1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CurFn(nullptr), CapturedStmtInfo(nullptr), 41 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 42 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 43 BlockInfo(nullptr), BlockPointer(nullptr), 44 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 45 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 46 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 47 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 48 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 49 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 50 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 51 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 52 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 53 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 54 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 55 TerminateHandler(nullptr), TrapBB(nullptr) { 56 if (!suppressNewContext) 57 CGM.getCXXABI().getMangleContext().startNewFunction(); 58 59 llvm::FastMathFlags FMF; 60 if (CGM.getLangOpts().FastMath) 61 FMF.setUnsafeAlgebra(); 62 if (CGM.getLangOpts().FiniteMathOnly) { 63 FMF.setNoNaNs(); 64 FMF.setNoInfs(); 65 } 66 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 67 FMF.setNoNaNs(); 68 } 69 if (CGM.getCodeGenOpts().NoSignedZeros) { 70 FMF.setNoSignedZeros(); 71 } 72 Builder.SetFastMathFlags(FMF); 73 } 74 75 CodeGenFunction::~CodeGenFunction() { 76 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 77 78 // If there are any unclaimed block infos, go ahead and destroy them 79 // now. This can happen if IR-gen gets clever and skips evaluating 80 // something. 81 if (FirstBlockInfo) 82 destroyBlockInfos(FirstBlockInfo); 83 84 if (getLangOpts().OpenMP) { 85 CGM.getOpenMPRuntime().FunctionFinished(*this); 86 } 87 } 88 89 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 90 CharUnits Alignment; 91 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 92 Alignment = getContext().getTypeAlignInChars(T); 93 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 94 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 95 !getContext().isAlignmentRequired(T)) 96 Alignment = CharUnits::fromQuantity(MaxAlign); 97 } 98 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 99 } 100 101 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 102 return CGM.getTypes().ConvertTypeForMem(T); 103 } 104 105 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 106 return CGM.getTypes().ConvertType(T); 107 } 108 109 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 110 type = type.getCanonicalType(); 111 while (true) { 112 switch (type->getTypeClass()) { 113 #define TYPE(name, parent) 114 #define ABSTRACT_TYPE(name, parent) 115 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 116 #define DEPENDENT_TYPE(name, parent) case Type::name: 117 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 118 #include "clang/AST/TypeNodes.def" 119 llvm_unreachable("non-canonical or dependent type in IR-generation"); 120 121 case Type::Auto: 122 llvm_unreachable("undeduced auto type in IR-generation"); 123 124 // Various scalar types. 125 case Type::Builtin: 126 case Type::Pointer: 127 case Type::BlockPointer: 128 case Type::LValueReference: 129 case Type::RValueReference: 130 case Type::MemberPointer: 131 case Type::Vector: 132 case Type::ExtVector: 133 case Type::FunctionProto: 134 case Type::FunctionNoProto: 135 case Type::Enum: 136 case Type::ObjCObjectPointer: 137 return TEK_Scalar; 138 139 // Complexes. 140 case Type::Complex: 141 return TEK_Complex; 142 143 // Arrays, records, and Objective-C objects. 144 case Type::ConstantArray: 145 case Type::IncompleteArray: 146 case Type::VariableArray: 147 case Type::Record: 148 case Type::ObjCObject: 149 case Type::ObjCInterface: 150 return TEK_Aggregate; 151 152 // We operate on atomic values according to their underlying type. 153 case Type::Atomic: 154 type = cast<AtomicType>(type)->getValueType(); 155 continue; 156 } 157 llvm_unreachable("unknown type kind!"); 158 } 159 } 160 161 void CodeGenFunction::EmitReturnBlock() { 162 // For cleanliness, we try to avoid emitting the return block for 163 // simple cases. 164 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 165 166 if (CurBB) { 167 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 168 169 // We have a valid insert point, reuse it if it is empty or there are no 170 // explicit jumps to the return block. 171 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 172 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 173 delete ReturnBlock.getBlock(); 174 } else 175 EmitBlock(ReturnBlock.getBlock()); 176 return; 177 } 178 179 // Otherwise, if the return block is the target of a single direct 180 // branch then we can just put the code in that block instead. This 181 // cleans up functions which started with a unified return block. 182 if (ReturnBlock.getBlock()->hasOneUse()) { 183 llvm::BranchInst *BI = 184 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 185 if (BI && BI->isUnconditional() && 186 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 187 // Reset insertion point, including debug location, and delete the 188 // branch. This is really subtle and only works because the next change 189 // in location will hit the caching in CGDebugInfo::EmitLocation and not 190 // override this. 191 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 192 Builder.SetInsertPoint(BI->getParent()); 193 BI->eraseFromParent(); 194 delete ReturnBlock.getBlock(); 195 return; 196 } 197 } 198 199 // FIXME: We are at an unreachable point, there is no reason to emit the block 200 // unless it has uses. However, we still need a place to put the debug 201 // region.end for now. 202 203 EmitBlock(ReturnBlock.getBlock()); 204 } 205 206 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 207 if (!BB) return; 208 if (!BB->use_empty()) 209 return CGF.CurFn->getBasicBlockList().push_back(BB); 210 delete BB; 211 } 212 213 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 214 assert(BreakContinueStack.empty() && 215 "mismatched push/pop in break/continue stack!"); 216 217 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 218 && NumSimpleReturnExprs == NumReturnExprs 219 && ReturnBlock.getBlock()->use_empty(); 220 // Usually the return expression is evaluated before the cleanup 221 // code. If the function contains only a simple return statement, 222 // such as a constant, the location before the cleanup code becomes 223 // the last useful breakpoint in the function, because the simple 224 // return expression will be evaluated after the cleanup code. To be 225 // safe, set the debug location for cleanup code to the location of 226 // the return statement. Otherwise the cleanup code should be at the 227 // end of the function's lexical scope. 228 // 229 // If there are multiple branches to the return block, the branch 230 // instructions will get the location of the return statements and 231 // all will be fine. 232 if (CGDebugInfo *DI = getDebugInfo()) { 233 if (OnlySimpleReturnStmts) 234 DI->EmitLocation(Builder, LastStopPoint); 235 else 236 DI->EmitLocation(Builder, EndLoc); 237 } 238 239 // Pop any cleanups that might have been associated with the 240 // parameters. Do this in whatever block we're currently in; it's 241 // important to do this before we enter the return block or return 242 // edges will be *really* confused. 243 bool EmitRetDbgLoc = true; 244 if (EHStack.stable_begin() != PrologueCleanupDepth) { 245 PopCleanupBlocks(PrologueCleanupDepth); 246 247 // Make sure the line table doesn't jump back into the body for 248 // the ret after it's been at EndLoc. 249 EmitRetDbgLoc = false; 250 251 if (CGDebugInfo *DI = getDebugInfo()) 252 if (OnlySimpleReturnStmts) 253 DI->EmitLocation(Builder, EndLoc); 254 } 255 256 // Emit function epilog (to return). 257 EmitReturnBlock(); 258 259 if (ShouldInstrumentFunction()) 260 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 261 262 // Emit debug descriptor for function end. 263 if (CGDebugInfo *DI = getDebugInfo()) { 264 DI->EmitFunctionEnd(Builder); 265 } 266 267 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 268 EmitEndEHSpec(CurCodeDecl); 269 270 assert(EHStack.empty() && 271 "did not remove all scopes from cleanup stack!"); 272 273 // If someone did an indirect goto, emit the indirect goto block at the end of 274 // the function. 275 if (IndirectBranch) { 276 EmitBlock(IndirectBranch->getParent()); 277 Builder.ClearInsertionPoint(); 278 } 279 280 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 281 llvm::Instruction *Ptr = AllocaInsertPt; 282 AllocaInsertPt = nullptr; 283 Ptr->eraseFromParent(); 284 285 // If someone took the address of a label but never did an indirect goto, we 286 // made a zero entry PHI node, which is illegal, zap it now. 287 if (IndirectBranch) { 288 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 289 if (PN->getNumIncomingValues() == 0) { 290 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 291 PN->eraseFromParent(); 292 } 293 } 294 295 EmitIfUsed(*this, EHResumeBlock); 296 EmitIfUsed(*this, TerminateLandingPad); 297 EmitIfUsed(*this, TerminateHandler); 298 EmitIfUsed(*this, UnreachableBlock); 299 300 if (CGM.getCodeGenOpts().EmitDeclMetadata) 301 EmitDeclMetadata(); 302 303 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 304 I = DeferredReplacements.begin(), 305 E = DeferredReplacements.end(); 306 I != E; ++I) { 307 I->first->replaceAllUsesWith(I->second); 308 I->first->eraseFromParent(); 309 } 310 } 311 312 /// ShouldInstrumentFunction - Return true if the current function should be 313 /// instrumented with __cyg_profile_func_* calls 314 bool CodeGenFunction::ShouldInstrumentFunction() { 315 if (!CGM.getCodeGenOpts().InstrumentFunctions) 316 return false; 317 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 318 return false; 319 return true; 320 } 321 322 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 323 /// instrumentation function with the current function and the call site, if 324 /// function instrumentation is enabled. 325 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 326 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 327 llvm::PointerType *PointerTy = Int8PtrTy; 328 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 329 llvm::FunctionType *FunctionTy = 330 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 331 332 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 333 llvm::CallInst *CallSite = Builder.CreateCall( 334 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 335 llvm::ConstantInt::get(Int32Ty, 0), 336 "callsite"); 337 338 llvm::Value *args[] = { 339 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 340 CallSite 341 }; 342 343 EmitNounwindRuntimeCall(F, args); 344 } 345 346 void CodeGenFunction::EmitMCountInstrumentation() { 347 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 348 349 llvm::Constant *MCountFn = 350 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 351 EmitNounwindRuntimeCall(MCountFn); 352 } 353 354 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 355 // information in the program executable. The argument information stored 356 // includes the argument name, its type, the address and access qualifiers used. 357 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 358 CodeGenModule &CGM, llvm::LLVMContext &Context, 359 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 360 CGBuilderTy &Builder, ASTContext &ASTCtx) { 361 // Create MDNodes that represent the kernel arg metadata. 362 // Each MDNode is a list in the form of "key", N number of values which is 363 // the same number of values as their are kernel arguments. 364 365 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 366 367 // MDNode for the kernel argument address space qualifiers. 368 SmallVector<llvm::Metadata *, 8> addressQuals; 369 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 370 371 // MDNode for the kernel argument access qualifiers (images only). 372 SmallVector<llvm::Metadata *, 8> accessQuals; 373 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 374 375 // MDNode for the kernel argument type names. 376 SmallVector<llvm::Metadata *, 8> argTypeNames; 377 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 378 379 // MDNode for the kernel argument base type names. 380 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 381 argBaseTypeNames.push_back( 382 llvm::MDString::get(Context, "kernel_arg_base_type")); 383 384 // MDNode for the kernel argument type qualifiers. 385 SmallVector<llvm::Metadata *, 8> argTypeQuals; 386 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 387 388 // MDNode for the kernel argument names. 389 SmallVector<llvm::Metadata *, 8> argNames; 390 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 391 392 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 393 const ParmVarDecl *parm = FD->getParamDecl(i); 394 QualType ty = parm->getType(); 395 std::string typeQuals; 396 397 if (ty->isPointerType()) { 398 QualType pointeeTy = ty->getPointeeType(); 399 400 // Get address qualifier. 401 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 402 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 403 404 // Get argument type name. 405 std::string typeName = 406 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 407 408 // Turn "unsigned type" to "utype" 409 std::string::size_type pos = typeName.find("unsigned"); 410 if (pointeeTy.isCanonical() && pos != std::string::npos) 411 typeName.erase(pos+1, 8); 412 413 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 414 415 std::string baseTypeName = 416 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 417 Policy) + 418 "*"; 419 420 // Turn "unsigned type" to "utype" 421 pos = baseTypeName.find("unsigned"); 422 if (pos != std::string::npos) 423 baseTypeName.erase(pos+1, 8); 424 425 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 426 427 // Get argument type qualifiers: 428 if (ty.isRestrictQualified()) 429 typeQuals = "restrict"; 430 if (pointeeTy.isConstQualified() || 431 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 432 typeQuals += typeQuals.empty() ? "const" : " const"; 433 if (pointeeTy.isVolatileQualified()) 434 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 435 } else { 436 uint32_t AddrSpc = 0; 437 if (ty->isImageType()) 438 AddrSpc = 439 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 440 441 addressQuals.push_back( 442 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 443 444 // Get argument type name. 445 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 446 447 // Turn "unsigned type" to "utype" 448 std::string::size_type pos = typeName.find("unsigned"); 449 if (ty.isCanonical() && pos != std::string::npos) 450 typeName.erase(pos+1, 8); 451 452 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 453 454 std::string baseTypeName = 455 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 456 457 // Turn "unsigned type" to "utype" 458 pos = baseTypeName.find("unsigned"); 459 if (pos != std::string::npos) 460 baseTypeName.erase(pos+1, 8); 461 462 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 463 464 // Get argument type qualifiers: 465 if (ty.isConstQualified()) 466 typeQuals = "const"; 467 if (ty.isVolatileQualified()) 468 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 469 } 470 471 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 472 473 // Get image access qualifier: 474 if (ty->isImageType()) { 475 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 476 if (A && A->isWriteOnly()) 477 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 478 else 479 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 480 // FIXME: what about read_write? 481 } else 482 accessQuals.push_back(llvm::MDString::get(Context, "none")); 483 484 // Get argument name. 485 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 486 } 487 488 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 489 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 490 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 491 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 492 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 493 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 494 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 495 } 496 497 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 498 llvm::Function *Fn) 499 { 500 if (!FD->hasAttr<OpenCLKernelAttr>()) 501 return; 502 503 llvm::LLVMContext &Context = getLLVMContext(); 504 505 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 506 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 507 508 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 509 getContext()); 510 511 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 512 QualType hintQTy = A->getTypeHint(); 513 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 514 bool isSignedInteger = 515 hintQTy->isSignedIntegerType() || 516 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 517 llvm::Metadata *attrMDArgs[] = { 518 llvm::MDString::get(Context, "vec_type_hint"), 519 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 520 CGM.getTypes().ConvertType(A->getTypeHint()))), 521 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 522 llvm::IntegerType::get(Context, 32), 523 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 524 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 525 } 526 527 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 528 llvm::Metadata *attrMDArgs[] = { 529 llvm::MDString::get(Context, "work_group_size_hint"), 530 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 531 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 532 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 533 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 534 } 535 536 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 537 llvm::Metadata *attrMDArgs[] = { 538 llvm::MDString::get(Context, "reqd_work_group_size"), 539 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 540 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 541 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 542 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 543 } 544 545 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 546 llvm::NamedMDNode *OpenCLKernelMetadata = 547 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 548 OpenCLKernelMetadata->addOperand(kernelMDNode); 549 } 550 551 /// Determine whether the function F ends with a return stmt. 552 static bool endsWithReturn(const Decl* F) { 553 const Stmt *Body = nullptr; 554 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 555 Body = FD->getBody(); 556 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 557 Body = OMD->getBody(); 558 559 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 560 auto LastStmt = CS->body_rbegin(); 561 if (LastStmt != CS->body_rend()) 562 return isa<ReturnStmt>(*LastStmt); 563 } 564 return false; 565 } 566 567 void CodeGenFunction::StartFunction(GlobalDecl GD, 568 QualType RetTy, 569 llvm::Function *Fn, 570 const CGFunctionInfo &FnInfo, 571 const FunctionArgList &Args, 572 SourceLocation Loc, 573 SourceLocation StartLoc) { 574 assert(!CurFn && 575 "Do not use a CodeGenFunction object for more than one function"); 576 577 const Decl *D = GD.getDecl(); 578 579 DidCallStackSave = false; 580 CurCodeDecl = D; 581 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 582 FnRetTy = RetTy; 583 CurFn = Fn; 584 CurFnInfo = &FnInfo; 585 assert(CurFn->isDeclaration() && "Function already has body?"); 586 587 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 588 SanOpts.clear(); 589 590 // Pass inline keyword to optimizer if it appears explicitly on any 591 // declaration. Also, in the case of -fno-inline attach NoInline 592 // attribute to all function that are not marked AlwaysInline. 593 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 594 if (!CGM.getCodeGenOpts().NoInline) { 595 for (auto RI : FD->redecls()) 596 if (RI->isInlineSpecified()) { 597 Fn->addFnAttr(llvm::Attribute::InlineHint); 598 break; 599 } 600 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 601 Fn->addFnAttr(llvm::Attribute::NoInline); 602 } 603 604 if (getLangOpts().OpenCL) { 605 // Add metadata for a kernel function. 606 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 607 EmitOpenCLKernelMetadata(FD, Fn); 608 } 609 610 // If we are checking function types, emit a function type signature as 611 // prologue data. 612 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 613 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 614 if (llvm::Constant *PrologueSig = 615 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 616 llvm::Constant *FTRTTIConst = 617 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 618 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 619 llvm::Constant *PrologueStructConst = 620 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 621 Fn->setPrologueData(PrologueStructConst); 622 } 623 } 624 } 625 626 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 627 628 // Create a marker to make it easy to insert allocas into the entryblock 629 // later. Don't create this with the builder, because we don't want it 630 // folded. 631 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 632 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 633 if (Builder.isNamePreserving()) 634 AllocaInsertPt->setName("allocapt"); 635 636 ReturnBlock = getJumpDestInCurrentScope("return"); 637 638 Builder.SetInsertPoint(EntryBB); 639 640 // Emit subprogram debug descriptor. 641 if (CGDebugInfo *DI = getDebugInfo()) { 642 SmallVector<QualType, 16> ArgTypes; 643 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 644 i != e; ++i) { 645 ArgTypes.push_back((*i)->getType()); 646 } 647 648 QualType FnType = 649 getContext().getFunctionType(RetTy, ArgTypes, 650 FunctionProtoType::ExtProtoInfo()); 651 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 652 } 653 654 if (ShouldInstrumentFunction()) 655 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 656 657 if (CGM.getCodeGenOpts().InstrumentForProfiling) 658 EmitMCountInstrumentation(); 659 660 if (RetTy->isVoidType()) { 661 // Void type; nothing to return. 662 ReturnValue = nullptr; 663 664 // Count the implicit return. 665 if (!endsWithReturn(D)) 666 ++NumReturnExprs; 667 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 668 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 669 // Indirect aggregate return; emit returned value directly into sret slot. 670 // This reduces code size, and affects correctness in C++. 671 auto AI = CurFn->arg_begin(); 672 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 673 ++AI; 674 ReturnValue = AI; 675 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 676 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 677 // Load the sret pointer from the argument struct and return into that. 678 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 679 llvm::Function::arg_iterator EI = CurFn->arg_end(); 680 --EI; 681 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 682 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 683 } else { 684 ReturnValue = CreateIRTemp(RetTy, "retval"); 685 686 // Tell the epilog emitter to autorelease the result. We do this 687 // now so that various specialized functions can suppress it 688 // during their IR-generation. 689 if (getLangOpts().ObjCAutoRefCount && 690 !CurFnInfo->isReturnsRetained() && 691 RetTy->isObjCRetainableType()) 692 AutoreleaseResult = true; 693 } 694 695 EmitStartEHSpec(CurCodeDecl); 696 697 PrologueCleanupDepth = EHStack.stable_begin(); 698 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 699 700 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 701 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 702 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 703 if (MD->getParent()->isLambda() && 704 MD->getOverloadedOperator() == OO_Call) { 705 // We're in a lambda; figure out the captures. 706 MD->getParent()->getCaptureFields(LambdaCaptureFields, 707 LambdaThisCaptureField); 708 if (LambdaThisCaptureField) { 709 // If this lambda captures this, load it. 710 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 711 CXXThisValue = EmitLoadOfLValue(ThisLValue, 712 SourceLocation()).getScalarVal(); 713 } 714 for (auto *FD : MD->getParent()->fields()) { 715 if (FD->hasCapturedVLAType()) { 716 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 717 SourceLocation()).getScalarVal(); 718 auto VAT = FD->getCapturedVLAType(); 719 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 720 } 721 } 722 } else { 723 // Not in a lambda; just use 'this' from the method. 724 // FIXME: Should we generate a new load for each use of 'this'? The 725 // fast register allocator would be happier... 726 CXXThisValue = CXXABIThisValue; 727 } 728 } 729 730 // If any of the arguments have a variably modified type, make sure to 731 // emit the type size. 732 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 733 i != e; ++i) { 734 const VarDecl *VD = *i; 735 736 // Dig out the type as written from ParmVarDecls; it's unclear whether 737 // the standard (C99 6.9.1p10) requires this, but we're following the 738 // precedent set by gcc. 739 QualType Ty; 740 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 741 Ty = PVD->getOriginalType(); 742 else 743 Ty = VD->getType(); 744 745 if (Ty->isVariablyModifiedType()) 746 EmitVariablyModifiedType(Ty); 747 } 748 // Emit a location at the end of the prologue. 749 if (CGDebugInfo *DI = getDebugInfo()) 750 DI->EmitLocation(Builder, StartLoc); 751 } 752 753 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 754 const Stmt *Body) { 755 RegionCounter Cnt = getPGORegionCounter(Body); 756 Cnt.beginRegion(Builder); 757 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 758 EmitCompoundStmtWithoutScope(*S); 759 else 760 EmitStmt(Body); 761 } 762 763 /// When instrumenting to collect profile data, the counts for some blocks 764 /// such as switch cases need to not include the fall-through counts, so 765 /// emit a branch around the instrumentation code. When not instrumenting, 766 /// this just calls EmitBlock(). 767 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 768 RegionCounter &Cnt) { 769 llvm::BasicBlock *SkipCountBB = nullptr; 770 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 771 // When instrumenting for profiling, the fallthrough to certain 772 // statements needs to skip over the instrumentation code so that we 773 // get an accurate count. 774 SkipCountBB = createBasicBlock("skipcount"); 775 EmitBranch(SkipCountBB); 776 } 777 EmitBlock(BB); 778 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 779 if (SkipCountBB) 780 EmitBlock(SkipCountBB); 781 } 782 783 /// Tries to mark the given function nounwind based on the 784 /// non-existence of any throwing calls within it. We believe this is 785 /// lightweight enough to do at -O0. 786 static void TryMarkNoThrow(llvm::Function *F) { 787 // LLVM treats 'nounwind' on a function as part of the type, so we 788 // can't do this on functions that can be overwritten. 789 if (F->mayBeOverridden()) return; 790 791 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 792 for (llvm::BasicBlock::iterator 793 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 794 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 795 if (!Call->doesNotThrow()) 796 return; 797 } else if (isa<llvm::ResumeInst>(&*BI)) { 798 return; 799 } 800 F->setDoesNotThrow(); 801 } 802 803 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 804 const FunctionDecl *UnsizedDealloc) { 805 // This is a weak discardable definition of the sized deallocation function. 806 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 807 808 // Call the unsized deallocation function and forward the first argument 809 // unchanged. 810 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 811 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 812 } 813 814 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 815 const CGFunctionInfo &FnInfo) { 816 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 817 818 // Check if we should generate debug info for this function. 819 if (FD->hasAttr<NoDebugAttr>()) 820 DebugInfo = nullptr; // disable debug info indefinitely for this function 821 822 FunctionArgList Args; 823 QualType ResTy = FD->getReturnType(); 824 825 CurGD = GD; 826 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 827 if (MD && MD->isInstance()) { 828 if (CGM.getCXXABI().HasThisReturn(GD)) 829 ResTy = MD->getThisType(getContext()); 830 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 831 ResTy = CGM.getContext().VoidPtrTy; 832 CGM.getCXXABI().buildThisParam(*this, Args); 833 } 834 835 Args.append(FD->param_begin(), FD->param_end()); 836 837 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 838 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 839 840 SourceRange BodyRange; 841 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 842 CurEHLocation = BodyRange.getEnd(); 843 844 // Use the location of the start of the function to determine where 845 // the function definition is located. By default use the location 846 // of the declaration as the location for the subprogram. A function 847 // may lack a declaration in the source code if it is created by code 848 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 849 SourceLocation Loc = FD->getLocation(); 850 851 // If this is a function specialization then use the pattern body 852 // as the location for the function. 853 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 854 if (SpecDecl->hasBody(SpecDecl)) 855 Loc = SpecDecl->getLocation(); 856 857 // Emit the standard function prologue. 858 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 859 860 // Generate the body of the function. 861 PGO.checkGlobalDecl(GD); 862 PGO.assignRegionCounters(GD.getDecl(), CurFn); 863 if (isa<CXXDestructorDecl>(FD)) 864 EmitDestructorBody(Args); 865 else if (isa<CXXConstructorDecl>(FD)) 866 EmitConstructorBody(Args); 867 else if (getLangOpts().CUDA && 868 !CGM.getCodeGenOpts().CUDAIsDevice && 869 FD->hasAttr<CUDAGlobalAttr>()) 870 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 871 else if (isa<CXXConversionDecl>(FD) && 872 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 873 // The lambda conversion to block pointer is special; the semantics can't be 874 // expressed in the AST, so IRGen needs to special-case it. 875 EmitLambdaToBlockPointerBody(Args); 876 } else if (isa<CXXMethodDecl>(FD) && 877 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 878 // The lambda static invoker function is special, because it forwards or 879 // clones the body of the function call operator (but is actually static). 880 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 881 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 882 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 883 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 884 // Implicit copy-assignment gets the same special treatment as implicit 885 // copy-constructors. 886 emitImplicitAssignmentOperatorBody(Args); 887 } else if (Stmt *Body = FD->getBody()) { 888 EmitFunctionBody(Args, Body); 889 } else if (FunctionDecl *UnsizedDealloc = 890 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 891 // Global sized deallocation functions get an implicit weak definition if 892 // they don't have an explicit definition. 893 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 894 } else 895 llvm_unreachable("no definition for emitted function"); 896 897 // C++11 [stmt.return]p2: 898 // Flowing off the end of a function [...] results in undefined behavior in 899 // a value-returning function. 900 // C11 6.9.1p12: 901 // If the '}' that terminates a function is reached, and the value of the 902 // function call is used by the caller, the behavior is undefined. 903 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 904 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 905 if (SanOpts.has(SanitizerKind::Return)) { 906 SanitizerScope SanScope(this); 907 llvm::Value *IsFalse = Builder.getFalse(); 908 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 909 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 910 None); 911 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 912 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 913 Builder.CreateUnreachable(); 914 Builder.ClearInsertionPoint(); 915 } 916 917 // Emit the standard function epilogue. 918 FinishFunction(BodyRange.getEnd()); 919 920 // If we haven't marked the function nothrow through other means, do 921 // a quick pass now to see if we can. 922 if (!CurFn->doesNotThrow()) 923 TryMarkNoThrow(CurFn); 924 } 925 926 /// ContainsLabel - Return true if the statement contains a label in it. If 927 /// this statement is not executed normally, it not containing a label means 928 /// that we can just remove the code. 929 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 930 // Null statement, not a label! 931 if (!S) return false; 932 933 // If this is a label, we have to emit the code, consider something like: 934 // if (0) { ... foo: bar(); } goto foo; 935 // 936 // TODO: If anyone cared, we could track __label__'s, since we know that you 937 // can't jump to one from outside their declared region. 938 if (isa<LabelStmt>(S)) 939 return true; 940 941 // If this is a case/default statement, and we haven't seen a switch, we have 942 // to emit the code. 943 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 944 return true; 945 946 // If this is a switch statement, we want to ignore cases below it. 947 if (isa<SwitchStmt>(S)) 948 IgnoreCaseStmts = true; 949 950 // Scan subexpressions for verboten labels. 951 for (Stmt::const_child_range I = S->children(); I; ++I) 952 if (ContainsLabel(*I, IgnoreCaseStmts)) 953 return true; 954 955 return false; 956 } 957 958 /// containsBreak - Return true if the statement contains a break out of it. 959 /// If the statement (recursively) contains a switch or loop with a break 960 /// inside of it, this is fine. 961 bool CodeGenFunction::containsBreak(const Stmt *S) { 962 // Null statement, not a label! 963 if (!S) return false; 964 965 // If this is a switch or loop that defines its own break scope, then we can 966 // include it and anything inside of it. 967 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 968 isa<ForStmt>(S)) 969 return false; 970 971 if (isa<BreakStmt>(S)) 972 return true; 973 974 // Scan subexpressions for verboten breaks. 975 for (Stmt::const_child_range I = S->children(); I; ++I) 976 if (containsBreak(*I)) 977 return true; 978 979 return false; 980 } 981 982 983 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 984 /// to a constant, or if it does but contains a label, return false. If it 985 /// constant folds return true and set the boolean result in Result. 986 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 987 bool &ResultBool) { 988 llvm::APSInt ResultInt; 989 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 990 return false; 991 992 ResultBool = ResultInt.getBoolValue(); 993 return true; 994 } 995 996 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 997 /// to a constant, or if it does but contains a label, return false. If it 998 /// constant folds return true and set the folded value. 999 bool CodeGenFunction:: 1000 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1001 // FIXME: Rename and handle conversion of other evaluatable things 1002 // to bool. 1003 llvm::APSInt Int; 1004 if (!Cond->EvaluateAsInt(Int, getContext())) 1005 return false; // Not foldable, not integer or not fully evaluatable. 1006 1007 if (CodeGenFunction::ContainsLabel(Cond)) 1008 return false; // Contains a label. 1009 1010 ResultInt = Int; 1011 return true; 1012 } 1013 1014 1015 1016 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1017 /// statement) to the specified blocks. Based on the condition, this might try 1018 /// to simplify the codegen of the conditional based on the branch. 1019 /// 1020 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1021 llvm::BasicBlock *TrueBlock, 1022 llvm::BasicBlock *FalseBlock, 1023 uint64_t TrueCount) { 1024 Cond = Cond->IgnoreParens(); 1025 1026 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1027 1028 // Handle X && Y in a condition. 1029 if (CondBOp->getOpcode() == BO_LAnd) { 1030 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1031 1032 // If we have "1 && X", simplify the code. "0 && X" would have constant 1033 // folded if the case was simple enough. 1034 bool ConstantBool = false; 1035 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1036 ConstantBool) { 1037 // br(1 && X) -> br(X). 1038 Cnt.beginRegion(Builder); 1039 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1040 TrueCount); 1041 } 1042 1043 // If we have "X && 1", simplify the code to use an uncond branch. 1044 // "X && 0" would have been constant folded to 0. 1045 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1046 ConstantBool) { 1047 // br(X && 1) -> br(X). 1048 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1049 TrueCount); 1050 } 1051 1052 // Emit the LHS as a conditional. If the LHS conditional is false, we 1053 // want to jump to the FalseBlock. 1054 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1055 // The counter tells us how often we evaluate RHS, and all of TrueCount 1056 // can be propagated to that branch. 1057 uint64_t RHSCount = Cnt.getCount(); 1058 1059 ConditionalEvaluation eval(*this); 1060 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1061 EmitBlock(LHSTrue); 1062 1063 // Any temporaries created here are conditional. 1064 Cnt.beginRegion(Builder); 1065 eval.begin(*this); 1066 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1067 eval.end(*this); 1068 1069 return; 1070 } 1071 1072 if (CondBOp->getOpcode() == BO_LOr) { 1073 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1074 1075 // If we have "0 || X", simplify the code. "1 || X" would have constant 1076 // folded if the case was simple enough. 1077 bool ConstantBool = false; 1078 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1079 !ConstantBool) { 1080 // br(0 || X) -> br(X). 1081 Cnt.beginRegion(Builder); 1082 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1083 TrueCount); 1084 } 1085 1086 // If we have "X || 0", simplify the code to use an uncond branch. 1087 // "X || 1" would have been constant folded to 1. 1088 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1089 !ConstantBool) { 1090 // br(X || 0) -> br(X). 1091 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1092 TrueCount); 1093 } 1094 1095 // Emit the LHS as a conditional. If the LHS conditional is true, we 1096 // want to jump to the TrueBlock. 1097 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1098 // We have the count for entry to the RHS and for the whole expression 1099 // being true, so we can divy up True count between the short circuit and 1100 // the RHS. 1101 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1102 uint64_t RHSCount = TrueCount - LHSCount; 1103 1104 ConditionalEvaluation eval(*this); 1105 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1106 EmitBlock(LHSFalse); 1107 1108 // Any temporaries created here are conditional. 1109 Cnt.beginRegion(Builder); 1110 eval.begin(*this); 1111 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1112 1113 eval.end(*this); 1114 1115 return; 1116 } 1117 } 1118 1119 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1120 // br(!x, t, f) -> br(x, f, t) 1121 if (CondUOp->getOpcode() == UO_LNot) { 1122 // Negate the count. 1123 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1124 // Negate the condition and swap the destination blocks. 1125 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1126 FalseCount); 1127 } 1128 } 1129 1130 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1131 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1132 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1133 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1134 1135 RegionCounter Cnt = getPGORegionCounter(CondOp); 1136 ConditionalEvaluation cond(*this); 1137 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1138 1139 // When computing PGO branch weights, we only know the overall count for 1140 // the true block. This code is essentially doing tail duplication of the 1141 // naive code-gen, introducing new edges for which counts are not 1142 // available. Divide the counts proportionally between the LHS and RHS of 1143 // the conditional operator. 1144 uint64_t LHSScaledTrueCount = 0; 1145 if (TrueCount) { 1146 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1147 LHSScaledTrueCount = TrueCount * LHSRatio; 1148 } 1149 1150 cond.begin(*this); 1151 EmitBlock(LHSBlock); 1152 Cnt.beginRegion(Builder); 1153 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1154 LHSScaledTrueCount); 1155 cond.end(*this); 1156 1157 cond.begin(*this); 1158 EmitBlock(RHSBlock); 1159 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1160 TrueCount - LHSScaledTrueCount); 1161 cond.end(*this); 1162 1163 return; 1164 } 1165 1166 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1167 // Conditional operator handling can give us a throw expression as a 1168 // condition for a case like: 1169 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1170 // Fold this to: 1171 // br(c, throw x, br(y, t, f)) 1172 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1173 return; 1174 } 1175 1176 // Create branch weights based on the number of times we get here and the 1177 // number of times the condition should be true. 1178 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1179 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1180 CurrentCount - TrueCount); 1181 1182 // Emit the code with the fully general case. 1183 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1184 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1185 } 1186 1187 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1188 /// specified stmt yet. 1189 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1190 CGM.ErrorUnsupported(S, Type); 1191 } 1192 1193 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1194 /// variable-length array whose elements have a non-zero bit-pattern. 1195 /// 1196 /// \param baseType the inner-most element type of the array 1197 /// \param src - a char* pointing to the bit-pattern for a single 1198 /// base element of the array 1199 /// \param sizeInChars - the total size of the VLA, in chars 1200 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1201 llvm::Value *dest, llvm::Value *src, 1202 llvm::Value *sizeInChars) { 1203 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1204 = CGF.getContext().getTypeInfoInChars(baseType); 1205 1206 CGBuilderTy &Builder = CGF.Builder; 1207 1208 llvm::Value *baseSizeInChars 1209 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1210 1211 llvm::Type *i8p = Builder.getInt8PtrTy(); 1212 1213 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1214 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1215 1216 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1217 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1218 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1219 1220 // Make a loop over the VLA. C99 guarantees that the VLA element 1221 // count must be nonzero. 1222 CGF.EmitBlock(loopBB); 1223 1224 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1225 cur->addIncoming(begin, originBB); 1226 1227 // memcpy the individual element bit-pattern. 1228 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1229 baseSizeAndAlign.second.getQuantity(), 1230 /*volatile*/ false); 1231 1232 // Go to the next element. 1233 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1234 1235 // Leave if that's the end of the VLA. 1236 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1237 Builder.CreateCondBr(done, contBB, loopBB); 1238 cur->addIncoming(next, loopBB); 1239 1240 CGF.EmitBlock(contBB); 1241 } 1242 1243 void 1244 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1245 // Ignore empty classes in C++. 1246 if (getLangOpts().CPlusPlus) { 1247 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1248 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1249 return; 1250 } 1251 } 1252 1253 // Cast the dest ptr to the appropriate i8 pointer type. 1254 unsigned DestAS = 1255 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1256 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1257 if (DestPtr->getType() != BP) 1258 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1259 1260 // Get size and alignment info for this aggregate. 1261 std::pair<CharUnits, CharUnits> TypeInfo = 1262 getContext().getTypeInfoInChars(Ty); 1263 CharUnits Size = TypeInfo.first; 1264 CharUnits Align = TypeInfo.second; 1265 1266 llvm::Value *SizeVal; 1267 const VariableArrayType *vla; 1268 1269 // Don't bother emitting a zero-byte memset. 1270 if (Size.isZero()) { 1271 // But note that getTypeInfo returns 0 for a VLA. 1272 if (const VariableArrayType *vlaType = 1273 dyn_cast_or_null<VariableArrayType>( 1274 getContext().getAsArrayType(Ty))) { 1275 QualType eltType; 1276 llvm::Value *numElts; 1277 std::tie(numElts, eltType) = getVLASize(vlaType); 1278 1279 SizeVal = numElts; 1280 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1281 if (!eltSize.isOne()) 1282 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1283 vla = vlaType; 1284 } else { 1285 return; 1286 } 1287 } else { 1288 SizeVal = CGM.getSize(Size); 1289 vla = nullptr; 1290 } 1291 1292 // If the type contains a pointer to data member we can't memset it to zero. 1293 // Instead, create a null constant and copy it to the destination. 1294 // TODO: there are other patterns besides zero that we can usefully memset, 1295 // like -1, which happens to be the pattern used by member-pointers. 1296 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1297 // For a VLA, emit a single element, then splat that over the VLA. 1298 if (vla) Ty = getContext().getBaseElementType(vla); 1299 1300 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1301 1302 llvm::GlobalVariable *NullVariable = 1303 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1304 /*isConstant=*/true, 1305 llvm::GlobalVariable::PrivateLinkage, 1306 NullConstant, Twine()); 1307 llvm::Value *SrcPtr = 1308 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1309 1310 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1311 1312 // Get and call the appropriate llvm.memcpy overload. 1313 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1314 return; 1315 } 1316 1317 // Otherwise, just memset the whole thing to zero. This is legal 1318 // because in LLVM, all default initializers (other than the ones we just 1319 // handled above) are guaranteed to have a bit pattern of all zeros. 1320 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1321 Align.getQuantity(), false); 1322 } 1323 1324 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1325 // Make sure that there is a block for the indirect goto. 1326 if (!IndirectBranch) 1327 GetIndirectGotoBlock(); 1328 1329 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1330 1331 // Make sure the indirect branch includes all of the address-taken blocks. 1332 IndirectBranch->addDestination(BB); 1333 return llvm::BlockAddress::get(CurFn, BB); 1334 } 1335 1336 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1337 // If we already made the indirect branch for indirect goto, return its block. 1338 if (IndirectBranch) return IndirectBranch->getParent(); 1339 1340 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1341 1342 // Create the PHI node that indirect gotos will add entries to. 1343 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1344 "indirect.goto.dest"); 1345 1346 // Create the indirect branch instruction. 1347 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1348 return IndirectBranch->getParent(); 1349 } 1350 1351 /// Computes the length of an array in elements, as well as the base 1352 /// element type and a properly-typed first element pointer. 1353 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1354 QualType &baseType, 1355 llvm::Value *&addr) { 1356 const ArrayType *arrayType = origArrayType; 1357 1358 // If it's a VLA, we have to load the stored size. Note that 1359 // this is the size of the VLA in bytes, not its size in elements. 1360 llvm::Value *numVLAElements = nullptr; 1361 if (isa<VariableArrayType>(arrayType)) { 1362 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1363 1364 // Walk into all VLAs. This doesn't require changes to addr, 1365 // which has type T* where T is the first non-VLA element type. 1366 do { 1367 QualType elementType = arrayType->getElementType(); 1368 arrayType = getContext().getAsArrayType(elementType); 1369 1370 // If we only have VLA components, 'addr' requires no adjustment. 1371 if (!arrayType) { 1372 baseType = elementType; 1373 return numVLAElements; 1374 } 1375 } while (isa<VariableArrayType>(arrayType)); 1376 1377 // We get out here only if we find a constant array type 1378 // inside the VLA. 1379 } 1380 1381 // We have some number of constant-length arrays, so addr should 1382 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1383 // down to the first element of addr. 1384 SmallVector<llvm::Value*, 8> gepIndices; 1385 1386 // GEP down to the array type. 1387 llvm::ConstantInt *zero = Builder.getInt32(0); 1388 gepIndices.push_back(zero); 1389 1390 uint64_t countFromCLAs = 1; 1391 QualType eltType; 1392 1393 llvm::ArrayType *llvmArrayType = 1394 dyn_cast<llvm::ArrayType>( 1395 cast<llvm::PointerType>(addr->getType())->getElementType()); 1396 while (llvmArrayType) { 1397 assert(isa<ConstantArrayType>(arrayType)); 1398 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1399 == llvmArrayType->getNumElements()); 1400 1401 gepIndices.push_back(zero); 1402 countFromCLAs *= llvmArrayType->getNumElements(); 1403 eltType = arrayType->getElementType(); 1404 1405 llvmArrayType = 1406 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1407 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1408 assert((!llvmArrayType || arrayType) && 1409 "LLVM and Clang types are out-of-synch"); 1410 } 1411 1412 if (arrayType) { 1413 // From this point onwards, the Clang array type has been emitted 1414 // as some other type (probably a packed struct). Compute the array 1415 // size, and just emit the 'begin' expression as a bitcast. 1416 while (arrayType) { 1417 countFromCLAs *= 1418 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1419 eltType = arrayType->getElementType(); 1420 arrayType = getContext().getAsArrayType(eltType); 1421 } 1422 1423 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1424 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1425 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1426 } else { 1427 // Create the actual GEP. 1428 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1429 } 1430 1431 baseType = eltType; 1432 1433 llvm::Value *numElements 1434 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1435 1436 // If we had any VLA dimensions, factor them in. 1437 if (numVLAElements) 1438 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1439 1440 return numElements; 1441 } 1442 1443 std::pair<llvm::Value*, QualType> 1444 CodeGenFunction::getVLASize(QualType type) { 1445 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1446 assert(vla && "type was not a variable array type!"); 1447 return getVLASize(vla); 1448 } 1449 1450 std::pair<llvm::Value*, QualType> 1451 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1452 // The number of elements so far; always size_t. 1453 llvm::Value *numElements = nullptr; 1454 1455 QualType elementType; 1456 do { 1457 elementType = type->getElementType(); 1458 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1459 assert(vlaSize && "no size for VLA!"); 1460 assert(vlaSize->getType() == SizeTy); 1461 1462 if (!numElements) { 1463 numElements = vlaSize; 1464 } else { 1465 // It's undefined behavior if this wraps around, so mark it that way. 1466 // FIXME: Teach -fsanitize=undefined to trap this. 1467 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1468 } 1469 } while ((type = getContext().getAsVariableArrayType(elementType))); 1470 1471 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1472 } 1473 1474 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1475 assert(type->isVariablyModifiedType() && 1476 "Must pass variably modified type to EmitVLASizes!"); 1477 1478 EnsureInsertPoint(); 1479 1480 // We're going to walk down into the type and look for VLA 1481 // expressions. 1482 do { 1483 assert(type->isVariablyModifiedType()); 1484 1485 const Type *ty = type.getTypePtr(); 1486 switch (ty->getTypeClass()) { 1487 1488 #define TYPE(Class, Base) 1489 #define ABSTRACT_TYPE(Class, Base) 1490 #define NON_CANONICAL_TYPE(Class, Base) 1491 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1492 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1493 #include "clang/AST/TypeNodes.def" 1494 llvm_unreachable("unexpected dependent type!"); 1495 1496 // These types are never variably-modified. 1497 case Type::Builtin: 1498 case Type::Complex: 1499 case Type::Vector: 1500 case Type::ExtVector: 1501 case Type::Record: 1502 case Type::Enum: 1503 case Type::Elaborated: 1504 case Type::TemplateSpecialization: 1505 case Type::ObjCObject: 1506 case Type::ObjCInterface: 1507 case Type::ObjCObjectPointer: 1508 llvm_unreachable("type class is never variably-modified!"); 1509 1510 case Type::Adjusted: 1511 type = cast<AdjustedType>(ty)->getAdjustedType(); 1512 break; 1513 1514 case Type::Decayed: 1515 type = cast<DecayedType>(ty)->getPointeeType(); 1516 break; 1517 1518 case Type::Pointer: 1519 type = cast<PointerType>(ty)->getPointeeType(); 1520 break; 1521 1522 case Type::BlockPointer: 1523 type = cast<BlockPointerType>(ty)->getPointeeType(); 1524 break; 1525 1526 case Type::LValueReference: 1527 case Type::RValueReference: 1528 type = cast<ReferenceType>(ty)->getPointeeType(); 1529 break; 1530 1531 case Type::MemberPointer: 1532 type = cast<MemberPointerType>(ty)->getPointeeType(); 1533 break; 1534 1535 case Type::ConstantArray: 1536 case Type::IncompleteArray: 1537 // Losing element qualification here is fine. 1538 type = cast<ArrayType>(ty)->getElementType(); 1539 break; 1540 1541 case Type::VariableArray: { 1542 // Losing element qualification here is fine. 1543 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1544 1545 // Unknown size indication requires no size computation. 1546 // Otherwise, evaluate and record it. 1547 if (const Expr *size = vat->getSizeExpr()) { 1548 // It's possible that we might have emitted this already, 1549 // e.g. with a typedef and a pointer to it. 1550 llvm::Value *&entry = VLASizeMap[size]; 1551 if (!entry) { 1552 llvm::Value *Size = EmitScalarExpr(size); 1553 1554 // C11 6.7.6.2p5: 1555 // If the size is an expression that is not an integer constant 1556 // expression [...] each time it is evaluated it shall have a value 1557 // greater than zero. 1558 if (SanOpts.has(SanitizerKind::VLABound) && 1559 size->getType()->isSignedIntegerType()) { 1560 SanitizerScope SanScope(this); 1561 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1562 llvm::Constant *StaticArgs[] = { 1563 EmitCheckSourceLocation(size->getLocStart()), 1564 EmitCheckTypeDescriptor(size->getType()) 1565 }; 1566 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1567 SanitizerKind::VLABound), 1568 "vla_bound_not_positive", StaticArgs, Size); 1569 } 1570 1571 // Always zexting here would be wrong if it weren't 1572 // undefined behavior to have a negative bound. 1573 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1574 } 1575 } 1576 type = vat->getElementType(); 1577 break; 1578 } 1579 1580 case Type::FunctionProto: 1581 case Type::FunctionNoProto: 1582 type = cast<FunctionType>(ty)->getReturnType(); 1583 break; 1584 1585 case Type::Paren: 1586 case Type::TypeOf: 1587 case Type::UnaryTransform: 1588 case Type::Attributed: 1589 case Type::SubstTemplateTypeParm: 1590 case Type::PackExpansion: 1591 // Keep walking after single level desugaring. 1592 type = type.getSingleStepDesugaredType(getContext()); 1593 break; 1594 1595 case Type::Typedef: 1596 case Type::Decltype: 1597 case Type::Auto: 1598 // Stop walking: nothing to do. 1599 return; 1600 1601 case Type::TypeOfExpr: 1602 // Stop walking: emit typeof expression. 1603 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1604 return; 1605 1606 case Type::Atomic: 1607 type = cast<AtomicType>(ty)->getValueType(); 1608 break; 1609 } 1610 } while (type->isVariablyModifiedType()); 1611 } 1612 1613 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1614 if (getContext().getBuiltinVaListType()->isArrayType()) 1615 return EmitScalarExpr(E); 1616 return EmitLValue(E).getAddress(); 1617 } 1618 1619 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1620 llvm::Constant *Init) { 1621 assert (Init && "Invalid DeclRefExpr initializer!"); 1622 if (CGDebugInfo *Dbg = getDebugInfo()) 1623 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1624 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1625 } 1626 1627 CodeGenFunction::PeepholeProtection 1628 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1629 // At the moment, the only aggressive peephole we do in IR gen 1630 // is trunc(zext) folding, but if we add more, we can easily 1631 // extend this protection. 1632 1633 if (!rvalue.isScalar()) return PeepholeProtection(); 1634 llvm::Value *value = rvalue.getScalarVal(); 1635 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1636 1637 // Just make an extra bitcast. 1638 assert(HaveInsertPoint()); 1639 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1640 Builder.GetInsertBlock()); 1641 1642 PeepholeProtection protection; 1643 protection.Inst = inst; 1644 return protection; 1645 } 1646 1647 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1648 if (!protection.Inst) return; 1649 1650 // In theory, we could try to duplicate the peepholes now, but whatever. 1651 protection.Inst->eraseFromParent(); 1652 } 1653 1654 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1655 llvm::Value *AnnotatedVal, 1656 StringRef AnnotationStr, 1657 SourceLocation Location) { 1658 llvm::Value *Args[4] = { 1659 AnnotatedVal, 1660 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1661 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1662 CGM.EmitAnnotationLineNo(Location) 1663 }; 1664 return Builder.CreateCall(AnnotationFn, Args); 1665 } 1666 1667 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1668 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1669 // FIXME We create a new bitcast for every annotation because that's what 1670 // llvm-gcc was doing. 1671 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1672 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1673 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1674 I->getAnnotation(), D->getLocation()); 1675 } 1676 1677 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1678 llvm::Value *V) { 1679 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1680 llvm::Type *VTy = V->getType(); 1681 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1682 CGM.Int8PtrTy); 1683 1684 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1685 // FIXME Always emit the cast inst so we can differentiate between 1686 // annotation on the first field of a struct and annotation on the struct 1687 // itself. 1688 if (VTy != CGM.Int8PtrTy) 1689 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1690 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1691 V = Builder.CreateBitCast(V, VTy); 1692 } 1693 1694 return V; 1695 } 1696 1697 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1698 1699 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1700 : CGF(CGF) { 1701 assert(!CGF->IsSanitizerScope); 1702 CGF->IsSanitizerScope = true; 1703 } 1704 1705 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1706 CGF->IsSanitizerScope = false; 1707 } 1708 1709 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1710 const llvm::Twine &Name, 1711 llvm::BasicBlock *BB, 1712 llvm::BasicBlock::iterator InsertPt) const { 1713 LoopStack.InsertHelper(I); 1714 if (IsSanitizerScope) 1715 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1716 } 1717 1718 template <bool PreserveNames> 1719 void CGBuilderInserter<PreserveNames>::InsertHelper( 1720 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1721 llvm::BasicBlock::iterator InsertPt) const { 1722 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1723 InsertPt); 1724 if (CGF) 1725 CGF->InsertHelper(I, Name, BB, InsertPt); 1726 } 1727 1728 #ifdef NDEBUG 1729 #define PreserveNames false 1730 #else 1731 #define PreserveNames true 1732 #endif 1733 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1734 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1735 llvm::BasicBlock::iterator InsertPt) const; 1736 #undef PreserveNames 1737