 SmallVector<llvm::Metadata *, 8> addressQuals; 505 506 // MDNode for the kernel argument access qualifiers (images only). 507 SmallVector<llvm::Metadata *, 8> accessQuals; 508 509 // MDNode for the kernel argument type names. 510 SmallVector<llvm::Metadata *, 8> argTypeNames; 511 512 // MDNode for the kernel argument base type names. 513 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 514 515 // MDNode for the kernel argument type qualifiers. 516 SmallVector<llvm::Metadata *, 8> argTypeQuals; 517 518 // MDNode for the kernel argument names. 519 SmallVector<llvm::Metadata *, 8> argNames; 520 521 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 522 const ParmVarDecl *parm = FD->getParamDecl(i); 523 QualType ty = parm->getType(); 524 std::string typeQuals; 525 526 if (ty->isPointerType()) { 527 QualType pointeeTy = ty->getPointeeType(); 528 529 // Get address qualifier. 530 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 531 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 532 533 // Get argument type name. 534 std::string typeName = 535 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 536 537 // Turn "unsigned type" to "utype" 538 std::string::size_type pos = typeName.find("unsigned"); 539 if (pointeeTy.isCanonical() && pos != std::string::npos) 540 typeName.erase(pos+1, 8); 541 542 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 543 544 std::string baseTypeName = 545 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 546 Policy) + 547 "*"; 548 549 // Turn "unsigned type" to "utype" 550 pos = baseTypeName.find("unsigned"); 551 if (pos != std::string::npos) 552 baseTypeName.erase(pos+1, 8); 553 554 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 555 556 // Get argument type qualifiers: 557 if (ty.isRestrictQualified()) 558 typeQuals = "restrict"; 559 if (pointeeTy.isConstQualified() || 560 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 561 typeQuals += typeQuals.empty() ? "const" : " const"; 562 if (pointeeTy.isVolatileQualified()) 563 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 564 } else { 565 uint32_t AddrSpc = 0; 566 bool isPipe = ty->isPipeType(); 567 if (ty->isImageType() || isPipe) 568 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 569 570 addressQuals.push_back( 571 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 572 573 // Get argument type name. 574 std::string typeName; 575 if (isPipe) 576 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 577 .getAsString(Policy); 578 else 579 typeName = ty.getUnqualifiedType().getAsString(Policy); 580 581 // Turn "unsigned type" to "utype" 582 std::string::size_type pos = typeName.find("unsigned"); 583 if (ty.isCanonical() && pos != std::string::npos) 584 typeName.erase(pos+1, 8); 585 586 std::string baseTypeName; 587 if (isPipe) 588 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 589 ->getElementType().getCanonicalType() 590 .getAsString(Policy); 591 else 592 baseTypeName = 593 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 594 595 // Remove access qualifiers on images 596 // (as they are inseparable from type in clang implementation, 597 // but OpenCL spec provides a special query to get access qualifier 598 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 599 if (ty->isImageType()) { 600 removeImageAccessQualifier(typeName); 601 removeImageAccessQualifier(baseTypeName); 602 } 603 604 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 605 606 // Turn "unsigned type" to "utype" 607 pos = baseTypeName.find("unsigned"); 608 if (pos != std::string::npos) 609 baseTypeName.erase(pos+1, 8); 610 611 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 612 613 if (isPipe) 614 typeQuals = "pipe"; 615 } 616 617 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 618 619 // Get image and pipe access qualifier: 620 if (ty->isImageType()|| ty->isPipeType()) { 621 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 622 if (A && A->isWriteOnly()) 623 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 624 else if (A && A->isReadWrite()) 625 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 626 else 627 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 628 } else 629 accessQuals.push_back(llvm::MDString::get(Context, "none")); 630 631 // Get argument name. 632 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 633 } 634 635 Fn->setMetadata("kernel_arg_addr_space", 636 llvm::MDNode::get(Context, addressQuals)); 637 Fn->setMetadata("kernel_arg_access_qual", 638 llvm::MDNode::get(Context, accessQuals)); 639 Fn->setMetadata("kernel_arg_type", 640 llvm::MDNode::get(Context, argTypeNames)); 641 Fn->setMetadata("kernel_arg_base_type", 642 llvm::MDNode::get(Context, argBaseTypeNames)); 643 Fn->setMetadata("kernel_arg_type_qual", 644 llvm::MDNode::get(Context, argTypeQuals)); 645 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 646 Fn->setMetadata("kernel_arg_name", 647 llvm::MDNode::get(Context, argNames)); 648 } 649 650 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 651 llvm::Function *Fn) 652 { 653 if (!FD->hasAttr<OpenCLKernelAttr>()) 654 return; 655 656 llvm::LLVMContext &Context = getLLVMContext(); 657 658 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 659 660 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 661 QualType HintQTy = A->getTypeHint(); 662 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 663 bool IsSignedInteger = 664 HintQTy->isSignedIntegerType() || 665 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 666 llvm::Metadata *AttrMDArgs[] = { 667 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 668 CGM.getTypes().ConvertType(A->getTypeHint()))), 669 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 670 llvm::IntegerType::get(Context, 32), 671 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 672 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 673 } 674 675 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 676 llvm::Metadata *AttrMDArgs[] = { 677 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 678 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 679 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 680 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 681 } 682 683 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 684 llvm::Metadata *AttrMDArgs[] = { 685 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 686 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 687 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 688 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 689 } 690 691 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 692 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 693 llvm::Metadata *AttrMDArgs[] = { 694 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 695 Fn->setMetadata("intel_reqd_sub_group_size", 696 llvm::MDNode::get(Context, AttrMDArgs)); 697 } 698 } 699 700 /// Determine whether the function F ends with a return stmt. 701 static bool endsWithReturn(const Decl* F) { 702 const Stmt *Body = nullptr; 703 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 704 Body = FD->getBody(); 705 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 706 Body = OMD->getBody(); 707 708 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 709 auto LastStmt = CS->body_rbegin(); 710 if (LastStmt != CS->body_rend()) 711 return isa<ReturnStmt>(*LastStmt); 712 } 713 return false; 714 } 715 716 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 717 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 718 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 719 } 720 721 void CodeGenFunction::StartFunction(GlobalDecl GD, 722 QualType RetTy, 723 llvm::Function *Fn, 724 const CGFunctionInfo &FnInfo, 725 const FunctionArgList &Args, 726 SourceLocation Loc, 727 SourceLocation StartLoc) { 728 assert(!CurFn && 729 "Do not use a CodeGenFunction object for more than one function"); 730 731 const Decl *D = GD.getDecl(); 732 733 DidCallStackSave = false; 734 CurCodeDecl = D; 735 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 736 if (FD->usesSEHTry()) 737 CurSEHParent = FD; 738 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 739 FnRetTy = RetTy; 740 CurFn = Fn; 741 CurFnInfo = &FnInfo; 742 assert(CurFn->isDeclaration() && "Function already has body?"); 743 744 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 745 SanOpts.clear(); 746 747 if (D) { 748 // Apply the no_sanitize* attributes to SanOpts. 749 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 750 SanOpts.Mask &= ~Attr->getMask(); 751 } 752 753 // Apply sanitizer attributes to the function. 754 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 755 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 756 if (SanOpts.has(SanitizerKind::Thread)) 757 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 758 if (SanOpts.has(SanitizerKind::Memory)) 759 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 760 if (SanOpts.has(SanitizerKind::SafeStack)) 761 Fn->addFnAttr(llvm::Attribute::SafeStack); 762 763 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 764 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 765 if (SanOpts.has(SanitizerKind::Thread)) { 766 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 767 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 768 if (OMD->getMethodFamily() == OMF_dealloc || 769 OMD->getMethodFamily() == OMF_initialize || 770 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 771 markAsIgnoreThreadCheckingAtRuntime(Fn); 772 } 773 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 774 IdentifierInfo *II = FD->getIdentifier(); 775 if (II && II->isStr("__destroy_helper_block_")) 776 markAsIgnoreThreadCheckingAtRuntime(Fn); 777 } 778 } 779 780 // Apply xray attributes to the function (as a string, for now) 781 if (D && ShouldXRayInstrumentFunction()) { 782 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 783 if (XRayAttr->alwaysXRayInstrument()) 784 Fn->addFnAttr("function-instrument", "xray-always"); 785 if (XRayAttr->neverXRayInstrument()) 786 Fn->addFnAttr("function-instrument", "xray-never"); 787 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 788 Fn->addFnAttr("xray-log-args", 789 llvm::utostr(LogArgs->getArgumentCount())); 790 } 791 } else { 792 if (!CGM.imbueXRayAttrs(Fn, Loc)) 793 Fn->addFnAttr( 794 "xray-instruction-threshold", 795 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 796 } 797 } 798 799 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 800 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 801 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 802 803 // Add no-jump-tables value. 804 Fn->addFnAttr("no-jump-tables", 805 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 806 807 if (getLangOpts().OpenCL) { 808 // Add metadata for a kernel function. 809 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 810 EmitOpenCLKernelMetadata(FD, Fn); 811 } 812 813 // If we are checking function types, emit a function type signature as 814 // prologue data. 815 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 816 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 817 if (llvm::Constant *PrologueSig = 818 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 819 llvm::Constant *FTRTTIConst = 820 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 821 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 822 llvm::Constant *PrologueStructConst = 823 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 824 Fn->setPrologueData(PrologueStructConst); 825 } 826 } 827 } 828 829 // If we're checking nullability, we need to know whether we can check the 830 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 831 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 832 auto Nullability = FnRetTy->getNullability(getContext()); 833 if (Nullability && *Nullability == NullabilityKind::NonNull) { 834 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 835 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 836 RetValNullabilityPrecondition = 837 llvm::ConstantInt::getTrue(getLLVMContext()); 838 } 839 } 840 841 // If we're in C++ mode and the function name is "main", it is guaranteed 842 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 843 // used within a program"). 844 if (getLangOpts().CPlusPlus) 845 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 846 if (FD->isMain()) 847 Fn->addFnAttr(llvm::Attribute::NoRecurse); 848 849 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 850 851 // Create a marker to make it easy to insert allocas into the entryblock 852 // later. Don't create this with the builder, because we don't want it 853 // folded. 854 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 855 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 856 857 ReturnBlock = getJumpDestInCurrentScope("return"); 858 859 Builder.SetInsertPoint(EntryBB); 860 861 // Emit subprogram debug descriptor. 862 if (CGDebugInfo *DI = getDebugInfo()) { 863 // Reconstruct the type from the argument list so that implicit parameters, 864 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 865 // convention. 866 CallingConv CC = CallingConv::CC_C; 867 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 868 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 869 CC = SrcFnTy->getCallConv(); 870 SmallVector<QualType, 16> ArgTypes; 871 for (const VarDecl *VD : Args) 872 ArgTypes.push_back(VD->getType()); 873 QualType FnType = getContext().getFunctionType( 874 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 875 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 876 } 877 878 if (ShouldInstrumentFunction()) 879 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 880 881 // Since emitting the mcount call here impacts optimizations such as function 882 // inlining, we just add an attribute to insert a mcount call in backend. 883 // The attribute "counting-function" is set to mcount function name which is 884 // architecture dependent. 885 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 886 if (CGM.getCodeGenOpts().CallFEntry) 887 Fn->addFnAttr("fentry-call", "true"); 888 else 889 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 890 } 891 892 if (RetTy->isVoidType()) { 893 // Void type; nothing to return. 894 ReturnValue = Address::invalid(); 895 896 // Count the implicit return. 897 if (!endsWithReturn(D)) 898 ++NumReturnExprs; 899 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 900 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 901 // Indirect aggregate return; emit returned value directly into sret slot. 902 // This reduces code size, and affects correctness in C++. 903 auto AI = CurFn->arg_begin(); 904 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 905 ++AI; 906 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 907 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 908 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 909 // Load the sret pointer from the argument struct and return into that. 910 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 911 llvm::Function::arg_iterator EI = CurFn->arg_end(); 912 --EI; 913 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 914 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 915 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 916 } else { 917 ReturnValue = CreateIRTemp(RetTy, "retval"); 918 919 // Tell the epilog emitter to autorelease the result. We do this 920 // now so that various specialized functions can suppress it 921 // during their IR-generation. 922 if (getLangOpts().ObjCAutoRefCount && 923 !CurFnInfo->isReturnsRetained() && 924 RetTy->isObjCRetainableType()) 925 AutoreleaseResult = true; 926 } 927 928 EmitStartEHSpec(CurCodeDecl); 929 930 PrologueCleanupDepth = EHStack.stable_begin(); 931 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 932 933 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 934 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 935 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 936 if (MD->getParent()->isLambda() && 937 MD->getOverloadedOperator() == OO_Call) { 938 // We're in a lambda; figure out the captures. 939 MD->getParent()->getCaptureFields(LambdaCaptureFields, 940 LambdaThisCaptureField); 941 if (LambdaThisCaptureField) { 942 // If the lambda captures the object referred to by '*this' - either by 943 // value or by reference, make sure CXXThisValue points to the correct 944 // object. 945 946 // Get the lvalue for the field (which is a copy of the enclosing object 947 // or contains the address of the enclosing object). 948 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 949 if (!LambdaThisCaptureField->getType()->isPointerType()) { 950 // If the enclosing object was captured by value, just use its address. 951 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 952 } else { 953 // Load the lvalue pointed to by the field, since '*this' was captured 954 // by reference. 955 CXXThisValue = 956 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 957 } 958 } 959 for (auto *FD : MD->getParent()->fields()) { 960 if (FD->hasCapturedVLAType()) { 961 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 962 SourceLocation()).getScalarVal(); 963 auto VAT = FD->getCapturedVLAType(); 964 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 965 } 966 } 967 } else { 968 // Not in a lambda; just use 'this' from the method. 969 // FIXME: Should we generate a new load for each use of 'this'? The 970 // fast register allocator would be happier... 971 CXXThisValue = CXXABIThisValue; 972 } 973 974 // Check the 'this' pointer once per function, if it's available. 975 if (CXXThisValue) { 976 SanitizerSet SkippedChecks; 977 SkippedChecks.set(SanitizerKind::ObjectSize, true); 978 QualType ThisTy = MD->getThisType(getContext()); 979 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy, 980 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 981 SkippedChecks); 982 } 983 } 984 985 // If any of the arguments have a variably modified type, make sure to 986 // emit the type size. 987 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 988 i != e; ++i) { 989 const VarDecl *VD = *i; 990 991 // Dig out the type as written from ParmVarDecls; it's unclear whether 992 // the standard (C99 6.9.1p10) requires this, but we're following the 993 // precedent set by gcc. 994 QualType Ty; 995 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 996 Ty = PVD->getOriginalType(); 997 else 998 Ty = VD->getType(); 999 1000 if (Ty->isVariablyModifiedType()) 1001 EmitVariablyModifiedType(Ty); 1002 } 1003 // Emit a location at the end of the prologue. 1004 if (CGDebugInfo *DI = getDebugInfo()) 1005 DI->EmitLocation(Builder, StartLoc); 1006 } 1007 1008 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1009 const Stmt *Body) { 1010 incrementProfileCounter(Body); 1011 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1012 EmitCompoundStmtWithoutScope(*S); 1013 else 1014 EmitStmt(Body); 1015 } 1016 1017 /// When instrumenting to collect profile data, the counts for some blocks 1018 /// such as switch cases need to not include the fall-through counts, so 1019 /// emit a branch around the instrumentation code. When not instrumenting, 1020 /// this just calls EmitBlock(). 1021 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1022 const Stmt *S) { 1023 llvm::BasicBlock *SkipCountBB = nullptr; 1024 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1025 // When instrumenting for profiling, the fallthrough to certain 1026 // statements needs to skip over the instrumentation code so that we 1027 // get an accurate count. 1028 SkipCountBB = createBasicBlock("skipcount"); 1029 EmitBranch(SkipCountBB); 1030 } 1031 EmitBlock(BB); 1032 uint64_t CurrentCount = getCurrentProfileCount(); 1033 incrementProfileCounter(S); 1034 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1035 if (SkipCountBB) 1036 EmitBlock(SkipCountBB); 1037 } 1038 1039 /// Tries to mark the given function nounwind based on the 1040 /// non-existence of any throwing calls within it. We believe this is 1041 /// lightweight enough to do at -O0. 1042 static void TryMarkNoThrow(llvm::Function *F) { 1043 // LLVM treats 'nounwind' on a function as part of the type, so we 1044 // can't do this on functions that can be overwritten. 1045 if (F->isInterposable()) return; 1046 1047 for (llvm::BasicBlock &BB : *F) 1048 for (llvm::Instruction &I : BB) 1049 if (I.mayThrow()) 1050 return; 1051 1052 F->setDoesNotThrow(); 1053 } 1054 1055 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1056 FunctionArgList &Args) { 1057 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1058 QualType ResTy = FD->getReturnType(); 1059 1060 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1061 if (MD && MD->isInstance()) { 1062 if (CGM.getCXXABI().HasThisReturn(GD)) 1063 ResTy = MD->getThisType(getContext()); 1064 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1065 ResTy = CGM.getContext().VoidPtrTy; 1066 CGM.getCXXABI().buildThisParam(*this, Args); 1067 } 1068 1069 // The base version of an inheriting constructor whose constructed base is a 1070 // virtual base is not passed any arguments (because it doesn't actually call 1071 // the inherited constructor). 1072 bool PassedParams = true; 1073 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1074 if (auto Inherited = CD->getInheritedConstructor()) 1075 PassedParams = 1076 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1077 1078 if (PassedParams) { 1079 for (auto *Param : FD->parameters()) { 1080 Args.push_back(Param); 1081 if (!Param->hasAttr<PassObjectSizeAttr>()) 1082 continue; 1083 1084 IdentifierInfo *NoID = nullptr; 1085 auto *Implicit = ImplicitParamDecl::Create( 1086 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1087 getContext().getSizeType()); 1088 SizeArguments[Param] = Implicit; 1089 Args.push_back(Implicit); 1090 } 1091 } 1092 1093 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1094 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1095 1096 return ResTy; 1097 } 1098 1099 static bool 1100 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1101 const ASTContext &Context) { 1102 QualType T = FD->getReturnType(); 1103 // Avoid the optimization for functions that return a record type with a 1104 // trivial destructor or another trivially copyable type. 1105 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1106 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1107 return !ClassDecl->hasTrivialDestructor(); 1108 } 1109 return !T.isTriviallyCopyableType(Context); 1110 } 1111 1112 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1113 const CGFunctionInfo &FnInfo) { 1114 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1115 CurGD = GD; 1116 1117 FunctionArgList Args; 1118 QualType ResTy = BuildFunctionArgList(GD, Args); 1119 1120 // Check if we should generate debug info for this function. 1121 if (FD->hasAttr<NoDebugAttr>()) 1122 DebugInfo = nullptr; // disable debug info indefinitely for this function 1123 1124 // The function might not have a body if we're generating thunks for a 1125 // function declaration. 1126 SourceRange BodyRange; 1127 if (Stmt *Body = FD->getBody()) 1128 BodyRange = Body->getSourceRange(); 1129 else 1130 BodyRange = FD->getLocation(); 1131 CurEHLocation = BodyRange.getEnd(); 1132 1133 // Use the location of the start of the function to determine where 1134 // the function definition is located. By default use the location 1135 // of the declaration as the location for the subprogram. A function 1136 // may lack a declaration in the source code if it is created by code 1137 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1138 SourceLocation Loc = FD->getLocation(); 1139 1140 // If this is a function specialization then use the pattern body 1141 // as the location for the function. 1142 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1143 if (SpecDecl->hasBody(SpecDecl)) 1144 Loc = SpecDecl->getLocation(); 1145 1146 Stmt *Body = FD->getBody(); 1147 1148 // Initialize helper which will detect jumps which can cause invalid lifetime 1149 // markers. 1150 if (Body && ShouldEmitLifetimeMarkers) 1151 Bypasses.Init(Body); 1152 1153 // Emit the standard function prologue. 1154 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1155 1156 // Generate the body of the function. 1157 PGO.assignRegionCounters(GD, CurFn); 1158 if (isa<CXXDestructorDecl>(FD)) 1159 EmitDestructorBody(Args); 1160 else if (isa<CXXConstructorDecl>(FD)) 1161 EmitConstructorBody(Args); 1162 else if (getLangOpts().CUDA && 1163 !getLangOpts().CUDAIsDevice && 1164 FD->hasAttr<CUDAGlobalAttr>()) 1165 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1166 else if (isa<CXXConversionDecl>(FD) && 1167 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1168 // The lambda conversion to block pointer is special; the semantics can't be 1169 // expressed in the AST, so IRGen needs to special-case it. 1170 EmitLambdaToBlockPointerBody(Args); 1171 } else if (isa<CXXMethodDecl>(FD) && 1172 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1173 // The lambda static invoker function is special, because it forwards or 1174 // clones the body of the function call operator (but is actually static). 1175 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1176 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1177 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1178 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1179 // Implicit copy-assignment gets the same special treatment as implicit 1180 // copy-constructors. 1181 emitImplicitAssignmentOperatorBody(Args); 1182 } else if (Body) { 1183 EmitFunctionBody(Args, Body); 1184 } else 1185 llvm_unreachable("no definition for emitted function"); 1186 1187 // C++11 [stmt.return]p2: 1188 // Flowing off the end of a function [...] results in undefined behavior in 1189 // a value-returning function. 1190 // C11 6.9.1p12: 1191 // If the '}' that terminates a function is reached, and the value of the 1192 // function call is used by the caller, the behavior is undefined. 1193 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1194 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1195 bool ShouldEmitUnreachable = 1196 CGM.getCodeGenOpts().StrictReturn || 1197 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1198 if (SanOpts.has(SanitizerKind::Return)) { 1199 SanitizerScope SanScope(this); 1200 llvm::Value *IsFalse = Builder.getFalse(); 1201 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1202 SanitizerHandler::MissingReturn, 1203 EmitCheckSourceLocation(FD->getLocation()), None); 1204 } else if (ShouldEmitUnreachable) { 1205 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1206 EmitTrapCall(llvm::Intrinsic::trap); 1207 } 1208 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1209 Builder.CreateUnreachable(); 1210 Builder.ClearInsertionPoint(); 1211 } 1212 } 1213 1214 // Emit the standard function epilogue. 1215 FinishFunction(BodyRange.getEnd()); 1216 1217 // If we haven't marked the function nothrow through other means, do 1218 // a quick pass now to see if we can. 1219 if (!CurFn->doesNotThrow()) 1220 TryMarkNoThrow(CurFn); 1221 } 1222 1223 /// ContainsLabel - Return true if the statement contains a label in it. If 1224 /// this statement is not executed normally, it not containing a label means 1225 /// that we can just remove the code. 1226 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1227 // Null statement, not a label! 1228 if (!S) return false; 1229 1230 // If this is a label, we have to emit the code, consider something like: 1231 // if (0) { ... foo: bar(); } goto foo; 1232 // 1233 // TODO: If anyone cared, we could track __label__'s, since we know that you 1234 // can't jump to one from outside their declared region. 1235 if (isa<LabelStmt>(S)) 1236 return true; 1237 1238 // If this is a case/default statement, and we haven't seen a switch, we have 1239 // to emit the code. 1240 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1241 return true; 1242 1243 // If this is a switch statement, we want to ignore cases below it. 1244 if (isa<SwitchStmt>(S)) 1245 IgnoreCaseStmts = true; 1246 1247 // Scan subexpressions for verboten labels. 1248 for (const Stmt *SubStmt : S->children()) 1249 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1250 return true; 1251 1252 return false; 1253 } 1254 1255 /// containsBreak - Return true if the statement contains a break out of it. 1256 /// If the statement (recursively) contains a switch or loop with a break 1257 /// inside of it, this is fine. 1258 bool CodeGenFunction::containsBreak(const Stmt *S) { 1259 // Null statement, not a label! 1260 if (!S) return false; 1261 1262 // If this is a switch or loop that defines its own break scope, then we can 1263 // include it and anything inside of it. 1264 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1265 isa<ForStmt>(S)) 1266 return false; 1267 1268 if (isa<BreakStmt>(S)) 1269 return true; 1270 1271 // Scan subexpressions for verboten breaks. 1272 for (const Stmt *SubStmt : S->children()) 1273 if (containsBreak(SubStmt)) 1274 return true; 1275 1276 return false; 1277 } 1278 1279 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1280 if (!S) return false; 1281 1282 // Some statement kinds add a scope and thus never add a decl to the current 1283 // scope. Note, this list is longer than the list of statements that might 1284 // have an unscoped decl nested within them, but this way is conservatively 1285 // correct even if more statement kinds are added. 1286 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1287 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1288 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1289 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1290 return false; 1291 1292 if (isa<DeclStmt>(S)) 1293 return true; 1294 1295 for (const Stmt *SubStmt : S->children()) 1296 if (mightAddDeclToScope(SubStmt)) 1297 return true; 1298 1299 return false; 1300 } 1301 1302 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1303 /// to a constant, or if it does but contains a label, return false. If it 1304 /// constant folds return true and set the boolean result in Result. 1305 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1306 bool &ResultBool, 1307 bool AllowLabels) { 1308 llvm::APSInt ResultInt; 1309 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1310 return false; 1311 1312 ResultBool = ResultInt.getBoolValue(); 1313 return true; 1314 } 1315 1316 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1317 /// to a constant, or if it does but contains a label, return false. If it 1318 /// constant folds return true and set the folded value. 1319 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1320 llvm::APSInt &ResultInt, 1321 bool AllowLabels) { 1322 // FIXME: Rename and handle conversion of other evaluatable things 1323 // to bool. 1324 llvm::APSInt Int; 1325 if (!Cond->EvaluateAsInt(Int, getContext())) 1326 return false; // Not foldable, not integer or not fully evaluatable. 1327 1328 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1329 return false; // Contains a label. 1330 1331 ResultInt = Int; 1332 return true; 1333 } 1334 1335 1336 1337 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1338 /// statement) to the specified blocks. Based on the condition, this might try 1339 /// to simplify the codegen of the conditional based on the branch. 1340 /// 1341 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1342 llvm::BasicBlock *TrueBlock, 1343 llvm::BasicBlock *FalseBlock, 1344 uint64_t TrueCount) { 1345 Cond = Cond->IgnoreParens(); 1346 1347 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1348 1349 // Handle X && Y in a condition. 1350 if (CondBOp->getOpcode() == BO_LAnd) { 1351 // If we have "1 && X", simplify the code. "0 && X" would have constant 1352 // folded if the case was simple enough. 1353 bool ConstantBool = false; 1354 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1355 ConstantBool) { 1356 // br(1 && X) -> br(X). 1357 incrementProfileCounter(CondBOp); 1358 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1359 TrueCount); 1360 } 1361 1362 // If we have "X && 1", simplify the code to use an uncond branch. 1363 // "X && 0" would have been constant folded to 0. 1364 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1365 ConstantBool) { 1366 // br(X && 1) -> br(X). 1367 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1368 TrueCount); 1369 } 1370 1371 // Emit the LHS as a conditional. If the LHS conditional is false, we 1372 // want to jump to the FalseBlock. 1373 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1374 // The counter tells us how often we evaluate RHS, and all of TrueCount 1375 // can be propagated to that branch. 1376 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1377 1378 ConditionalEvaluation eval(*this); 1379 { 1380 ApplyDebugLocation DL(*this, Cond); 1381 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1382 EmitBlock(LHSTrue); 1383 } 1384 1385 incrementProfileCounter(CondBOp); 1386 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1387 1388 // Any temporaries created here are conditional. 1389 eval.begin(*this); 1390 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1391 eval.end(*this); 1392 1393 return; 1394 } 1395 1396 if (CondBOp->getOpcode() == BO_LOr) { 1397 // If we have "0 || X", simplify the code. "1 || X" would have constant 1398 // folded if the case was simple enough. 1399 bool ConstantBool = false; 1400 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1401 !ConstantBool) { 1402 // br(0 || X) -> br(X). 1403 incrementProfileCounter(CondBOp); 1404 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1405 TrueCount); 1406 } 1407 1408 // If we have "X || 0", simplify the code to use an uncond branch. 1409 // "X || 1" would have been constant folded to 1. 1410 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1411 !ConstantBool) { 1412 // br(X || 0) -> br(X). 1413 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1414 TrueCount); 1415 } 1416 1417 // Emit the LHS as a conditional. If the LHS conditional is true, we 1418 // want to jump to the TrueBlock. 1419 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1420 // We have the count for entry to the RHS and for the whole expression 1421 // being true, so we can divy up True count between the short circuit and 1422 // the RHS. 1423 uint64_t LHSCount = 1424 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1425 uint64_t RHSCount = TrueCount - LHSCount; 1426 1427 ConditionalEvaluation eval(*this); 1428 { 1429 ApplyDebugLocation DL(*this, Cond); 1430 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1431 EmitBlock(LHSFalse); 1432 } 1433 1434 incrementProfileCounter(CondBOp); 1435 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1436 1437 // Any temporaries created here are conditional. 1438 eval.begin(*this); 1439 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1440 1441 eval.end(*this); 1442 1443 return; 1444 } 1445 } 1446 1447 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1448 // br(!x, t, f) -> br(x, f, t) 1449 if (CondUOp->getOpcode() == UO_LNot) { 1450 // Negate the count. 1451 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1452 // Negate the condition and swap the destination blocks. 1453 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1454 FalseCount); 1455 } 1456 } 1457 1458 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1459 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1460 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1461 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1462 1463 ConditionalEvaluation cond(*this); 1464 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1465 getProfileCount(CondOp)); 1466 1467 // When computing PGO branch weights, we only know the overall count for 1468 // the true block. This code is essentially doing tail duplication of the 1469 // naive code-gen, introducing new edges for which counts are not 1470 // available. Divide the counts proportionally between the LHS and RHS of 1471 // the conditional operator. 1472 uint64_t LHSScaledTrueCount = 0; 1473 if (TrueCount) { 1474 double LHSRatio = 1475 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1476 LHSScaledTrueCount = TrueCount * LHSRatio; 1477 } 1478 1479 cond.begin(*this); 1480 EmitBlock(LHSBlock); 1481 incrementProfileCounter(CondOp); 1482 { 1483 ApplyDebugLocation DL(*this, Cond); 1484 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1485 LHSScaledTrueCount); 1486 } 1487 cond.end(*this); 1488 1489 cond.begin(*this); 1490 EmitBlock(RHSBlock); 1491 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1492 TrueCount - LHSScaledTrueCount); 1493 cond.end(*this); 1494 1495 return; 1496 } 1497 1498 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1499 // Conditional operator handling can give us a throw expression as a 1500 // condition for a case like: 1501 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1502 // Fold this to: 1503 // br(c, throw x, br(y, t, f)) 1504 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1505 return; 1506 } 1507 1508 // If the branch has a condition wrapped by __builtin_unpredictable, 1509 // create metadata that specifies that the branch is unpredictable. 1510 // Don't bother if not optimizing because that metadata would not be used. 1511 llvm::MDNode *Unpredictable = nullptr; 1512 auto *Call = dyn_cast<CallExpr>(Cond); 1513 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1514 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1515 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1516 llvm::MDBuilder MDHelper(getLLVMContext()); 1517 Unpredictable = MDHelper.createUnpredictable(); 1518 } 1519 } 1520 1521 // Create branch weights based on the number of times we get here and the 1522 // number of times the condition should be true. 1523 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1524 llvm::MDNode *Weights = 1525 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1526 1527 // Emit the code with the fully general case. 1528 llvm::Value *CondV; 1529 { 1530 ApplyDebugLocation DL(*this, Cond); 1531 CondV = EvaluateExprAsBool(Cond); 1532 } 1533 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1534 } 1535 1536 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1537 /// specified stmt yet. 1538 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1539 CGM.ErrorUnsupported(S, Type); 1540 } 1541 1542 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1543 /// variable-length array whose elements have a non-zero bit-pattern. 1544 /// 1545 /// \param baseType the inner-most element type of the array 1546 /// \param src - a char* pointing to the bit-pattern for a single 1547 /// base element of the array 1548 /// \param sizeInChars - the total size of the VLA, in chars 1549 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1550 Address dest, Address src, 1551 llvm::Value *sizeInChars) { 1552 CGBuilderTy &Builder = CGF.Builder; 1553 1554 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1555 llvm::Value *baseSizeInChars 1556 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1557 1558 Address begin = 1559 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1560 llvm::Value *end = 1561 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1562 1563 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1564 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1565 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1566 1567 // Make a loop over the VLA. C99 guarantees that the VLA element 1568 // count must be nonzero. 1569 CGF.EmitBlock(loopBB); 1570 1571 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1572 cur->addIncoming(begin.getPointer(), originBB); 1573 1574 CharUnits curAlign = 1575 dest.getAlignment().alignmentOfArrayElement(baseSize); 1576 1577 // memcpy the individual element bit-pattern. 1578 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1579 /*volatile*/ false); 1580 1581 // Go to the next element. 1582 llvm::Value *next = 1583 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1584 1585 // Leave if that's the end of the VLA. 1586 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1587 Builder.CreateCondBr(done, contBB, loopBB); 1588 cur->addIncoming(next, loopBB); 1589 1590 CGF.EmitBlock(contBB); 1591 } 1592 1593 void 1594 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1595 // Ignore empty classes in C++. 1596 if (getLangOpts().CPlusPlus) { 1597 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1598 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1599 return; 1600 } 1601 } 1602 1603 // Cast the dest ptr to the appropriate i8 pointer type. 1604 if (DestPtr.getElementType() != Int8Ty) 1605 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1606 1607 // Get size and alignment info for this aggregate. 1608 CharUnits size = getContext().getTypeSizeInChars(Ty); 1609 1610 llvm::Value *SizeVal; 1611 const VariableArrayType *vla; 1612 1613 // Don't bother emitting a zero-byte memset. 1614 if (size.isZero()) { 1615 // But note that getTypeInfo returns 0 for a VLA. 1616 if (const VariableArrayType *vlaType = 1617 dyn_cast_or_null<VariableArrayType>( 1618 getContext().getAsArrayType(Ty))) { 1619 QualType eltType; 1620 llvm::Value *numElts; 1621 std::tie(numElts, eltType) = getVLASize(vlaType); 1622 1623 SizeVal = numElts; 1624 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1625 if (!eltSize.isOne()) 1626 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1627 vla = vlaType; 1628 } else { 1629 return; 1630 } 1631 } else { 1632 SizeVal = CGM.getSize(size); 1633 vla = nullptr; 1634 } 1635 1636 // If the type contains a pointer to data member we can't memset it to zero. 1637 // Instead, create a null constant and copy it to the destination. 1638 // TODO: there are other patterns besides zero that we can usefully memset, 1639 // like -1, which happens to be the pattern used by member-pointers. 1640 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1641 // For a VLA, emit a single element, then splat that over the VLA. 1642 if (vla) Ty = getContext().getBaseElementType(vla); 1643 1644 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1645 1646 llvm::GlobalVariable *NullVariable = 1647 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1648 /*isConstant=*/true, 1649 llvm::GlobalVariable::PrivateLinkage, 1650 NullConstant, Twine()); 1651 CharUnits NullAlign = DestPtr.getAlignment(); 1652 NullVariable->setAlignment(NullAlign.getQuantity()); 1653 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1654 NullAlign); 1655 1656 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1657 1658 // Get and call the appropriate llvm.memcpy overload. 1659 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1660 return; 1661 } 1662 1663 // Otherwise, just memset the whole thing to zero. This is legal 1664 // because in LLVM, all default initializers (other than the ones we just 1665 // handled above) are guaranteed to have a bit pattern of all zeros. 1666 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1667 } 1668 1669 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1670 // Make sure that there is a block for the indirect goto. 1671 if (!IndirectBranch) 1672 GetIndirectGotoBlock(); 1673 1674 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1675 1676 // Make sure the indirect branch includes all of the address-taken blocks. 1677 IndirectBranch->addDestination(BB); 1678 return llvm::BlockAddress::get(CurFn, BB); 1679 } 1680 1681 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1682 // If we already made the indirect branch for indirect goto, return its block. 1683 if (IndirectBranch) return IndirectBranch->getParent(); 1684 1685 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1686 1687 // Create the PHI node that indirect gotos will add entries to. 1688 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1689 "indirect.goto.dest"); 1690 1691 // Create the indirect branch instruction. 1692 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1693 return IndirectBranch->getParent(); 1694 } 1695 1696 /// Computes the length of an array in elements, as well as the base 1697 /// element type and a properly-typed first element pointer. 1698 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1699 QualType &baseType, 1700 Address &addr) { 1701 const ArrayType *arrayType = origArrayType; 1702 1703 // If it's a VLA, we have to load the stored size. Note that 1704 // this is the size of the VLA in bytes, not its size in elements. 1705 llvm::Value *numVLAElements = nullptr; 1706 if (isa<VariableArrayType>(arrayType)) { 1707 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1708 1709 // Walk into all VLAs. This doesn't require changes to addr, 1710 // which has type T* where T is the first non-VLA element type. 1711 do { 1712 QualType elementType = arrayType->getElementType(); 1713 arrayType = getContext().getAsArrayType(elementType); 1714 1715 // If we only have VLA components, 'addr' requires no adjustment. 1716 if (!arrayType) { 1717 baseType = elementType; 1718 return numVLAElements; 1719 } 1720 } while (isa<VariableArrayType>(arrayType)); 1721 1722 // We get out here only if we find a constant array type 1723 // inside the VLA. 1724 } 1725 1726 // We have some number of constant-length arrays, so addr should 1727 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1728 // down to the first element of addr. 1729 SmallVector<llvm::Value*, 8> gepIndices; 1730 1731 // GEP down to the array type. 1732 llvm::ConstantInt *zero = Builder.getInt32(0); 1733 gepIndices.push_back(zero); 1734 1735 uint64_t countFromCLAs = 1; 1736 QualType eltType; 1737 1738 llvm::ArrayType *llvmArrayType = 1739 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1740 while (llvmArrayType) { 1741 assert(isa<ConstantArrayType>(arrayType)); 1742 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1743 == llvmArrayType->getNumElements()); 1744 1745 gepIndices.push_back(zero); 1746 countFromCLAs *= llvmArrayType->getNumElements(); 1747 eltType = arrayType->getElementType(); 1748 1749 llvmArrayType = 1750 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1751 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1752 assert((!llvmArrayType || arrayType) && 1753 "LLVM and Clang types are out-of-synch"); 1754 } 1755 1756 if (arrayType) { 1757 // From this point onwards, the Clang array type has been emitted 1758 // as some other type (probably a packed struct). Compute the array 1759 // size, and just emit the 'begin' expression as a bitcast. 1760 while (arrayType) { 1761 countFromCLAs *= 1762 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1763 eltType = arrayType->getElementType(); 1764 arrayType = getContext().getAsArrayType(eltType); 1765 } 1766 1767 llvm::Type *baseType = ConvertType(eltType); 1768 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1769 } else { 1770 // Create the actual GEP. 1771 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1772 gepIndices, "array.begin"), 1773 addr.getAlignment()); 1774 } 1775 1776 baseType = eltType; 1777 1778 llvm::Value *numElements 1779 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1780 1781 // If we had any VLA dimensions, factor them in. 1782 if (numVLAElements) 1783 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1784 1785 return numElements; 1786 } 1787 1788 std::pair<llvm::Value*, QualType> 1789 CodeGenFunction::getVLASize(QualType type) { 1790 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1791 assert(vla && "type was not a variable array type!"); 1792 return getVLASize(vla); 1793 } 1794 1795 std::pair<llvm::Value*, QualType> 1796 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1797 // The number of elements so far; always size_t. 1798 llvm::Value *numElements = nullptr; 1799 1800 QualType elementType; 1801 do { 1802 elementType = type->getElementType(); 1803 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1804 assert(vlaSize && "no size for VLA!"); 1805 assert(vlaSize->getType() == SizeTy); 1806 1807 if (!numElements) { 1808 numElements = vlaSize; 1809 } else { 1810 // It's undefined behavior if this wraps around, so mark it that way. 1811 // FIXME: Teach -fsanitize=undefined to trap this. 1812 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1813 } 1814 } while ((type = getContext().getAsVariableArrayType(elementType))); 1815 1816 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1817 } 1818 1819 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1820 assert(type->isVariablyModifiedType() && 1821 "Must pass variably modified type to EmitVLASizes!"); 1822 1823 EnsureInsertPoint(); 1824 1825 // We're going to walk down into the type and look for VLA 1826 // expressions. 1827 do { 1828 assert(type->isVariablyModifiedType()); 1829 1830 const Type *ty = type.getTypePtr(); 1831 switch (ty->getTypeClass()) { 1832 1833 #define TYPE(Class, Base) 1834 #define ABSTRACT_TYPE(Class, Base) 1835 #define NON_CANONICAL_TYPE(Class, Base) 1836 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1837 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1838 #include "clang/AST/TypeNodes.def" 1839 llvm_unreachable("unexpected dependent type!"); 1840 1841 // These types are never variably-modified. 1842 case Type::Builtin: 1843 case Type::Complex: 1844 case Type::Vector: 1845 case Type::ExtVector: 1846 case Type::Record: 1847 case Type::Enum: 1848 case Type::Elaborated: 1849 case Type::TemplateSpecialization: 1850 case Type::ObjCTypeParam: 1851 case Type::ObjCObject: 1852 case Type::ObjCInterface: 1853 case Type::ObjCObjectPointer: 1854 llvm_unreachable("type class is never variably-modified!"); 1855 1856 case Type::Adjusted: 1857 type = cast<AdjustedType>(ty)->getAdjustedType(); 1858 break; 1859 1860 case Type::Decayed: 1861 type = cast<DecayedType>(ty)->getPointeeType(); 1862 break; 1863 1864 case Type::Pointer: 1865 type = cast<PointerType>(ty)->getPointeeType(); 1866 break; 1867 1868 case Type::BlockPointer: 1869 type = cast<BlockPointerType>(ty)->getPointeeType(); 1870 break; 1871 1872 case Type::LValueReference: 1873 case Type::RValueReference: 1874 type = cast<ReferenceType>(ty)->getPointeeType(); 1875 break; 1876 1877 case Type::MemberPointer: 1878 type = cast<MemberPointerType>(ty)->getPointeeType(); 1879 break; 1880 1881 case Type::ConstantArray: 1882 case Type::IncompleteArray: 1883 // Losing element qualification here is fine. 1884 type = cast<ArrayType>(ty)->getElementType(); 1885 break; 1886 1887 case Type::VariableArray: { 1888 // Losing element qualification here is fine. 1889 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1890 1891 // Unknown size indication requires no size computation. 1892 // Otherwise, evaluate and record it. 1893 if (const Expr *size = vat->getSizeExpr()) { 1894 // It's possible that we might have emitted this already, 1895 // e.g. with a typedef and a pointer to it. 1896 llvm::Value *&entry = VLASizeMap[size]; 1897 if (!entry) { 1898 llvm::Value *Size = EmitScalarExpr(size); 1899 1900 // C11 6.7.6.2p5: 1901 // If the size is an expression that is not an integer constant 1902 // expression [...] each time it is evaluated it shall have a value 1903 // greater than zero. 1904 if (SanOpts.has(SanitizerKind::VLABound) && 1905 size->getType()->isSignedIntegerType()) { 1906 SanitizerScope SanScope(this); 1907 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1908 llvm::Constant *StaticArgs[] = { 1909 EmitCheckSourceLocation(size->getLocStart()), 1910 EmitCheckTypeDescriptor(size->getType()) 1911 }; 1912 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1913 SanitizerKind::VLABound), 1914 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1915 } 1916 1917 // Always zexting here would be wrong if it weren't 1918 // undefined behavior to have a negative bound. 1919 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1920 } 1921 } 1922 type = vat->getElementType(); 1923 break; 1924 } 1925 1926 case Type::FunctionProto: 1927 case Type::FunctionNoProto: 1928 type = cast<FunctionType>(ty)->getReturnType(); 1929 break; 1930 1931 case Type::Paren: 1932 case Type::TypeOf: 1933 case Type::UnaryTransform: 1934 case Type::Attributed: 1935 case Type::SubstTemplateTypeParm: 1936 case Type::PackExpansion: 1937 // Keep walking after single level desugaring. 1938 type = type.getSingleStepDesugaredType(getContext()); 1939 break; 1940 1941 case Type::Typedef: 1942 case Type::Decltype: 1943 case Type::Auto: 1944 case Type::DeducedTemplateSpecialization: 1945 // Stop walking: nothing to do. 1946 return; 1947 1948 case Type::TypeOfExpr: 1949 // Stop walking: emit typeof expression. 1950 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1951 return; 1952 1953 case Type::Atomic: 1954 type = cast<AtomicType>(ty)->getValueType(); 1955 break; 1956 1957 case Type::Pipe: 1958 type = cast<PipeType>(ty)->getElementType(); 1959 break; 1960 } 1961 } while (type->isVariablyModifiedType()); 1962 } 1963 1964 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1965 if (getContext().getBuiltinVaListType()->isArrayType()) 1966 return EmitPointerWithAlignment(E); 1967 return EmitLValue(E).getAddress(); 1968 } 1969 1970 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1971 return EmitLValue(E).getAddress(); 1972 } 1973 1974 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1975 const APValue &Init) { 1976 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1977 if (CGDebugInfo *Dbg = getDebugInfo()) 1978 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1979 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1980 } 1981 1982 CodeGenFunction::PeepholeProtection 1983 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1984 // At the moment, the only aggressive peephole we do in IR gen 1985 // is trunc(zext) folding, but if we add more, we can easily 1986 // extend this protection. 1987 1988 if (!rvalue.isScalar()) return PeepholeProtection(); 1989 llvm::Value *value = rvalue.getScalarVal(); 1990 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1991 1992 // Just make an extra bitcast. 1993 assert(HaveInsertPoint()); 1994 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1995 Builder.GetInsertBlock()); 1996 1997 PeepholeProtection protection; 1998 protection.Inst = inst; 1999 return protection; 2000 } 2001 2002 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2003 if (!protection.Inst) return; 2004 2005 // In theory, we could try to duplicate the peepholes now, but whatever. 2006 protection.Inst->eraseFromParent(); 2007 } 2008 2009 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2010 llvm::Value *AnnotatedVal, 2011 StringRef AnnotationStr, 2012 SourceLocation Location) { 2013 llvm::Value *Args[4] = { 2014 AnnotatedVal, 2015 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2016 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2017 CGM.EmitAnnotationLineNo(Location) 2018 }; 2019 return Builder.CreateCall(AnnotationFn, Args); 2020 } 2021 2022 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2023 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2024 // FIXME We create a new bitcast for every annotation because that's what 2025 // llvm-gcc was doing. 2026 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2027 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2028 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2029 I->getAnnotation(), D->getLocation()); 2030 } 2031 2032 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2033 Address Addr) { 2034 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2035 llvm::Value *V = Addr.getPointer(); 2036 llvm::Type *VTy = V->getType(); 2037 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2038 CGM.Int8PtrTy); 2039 2040 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2041 // FIXME Always emit the cast inst so we can differentiate between 2042 // annotation on the first field of a struct and annotation on the struct 2043 // itself. 2044 if (VTy != CGM.Int8PtrTy) 2045 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2046 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2047 V = Builder.CreateBitCast(V, VTy); 2048 } 2049 2050 return Address(V, Addr.getAlignment()); 2051 } 2052 2053 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2054 2055 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2056 : CGF(CGF) { 2057 assert(!CGF->IsSanitizerScope); 2058 CGF->IsSanitizerScope = true; 2059 } 2060 2061 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2062 CGF->IsSanitizerScope = false; 2063 } 2064 2065 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2066 const llvm::Twine &Name, 2067 llvm::BasicBlock *BB, 2068 llvm::BasicBlock::iterator InsertPt) const { 2069 LoopStack.InsertHelper(I); 2070 if (IsSanitizerScope) 2071 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2072 } 2073 2074 void CGBuilderInserter::InsertHelper( 2075 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2076 llvm::BasicBlock::iterator InsertPt) const { 2077 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2078 if (CGF) 2079 CGF->InsertHelper(I, Name, BB, InsertPt); 2080 } 2081 2082 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2083 CodeGenModule &CGM, const FunctionDecl *FD, 2084 std::string &FirstMissing) { 2085 // If there aren't any required features listed then go ahead and return. 2086 if (ReqFeatures.empty()) 2087 return false; 2088 2089 // Now build up the set of caller features and verify that all the required 2090 // features are there. 2091 llvm::StringMap<bool> CallerFeatureMap; 2092 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2093 2094 // If we have at least one of the features in the feature list return 2095 // true, otherwise return false. 2096 return std::all_of( 2097 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2098 SmallVector<StringRef, 1> OrFeatures; 2099 Feature.split(OrFeatures, "|"); 2100 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2101 [&](StringRef Feature) { 2102 if (!CallerFeatureMap.lookup(Feature)) { 2103 FirstMissing = Feature.str(); 2104 return false; 2105 } 2106 return true; 2107 }); 2108 }); 2109 } 2110 2111 // Emits an error if we don't have a valid set of target features for the 2112 // called function. 2113 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2114 const FunctionDecl *TargetDecl) { 2115 // Early exit if this is an indirect call. 2116 if (!TargetDecl) 2117 return; 2118 2119 // Get the current enclosing function if it exists. If it doesn't 2120 // we can't check the target features anyhow. 2121 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2122 if (!FD) 2123 return; 2124 2125 // Grab the required features for the call. For a builtin this is listed in 2126 // the td file with the default cpu, for an always_inline function this is any 2127 // listed cpu and any listed features. 2128 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2129 std::string MissingFeature; 2130 if (BuiltinID) { 2131 SmallVector<StringRef, 1> ReqFeatures; 2132 const char *FeatureList = 2133 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2134 // Return if the builtin doesn't have any required features. 2135 if (!FeatureList || StringRef(FeatureList) == "") 2136 return; 2137 StringRef(FeatureList).split(ReqFeatures, ","); 2138 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2139 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2140 << TargetDecl->getDeclName() 2141 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2142 2143 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2144 // Get the required features for the callee. 2145 SmallVector<StringRef, 1> ReqFeatures; 2146 llvm::StringMap<bool> CalleeFeatureMap; 2147 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2148 for (const auto &F : CalleeFeatureMap) { 2149 // Only positive features are "required". 2150 if (F.getValue()) 2151 ReqFeatures.push_back(F.getKey()); 2152 } 2153 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2154 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2155 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2156 } 2157 } 2158 2159 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2160 if (!CGM.getCodeGenOpts().SanitizeStats) 2161 return; 2162 2163 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2164 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2165 CGM.getSanStats().create(IRB, SSK); 2166 } 2167 2168 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2169 if (CGDebugInfo *DI = getDebugInfo()) 2170 return DI->SourceLocToDebugLoc(Location); 2171 2172 return llvm::DebugLoc(); 2173 } 2174