1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGException.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()), 34 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 35 NormalCleanupDest(0), NextCleanupDestIndex(1), 36 EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 37 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 38 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 39 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 40 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 41 TrapBB(0) { 42 43 CatchUndefined = getContext().getLangOptions().CatchUndefined; 44 CGM.getCXXABI().getMangleContext().startNewFunction(); 45 } 46 47 48 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 49 return CGM.getTypes().ConvertTypeForMem(T); 50 } 51 52 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 53 return CGM.getTypes().ConvertType(T); 54 } 55 56 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 57 switch (type.getCanonicalType()->getTypeClass()) { 58 #define TYPE(name, parent) 59 #define ABSTRACT_TYPE(name, parent) 60 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 61 #define DEPENDENT_TYPE(name, parent) case Type::name: 62 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 63 #include "clang/AST/TypeNodes.def" 64 llvm_unreachable("non-canonical or dependent type in IR-generation"); 65 66 case Type::Builtin: 67 case Type::Pointer: 68 case Type::BlockPointer: 69 case Type::LValueReference: 70 case Type::RValueReference: 71 case Type::MemberPointer: 72 case Type::Vector: 73 case Type::ExtVector: 74 case Type::FunctionProto: 75 case Type::FunctionNoProto: 76 case Type::Enum: 77 case Type::ObjCObjectPointer: 78 return false; 79 80 // Complexes, arrays, records, and Objective-C objects. 81 case Type::Complex: 82 case Type::ConstantArray: 83 case Type::IncompleteArray: 84 case Type::VariableArray: 85 case Type::Record: 86 case Type::ObjCObject: 87 case Type::ObjCInterface: 88 return true; 89 } 90 llvm_unreachable("unknown type kind!"); 91 } 92 93 void CodeGenFunction::EmitReturnBlock() { 94 // For cleanliness, we try to avoid emitting the return block for 95 // simple cases. 96 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 97 98 if (CurBB) { 99 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 100 101 // We have a valid insert point, reuse it if it is empty or there are no 102 // explicit jumps to the return block. 103 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 104 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 105 delete ReturnBlock.getBlock(); 106 } else 107 EmitBlock(ReturnBlock.getBlock()); 108 return; 109 } 110 111 // Otherwise, if the return block is the target of a single direct 112 // branch then we can just put the code in that block instead. This 113 // cleans up functions which started with a unified return block. 114 if (ReturnBlock.getBlock()->hasOneUse()) { 115 llvm::BranchInst *BI = 116 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 117 if (BI && BI->isUnconditional() && 118 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 119 // Reset insertion point, including debug location, and delete the branch. 120 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 121 Builder.SetInsertPoint(BI->getParent()); 122 BI->eraseFromParent(); 123 delete ReturnBlock.getBlock(); 124 return; 125 } 126 } 127 128 // FIXME: We are at an unreachable point, there is no reason to emit the block 129 // unless it has uses. However, we still need a place to put the debug 130 // region.end for now. 131 132 EmitBlock(ReturnBlock.getBlock()); 133 } 134 135 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 136 if (!BB) return; 137 if (!BB->use_empty()) 138 return CGF.CurFn->getBasicBlockList().push_back(BB); 139 delete BB; 140 } 141 142 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 143 assert(BreakContinueStack.empty() && 144 "mismatched push/pop in break/continue stack!"); 145 146 // Pop any cleanups that might have been associated with the 147 // parameters. Do this in whatever block we're currently in; it's 148 // important to do this before we enter the return block or return 149 // edges will be *really* confused. 150 if (EHStack.stable_begin() != PrologueCleanupDepth) 151 PopCleanupBlocks(PrologueCleanupDepth); 152 153 // Emit function epilog (to return). 154 EmitReturnBlock(); 155 156 if (ShouldInstrumentFunction()) 157 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 158 159 // Emit debug descriptor for function end. 160 if (CGDebugInfo *DI = getDebugInfo()) { 161 DI->setLocation(EndLoc); 162 DI->EmitFunctionEnd(Builder); 163 } 164 165 EmitFunctionEpilog(*CurFnInfo); 166 EmitEndEHSpec(CurCodeDecl); 167 168 assert(EHStack.empty() && 169 "did not remove all scopes from cleanup stack!"); 170 171 // If someone did an indirect goto, emit the indirect goto block at the end of 172 // the function. 173 if (IndirectBranch) { 174 EmitBlock(IndirectBranch->getParent()); 175 Builder.ClearInsertionPoint(); 176 } 177 178 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 179 llvm::Instruction *Ptr = AllocaInsertPt; 180 AllocaInsertPt = 0; 181 Ptr->eraseFromParent(); 182 183 // If someone took the address of a label but never did an indirect goto, we 184 // made a zero entry PHI node, which is illegal, zap it now. 185 if (IndirectBranch) { 186 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 187 if (PN->getNumIncomingValues() == 0) { 188 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 189 PN->eraseFromParent(); 190 } 191 } 192 193 EmitIfUsed(*this, EHResumeBlock); 194 EmitIfUsed(*this, TerminateLandingPad); 195 EmitIfUsed(*this, TerminateHandler); 196 EmitIfUsed(*this, UnreachableBlock); 197 198 if (CGM.getCodeGenOpts().EmitDeclMetadata) 199 EmitDeclMetadata(); 200 } 201 202 /// ShouldInstrumentFunction - Return true if the current function should be 203 /// instrumented with __cyg_profile_func_* calls 204 bool CodeGenFunction::ShouldInstrumentFunction() { 205 if (!CGM.getCodeGenOpts().InstrumentFunctions) 206 return false; 207 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 208 return false; 209 return true; 210 } 211 212 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 213 /// instrumentation function with the current function and the call site, if 214 /// function instrumentation is enabled. 215 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 216 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 217 llvm::PointerType *PointerTy = Int8PtrTy; 218 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 219 llvm::FunctionType *FunctionTy = 220 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 221 ProfileFuncArgs, false); 222 223 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 224 llvm::CallInst *CallSite = Builder.CreateCall( 225 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 226 llvm::ConstantInt::get(Int32Ty, 0), 227 "callsite"); 228 229 Builder.CreateCall2(F, 230 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 231 CallSite); 232 } 233 234 void CodeGenFunction::EmitMCountInstrumentation() { 235 llvm::FunctionType *FTy = 236 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false); 237 238 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 239 Target.getMCountName()); 240 Builder.CreateCall(MCountFn); 241 } 242 243 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 244 llvm::Function *Fn, 245 const CGFunctionInfo &FnInfo, 246 const FunctionArgList &Args, 247 SourceLocation StartLoc) { 248 const Decl *D = GD.getDecl(); 249 250 DidCallStackSave = false; 251 CurCodeDecl = CurFuncDecl = D; 252 FnRetTy = RetTy; 253 CurFn = Fn; 254 CurFnInfo = &FnInfo; 255 assert(CurFn->isDeclaration() && "Function already has body?"); 256 257 // Pass inline keyword to optimizer if it appears explicitly on any 258 // declaration. 259 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 260 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 261 RE = FD->redecls_end(); RI != RE; ++RI) 262 if (RI->isInlineSpecified()) { 263 Fn->addFnAttr(llvm::Attribute::InlineHint); 264 break; 265 } 266 267 if (getContext().getLangOptions().OpenCL) { 268 // Add metadata for a kernel function. 269 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 270 if (FD->hasAttr<OpenCLKernelAttr>()) { 271 llvm::LLVMContext &Context = getLLVMContext(); 272 llvm::NamedMDNode *OpenCLMetadata = 273 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 274 275 llvm::Value *Op = Fn; 276 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 277 } 278 } 279 280 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 281 282 // Create a marker to make it easy to insert allocas into the entryblock 283 // later. Don't create this with the builder, because we don't want it 284 // folded. 285 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 286 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 287 if (Builder.isNamePreserving()) 288 AllocaInsertPt->setName("allocapt"); 289 290 ReturnBlock = getJumpDestInCurrentScope("return"); 291 292 Builder.SetInsertPoint(EntryBB); 293 294 // Emit subprogram debug descriptor. 295 if (CGDebugInfo *DI = getDebugInfo()) { 296 // FIXME: what is going on here and why does it ignore all these 297 // interesting type properties? 298 QualType FnType = 299 getContext().getFunctionType(RetTy, 0, 0, 300 FunctionProtoType::ExtProtoInfo()); 301 302 DI->setLocation(StartLoc); 303 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 304 } 305 306 if (ShouldInstrumentFunction()) 307 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 308 309 if (CGM.getCodeGenOpts().InstrumentForProfiling) 310 EmitMCountInstrumentation(); 311 312 if (RetTy->isVoidType()) { 313 // Void type; nothing to return. 314 ReturnValue = 0; 315 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 316 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 317 // Indirect aggregate return; emit returned value directly into sret slot. 318 // This reduces code size, and affects correctness in C++. 319 ReturnValue = CurFn->arg_begin(); 320 } else { 321 ReturnValue = CreateIRTemp(RetTy, "retval"); 322 323 // Tell the epilog emitter to autorelease the result. We do this 324 // now so that various specialized functions can suppress it 325 // during their IR-generation. 326 if (getLangOptions().ObjCAutoRefCount && 327 !CurFnInfo->isReturnsRetained() && 328 RetTy->isObjCRetainableType()) 329 AutoreleaseResult = true; 330 } 331 332 EmitStartEHSpec(CurCodeDecl); 333 334 PrologueCleanupDepth = EHStack.stable_begin(); 335 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 336 337 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 338 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 339 340 // If any of the arguments have a variably modified type, make sure to 341 // emit the type size. 342 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 343 i != e; ++i) { 344 QualType Ty = (*i)->getType(); 345 346 if (Ty->isVariablyModifiedType()) 347 EmitVariablyModifiedType(Ty); 348 } 349 } 350 351 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 352 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 353 assert(FD->getBody()); 354 EmitStmt(FD->getBody()); 355 } 356 357 /// Tries to mark the given function nounwind based on the 358 /// non-existence of any throwing calls within it. We believe this is 359 /// lightweight enough to do at -O0. 360 static void TryMarkNoThrow(llvm::Function *F) { 361 // LLVM treats 'nounwind' on a function as part of the type, so we 362 // can't do this on functions that can be overwritten. 363 if (F->mayBeOverridden()) return; 364 365 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 366 for (llvm::BasicBlock::iterator 367 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 368 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) 369 if (!Call->doesNotThrow()) 370 return; 371 F->setDoesNotThrow(true); 372 } 373 374 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 375 const CGFunctionInfo &FnInfo) { 376 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 377 378 // Check if we should generate debug info for this function. 379 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 380 DebugInfo = CGM.getModuleDebugInfo(); 381 382 FunctionArgList Args; 383 QualType ResTy = FD->getResultType(); 384 385 CurGD = GD; 386 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 387 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 388 389 if (FD->getNumParams()) 390 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 391 Args.push_back(FD->getParamDecl(i)); 392 393 SourceRange BodyRange; 394 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 395 396 // Emit the standard function prologue. 397 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 398 399 // Generate the body of the function. 400 if (isa<CXXDestructorDecl>(FD)) 401 EmitDestructorBody(Args); 402 else if (isa<CXXConstructorDecl>(FD)) 403 EmitConstructorBody(Args); 404 else 405 EmitFunctionBody(Args); 406 407 // Emit the standard function epilogue. 408 FinishFunction(BodyRange.getEnd()); 409 410 // If we haven't marked the function nothrow through other means, do 411 // a quick pass now to see if we can. 412 if (!CurFn->doesNotThrow()) 413 TryMarkNoThrow(CurFn); 414 } 415 416 /// ContainsLabel - Return true if the statement contains a label in it. If 417 /// this statement is not executed normally, it not containing a label means 418 /// that we can just remove the code. 419 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 420 // Null statement, not a label! 421 if (S == 0) return false; 422 423 // If this is a label, we have to emit the code, consider something like: 424 // if (0) { ... foo: bar(); } goto foo; 425 // 426 // TODO: If anyone cared, we could track __label__'s, since we know that you 427 // can't jump to one from outside their declared region. 428 if (isa<LabelStmt>(S)) 429 return true; 430 431 // If this is a case/default statement, and we haven't seen a switch, we have 432 // to emit the code. 433 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 434 return true; 435 436 // If this is a switch statement, we want to ignore cases below it. 437 if (isa<SwitchStmt>(S)) 438 IgnoreCaseStmts = true; 439 440 // Scan subexpressions for verboten labels. 441 for (Stmt::const_child_range I = S->children(); I; ++I) 442 if (ContainsLabel(*I, IgnoreCaseStmts)) 443 return true; 444 445 return false; 446 } 447 448 /// containsBreak - Return true if the statement contains a break out of it. 449 /// If the statement (recursively) contains a switch or loop with a break 450 /// inside of it, this is fine. 451 bool CodeGenFunction::containsBreak(const Stmt *S) { 452 // Null statement, not a label! 453 if (S == 0) return false; 454 455 // If this is a switch or loop that defines its own break scope, then we can 456 // include it and anything inside of it. 457 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 458 isa<ForStmt>(S)) 459 return false; 460 461 if (isa<BreakStmt>(S)) 462 return true; 463 464 // Scan subexpressions for verboten breaks. 465 for (Stmt::const_child_range I = S->children(); I; ++I) 466 if (containsBreak(*I)) 467 return true; 468 469 return false; 470 } 471 472 473 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 474 /// to a constant, or if it does but contains a label, return false. If it 475 /// constant folds return true and set the boolean result in Result. 476 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 477 bool &ResultBool) { 478 llvm::APInt ResultInt; 479 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 480 return false; 481 482 ResultBool = ResultInt.getBoolValue(); 483 return true; 484 } 485 486 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 487 /// to a constant, or if it does but contains a label, return false. If it 488 /// constant folds return true and set the folded value. 489 bool CodeGenFunction:: 490 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 491 // FIXME: Rename and handle conversion of other evaluatable things 492 // to bool. 493 Expr::EvalResult Result; 494 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 495 Result.HasSideEffects) 496 return false; // Not foldable, not integer or not fully evaluatable. 497 498 if (CodeGenFunction::ContainsLabel(Cond)) 499 return false; // Contains a label. 500 501 ResultInt = Result.Val.getInt(); 502 return true; 503 } 504 505 506 507 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 508 /// statement) to the specified blocks. Based on the condition, this might try 509 /// to simplify the codegen of the conditional based on the branch. 510 /// 511 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 512 llvm::BasicBlock *TrueBlock, 513 llvm::BasicBlock *FalseBlock) { 514 Cond = Cond->IgnoreParens(); 515 516 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 517 // Handle X && Y in a condition. 518 if (CondBOp->getOpcode() == BO_LAnd) { 519 // If we have "1 && X", simplify the code. "0 && X" would have constant 520 // folded if the case was simple enough. 521 bool ConstantBool = false; 522 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 523 ConstantBool) { 524 // br(1 && X) -> br(X). 525 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 526 } 527 528 // If we have "X && 1", simplify the code to use an uncond branch. 529 // "X && 0" would have been constant folded to 0. 530 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 531 ConstantBool) { 532 // br(X && 1) -> br(X). 533 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 534 } 535 536 // Emit the LHS as a conditional. If the LHS conditional is false, we 537 // want to jump to the FalseBlock. 538 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 539 540 ConditionalEvaluation eval(*this); 541 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 542 EmitBlock(LHSTrue); 543 544 // Any temporaries created here are conditional. 545 eval.begin(*this); 546 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 547 eval.end(*this); 548 549 return; 550 } 551 552 if (CondBOp->getOpcode() == BO_LOr) { 553 // If we have "0 || X", simplify the code. "1 || X" would have constant 554 // folded if the case was simple enough. 555 bool ConstantBool = false; 556 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 557 !ConstantBool) { 558 // br(0 || X) -> br(X). 559 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 560 } 561 562 // If we have "X || 0", simplify the code to use an uncond branch. 563 // "X || 1" would have been constant folded to 1. 564 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 565 !ConstantBool) { 566 // br(X || 0) -> br(X). 567 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 568 } 569 570 // Emit the LHS as a conditional. If the LHS conditional is true, we 571 // want to jump to the TrueBlock. 572 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 573 574 ConditionalEvaluation eval(*this); 575 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 576 EmitBlock(LHSFalse); 577 578 // Any temporaries created here are conditional. 579 eval.begin(*this); 580 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 581 eval.end(*this); 582 583 return; 584 } 585 } 586 587 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 588 // br(!x, t, f) -> br(x, f, t) 589 if (CondUOp->getOpcode() == UO_LNot) 590 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 591 } 592 593 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 594 // Handle ?: operator. 595 596 // Just ignore GNU ?: extension. 597 if (CondOp->getLHS()) { 598 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 599 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 600 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 601 602 ConditionalEvaluation cond(*this); 603 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 604 605 cond.begin(*this); 606 EmitBlock(LHSBlock); 607 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 608 cond.end(*this); 609 610 cond.begin(*this); 611 EmitBlock(RHSBlock); 612 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 613 cond.end(*this); 614 615 return; 616 } 617 } 618 619 // Emit the code with the fully general case. 620 llvm::Value *CondV = EvaluateExprAsBool(Cond); 621 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 622 } 623 624 /// ErrorUnsupported - Print out an error that codegen doesn't support the 625 /// specified stmt yet. 626 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 627 bool OmitOnError) { 628 CGM.ErrorUnsupported(S, Type, OmitOnError); 629 } 630 631 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 632 /// variable-length array whose elements have a non-zero bit-pattern. 633 /// 634 /// \param src - a char* pointing to the bit-pattern for a single 635 /// base element of the array 636 /// \param sizeInChars - the total size of the VLA, in chars 637 /// \param align - the total alignment of the VLA 638 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 639 llvm::Value *dest, llvm::Value *src, 640 llvm::Value *sizeInChars) { 641 std::pair<CharUnits,CharUnits> baseSizeAndAlign 642 = CGF.getContext().getTypeInfoInChars(baseType); 643 644 CGBuilderTy &Builder = CGF.Builder; 645 646 llvm::Value *baseSizeInChars 647 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 648 649 llvm::Type *i8p = Builder.getInt8PtrTy(); 650 651 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 652 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 653 654 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 655 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 656 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 657 658 // Make a loop over the VLA. C99 guarantees that the VLA element 659 // count must be nonzero. 660 CGF.EmitBlock(loopBB); 661 662 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 663 cur->addIncoming(begin, originBB); 664 665 // memcpy the individual element bit-pattern. 666 Builder.CreateMemCpy(cur, src, baseSizeInChars, 667 baseSizeAndAlign.second.getQuantity(), 668 /*volatile*/ false); 669 670 // Go to the next element. 671 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 672 673 // Leave if that's the end of the VLA. 674 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 675 Builder.CreateCondBr(done, contBB, loopBB); 676 cur->addIncoming(next, loopBB); 677 678 CGF.EmitBlock(contBB); 679 } 680 681 void 682 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 683 // Ignore empty classes in C++. 684 if (getContext().getLangOptions().CPlusPlus) { 685 if (const RecordType *RT = Ty->getAs<RecordType>()) { 686 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 687 return; 688 } 689 } 690 691 // Cast the dest ptr to the appropriate i8 pointer type. 692 unsigned DestAS = 693 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 694 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 695 if (DestPtr->getType() != BP) 696 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 697 698 // Get size and alignment info for this aggregate. 699 std::pair<CharUnits, CharUnits> TypeInfo = 700 getContext().getTypeInfoInChars(Ty); 701 CharUnits Size = TypeInfo.first; 702 CharUnits Align = TypeInfo.second; 703 704 llvm::Value *SizeVal; 705 const VariableArrayType *vla; 706 707 // Don't bother emitting a zero-byte memset. 708 if (Size.isZero()) { 709 // But note that getTypeInfo returns 0 for a VLA. 710 if (const VariableArrayType *vlaType = 711 dyn_cast_or_null<VariableArrayType>( 712 getContext().getAsArrayType(Ty))) { 713 QualType eltType; 714 llvm::Value *numElts; 715 llvm::tie(numElts, eltType) = getVLASize(vlaType); 716 717 SizeVal = numElts; 718 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 719 if (!eltSize.isOne()) 720 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 721 vla = vlaType; 722 } else { 723 return; 724 } 725 } else { 726 SizeVal = CGM.getSize(Size); 727 vla = 0; 728 } 729 730 // If the type contains a pointer to data member we can't memset it to zero. 731 // Instead, create a null constant and copy it to the destination. 732 // TODO: there are other patterns besides zero that we can usefully memset, 733 // like -1, which happens to be the pattern used by member-pointers. 734 if (!CGM.getTypes().isZeroInitializable(Ty)) { 735 // For a VLA, emit a single element, then splat that over the VLA. 736 if (vla) Ty = getContext().getBaseElementType(vla); 737 738 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 739 740 llvm::GlobalVariable *NullVariable = 741 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 742 /*isConstant=*/true, 743 llvm::GlobalVariable::PrivateLinkage, 744 NullConstant, Twine()); 745 llvm::Value *SrcPtr = 746 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 747 748 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 749 750 // Get and call the appropriate llvm.memcpy overload. 751 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 752 return; 753 } 754 755 // Otherwise, just memset the whole thing to zero. This is legal 756 // because in LLVM, all default initializers (other than the ones we just 757 // handled above) are guaranteed to have a bit pattern of all zeros. 758 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 759 Align.getQuantity(), false); 760 } 761 762 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 763 // Make sure that there is a block for the indirect goto. 764 if (IndirectBranch == 0) 765 GetIndirectGotoBlock(); 766 767 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 768 769 // Make sure the indirect branch includes all of the address-taken blocks. 770 IndirectBranch->addDestination(BB); 771 return llvm::BlockAddress::get(CurFn, BB); 772 } 773 774 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 775 // If we already made the indirect branch for indirect goto, return its block. 776 if (IndirectBranch) return IndirectBranch->getParent(); 777 778 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 779 780 // Create the PHI node that indirect gotos will add entries to. 781 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 782 "indirect.goto.dest"); 783 784 // Create the indirect branch instruction. 785 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 786 return IndirectBranch->getParent(); 787 } 788 789 /// Computes the length of an array in elements, as well as the base 790 /// element type and a properly-typed first element pointer. 791 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 792 QualType &baseType, 793 llvm::Value *&addr) { 794 const ArrayType *arrayType = origArrayType; 795 796 // If it's a VLA, we have to load the stored size. Note that 797 // this is the size of the VLA in bytes, not its size in elements. 798 llvm::Value *numVLAElements = 0; 799 if (isa<VariableArrayType>(arrayType)) { 800 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 801 802 // Walk into all VLAs. This doesn't require changes to addr, 803 // which has type T* where T is the first non-VLA element type. 804 do { 805 QualType elementType = arrayType->getElementType(); 806 arrayType = getContext().getAsArrayType(elementType); 807 808 // If we only have VLA components, 'addr' requires no adjustment. 809 if (!arrayType) { 810 baseType = elementType; 811 return numVLAElements; 812 } 813 } while (isa<VariableArrayType>(arrayType)); 814 815 // We get out here only if we find a constant array type 816 // inside the VLA. 817 } 818 819 // We have some number of constant-length arrays, so addr should 820 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 821 // down to the first element of addr. 822 SmallVector<llvm::Value*, 8> gepIndices; 823 824 // GEP down to the array type. 825 llvm::ConstantInt *zero = Builder.getInt32(0); 826 gepIndices.push_back(zero); 827 828 // It's more efficient to calculate the count from the LLVM 829 // constant-length arrays than to re-evaluate the array bounds. 830 uint64_t countFromCLAs = 1; 831 832 llvm::ArrayType *llvmArrayType = 833 cast<llvm::ArrayType>( 834 cast<llvm::PointerType>(addr->getType())->getElementType()); 835 while (true) { 836 assert(isa<ConstantArrayType>(arrayType)); 837 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 838 == llvmArrayType->getNumElements()); 839 840 gepIndices.push_back(zero); 841 countFromCLAs *= llvmArrayType->getNumElements(); 842 843 llvmArrayType = 844 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 845 if (!llvmArrayType) break; 846 847 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 848 assert(arrayType && "LLVM and Clang types are out-of-synch"); 849 } 850 851 baseType = arrayType->getElementType(); 852 853 // Create the actual GEP. 854 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 855 856 llvm::Value *numElements 857 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 858 859 // If we had any VLA dimensions, factor them in. 860 if (numVLAElements) 861 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 862 863 return numElements; 864 } 865 866 std::pair<llvm::Value*, QualType> 867 CodeGenFunction::getVLASize(QualType type) { 868 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 869 assert(vla && "type was not a variable array type!"); 870 return getVLASize(vla); 871 } 872 873 std::pair<llvm::Value*, QualType> 874 CodeGenFunction::getVLASize(const VariableArrayType *type) { 875 // The number of elements so far; always size_t. 876 llvm::Value *numElements = 0; 877 878 QualType elementType; 879 do { 880 elementType = type->getElementType(); 881 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 882 assert(vlaSize && "no size for VLA!"); 883 assert(vlaSize->getType() == SizeTy); 884 885 if (!numElements) { 886 numElements = vlaSize; 887 } else { 888 // It's undefined behavior if this wraps around, so mark it that way. 889 numElements = Builder.CreateNUWMul(numElements, vlaSize); 890 } 891 } while ((type = getContext().getAsVariableArrayType(elementType))); 892 893 return std::pair<llvm::Value*,QualType>(numElements, elementType); 894 } 895 896 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 897 assert(type->isVariablyModifiedType() && 898 "Must pass variably modified type to EmitVLASizes!"); 899 900 EnsureInsertPoint(); 901 902 // We're going to walk down into the type and look for VLA 903 // expressions. 904 type = type.getCanonicalType(); 905 do { 906 assert(type->isVariablyModifiedType()); 907 908 const Type *ty = type.getTypePtr(); 909 switch (ty->getTypeClass()) { 910 #define TYPE(Class, Base) 911 #define ABSTRACT_TYPE(Class, Base) 912 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 913 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 914 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 915 #include "clang/AST/TypeNodes.def" 916 llvm_unreachable("unexpected dependent or non-canonical type!"); 917 918 // These types are never variably-modified. 919 case Type::Builtin: 920 case Type::Complex: 921 case Type::Vector: 922 case Type::ExtVector: 923 case Type::Record: 924 case Type::Enum: 925 case Type::ObjCObject: 926 case Type::ObjCInterface: 927 case Type::ObjCObjectPointer: 928 llvm_unreachable("type class is never variably-modified!"); 929 930 case Type::Pointer: 931 type = cast<PointerType>(ty)->getPointeeType(); 932 break; 933 934 case Type::BlockPointer: 935 type = cast<BlockPointerType>(ty)->getPointeeType(); 936 break; 937 938 case Type::LValueReference: 939 case Type::RValueReference: 940 type = cast<ReferenceType>(ty)->getPointeeType(); 941 break; 942 943 case Type::MemberPointer: 944 type = cast<MemberPointerType>(ty)->getPointeeType(); 945 break; 946 947 case Type::ConstantArray: 948 case Type::IncompleteArray: 949 // Losing element qualification here is fine. 950 type = cast<ArrayType>(ty)->getElementType(); 951 break; 952 953 case Type::VariableArray: { 954 // Losing element qualification here is fine. 955 const VariableArrayType *vat = cast<VariableArrayType>(ty); 956 957 // Unknown size indication requires no size computation. 958 // Otherwise, evaluate and record it. 959 if (const Expr *size = vat->getSizeExpr()) { 960 // It's possible that we might have emitted this already, 961 // e.g. with a typedef and a pointer to it. 962 llvm::Value *&entry = VLASizeMap[size]; 963 if (!entry) { 964 // Always zexting here would be wrong if it weren't 965 // undefined behavior to have a negative bound. 966 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 967 /*signed*/ false); 968 } 969 } 970 type = vat->getElementType(); 971 break; 972 } 973 974 case Type::FunctionProto: 975 case Type::FunctionNoProto: 976 type = cast<FunctionType>(ty)->getResultType(); 977 break; 978 } 979 } while (type->isVariablyModifiedType()); 980 } 981 982 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 983 if (getContext().getBuiltinVaListType()->isArrayType()) 984 return EmitScalarExpr(E); 985 return EmitLValue(E).getAddress(); 986 } 987 988 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 989 llvm::Constant *Init) { 990 assert (Init && "Invalid DeclRefExpr initializer!"); 991 if (CGDebugInfo *Dbg = getDebugInfo()) 992 Dbg->EmitGlobalVariable(E->getDecl(), Init); 993 } 994 995 CodeGenFunction::PeepholeProtection 996 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 997 // At the moment, the only aggressive peephole we do in IR gen 998 // is trunc(zext) folding, but if we add more, we can easily 999 // extend this protection. 1000 1001 if (!rvalue.isScalar()) return PeepholeProtection(); 1002 llvm::Value *value = rvalue.getScalarVal(); 1003 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1004 1005 // Just make an extra bitcast. 1006 assert(HaveInsertPoint()); 1007 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1008 Builder.GetInsertBlock()); 1009 1010 PeepholeProtection protection; 1011 protection.Inst = inst; 1012 return protection; 1013 } 1014 1015 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1016 if (!protection.Inst) return; 1017 1018 // In theory, we could try to duplicate the peepholes now, but whatever. 1019 protection.Inst->eraseFromParent(); 1020 } 1021 1022 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1023 llvm::Value *AnnotatedVal, 1024 llvm::StringRef AnnotationStr, 1025 SourceLocation Location) { 1026 llvm::Value *Args[4] = { 1027 AnnotatedVal, 1028 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1029 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1030 CGM.EmitAnnotationLineNo(Location) 1031 }; 1032 return Builder.CreateCall(AnnotationFn, Args); 1033 } 1034 1035 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1036 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1037 // FIXME We create a new bitcast for every annotation because that's what 1038 // llvm-gcc was doing. 1039 for (specific_attr_iterator<AnnotateAttr> 1040 ai = D->specific_attr_begin<AnnotateAttr>(), 1041 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1042 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1043 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1044 (*ai)->getAnnotation(), D->getLocation()); 1045 } 1046 1047 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1048 llvm::Value *V) { 1049 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1050 llvm::Type *VTy = V->getType(); 1051 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1052 CGM.Int8PtrTy); 1053 1054 for (specific_attr_iterator<AnnotateAttr> 1055 ai = D->specific_attr_begin<AnnotateAttr>(), 1056 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1057 // FIXME Always emit the cast inst so we can differentiate between 1058 // annotation on the first field of a struct and annotation on the struct 1059 // itself. 1060 if (VTy != CGM.Int8PtrTy) 1061 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1062 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1063 V = Builder.CreateBitCast(V, VTy); 1064 } 1065 1066 return V; 1067 } 1068