1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.setFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 case Type::Pipe: 199 return TEK_Scalar; 200 201 // Complexes. 202 case Type::Complex: 203 return TEK_Complex; 204 205 // Arrays, records, and Objective-C objects. 206 case Type::ConstantArray: 207 case Type::IncompleteArray: 208 case Type::VariableArray: 209 case Type::Record: 210 case Type::ObjCObject: 211 case Type::ObjCInterface: 212 return TEK_Aggregate; 213 214 // We operate on atomic values according to their underlying type. 215 case Type::Atomic: 216 type = cast<AtomicType>(type)->getValueType(); 217 continue; 218 } 219 llvm_unreachable("unknown type kind!"); 220 } 221 } 222 223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 224 // For cleanliness, we try to avoid emitting the return block for 225 // simple cases. 226 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 227 228 if (CurBB) { 229 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 230 231 // We have a valid insert point, reuse it if it is empty or there are no 232 // explicit jumps to the return block. 233 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 234 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 235 delete ReturnBlock.getBlock(); 236 } else 237 EmitBlock(ReturnBlock.getBlock()); 238 return llvm::DebugLoc(); 239 } 240 241 // Otherwise, if the return block is the target of a single direct 242 // branch then we can just put the code in that block instead. This 243 // cleans up functions which started with a unified return block. 244 if (ReturnBlock.getBlock()->hasOneUse()) { 245 llvm::BranchInst *BI = 246 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 247 if (BI && BI->isUnconditional() && 248 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 249 // Record/return the DebugLoc of the simple 'return' expression to be used 250 // later by the actual 'ret' instruction. 251 llvm::DebugLoc Loc = BI->getDebugLoc(); 252 Builder.SetInsertPoint(BI->getParent()); 253 BI->eraseFromParent(); 254 delete ReturnBlock.getBlock(); 255 return Loc; 256 } 257 } 258 259 // FIXME: We are at an unreachable point, there is no reason to emit the block 260 // unless it has uses. However, we still need a place to put the debug 261 // region.end for now. 262 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 268 if (!BB) return; 269 if (!BB->use_empty()) 270 return CGF.CurFn->getBasicBlockList().push_back(BB); 271 delete BB; 272 } 273 274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 275 assert(BreakContinueStack.empty() && 276 "mismatched push/pop in break/continue stack!"); 277 278 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 279 && NumSimpleReturnExprs == NumReturnExprs 280 && ReturnBlock.getBlock()->use_empty(); 281 // Usually the return expression is evaluated before the cleanup 282 // code. If the function contains only a simple return statement, 283 // such as a constant, the location before the cleanup code becomes 284 // the last useful breakpoint in the function, because the simple 285 // return expression will be evaluated after the cleanup code. To be 286 // safe, set the debug location for cleanup code to the location of 287 // the return statement. Otherwise the cleanup code should be at the 288 // end of the function's lexical scope. 289 // 290 // If there are multiple branches to the return block, the branch 291 // instructions will get the location of the return statements and 292 // all will be fine. 293 if (CGDebugInfo *DI = getDebugInfo()) { 294 if (OnlySimpleReturnStmts) 295 DI->EmitLocation(Builder, LastStopPoint); 296 else 297 DI->EmitLocation(Builder, EndLoc); 298 } 299 300 // Pop any cleanups that might have been associated with the 301 // parameters. Do this in whatever block we're currently in; it's 302 // important to do this before we enter the return block or return 303 // edges will be *really* confused. 304 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 305 bool HasOnlyLifetimeMarkers = 306 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 307 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 308 if (HasCleanups) { 309 // Make sure the line table doesn't jump back into the body for 310 // the ret after it's been at EndLoc. 311 if (CGDebugInfo *DI = getDebugInfo()) 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, EndLoc); 314 315 PopCleanupBlocks(PrologueCleanupDepth); 316 } 317 318 // Emit function epilog (to return). 319 llvm::DebugLoc Loc = EmitReturnBlock(); 320 321 if (ShouldInstrumentFunction()) 322 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 323 324 // Emit debug descriptor for function end. 325 if (CGDebugInfo *DI = getDebugInfo()) 326 DI->EmitFunctionEnd(Builder); 327 328 // Reset the debug location to that of the simple 'return' expression, if any 329 // rather than that of the end of the function's scope '}'. 330 ApplyDebugLocation AL(*this, Loc); 331 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 332 EmitEndEHSpec(CurCodeDecl); 333 334 assert(EHStack.empty() && 335 "did not remove all scopes from cleanup stack!"); 336 337 // If someone did an indirect goto, emit the indirect goto block at the end of 338 // the function. 339 if (IndirectBranch) { 340 EmitBlock(IndirectBranch->getParent()); 341 Builder.ClearInsertionPoint(); 342 } 343 344 // If some of our locals escaped, insert a call to llvm.localescape in the 345 // entry block. 346 if (!EscapedLocals.empty()) { 347 // Invert the map from local to index into a simple vector. There should be 348 // no holes. 349 SmallVector<llvm::Value *, 4> EscapeArgs; 350 EscapeArgs.resize(EscapedLocals.size()); 351 for (auto &Pair : EscapedLocals) 352 EscapeArgs[Pair.second] = Pair.first; 353 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 354 &CGM.getModule(), llvm::Intrinsic::localescape); 355 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 356 } 357 358 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 359 llvm::Instruction *Ptr = AllocaInsertPt; 360 AllocaInsertPt = nullptr; 361 Ptr->eraseFromParent(); 362 363 // If someone took the address of a label but never did an indirect goto, we 364 // made a zero entry PHI node, which is illegal, zap it now. 365 if (IndirectBranch) { 366 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 367 if (PN->getNumIncomingValues() == 0) { 368 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 369 PN->eraseFromParent(); 370 } 371 } 372 373 EmitIfUsed(*this, EHResumeBlock); 374 EmitIfUsed(*this, TerminateLandingPad); 375 EmitIfUsed(*this, TerminateHandler); 376 EmitIfUsed(*this, UnreachableBlock); 377 378 if (CGM.getCodeGenOpts().EmitDeclMetadata) 379 EmitDeclMetadata(); 380 381 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 382 I = DeferredReplacements.begin(), 383 E = DeferredReplacements.end(); 384 I != E; ++I) { 385 I->first->replaceAllUsesWith(I->second); 386 I->first->eraseFromParent(); 387 } 388 } 389 390 /// ShouldInstrumentFunction - Return true if the current function should be 391 /// instrumented with __cyg_profile_func_* calls 392 bool CodeGenFunction::ShouldInstrumentFunction() { 393 if (!CGM.getCodeGenOpts().InstrumentFunctions) 394 return false; 395 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 396 return false; 397 return true; 398 } 399 400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 401 /// instrumentation function with the current function and the call site, if 402 /// function instrumentation is enabled. 403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 404 auto NL = ApplyDebugLocation::CreateArtificial(*this); 405 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 406 llvm::PointerType *PointerTy = Int8PtrTy; 407 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 408 llvm::FunctionType *FunctionTy = 409 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 410 411 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 412 llvm::CallInst *CallSite = Builder.CreateCall( 413 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 414 llvm::ConstantInt::get(Int32Ty, 0), 415 "callsite"); 416 417 llvm::Value *args[] = { 418 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 419 CallSite 420 }; 421 422 EmitNounwindRuntimeCall(F, args); 423 } 424 425 void CodeGenFunction::EmitMCountInstrumentation() { 426 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 427 428 llvm::Constant *MCountFn = 429 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 430 EmitNounwindRuntimeCall(MCountFn); 431 } 432 433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 434 // information in the program executable. The argument information stored 435 // includes the argument name, its type, the address and access qualifiers used. 436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 437 CodeGenModule &CGM, llvm::LLVMContext &Context, 438 CGBuilderTy &Builder, ASTContext &ASTCtx) { 439 // Create MDNodes that represent the kernel arg metadata. 440 // Each MDNode is a list in the form of "key", N number of values which is 441 // the same number of values as their are kernel arguments. 442 443 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 444 445 // MDNode for the kernel argument address space qualifiers. 446 SmallVector<llvm::Metadata *, 8> addressQuals; 447 448 // MDNode for the kernel argument access qualifiers (images only). 449 SmallVector<llvm::Metadata *, 8> accessQuals; 450 451 // MDNode for the kernel argument type names. 452 SmallVector<llvm::Metadata *, 8> argTypeNames; 453 454 // MDNode for the kernel argument base type names. 455 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 456 457 // MDNode for the kernel argument type qualifiers. 458 SmallVector<llvm::Metadata *, 8> argTypeQuals; 459 460 // MDNode for the kernel argument names. 461 SmallVector<llvm::Metadata *, 8> argNames; 462 463 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 464 const ParmVarDecl *parm = FD->getParamDecl(i); 465 QualType ty = parm->getType(); 466 std::string typeQuals; 467 468 if (ty->isPointerType()) { 469 QualType pointeeTy = ty->getPointeeType(); 470 471 // Get address qualifier. 472 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 473 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 474 475 // Get argument type name. 476 std::string typeName = 477 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 478 479 // Turn "unsigned type" to "utype" 480 std::string::size_type pos = typeName.find("unsigned"); 481 if (pointeeTy.isCanonical() && pos != std::string::npos) 482 typeName.erase(pos+1, 8); 483 484 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 485 486 std::string baseTypeName = 487 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 488 Policy) + 489 "*"; 490 491 // Turn "unsigned type" to "utype" 492 pos = baseTypeName.find("unsigned"); 493 if (pos != std::string::npos) 494 baseTypeName.erase(pos+1, 8); 495 496 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 497 498 // Get argument type qualifiers: 499 if (ty.isRestrictQualified()) 500 typeQuals = "restrict"; 501 if (pointeeTy.isConstQualified() || 502 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 503 typeQuals += typeQuals.empty() ? "const" : " const"; 504 if (pointeeTy.isVolatileQualified()) 505 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 506 } else { 507 uint32_t AddrSpc = 0; 508 bool isPipe = ty->isPipeType(); 509 if (ty->isImageType() || isPipe) 510 AddrSpc = 511 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 512 513 addressQuals.push_back( 514 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 515 516 // Get argument type name. 517 std::string typeName; 518 if (isPipe) 519 typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy); 520 else 521 typeName = ty.getUnqualifiedType().getAsString(Policy); 522 523 // Turn "unsigned type" to "utype" 524 std::string::size_type pos = typeName.find("unsigned"); 525 if (ty.isCanonical() && pos != std::string::npos) 526 typeName.erase(pos+1, 8); 527 528 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 529 530 std::string baseTypeName; 531 if (isPipe) 532 baseTypeName = 533 cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy); 534 else 535 baseTypeName = 536 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 537 538 // Turn "unsigned type" to "utype" 539 pos = baseTypeName.find("unsigned"); 540 if (pos != std::string::npos) 541 baseTypeName.erase(pos+1, 8); 542 543 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 544 545 // Get argument type qualifiers: 546 if (ty.isConstQualified()) 547 typeQuals = "const"; 548 if (ty.isVolatileQualified()) 549 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 550 if (isPipe) 551 typeQuals = "pipe"; 552 } 553 554 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 555 556 // Get image and pipe access qualifier: 557 if (ty->isImageType()|| ty->isPipeType()) { 558 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 559 if (A && A->isWriteOnly()) 560 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 561 else if (A && A->isReadWrite()) 562 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 563 else 564 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 565 } else 566 accessQuals.push_back(llvm::MDString::get(Context, "none")); 567 568 // Get argument name. 569 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 570 } 571 572 Fn->setMetadata("kernel_arg_addr_space", 573 llvm::MDNode::get(Context, addressQuals)); 574 Fn->setMetadata("kernel_arg_access_qual", 575 llvm::MDNode::get(Context, accessQuals)); 576 Fn->setMetadata("kernel_arg_type", 577 llvm::MDNode::get(Context, argTypeNames)); 578 Fn->setMetadata("kernel_arg_base_type", 579 llvm::MDNode::get(Context, argBaseTypeNames)); 580 Fn->setMetadata("kernel_arg_type_qual", 581 llvm::MDNode::get(Context, argTypeQuals)); 582 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 583 Fn->setMetadata("kernel_arg_name", 584 llvm::MDNode::get(Context, argNames)); 585 } 586 587 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 588 llvm::Function *Fn) 589 { 590 if (!FD->hasAttr<OpenCLKernelAttr>()) 591 return; 592 593 llvm::LLVMContext &Context = getLLVMContext(); 594 595 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 596 597 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 598 QualType hintQTy = A->getTypeHint(); 599 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 600 bool isSignedInteger = 601 hintQTy->isSignedIntegerType() || 602 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 603 llvm::Metadata *attrMDArgs[] = { 604 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 605 CGM.getTypes().ConvertType(A->getTypeHint()))), 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 llvm::IntegerType::get(Context, 32), 608 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 609 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 610 } 611 612 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 613 llvm::Metadata *attrMDArgs[] = { 614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 616 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 617 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 618 } 619 620 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 621 llvm::Metadata *attrMDArgs[] = { 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 625 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 626 } 627 } 628 629 /// Determine whether the function F ends with a return stmt. 630 static bool endsWithReturn(const Decl* F) { 631 const Stmt *Body = nullptr; 632 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 633 Body = FD->getBody(); 634 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 635 Body = OMD->getBody(); 636 637 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 638 auto LastStmt = CS->body_rbegin(); 639 if (LastStmt != CS->body_rend()) 640 return isa<ReturnStmt>(*LastStmt); 641 } 642 return false; 643 } 644 645 void CodeGenFunction::StartFunction(GlobalDecl GD, 646 QualType RetTy, 647 llvm::Function *Fn, 648 const CGFunctionInfo &FnInfo, 649 const FunctionArgList &Args, 650 SourceLocation Loc, 651 SourceLocation StartLoc) { 652 assert(!CurFn && 653 "Do not use a CodeGenFunction object for more than one function"); 654 655 const Decl *D = GD.getDecl(); 656 657 DidCallStackSave = false; 658 CurCodeDecl = D; 659 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 660 if (FD->usesSEHTry()) 661 CurSEHParent = FD; 662 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 663 FnRetTy = RetTy; 664 CurFn = Fn; 665 CurFnInfo = &FnInfo; 666 assert(CurFn->isDeclaration() && "Function already has body?"); 667 668 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 669 SanOpts.clear(); 670 671 if (D) { 672 // Apply the no_sanitize* attributes to SanOpts. 673 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 674 SanOpts.Mask &= ~Attr->getMask(); 675 } 676 677 // Apply sanitizer attributes to the function. 678 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 679 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 680 if (SanOpts.has(SanitizerKind::Thread)) 681 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 682 if (SanOpts.has(SanitizerKind::Memory)) 683 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 684 if (SanOpts.has(SanitizerKind::SafeStack)) 685 Fn->addFnAttr(llvm::Attribute::SafeStack); 686 687 // Pass inline keyword to optimizer if it appears explicitly on any 688 // declaration. Also, in the case of -fno-inline attach NoInline 689 // attribute to all functions that are not marked AlwaysInline, or 690 // to all functions that are not marked inline or implicitly inline 691 // in the case of -finline-hint-functions. 692 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 693 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 694 if (!CodeGenOpts.NoInline) { 695 for (auto RI : FD->redecls()) 696 if (RI->isInlineSpecified()) { 697 Fn->addFnAttr(llvm::Attribute::InlineHint); 698 break; 699 } 700 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 701 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 702 Fn->addFnAttr(llvm::Attribute::NoInline); 703 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 704 Fn->addFnAttr(llvm::Attribute::NoInline); 705 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 706 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 707 } 708 709 // Add no-jump-tables value. 710 Fn->addFnAttr("no-jump-tables", 711 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 712 713 if (getLangOpts().OpenCL) { 714 // Add metadata for a kernel function. 715 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 716 EmitOpenCLKernelMetadata(FD, Fn); 717 } 718 719 // If we are checking function types, emit a function type signature as 720 // prologue data. 721 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 722 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 723 if (llvm::Constant *PrologueSig = 724 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 725 llvm::Constant *FTRTTIConst = 726 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 727 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 728 llvm::Constant *PrologueStructConst = 729 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 730 Fn->setPrologueData(PrologueStructConst); 731 } 732 } 733 } 734 735 // If we're in C++ mode and the function name is "main", it is guaranteed 736 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 737 // used within a program"). 738 if (getLangOpts().CPlusPlus) 739 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 740 if (FD->isMain()) 741 Fn->addFnAttr(llvm::Attribute::NoRecurse); 742 743 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 744 745 // Create a marker to make it easy to insert allocas into the entryblock 746 // later. Don't create this with the builder, because we don't want it 747 // folded. 748 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 749 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 750 751 ReturnBlock = getJumpDestInCurrentScope("return"); 752 753 Builder.SetInsertPoint(EntryBB); 754 755 // Emit subprogram debug descriptor. 756 if (CGDebugInfo *DI = getDebugInfo()) { 757 // Reconstruct the type from the argument list so that implicit parameters, 758 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 759 // convention. 760 CallingConv CC = CallingConv::CC_C; 761 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 762 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 763 CC = SrcFnTy->getCallConv(); 764 SmallVector<QualType, 16> ArgTypes; 765 for (const VarDecl *VD : Args) 766 ArgTypes.push_back(VD->getType()); 767 QualType FnType = getContext().getFunctionType( 768 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 769 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 770 } 771 772 if (ShouldInstrumentFunction()) 773 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 774 775 if (CGM.getCodeGenOpts().InstrumentForProfiling) 776 EmitMCountInstrumentation(); 777 778 if (RetTy->isVoidType()) { 779 // Void type; nothing to return. 780 ReturnValue = Address::invalid(); 781 782 // Count the implicit return. 783 if (!endsWithReturn(D)) 784 ++NumReturnExprs; 785 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 786 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 787 // Indirect aggregate return; emit returned value directly into sret slot. 788 // This reduces code size, and affects correctness in C++. 789 auto AI = CurFn->arg_begin(); 790 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 791 ++AI; 792 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 793 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 794 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 795 // Load the sret pointer from the argument struct and return into that. 796 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 797 llvm::Function::arg_iterator EI = CurFn->arg_end(); 798 --EI; 799 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 800 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 801 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 802 } else { 803 ReturnValue = CreateIRTemp(RetTy, "retval"); 804 805 // Tell the epilog emitter to autorelease the result. We do this 806 // now so that various specialized functions can suppress it 807 // during their IR-generation. 808 if (getLangOpts().ObjCAutoRefCount && 809 !CurFnInfo->isReturnsRetained() && 810 RetTy->isObjCRetainableType()) 811 AutoreleaseResult = true; 812 } 813 814 EmitStartEHSpec(CurCodeDecl); 815 816 PrologueCleanupDepth = EHStack.stable_begin(); 817 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 818 819 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 820 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 821 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 822 if (MD->getParent()->isLambda() && 823 MD->getOverloadedOperator() == OO_Call) { 824 // We're in a lambda; figure out the captures. 825 MD->getParent()->getCaptureFields(LambdaCaptureFields, 826 LambdaThisCaptureField); 827 if (LambdaThisCaptureField) { 828 // If the lambda captures the object referred to by '*this' - either by 829 // value or by reference, make sure CXXThisValue points to the correct 830 // object. 831 832 // Get the lvalue for the field (which is a copy of the enclosing object 833 // or contains the address of the enclosing object). 834 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 835 if (!LambdaThisCaptureField->getType()->isPointerType()) { 836 // If the enclosing object was captured by value, just use its address. 837 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 838 } else { 839 // Load the lvalue pointed to by the field, since '*this' was captured 840 // by reference. 841 CXXThisValue = 842 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 843 } 844 } 845 for (auto *FD : MD->getParent()->fields()) { 846 if (FD->hasCapturedVLAType()) { 847 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 848 SourceLocation()).getScalarVal(); 849 auto VAT = FD->getCapturedVLAType(); 850 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 851 } 852 } 853 } else { 854 // Not in a lambda; just use 'this' from the method. 855 // FIXME: Should we generate a new load for each use of 'this'? The 856 // fast register allocator would be happier... 857 CXXThisValue = CXXABIThisValue; 858 } 859 } 860 861 // If any of the arguments have a variably modified type, make sure to 862 // emit the type size. 863 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 864 i != e; ++i) { 865 const VarDecl *VD = *i; 866 867 // Dig out the type as written from ParmVarDecls; it's unclear whether 868 // the standard (C99 6.9.1p10) requires this, but we're following the 869 // precedent set by gcc. 870 QualType Ty; 871 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 872 Ty = PVD->getOriginalType(); 873 else 874 Ty = VD->getType(); 875 876 if (Ty->isVariablyModifiedType()) 877 EmitVariablyModifiedType(Ty); 878 } 879 // Emit a location at the end of the prologue. 880 if (CGDebugInfo *DI = getDebugInfo()) 881 DI->EmitLocation(Builder, StartLoc); 882 } 883 884 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 885 const Stmt *Body) { 886 incrementProfileCounter(Body); 887 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 888 EmitCompoundStmtWithoutScope(*S); 889 else 890 EmitStmt(Body); 891 } 892 893 /// When instrumenting to collect profile data, the counts for some blocks 894 /// such as switch cases need to not include the fall-through counts, so 895 /// emit a branch around the instrumentation code. When not instrumenting, 896 /// this just calls EmitBlock(). 897 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 898 const Stmt *S) { 899 llvm::BasicBlock *SkipCountBB = nullptr; 900 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 901 // When instrumenting for profiling, the fallthrough to certain 902 // statements needs to skip over the instrumentation code so that we 903 // get an accurate count. 904 SkipCountBB = createBasicBlock("skipcount"); 905 EmitBranch(SkipCountBB); 906 } 907 EmitBlock(BB); 908 uint64_t CurrentCount = getCurrentProfileCount(); 909 incrementProfileCounter(S); 910 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 911 if (SkipCountBB) 912 EmitBlock(SkipCountBB); 913 } 914 915 /// Tries to mark the given function nounwind based on the 916 /// non-existence of any throwing calls within it. We believe this is 917 /// lightweight enough to do at -O0. 918 static void TryMarkNoThrow(llvm::Function *F) { 919 // LLVM treats 'nounwind' on a function as part of the type, so we 920 // can't do this on functions that can be overwritten. 921 if (F->isInterposable()) return; 922 923 for (llvm::BasicBlock &BB : *F) 924 for (llvm::Instruction &I : BB) 925 if (I.mayThrow()) 926 return; 927 928 F->setDoesNotThrow(); 929 } 930 931 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 932 const CGFunctionInfo &FnInfo) { 933 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 934 935 // Check if we should generate debug info for this function. 936 if (FD->hasAttr<NoDebugAttr>()) 937 DebugInfo = nullptr; // disable debug info indefinitely for this function 938 939 FunctionArgList Args; 940 QualType ResTy = FD->getReturnType(); 941 942 CurGD = GD; 943 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 944 if (MD && MD->isInstance()) { 945 if (CGM.getCXXABI().HasThisReturn(GD)) 946 ResTy = MD->getThisType(getContext()); 947 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 948 ResTy = CGM.getContext().VoidPtrTy; 949 CGM.getCXXABI().buildThisParam(*this, Args); 950 } 951 952 for (auto *Param : FD->parameters()) { 953 Args.push_back(Param); 954 if (!Param->hasAttr<PassObjectSizeAttr>()) 955 continue; 956 957 IdentifierInfo *NoID = nullptr; 958 auto *Implicit = ImplicitParamDecl::Create( 959 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 960 getContext().getSizeType()); 961 SizeArguments[Param] = Implicit; 962 Args.push_back(Implicit); 963 } 964 965 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 966 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 967 968 SourceRange BodyRange; 969 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 970 CurEHLocation = BodyRange.getEnd(); 971 972 // Use the location of the start of the function to determine where 973 // the function definition is located. By default use the location 974 // of the declaration as the location for the subprogram. A function 975 // may lack a declaration in the source code if it is created by code 976 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 977 SourceLocation Loc = FD->getLocation(); 978 979 // If this is a function specialization then use the pattern body 980 // as the location for the function. 981 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 982 if (SpecDecl->hasBody(SpecDecl)) 983 Loc = SpecDecl->getLocation(); 984 985 // Emit the standard function prologue. 986 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 987 988 // Generate the body of the function. 989 PGO.assignRegionCounters(GD, CurFn); 990 if (isa<CXXDestructorDecl>(FD)) 991 EmitDestructorBody(Args); 992 else if (isa<CXXConstructorDecl>(FD)) 993 EmitConstructorBody(Args); 994 else if (getLangOpts().CUDA && 995 !getLangOpts().CUDAIsDevice && 996 FD->hasAttr<CUDAGlobalAttr>()) 997 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 998 else if (isa<CXXConversionDecl>(FD) && 999 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1000 // The lambda conversion to block pointer is special; the semantics can't be 1001 // expressed in the AST, so IRGen needs to special-case it. 1002 EmitLambdaToBlockPointerBody(Args); 1003 } else if (isa<CXXMethodDecl>(FD) && 1004 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1005 // The lambda static invoker function is special, because it forwards or 1006 // clones the body of the function call operator (but is actually static). 1007 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1008 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1009 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1010 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1011 // Implicit copy-assignment gets the same special treatment as implicit 1012 // copy-constructors. 1013 emitImplicitAssignmentOperatorBody(Args); 1014 } else if (Stmt *Body = FD->getBody()) { 1015 EmitFunctionBody(Args, Body); 1016 } else 1017 llvm_unreachable("no definition for emitted function"); 1018 1019 // C++11 [stmt.return]p2: 1020 // Flowing off the end of a function [...] results in undefined behavior in 1021 // a value-returning function. 1022 // C11 6.9.1p12: 1023 // If the '}' that terminates a function is reached, and the value of the 1024 // function call is used by the caller, the behavior is undefined. 1025 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1026 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1027 if (SanOpts.has(SanitizerKind::Return)) { 1028 SanitizerScope SanScope(this); 1029 llvm::Value *IsFalse = Builder.getFalse(); 1030 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1031 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1032 None); 1033 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1034 EmitTrapCall(llvm::Intrinsic::trap); 1035 } 1036 Builder.CreateUnreachable(); 1037 Builder.ClearInsertionPoint(); 1038 } 1039 1040 // Emit the standard function epilogue. 1041 FinishFunction(BodyRange.getEnd()); 1042 1043 // If we haven't marked the function nothrow through other means, do 1044 // a quick pass now to see if we can. 1045 if (!CurFn->doesNotThrow()) 1046 TryMarkNoThrow(CurFn); 1047 } 1048 1049 /// ContainsLabel - Return true if the statement contains a label in it. If 1050 /// this statement is not executed normally, it not containing a label means 1051 /// that we can just remove the code. 1052 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1053 // Null statement, not a label! 1054 if (!S) return false; 1055 1056 // If this is a label, we have to emit the code, consider something like: 1057 // if (0) { ... foo: bar(); } goto foo; 1058 // 1059 // TODO: If anyone cared, we could track __label__'s, since we know that you 1060 // can't jump to one from outside their declared region. 1061 if (isa<LabelStmt>(S)) 1062 return true; 1063 1064 // If this is a case/default statement, and we haven't seen a switch, we have 1065 // to emit the code. 1066 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1067 return true; 1068 1069 // If this is a switch statement, we want to ignore cases below it. 1070 if (isa<SwitchStmt>(S)) 1071 IgnoreCaseStmts = true; 1072 1073 // Scan subexpressions for verboten labels. 1074 for (const Stmt *SubStmt : S->children()) 1075 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1076 return true; 1077 1078 return false; 1079 } 1080 1081 /// containsBreak - Return true if the statement contains a break out of it. 1082 /// If the statement (recursively) contains a switch or loop with a break 1083 /// inside of it, this is fine. 1084 bool CodeGenFunction::containsBreak(const Stmt *S) { 1085 // Null statement, not a label! 1086 if (!S) return false; 1087 1088 // If this is a switch or loop that defines its own break scope, then we can 1089 // include it and anything inside of it. 1090 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1091 isa<ForStmt>(S)) 1092 return false; 1093 1094 if (isa<BreakStmt>(S)) 1095 return true; 1096 1097 // Scan subexpressions for verboten breaks. 1098 for (const Stmt *SubStmt : S->children()) 1099 if (containsBreak(SubStmt)) 1100 return true; 1101 1102 return false; 1103 } 1104 1105 1106 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1107 /// to a constant, or if it does but contains a label, return false. If it 1108 /// constant folds return true and set the boolean result in Result. 1109 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1110 bool &ResultBool, 1111 bool AllowLabels) { 1112 llvm::APSInt ResultInt; 1113 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1114 return false; 1115 1116 ResultBool = ResultInt.getBoolValue(); 1117 return true; 1118 } 1119 1120 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1121 /// to a constant, or if it does but contains a label, return false. If it 1122 /// constant folds return true and set the folded value. 1123 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1124 llvm::APSInt &ResultInt, 1125 bool AllowLabels) { 1126 // FIXME: Rename and handle conversion of other evaluatable things 1127 // to bool. 1128 llvm::APSInt Int; 1129 if (!Cond->EvaluateAsInt(Int, getContext())) 1130 return false; // Not foldable, not integer or not fully evaluatable. 1131 1132 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1133 return false; // Contains a label. 1134 1135 ResultInt = Int; 1136 return true; 1137 } 1138 1139 1140 1141 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1142 /// statement) to the specified blocks. Based on the condition, this might try 1143 /// to simplify the codegen of the conditional based on the branch. 1144 /// 1145 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1146 llvm::BasicBlock *TrueBlock, 1147 llvm::BasicBlock *FalseBlock, 1148 uint64_t TrueCount) { 1149 Cond = Cond->IgnoreParens(); 1150 1151 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1152 1153 // Handle X && Y in a condition. 1154 if (CondBOp->getOpcode() == BO_LAnd) { 1155 // If we have "1 && X", simplify the code. "0 && X" would have constant 1156 // folded if the case was simple enough. 1157 bool ConstantBool = false; 1158 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1159 ConstantBool) { 1160 // br(1 && X) -> br(X). 1161 incrementProfileCounter(CondBOp); 1162 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1163 TrueCount); 1164 } 1165 1166 // If we have "X && 1", simplify the code to use an uncond branch. 1167 // "X && 0" would have been constant folded to 0. 1168 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1169 ConstantBool) { 1170 // br(X && 1) -> br(X). 1171 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1172 TrueCount); 1173 } 1174 1175 // Emit the LHS as a conditional. If the LHS conditional is false, we 1176 // want to jump to the FalseBlock. 1177 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1178 // The counter tells us how often we evaluate RHS, and all of TrueCount 1179 // can be propagated to that branch. 1180 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1181 1182 ConditionalEvaluation eval(*this); 1183 { 1184 ApplyDebugLocation DL(*this, Cond); 1185 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1186 EmitBlock(LHSTrue); 1187 } 1188 1189 incrementProfileCounter(CondBOp); 1190 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1191 1192 // Any temporaries created here are conditional. 1193 eval.begin(*this); 1194 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1195 eval.end(*this); 1196 1197 return; 1198 } 1199 1200 if (CondBOp->getOpcode() == BO_LOr) { 1201 // If we have "0 || X", simplify the code. "1 || X" would have constant 1202 // folded if the case was simple enough. 1203 bool ConstantBool = false; 1204 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1205 !ConstantBool) { 1206 // br(0 || X) -> br(X). 1207 incrementProfileCounter(CondBOp); 1208 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1209 TrueCount); 1210 } 1211 1212 // If we have "X || 0", simplify the code to use an uncond branch. 1213 // "X || 1" would have been constant folded to 1. 1214 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1215 !ConstantBool) { 1216 // br(X || 0) -> br(X). 1217 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1218 TrueCount); 1219 } 1220 1221 // Emit the LHS as a conditional. If the LHS conditional is true, we 1222 // want to jump to the TrueBlock. 1223 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1224 // We have the count for entry to the RHS and for the whole expression 1225 // being true, so we can divy up True count between the short circuit and 1226 // the RHS. 1227 uint64_t LHSCount = 1228 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1229 uint64_t RHSCount = TrueCount - LHSCount; 1230 1231 ConditionalEvaluation eval(*this); 1232 { 1233 ApplyDebugLocation DL(*this, Cond); 1234 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1235 EmitBlock(LHSFalse); 1236 } 1237 1238 incrementProfileCounter(CondBOp); 1239 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1240 1241 // Any temporaries created here are conditional. 1242 eval.begin(*this); 1243 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1244 1245 eval.end(*this); 1246 1247 return; 1248 } 1249 } 1250 1251 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1252 // br(!x, t, f) -> br(x, f, t) 1253 if (CondUOp->getOpcode() == UO_LNot) { 1254 // Negate the count. 1255 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1256 // Negate the condition and swap the destination blocks. 1257 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1258 FalseCount); 1259 } 1260 } 1261 1262 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1263 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1264 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1265 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1266 1267 ConditionalEvaluation cond(*this); 1268 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1269 getProfileCount(CondOp)); 1270 1271 // When computing PGO branch weights, we only know the overall count for 1272 // the true block. This code is essentially doing tail duplication of the 1273 // naive code-gen, introducing new edges for which counts are not 1274 // available. Divide the counts proportionally between the LHS and RHS of 1275 // the conditional operator. 1276 uint64_t LHSScaledTrueCount = 0; 1277 if (TrueCount) { 1278 double LHSRatio = 1279 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1280 LHSScaledTrueCount = TrueCount * LHSRatio; 1281 } 1282 1283 cond.begin(*this); 1284 EmitBlock(LHSBlock); 1285 incrementProfileCounter(CondOp); 1286 { 1287 ApplyDebugLocation DL(*this, Cond); 1288 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1289 LHSScaledTrueCount); 1290 } 1291 cond.end(*this); 1292 1293 cond.begin(*this); 1294 EmitBlock(RHSBlock); 1295 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1296 TrueCount - LHSScaledTrueCount); 1297 cond.end(*this); 1298 1299 return; 1300 } 1301 1302 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1303 // Conditional operator handling can give us a throw expression as a 1304 // condition for a case like: 1305 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1306 // Fold this to: 1307 // br(c, throw x, br(y, t, f)) 1308 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1309 return; 1310 } 1311 1312 // If the branch has a condition wrapped by __builtin_unpredictable, 1313 // create metadata that specifies that the branch is unpredictable. 1314 // Don't bother if not optimizing because that metadata would not be used. 1315 llvm::MDNode *Unpredictable = nullptr; 1316 auto *Call = dyn_cast<CallExpr>(Cond); 1317 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1318 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1319 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1320 llvm::MDBuilder MDHelper(getLLVMContext()); 1321 Unpredictable = MDHelper.createUnpredictable(); 1322 } 1323 } 1324 1325 // Create branch weights based on the number of times we get here and the 1326 // number of times the condition should be true. 1327 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1328 llvm::MDNode *Weights = 1329 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1330 1331 // Emit the code with the fully general case. 1332 llvm::Value *CondV; 1333 { 1334 ApplyDebugLocation DL(*this, Cond); 1335 CondV = EvaluateExprAsBool(Cond); 1336 } 1337 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1338 } 1339 1340 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1341 /// specified stmt yet. 1342 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1343 CGM.ErrorUnsupported(S, Type); 1344 } 1345 1346 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1347 /// variable-length array whose elements have a non-zero bit-pattern. 1348 /// 1349 /// \param baseType the inner-most element type of the array 1350 /// \param src - a char* pointing to the bit-pattern for a single 1351 /// base element of the array 1352 /// \param sizeInChars - the total size of the VLA, in chars 1353 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1354 Address dest, Address src, 1355 llvm::Value *sizeInChars) { 1356 CGBuilderTy &Builder = CGF.Builder; 1357 1358 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1359 llvm::Value *baseSizeInChars 1360 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1361 1362 Address begin = 1363 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1364 llvm::Value *end = 1365 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1366 1367 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1368 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1369 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1370 1371 // Make a loop over the VLA. C99 guarantees that the VLA element 1372 // count must be nonzero. 1373 CGF.EmitBlock(loopBB); 1374 1375 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1376 cur->addIncoming(begin.getPointer(), originBB); 1377 1378 CharUnits curAlign = 1379 dest.getAlignment().alignmentOfArrayElement(baseSize); 1380 1381 // memcpy the individual element bit-pattern. 1382 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1383 /*volatile*/ false); 1384 1385 // Go to the next element. 1386 llvm::Value *next = 1387 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1388 1389 // Leave if that's the end of the VLA. 1390 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1391 Builder.CreateCondBr(done, contBB, loopBB); 1392 cur->addIncoming(next, loopBB); 1393 1394 CGF.EmitBlock(contBB); 1395 } 1396 1397 void 1398 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1399 // Ignore empty classes in C++. 1400 if (getLangOpts().CPlusPlus) { 1401 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1402 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1403 return; 1404 } 1405 } 1406 1407 // Cast the dest ptr to the appropriate i8 pointer type. 1408 if (DestPtr.getElementType() != Int8Ty) 1409 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1410 1411 // Get size and alignment info for this aggregate. 1412 CharUnits size = getContext().getTypeSizeInChars(Ty); 1413 1414 llvm::Value *SizeVal; 1415 const VariableArrayType *vla; 1416 1417 // Don't bother emitting a zero-byte memset. 1418 if (size.isZero()) { 1419 // But note that getTypeInfo returns 0 for a VLA. 1420 if (const VariableArrayType *vlaType = 1421 dyn_cast_or_null<VariableArrayType>( 1422 getContext().getAsArrayType(Ty))) { 1423 QualType eltType; 1424 llvm::Value *numElts; 1425 std::tie(numElts, eltType) = getVLASize(vlaType); 1426 1427 SizeVal = numElts; 1428 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1429 if (!eltSize.isOne()) 1430 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1431 vla = vlaType; 1432 } else { 1433 return; 1434 } 1435 } else { 1436 SizeVal = CGM.getSize(size); 1437 vla = nullptr; 1438 } 1439 1440 // If the type contains a pointer to data member we can't memset it to zero. 1441 // Instead, create a null constant and copy it to the destination. 1442 // TODO: there are other patterns besides zero that we can usefully memset, 1443 // like -1, which happens to be the pattern used by member-pointers. 1444 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1445 // For a VLA, emit a single element, then splat that over the VLA. 1446 if (vla) Ty = getContext().getBaseElementType(vla); 1447 1448 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1449 1450 llvm::GlobalVariable *NullVariable = 1451 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1452 /*isConstant=*/true, 1453 llvm::GlobalVariable::PrivateLinkage, 1454 NullConstant, Twine()); 1455 CharUnits NullAlign = DestPtr.getAlignment(); 1456 NullVariable->setAlignment(NullAlign.getQuantity()); 1457 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1458 NullAlign); 1459 1460 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1461 1462 // Get and call the appropriate llvm.memcpy overload. 1463 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1464 return; 1465 } 1466 1467 // Otherwise, just memset the whole thing to zero. This is legal 1468 // because in LLVM, all default initializers (other than the ones we just 1469 // handled above) are guaranteed to have a bit pattern of all zeros. 1470 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1471 } 1472 1473 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1474 // Make sure that there is a block for the indirect goto. 1475 if (!IndirectBranch) 1476 GetIndirectGotoBlock(); 1477 1478 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1479 1480 // Make sure the indirect branch includes all of the address-taken blocks. 1481 IndirectBranch->addDestination(BB); 1482 return llvm::BlockAddress::get(CurFn, BB); 1483 } 1484 1485 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1486 // If we already made the indirect branch for indirect goto, return its block. 1487 if (IndirectBranch) return IndirectBranch->getParent(); 1488 1489 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1490 1491 // Create the PHI node that indirect gotos will add entries to. 1492 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1493 "indirect.goto.dest"); 1494 1495 // Create the indirect branch instruction. 1496 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1497 return IndirectBranch->getParent(); 1498 } 1499 1500 /// Computes the length of an array in elements, as well as the base 1501 /// element type and a properly-typed first element pointer. 1502 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1503 QualType &baseType, 1504 Address &addr) { 1505 const ArrayType *arrayType = origArrayType; 1506 1507 // If it's a VLA, we have to load the stored size. Note that 1508 // this is the size of the VLA in bytes, not its size in elements. 1509 llvm::Value *numVLAElements = nullptr; 1510 if (isa<VariableArrayType>(arrayType)) { 1511 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1512 1513 // Walk into all VLAs. This doesn't require changes to addr, 1514 // which has type T* where T is the first non-VLA element type. 1515 do { 1516 QualType elementType = arrayType->getElementType(); 1517 arrayType = getContext().getAsArrayType(elementType); 1518 1519 // If we only have VLA components, 'addr' requires no adjustment. 1520 if (!arrayType) { 1521 baseType = elementType; 1522 return numVLAElements; 1523 } 1524 } while (isa<VariableArrayType>(arrayType)); 1525 1526 // We get out here only if we find a constant array type 1527 // inside the VLA. 1528 } 1529 1530 // We have some number of constant-length arrays, so addr should 1531 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1532 // down to the first element of addr. 1533 SmallVector<llvm::Value*, 8> gepIndices; 1534 1535 // GEP down to the array type. 1536 llvm::ConstantInt *zero = Builder.getInt32(0); 1537 gepIndices.push_back(zero); 1538 1539 uint64_t countFromCLAs = 1; 1540 QualType eltType; 1541 1542 llvm::ArrayType *llvmArrayType = 1543 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1544 while (llvmArrayType) { 1545 assert(isa<ConstantArrayType>(arrayType)); 1546 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1547 == llvmArrayType->getNumElements()); 1548 1549 gepIndices.push_back(zero); 1550 countFromCLAs *= llvmArrayType->getNumElements(); 1551 eltType = arrayType->getElementType(); 1552 1553 llvmArrayType = 1554 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1555 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1556 assert((!llvmArrayType || arrayType) && 1557 "LLVM and Clang types are out-of-synch"); 1558 } 1559 1560 if (arrayType) { 1561 // From this point onwards, the Clang array type has been emitted 1562 // as some other type (probably a packed struct). Compute the array 1563 // size, and just emit the 'begin' expression as a bitcast. 1564 while (arrayType) { 1565 countFromCLAs *= 1566 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1567 eltType = arrayType->getElementType(); 1568 arrayType = getContext().getAsArrayType(eltType); 1569 } 1570 1571 llvm::Type *baseType = ConvertType(eltType); 1572 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1573 } else { 1574 // Create the actual GEP. 1575 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1576 gepIndices, "array.begin"), 1577 addr.getAlignment()); 1578 } 1579 1580 baseType = eltType; 1581 1582 llvm::Value *numElements 1583 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1584 1585 // If we had any VLA dimensions, factor them in. 1586 if (numVLAElements) 1587 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1588 1589 return numElements; 1590 } 1591 1592 std::pair<llvm::Value*, QualType> 1593 CodeGenFunction::getVLASize(QualType type) { 1594 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1595 assert(vla && "type was not a variable array type!"); 1596 return getVLASize(vla); 1597 } 1598 1599 std::pair<llvm::Value*, QualType> 1600 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1601 // The number of elements so far; always size_t. 1602 llvm::Value *numElements = nullptr; 1603 1604 QualType elementType; 1605 do { 1606 elementType = type->getElementType(); 1607 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1608 assert(vlaSize && "no size for VLA!"); 1609 assert(vlaSize->getType() == SizeTy); 1610 1611 if (!numElements) { 1612 numElements = vlaSize; 1613 } else { 1614 // It's undefined behavior if this wraps around, so mark it that way. 1615 // FIXME: Teach -fsanitize=undefined to trap this. 1616 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1617 } 1618 } while ((type = getContext().getAsVariableArrayType(elementType))); 1619 1620 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1621 } 1622 1623 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1624 assert(type->isVariablyModifiedType() && 1625 "Must pass variably modified type to EmitVLASizes!"); 1626 1627 EnsureInsertPoint(); 1628 1629 // We're going to walk down into the type and look for VLA 1630 // expressions. 1631 do { 1632 assert(type->isVariablyModifiedType()); 1633 1634 const Type *ty = type.getTypePtr(); 1635 switch (ty->getTypeClass()) { 1636 1637 #define TYPE(Class, Base) 1638 #define ABSTRACT_TYPE(Class, Base) 1639 #define NON_CANONICAL_TYPE(Class, Base) 1640 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1641 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1642 #include "clang/AST/TypeNodes.def" 1643 llvm_unreachable("unexpected dependent type!"); 1644 1645 // These types are never variably-modified. 1646 case Type::Builtin: 1647 case Type::Complex: 1648 case Type::Vector: 1649 case Type::ExtVector: 1650 case Type::Record: 1651 case Type::Enum: 1652 case Type::Elaborated: 1653 case Type::TemplateSpecialization: 1654 case Type::ObjCObject: 1655 case Type::ObjCInterface: 1656 case Type::ObjCObjectPointer: 1657 llvm_unreachable("type class is never variably-modified!"); 1658 1659 case Type::Adjusted: 1660 type = cast<AdjustedType>(ty)->getAdjustedType(); 1661 break; 1662 1663 case Type::Decayed: 1664 type = cast<DecayedType>(ty)->getPointeeType(); 1665 break; 1666 1667 case Type::Pointer: 1668 type = cast<PointerType>(ty)->getPointeeType(); 1669 break; 1670 1671 case Type::BlockPointer: 1672 type = cast<BlockPointerType>(ty)->getPointeeType(); 1673 break; 1674 1675 case Type::LValueReference: 1676 case Type::RValueReference: 1677 type = cast<ReferenceType>(ty)->getPointeeType(); 1678 break; 1679 1680 case Type::MemberPointer: 1681 type = cast<MemberPointerType>(ty)->getPointeeType(); 1682 break; 1683 1684 case Type::ConstantArray: 1685 case Type::IncompleteArray: 1686 // Losing element qualification here is fine. 1687 type = cast<ArrayType>(ty)->getElementType(); 1688 break; 1689 1690 case Type::VariableArray: { 1691 // Losing element qualification here is fine. 1692 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1693 1694 // Unknown size indication requires no size computation. 1695 // Otherwise, evaluate and record it. 1696 if (const Expr *size = vat->getSizeExpr()) { 1697 // It's possible that we might have emitted this already, 1698 // e.g. with a typedef and a pointer to it. 1699 llvm::Value *&entry = VLASizeMap[size]; 1700 if (!entry) { 1701 llvm::Value *Size = EmitScalarExpr(size); 1702 1703 // C11 6.7.6.2p5: 1704 // If the size is an expression that is not an integer constant 1705 // expression [...] each time it is evaluated it shall have a value 1706 // greater than zero. 1707 if (SanOpts.has(SanitizerKind::VLABound) && 1708 size->getType()->isSignedIntegerType()) { 1709 SanitizerScope SanScope(this); 1710 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1711 llvm::Constant *StaticArgs[] = { 1712 EmitCheckSourceLocation(size->getLocStart()), 1713 EmitCheckTypeDescriptor(size->getType()) 1714 }; 1715 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1716 SanitizerKind::VLABound), 1717 "vla_bound_not_positive", StaticArgs, Size); 1718 } 1719 1720 // Always zexting here would be wrong if it weren't 1721 // undefined behavior to have a negative bound. 1722 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1723 } 1724 } 1725 type = vat->getElementType(); 1726 break; 1727 } 1728 1729 case Type::FunctionProto: 1730 case Type::FunctionNoProto: 1731 type = cast<FunctionType>(ty)->getReturnType(); 1732 break; 1733 1734 case Type::Paren: 1735 case Type::TypeOf: 1736 case Type::UnaryTransform: 1737 case Type::Attributed: 1738 case Type::SubstTemplateTypeParm: 1739 case Type::PackExpansion: 1740 // Keep walking after single level desugaring. 1741 type = type.getSingleStepDesugaredType(getContext()); 1742 break; 1743 1744 case Type::Typedef: 1745 case Type::Decltype: 1746 case Type::Auto: 1747 // Stop walking: nothing to do. 1748 return; 1749 1750 case Type::TypeOfExpr: 1751 // Stop walking: emit typeof expression. 1752 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1753 return; 1754 1755 case Type::Atomic: 1756 type = cast<AtomicType>(ty)->getValueType(); 1757 break; 1758 1759 case Type::Pipe: 1760 type = cast<PipeType>(ty)->getElementType(); 1761 break; 1762 } 1763 } while (type->isVariablyModifiedType()); 1764 } 1765 1766 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1767 if (getContext().getBuiltinVaListType()->isArrayType()) 1768 return EmitPointerWithAlignment(E); 1769 return EmitLValue(E).getAddress(); 1770 } 1771 1772 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1773 return EmitLValue(E).getAddress(); 1774 } 1775 1776 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1777 llvm::Constant *Init) { 1778 assert (Init && "Invalid DeclRefExpr initializer!"); 1779 if (CGDebugInfo *Dbg = getDebugInfo()) 1780 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1781 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1782 } 1783 1784 CodeGenFunction::PeepholeProtection 1785 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1786 // At the moment, the only aggressive peephole we do in IR gen 1787 // is trunc(zext) folding, but if we add more, we can easily 1788 // extend this protection. 1789 1790 if (!rvalue.isScalar()) return PeepholeProtection(); 1791 llvm::Value *value = rvalue.getScalarVal(); 1792 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1793 1794 // Just make an extra bitcast. 1795 assert(HaveInsertPoint()); 1796 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1797 Builder.GetInsertBlock()); 1798 1799 PeepholeProtection protection; 1800 protection.Inst = inst; 1801 return protection; 1802 } 1803 1804 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1805 if (!protection.Inst) return; 1806 1807 // In theory, we could try to duplicate the peepholes now, but whatever. 1808 protection.Inst->eraseFromParent(); 1809 } 1810 1811 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1812 llvm::Value *AnnotatedVal, 1813 StringRef AnnotationStr, 1814 SourceLocation Location) { 1815 llvm::Value *Args[4] = { 1816 AnnotatedVal, 1817 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1818 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1819 CGM.EmitAnnotationLineNo(Location) 1820 }; 1821 return Builder.CreateCall(AnnotationFn, Args); 1822 } 1823 1824 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1825 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1826 // FIXME We create a new bitcast for every annotation because that's what 1827 // llvm-gcc was doing. 1828 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1829 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1830 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1831 I->getAnnotation(), D->getLocation()); 1832 } 1833 1834 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1835 Address Addr) { 1836 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1837 llvm::Value *V = Addr.getPointer(); 1838 llvm::Type *VTy = V->getType(); 1839 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1840 CGM.Int8PtrTy); 1841 1842 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1843 // FIXME Always emit the cast inst so we can differentiate between 1844 // annotation on the first field of a struct and annotation on the struct 1845 // itself. 1846 if (VTy != CGM.Int8PtrTy) 1847 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1848 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1849 V = Builder.CreateBitCast(V, VTy); 1850 } 1851 1852 return Address(V, Addr.getAlignment()); 1853 } 1854 1855 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1856 1857 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1858 : CGF(CGF) { 1859 assert(!CGF->IsSanitizerScope); 1860 CGF->IsSanitizerScope = true; 1861 } 1862 1863 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1864 CGF->IsSanitizerScope = false; 1865 } 1866 1867 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1868 const llvm::Twine &Name, 1869 llvm::BasicBlock *BB, 1870 llvm::BasicBlock::iterator InsertPt) const { 1871 LoopStack.InsertHelper(I); 1872 if (IsSanitizerScope) 1873 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1874 } 1875 1876 void CGBuilderInserter::InsertHelper( 1877 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1878 llvm::BasicBlock::iterator InsertPt) const { 1879 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1880 if (CGF) 1881 CGF->InsertHelper(I, Name, BB, InsertPt); 1882 } 1883 1884 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1885 CodeGenModule &CGM, const FunctionDecl *FD, 1886 std::string &FirstMissing) { 1887 // If there aren't any required features listed then go ahead and return. 1888 if (ReqFeatures.empty()) 1889 return false; 1890 1891 // Now build up the set of caller features and verify that all the required 1892 // features are there. 1893 llvm::StringMap<bool> CallerFeatureMap; 1894 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1895 1896 // If we have at least one of the features in the feature list return 1897 // true, otherwise return false. 1898 return std::all_of( 1899 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1900 SmallVector<StringRef, 1> OrFeatures; 1901 Feature.split(OrFeatures, "|"); 1902 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1903 [&](StringRef Feature) { 1904 if (!CallerFeatureMap.lookup(Feature)) { 1905 FirstMissing = Feature.str(); 1906 return false; 1907 } 1908 return true; 1909 }); 1910 }); 1911 } 1912 1913 // Emits an error if we don't have a valid set of target features for the 1914 // called function. 1915 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1916 const FunctionDecl *TargetDecl) { 1917 // Early exit if this is an indirect call. 1918 if (!TargetDecl) 1919 return; 1920 1921 // Get the current enclosing function if it exists. If it doesn't 1922 // we can't check the target features anyhow. 1923 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1924 if (!FD) 1925 return; 1926 1927 // Grab the required features for the call. For a builtin this is listed in 1928 // the td file with the default cpu, for an always_inline function this is any 1929 // listed cpu and any listed features. 1930 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1931 std::string MissingFeature; 1932 if (BuiltinID) { 1933 SmallVector<StringRef, 1> ReqFeatures; 1934 const char *FeatureList = 1935 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1936 // Return if the builtin doesn't have any required features. 1937 if (!FeatureList || StringRef(FeatureList) == "") 1938 return; 1939 StringRef(FeatureList).split(ReqFeatures, ","); 1940 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1941 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1942 << TargetDecl->getDeclName() 1943 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1944 1945 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1946 // Get the required features for the callee. 1947 SmallVector<StringRef, 1> ReqFeatures; 1948 llvm::StringMap<bool> CalleeFeatureMap; 1949 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1950 for (const auto &F : CalleeFeatureMap) { 1951 // Only positive features are "required". 1952 if (F.getValue()) 1953 ReqFeatures.push_back(F.getKey()); 1954 } 1955 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1956 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1957 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1958 } 1959 } 1960 1961 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 1962 if (!CGM.getCodeGenOpts().SanitizeStats) 1963 return; 1964 1965 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 1966 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 1967 CGM.getSanStats().create(IRB, SSK); 1968 } 1969