1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 Address Addr(V, ConvertTypeForMem(T), Alignment); 192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 Address Addr(V, ConvertTypeForMem(T), Align); 204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 205 } 206 207 208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 209 return CGM.getTypes().ConvertTypeForMem(T); 210 } 211 212 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 213 return CGM.getTypes().ConvertType(T); 214 } 215 216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 217 type = type.getCanonicalType(); 218 while (true) { 219 switch (type->getTypeClass()) { 220 #define TYPE(name, parent) 221 #define ABSTRACT_TYPE(name, parent) 222 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 223 #define DEPENDENT_TYPE(name, parent) case Type::name: 224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 225 #include "clang/AST/TypeNodes.inc" 226 llvm_unreachable("non-canonical or dependent type in IR-generation"); 227 228 case Type::Auto: 229 case Type::DeducedTemplateSpecialization: 230 llvm_unreachable("undeduced type in IR-generation"); 231 232 // Various scalar types. 233 case Type::Builtin: 234 case Type::Pointer: 235 case Type::BlockPointer: 236 case Type::LValueReference: 237 case Type::RValueReference: 238 case Type::MemberPointer: 239 case Type::Vector: 240 case Type::ExtVector: 241 case Type::ConstantMatrix: 242 case Type::FunctionProto: 243 case Type::FunctionNoProto: 244 case Type::Enum: 245 case Type::ObjCObjectPointer: 246 case Type::Pipe: 247 case Type::BitInt: 248 return TEK_Scalar; 249 250 // Complexes. 251 case Type::Complex: 252 return TEK_Complex; 253 254 // Arrays, records, and Objective-C objects. 255 case Type::ConstantArray: 256 case Type::IncompleteArray: 257 case Type::VariableArray: 258 case Type::Record: 259 case Type::ObjCObject: 260 case Type::ObjCInterface: 261 return TEK_Aggregate; 262 263 // We operate on atomic values according to their underlying type. 264 case Type::Atomic: 265 type = cast<AtomicType>(type)->getValueType(); 266 continue; 267 } 268 llvm_unreachable("unknown type kind!"); 269 } 270 } 271 272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 273 // For cleanliness, we try to avoid emitting the return block for 274 // simple cases. 275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 276 277 if (CurBB) { 278 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 279 280 // We have a valid insert point, reuse it if it is empty or there are no 281 // explicit jumps to the return block. 282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 284 delete ReturnBlock.getBlock(); 285 ReturnBlock = JumpDest(); 286 } else 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 // Otherwise, if the return block is the target of a single direct 292 // branch then we can just put the code in that block instead. This 293 // cleans up functions which started with a unified return block. 294 if (ReturnBlock.getBlock()->hasOneUse()) { 295 llvm::BranchInst *BI = 296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 297 if (BI && BI->isUnconditional() && 298 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 299 // Record/return the DebugLoc of the simple 'return' expression to be used 300 // later by the actual 'ret' instruction. 301 llvm::DebugLoc Loc = BI->getDebugLoc(); 302 Builder.SetInsertPoint(BI->getParent()); 303 BI->eraseFromParent(); 304 delete ReturnBlock.getBlock(); 305 ReturnBlock = JumpDest(); 306 return Loc; 307 } 308 } 309 310 // FIXME: We are at an unreachable point, there is no reason to emit the block 311 // unless it has uses. However, we still need a place to put the debug 312 // region.end for now. 313 314 EmitBlock(ReturnBlock.getBlock()); 315 return llvm::DebugLoc(); 316 } 317 318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 319 if (!BB) return; 320 if (!BB->use_empty()) 321 return CGF.CurFn->getBasicBlockList().push_back(BB); 322 delete BB; 323 } 324 325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 326 assert(BreakContinueStack.empty() && 327 "mismatched push/pop in break/continue stack!"); 328 329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 330 && NumSimpleReturnExprs == NumReturnExprs 331 && ReturnBlock.getBlock()->use_empty(); 332 // Usually the return expression is evaluated before the cleanup 333 // code. If the function contains only a simple return statement, 334 // such as a constant, the location before the cleanup code becomes 335 // the last useful breakpoint in the function, because the simple 336 // return expression will be evaluated after the cleanup code. To be 337 // safe, set the debug location for cleanup code to the location of 338 // the return statement. Otherwise the cleanup code should be at the 339 // end of the function's lexical scope. 340 // 341 // If there are multiple branches to the return block, the branch 342 // instructions will get the location of the return statements and 343 // all will be fine. 344 if (CGDebugInfo *DI = getDebugInfo()) { 345 if (OnlySimpleReturnStmts) 346 DI->EmitLocation(Builder, LastStopPoint); 347 else 348 DI->EmitLocation(Builder, EndLoc); 349 } 350 351 // Pop any cleanups that might have been associated with the 352 // parameters. Do this in whatever block we're currently in; it's 353 // important to do this before we enter the return block or return 354 // edges will be *really* confused. 355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 356 bool HasOnlyLifetimeMarkers = 357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 359 if (HasCleanups) { 360 // Make sure the line table doesn't jump back into the body for 361 // the ret after it's been at EndLoc. 362 Optional<ApplyDebugLocation> AL; 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, EndLoc); 366 else 367 // We may not have a valid end location. Try to apply it anyway, and 368 // fall back to an artificial location if needed. 369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 370 } 371 372 PopCleanupBlocks(PrologueCleanupDepth); 373 } 374 375 // Emit function epilog (to return). 376 llvm::DebugLoc Loc = EmitReturnBlock(); 377 378 if (ShouldInstrumentFunction()) { 379 if (CGM.getCodeGenOpts().InstrumentFunctions) 380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 382 CurFn->addFnAttr("instrument-function-exit-inlined", 383 "__cyg_profile_func_exit"); 384 } 385 386 if (ShouldSkipSanitizerInstrumentation()) 387 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 388 389 // Emit debug descriptor for function end. 390 if (CGDebugInfo *DI = getDebugInfo()) 391 DI->EmitFunctionEnd(Builder, CurFn); 392 393 // Reset the debug location to that of the simple 'return' expression, if any 394 // rather than that of the end of the function's scope '}'. 395 ApplyDebugLocation AL(*this, Loc); 396 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 397 EmitEndEHSpec(CurCodeDecl); 398 399 assert(EHStack.empty() && 400 "did not remove all scopes from cleanup stack!"); 401 402 // If someone did an indirect goto, emit the indirect goto block at the end of 403 // the function. 404 if (IndirectBranch) { 405 EmitBlock(IndirectBranch->getParent()); 406 Builder.ClearInsertionPoint(); 407 } 408 409 // If some of our locals escaped, insert a call to llvm.localescape in the 410 // entry block. 411 if (!EscapedLocals.empty()) { 412 // Invert the map from local to index into a simple vector. There should be 413 // no holes. 414 SmallVector<llvm::Value *, 4> EscapeArgs; 415 EscapeArgs.resize(EscapedLocals.size()); 416 for (auto &Pair : EscapedLocals) 417 EscapeArgs[Pair.second] = Pair.first; 418 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 419 &CGM.getModule(), llvm::Intrinsic::localescape); 420 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 421 } 422 423 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 424 llvm::Instruction *Ptr = AllocaInsertPt; 425 AllocaInsertPt = nullptr; 426 Ptr->eraseFromParent(); 427 428 // PostAllocaInsertPt, if created, was lazily created when it was required, 429 // remove it now since it was just created for our own convenience. 430 if (PostAllocaInsertPt) { 431 llvm::Instruction *PostPtr = PostAllocaInsertPt; 432 PostAllocaInsertPt = nullptr; 433 PostPtr->eraseFromParent(); 434 } 435 436 // If someone took the address of a label but never did an indirect goto, we 437 // made a zero entry PHI node, which is illegal, zap it now. 438 if (IndirectBranch) { 439 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 440 if (PN->getNumIncomingValues() == 0) { 441 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 442 PN->eraseFromParent(); 443 } 444 } 445 446 EmitIfUsed(*this, EHResumeBlock); 447 EmitIfUsed(*this, TerminateLandingPad); 448 EmitIfUsed(*this, TerminateHandler); 449 EmitIfUsed(*this, UnreachableBlock); 450 451 for (const auto &FuncletAndParent : TerminateFunclets) 452 EmitIfUsed(*this, FuncletAndParent.second); 453 454 if (CGM.getCodeGenOpts().EmitDeclMetadata) 455 EmitDeclMetadata(); 456 457 for (const auto &R : DeferredReplacements) { 458 if (llvm::Value *Old = R.first) { 459 Old->replaceAllUsesWith(R.second); 460 cast<llvm::Instruction>(Old)->eraseFromParent(); 461 } 462 } 463 DeferredReplacements.clear(); 464 465 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 466 // PHIs if the current function is a coroutine. We don't do it for all 467 // functions as it may result in slight increase in numbers of instructions 468 // if compiled with no optimizations. We do it for coroutine as the lifetime 469 // of CleanupDestSlot alloca make correct coroutine frame building very 470 // difficult. 471 if (NormalCleanupDest.isValid() && isCoroutine()) { 472 llvm::DominatorTree DT(*CurFn); 473 llvm::PromoteMemToReg( 474 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 475 NormalCleanupDest = Address::invalid(); 476 } 477 478 // Scan function arguments for vector width. 479 for (llvm::Argument &A : CurFn->args()) 480 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 481 LargestVectorWidth = 482 std::max((uint64_t)LargestVectorWidth, 483 VT->getPrimitiveSizeInBits().getKnownMinSize()); 484 485 // Update vector width based on return type. 486 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 487 LargestVectorWidth = 488 std::max((uint64_t)LargestVectorWidth, 489 VT->getPrimitiveSizeInBits().getKnownMinSize()); 490 491 // Add the required-vector-width attribute. This contains the max width from: 492 // 1. min-vector-width attribute used in the source program. 493 // 2. Any builtins used that have a vector width specified. 494 // 3. Values passed in and out of inline assembly. 495 // 4. Width of vector arguments and return types for this function. 496 // 5. Width of vector aguments and return types for functions called by this 497 // function. 498 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 499 500 // Add vscale_range attribute if appropriate. 501 Optional<std::pair<unsigned, unsigned>> VScaleRange = 502 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 503 if (VScaleRange) { 504 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 505 getLLVMContext(), VScaleRange.getValue().first, 506 VScaleRange.getValue().second)); 507 } 508 509 // If we generated an unreachable return block, delete it now. 510 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 511 Builder.ClearInsertionPoint(); 512 ReturnBlock.getBlock()->eraseFromParent(); 513 } 514 if (ReturnValue.isValid()) { 515 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 516 if (RetAlloca && RetAlloca->use_empty()) { 517 RetAlloca->eraseFromParent(); 518 ReturnValue = Address::invalid(); 519 } 520 } 521 } 522 523 /// ShouldInstrumentFunction - Return true if the current function should be 524 /// instrumented with __cyg_profile_func_* calls 525 bool CodeGenFunction::ShouldInstrumentFunction() { 526 if (!CGM.getCodeGenOpts().InstrumentFunctions && 527 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 528 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 529 return false; 530 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 531 return false; 532 return true; 533 } 534 535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 536 if (!CurFuncDecl) 537 return false; 538 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 539 } 540 541 /// ShouldXRayInstrument - Return true if the current function should be 542 /// instrumented with XRay nop sleds. 543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 544 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 545 } 546 547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 550 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 551 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 552 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 553 XRayInstrKind::Custom); 554 } 555 556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 557 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 558 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 559 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 560 XRayInstrKind::Typed); 561 } 562 563 llvm::Constant * 564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 565 llvm::Constant *Addr) { 566 // Addresses stored in prologue data can't require run-time fixups and must 567 // be PC-relative. Run-time fixups are undesirable because they necessitate 568 // writable text segments, which are unsafe. And absolute addresses are 569 // undesirable because they break PIE mode. 570 571 // Add a layer of indirection through a private global. Taking its address 572 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 573 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 574 /*isConstant=*/true, 575 llvm::GlobalValue::PrivateLinkage, Addr); 576 577 // Create a PC-relative address. 578 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 579 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 580 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 581 return (IntPtrTy == Int32Ty) 582 ? PCRelAsInt 583 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 584 } 585 586 llvm::Value * 587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 588 llvm::Value *EncodedAddr) { 589 // Reconstruct the address of the global. 590 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 591 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 592 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 593 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 594 595 // Load the original pointer through the global. 596 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 597 "decoded_addr"); 598 } 599 600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 601 llvm::Function *Fn) 602 { 603 if (!FD->hasAttr<OpenCLKernelAttr>()) 604 return; 605 606 llvm::LLVMContext &Context = getLLVMContext(); 607 608 CGM.GenOpenCLArgMetadata(Fn, FD, this); 609 610 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 611 QualType HintQTy = A->getTypeHint(); 612 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 613 bool IsSignedInteger = 614 HintQTy->isSignedIntegerType() || 615 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 618 CGM.getTypes().ConvertType(A->getTypeHint()))), 619 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 620 llvm::IntegerType::get(Context, 32), 621 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 622 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 623 } 624 625 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 626 llvm::Metadata *AttrMDArgs[] = { 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 629 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 630 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 631 } 632 633 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 636 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 637 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 638 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 639 } 640 641 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 642 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 643 llvm::Metadata *AttrMDArgs[] = { 644 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 645 Fn->setMetadata("intel_reqd_sub_group_size", 646 llvm::MDNode::get(Context, AttrMDArgs)); 647 } 648 } 649 650 /// Determine whether the function F ends with a return stmt. 651 static bool endsWithReturn(const Decl* F) { 652 const Stmt *Body = nullptr; 653 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 654 Body = FD->getBody(); 655 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 656 Body = OMD->getBody(); 657 658 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 659 auto LastStmt = CS->body_rbegin(); 660 if (LastStmt != CS->body_rend()) 661 return isa<ReturnStmt>(*LastStmt); 662 } 663 return false; 664 } 665 666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 667 if (SanOpts.has(SanitizerKind::Thread)) { 668 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 669 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 670 } 671 } 672 673 /// Check if the return value of this function requires sanitization. 674 bool CodeGenFunction::requiresReturnValueCheck() const { 675 return requiresReturnValueNullabilityCheck() || 676 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 677 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 678 } 679 680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 681 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 682 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 683 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 684 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 685 return false; 686 687 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 688 return false; 689 690 if (MD->getNumParams() == 2) { 691 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 692 if (!PT || !PT->isVoidPointerType() || 693 !PT->getPointeeType().isConstQualified()) 694 return false; 695 } 696 697 return true; 698 } 699 700 /// Return the UBSan prologue signature for \p FD if one is available. 701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 702 const FunctionDecl *FD) { 703 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 704 if (!MD->isStatic()) 705 return nullptr; 706 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 707 } 708 709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 710 llvm::Function *Fn, 711 const CGFunctionInfo &FnInfo, 712 const FunctionArgList &Args, 713 SourceLocation Loc, 714 SourceLocation StartLoc) { 715 assert(!CurFn && 716 "Do not use a CodeGenFunction object for more than one function"); 717 718 const Decl *D = GD.getDecl(); 719 720 DidCallStackSave = false; 721 CurCodeDecl = D; 722 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 723 if (FD && FD->usesSEHTry()) 724 CurSEHParent = FD; 725 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 726 FnRetTy = RetTy; 727 CurFn = Fn; 728 CurFnInfo = &FnInfo; 729 assert(CurFn->isDeclaration() && "Function already has body?"); 730 731 // If this function is ignored for any of the enabled sanitizers, 732 // disable the sanitizer for the function. 733 do { 734 #define SANITIZER(NAME, ID) \ 735 if (SanOpts.empty()) \ 736 break; \ 737 if (SanOpts.has(SanitizerKind::ID)) \ 738 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 739 SanOpts.set(SanitizerKind::ID, false); 740 741 #include "clang/Basic/Sanitizers.def" 742 #undef SANITIZER 743 } while (false); 744 745 if (D) { 746 bool NoSanitizeCoverage = false; 747 748 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 749 // Apply the no_sanitize* attributes to SanOpts. 750 SanitizerMask mask = Attr->getMask(); 751 SanOpts.Mask &= ~mask; 752 if (mask & SanitizerKind::Address) 753 SanOpts.set(SanitizerKind::KernelAddress, false); 754 if (mask & SanitizerKind::KernelAddress) 755 SanOpts.set(SanitizerKind::Address, false); 756 if (mask & SanitizerKind::HWAddress) 757 SanOpts.set(SanitizerKind::KernelHWAddress, false); 758 if (mask & SanitizerKind::KernelHWAddress) 759 SanOpts.set(SanitizerKind::HWAddress, false); 760 761 // SanitizeCoverage is not handled by SanOpts. 762 if (Attr->hasCoverage()) 763 NoSanitizeCoverage = true; 764 } 765 766 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 767 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 768 } 769 770 // Apply sanitizer attributes to the function. 771 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 772 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 773 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | 774 SanitizerKind::KernelHWAddress)) 775 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 776 if (SanOpts.has(SanitizerKind::MemTag)) 777 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 778 if (SanOpts.has(SanitizerKind::Thread)) 779 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 780 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 781 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 782 if (SanOpts.has(SanitizerKind::SafeStack)) 783 Fn->addFnAttr(llvm::Attribute::SafeStack); 784 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 785 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 786 787 // Apply fuzzing attribute to the function. 788 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 789 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 790 791 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 792 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 793 if (SanOpts.has(SanitizerKind::Thread)) { 794 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 795 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 796 if (OMD->getMethodFamily() == OMF_dealloc || 797 OMD->getMethodFamily() == OMF_initialize || 798 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 799 markAsIgnoreThreadCheckingAtRuntime(Fn); 800 } 801 } 802 } 803 804 // Ignore unrelated casts in STL allocate() since the allocator must cast 805 // from void* to T* before object initialization completes. Don't match on the 806 // namespace because not all allocators are in std:: 807 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 808 if (matchesStlAllocatorFn(D, getContext())) 809 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 810 } 811 812 // Ignore null checks in coroutine functions since the coroutines passes 813 // are not aware of how to move the extra UBSan instructions across the split 814 // coroutine boundaries. 815 if (D && SanOpts.has(SanitizerKind::Null)) 816 if (FD && FD->getBody() && 817 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 818 SanOpts.Mask &= ~SanitizerKind::Null; 819 820 // Apply xray attributes to the function (as a string, for now) 821 bool AlwaysXRayAttr = false; 822 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 823 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 824 XRayInstrKind::FunctionEntry) || 825 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 826 XRayInstrKind::FunctionExit)) { 827 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 828 Fn->addFnAttr("function-instrument", "xray-always"); 829 AlwaysXRayAttr = true; 830 } 831 if (XRayAttr->neverXRayInstrument()) 832 Fn->addFnAttr("function-instrument", "xray-never"); 833 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 834 if (ShouldXRayInstrumentFunction()) 835 Fn->addFnAttr("xray-log-args", 836 llvm::utostr(LogArgs->getArgumentCount())); 837 } 838 } else { 839 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 840 Fn->addFnAttr( 841 "xray-instruction-threshold", 842 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 843 } 844 845 if (ShouldXRayInstrumentFunction()) { 846 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 847 Fn->addFnAttr("xray-ignore-loops"); 848 849 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 850 XRayInstrKind::FunctionExit)) 851 Fn->addFnAttr("xray-skip-exit"); 852 853 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 854 XRayInstrKind::FunctionEntry)) 855 Fn->addFnAttr("xray-skip-entry"); 856 857 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 858 if (FuncGroups > 1) { 859 auto FuncName = llvm::makeArrayRef<uint8_t>( 860 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 861 auto Group = crc32(FuncName) % FuncGroups; 862 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 863 !AlwaysXRayAttr) 864 Fn->addFnAttr("function-instrument", "xray-never"); 865 } 866 } 867 868 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 869 if (CGM.isProfileInstrExcluded(Fn, Loc)) 870 Fn->addFnAttr(llvm::Attribute::NoProfile); 871 872 unsigned Count, Offset; 873 if (const auto *Attr = 874 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 875 Count = Attr->getCount(); 876 Offset = Attr->getOffset(); 877 } else { 878 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 879 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 880 } 881 if (Count && Offset <= Count) { 882 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 883 if (Offset) 884 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 885 } 886 // Instruct that functions for COFF/CodeView targets should start with a 887 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 888 // backends as they don't need it -- instructions on these architectures are 889 // always atomically patchable at runtime. 890 if (CGM.getCodeGenOpts().HotPatch && 891 getContext().getTargetInfo().getTriple().isX86()) 892 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 893 894 // Add no-jump-tables value. 895 if (CGM.getCodeGenOpts().NoUseJumpTables) 896 Fn->addFnAttr("no-jump-tables", "true"); 897 898 // Add no-inline-line-tables value. 899 if (CGM.getCodeGenOpts().NoInlineLineTables) 900 Fn->addFnAttr("no-inline-line-tables"); 901 902 // Add profile-sample-accurate value. 903 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 904 Fn->addFnAttr("profile-sample-accurate"); 905 906 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 907 Fn->addFnAttr("use-sample-profile"); 908 909 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 910 Fn->addFnAttr("cfi-canonical-jump-table"); 911 912 if (D && D->hasAttr<NoProfileFunctionAttr>()) 913 Fn->addFnAttr(llvm::Attribute::NoProfile); 914 915 if (FD && getLangOpts().OpenCL) { 916 // Add metadata for a kernel function. 917 EmitOpenCLKernelMetadata(FD, Fn); 918 } 919 920 // If we are checking function types, emit a function type signature as 921 // prologue data. 922 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 923 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 924 // Remove any (C++17) exception specifications, to allow calling e.g. a 925 // noexcept function through a non-noexcept pointer. 926 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 927 FD->getType(), EST_None); 928 llvm::Constant *FTRTTIConst = 929 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 930 llvm::Constant *FTRTTIConstEncoded = 931 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 932 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 933 llvm::Constant *PrologueStructConst = 934 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 935 Fn->setPrologueData(PrologueStructConst); 936 } 937 } 938 939 // If we're checking nullability, we need to know whether we can check the 940 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 941 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 942 auto Nullability = FnRetTy->getNullability(getContext()); 943 if (Nullability && *Nullability == NullabilityKind::NonNull) { 944 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 945 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 946 RetValNullabilityPrecondition = 947 llvm::ConstantInt::getTrue(getLLVMContext()); 948 } 949 } 950 951 // If we're in C++ mode and the function name is "main", it is guaranteed 952 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 953 // used within a program"). 954 // 955 // OpenCL C 2.0 v2.2-11 s6.9.i: 956 // Recursion is not supported. 957 // 958 // SYCL v1.2.1 s3.10: 959 // kernels cannot include RTTI information, exception classes, 960 // recursive code, virtual functions or make use of C++ libraries that 961 // are not compiled for the device. 962 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 963 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 964 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 965 Fn->addFnAttr(llvm::Attribute::NoRecurse); 966 967 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 968 llvm::fp::ExceptionBehavior FPExceptionBehavior = 969 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 970 Builder.setDefaultConstrainedRounding(RM); 971 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 972 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 973 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 974 RM != llvm::RoundingMode::NearestTiesToEven))) { 975 Builder.setIsFPConstrained(true); 976 Fn->addFnAttr(llvm::Attribute::StrictFP); 977 } 978 979 // If a custom alignment is used, force realigning to this alignment on 980 // any main function which certainly will need it. 981 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 982 CGM.getCodeGenOpts().StackAlignment)) 983 Fn->addFnAttr("stackrealign"); 984 985 // "main" doesn't need to zero out call-used registers. 986 if (FD && FD->isMain()) 987 Fn->removeFnAttr("zero-call-used-regs"); 988 989 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 990 991 // Create a marker to make it easy to insert allocas into the entryblock 992 // later. Don't create this with the builder, because we don't want it 993 // folded. 994 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 995 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 996 997 ReturnBlock = getJumpDestInCurrentScope("return"); 998 999 Builder.SetInsertPoint(EntryBB); 1000 1001 // If we're checking the return value, allocate space for a pointer to a 1002 // precise source location of the checked return statement. 1003 if (requiresReturnValueCheck()) { 1004 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1005 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1006 ReturnLocation); 1007 } 1008 1009 // Emit subprogram debug descriptor. 1010 if (CGDebugInfo *DI = getDebugInfo()) { 1011 // Reconstruct the type from the argument list so that implicit parameters, 1012 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1013 // convention. 1014 DI->emitFunctionStart(GD, Loc, StartLoc, 1015 DI->getFunctionType(FD, RetTy, Args), CurFn, 1016 CurFuncIsThunk); 1017 } 1018 1019 if (ShouldInstrumentFunction()) { 1020 if (CGM.getCodeGenOpts().InstrumentFunctions) 1021 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1022 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1023 CurFn->addFnAttr("instrument-function-entry-inlined", 1024 "__cyg_profile_func_enter"); 1025 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1026 CurFn->addFnAttr("instrument-function-entry-inlined", 1027 "__cyg_profile_func_enter_bare"); 1028 } 1029 1030 // Since emitting the mcount call here impacts optimizations such as function 1031 // inlining, we just add an attribute to insert a mcount call in backend. 1032 // The attribute "counting-function" is set to mcount function name which is 1033 // architecture dependent. 1034 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1035 // Calls to fentry/mcount should not be generated if function has 1036 // the no_instrument_function attribute. 1037 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1038 if (CGM.getCodeGenOpts().CallFEntry) 1039 Fn->addFnAttr("fentry-call", "true"); 1040 else { 1041 Fn->addFnAttr("instrument-function-entry-inlined", 1042 getTarget().getMCountName()); 1043 } 1044 if (CGM.getCodeGenOpts().MNopMCount) { 1045 if (!CGM.getCodeGenOpts().CallFEntry) 1046 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1047 << "-mnop-mcount" << "-mfentry"; 1048 Fn->addFnAttr("mnop-mcount"); 1049 } 1050 1051 if (CGM.getCodeGenOpts().RecordMCount) { 1052 if (!CGM.getCodeGenOpts().CallFEntry) 1053 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1054 << "-mrecord-mcount" << "-mfentry"; 1055 Fn->addFnAttr("mrecord-mcount"); 1056 } 1057 } 1058 } 1059 1060 if (CGM.getCodeGenOpts().PackedStack) { 1061 if (getContext().getTargetInfo().getTriple().getArch() != 1062 llvm::Triple::systemz) 1063 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1064 << "-mpacked-stack"; 1065 Fn->addFnAttr("packed-stack"); 1066 } 1067 1068 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1069 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1070 Fn->addFnAttr("warn-stack-size", 1071 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1072 1073 if (RetTy->isVoidType()) { 1074 // Void type; nothing to return. 1075 ReturnValue = Address::invalid(); 1076 1077 // Count the implicit return. 1078 if (!endsWithReturn(D)) 1079 ++NumReturnExprs; 1080 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1081 // Indirect return; emit returned value directly into sret slot. 1082 // This reduces code size, and affects correctness in C++. 1083 auto AI = CurFn->arg_begin(); 1084 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1085 ++AI; 1086 ReturnValue = Address(&*AI, ConvertType(RetTy), 1087 CurFnInfo->getReturnInfo().getIndirectAlign()); 1088 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1089 ReturnValuePointer = 1090 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1091 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1092 ReturnValue.getPointer(), Int8PtrTy), 1093 ReturnValuePointer); 1094 } 1095 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1096 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1097 // Load the sret pointer from the argument struct and return into that. 1098 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1099 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1100 --EI; 1101 llvm::Value *Addr = Builder.CreateStructGEP( 1102 EI->getType()->getPointerElementType(), &*EI, Idx); 1103 llvm::Type *Ty = 1104 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1105 ReturnValuePointer = Address(Addr, getPointerAlign()); 1106 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1107 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1108 } else { 1109 ReturnValue = CreateIRTemp(RetTy, "retval"); 1110 1111 // Tell the epilog emitter to autorelease the result. We do this 1112 // now so that various specialized functions can suppress it 1113 // during their IR-generation. 1114 if (getLangOpts().ObjCAutoRefCount && 1115 !CurFnInfo->isReturnsRetained() && 1116 RetTy->isObjCRetainableType()) 1117 AutoreleaseResult = true; 1118 } 1119 1120 EmitStartEHSpec(CurCodeDecl); 1121 1122 PrologueCleanupDepth = EHStack.stable_begin(); 1123 1124 // Emit OpenMP specific initialization of the device functions. 1125 if (getLangOpts().OpenMP && CurCodeDecl) 1126 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1127 1128 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1129 1130 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1131 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1132 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1133 if (MD->getParent()->isLambda() && 1134 MD->getOverloadedOperator() == OO_Call) { 1135 // We're in a lambda; figure out the captures. 1136 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1137 LambdaThisCaptureField); 1138 if (LambdaThisCaptureField) { 1139 // If the lambda captures the object referred to by '*this' - either by 1140 // value or by reference, make sure CXXThisValue points to the correct 1141 // object. 1142 1143 // Get the lvalue for the field (which is a copy of the enclosing object 1144 // or contains the address of the enclosing object). 1145 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1146 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1147 // If the enclosing object was captured by value, just use its address. 1148 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1149 } else { 1150 // Load the lvalue pointed to by the field, since '*this' was captured 1151 // by reference. 1152 CXXThisValue = 1153 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1154 } 1155 } 1156 for (auto *FD : MD->getParent()->fields()) { 1157 if (FD->hasCapturedVLAType()) { 1158 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1159 SourceLocation()).getScalarVal(); 1160 auto VAT = FD->getCapturedVLAType(); 1161 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1162 } 1163 } 1164 } else { 1165 // Not in a lambda; just use 'this' from the method. 1166 // FIXME: Should we generate a new load for each use of 'this'? The 1167 // fast register allocator would be happier... 1168 CXXThisValue = CXXABIThisValue; 1169 } 1170 1171 // Check the 'this' pointer once per function, if it's available. 1172 if (CXXABIThisValue) { 1173 SanitizerSet SkippedChecks; 1174 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1175 QualType ThisTy = MD->getThisType(); 1176 1177 // If this is the call operator of a lambda with no capture-default, it 1178 // may have a static invoker function, which may call this operator with 1179 // a null 'this' pointer. 1180 if (isLambdaCallOperator(MD) && 1181 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1182 SkippedChecks.set(SanitizerKind::Null, true); 1183 1184 EmitTypeCheck( 1185 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1186 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1187 } 1188 } 1189 1190 // If any of the arguments have a variably modified type, make sure to 1191 // emit the type size. 1192 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1193 i != e; ++i) { 1194 const VarDecl *VD = *i; 1195 1196 // Dig out the type as written from ParmVarDecls; it's unclear whether 1197 // the standard (C99 6.9.1p10) requires this, but we're following the 1198 // precedent set by gcc. 1199 QualType Ty; 1200 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1201 Ty = PVD->getOriginalType(); 1202 else 1203 Ty = VD->getType(); 1204 1205 if (Ty->isVariablyModifiedType()) 1206 EmitVariablyModifiedType(Ty); 1207 } 1208 // Emit a location at the end of the prologue. 1209 if (CGDebugInfo *DI = getDebugInfo()) 1210 DI->EmitLocation(Builder, StartLoc); 1211 1212 // TODO: Do we need to handle this in two places like we do with 1213 // target-features/target-cpu? 1214 if (CurFuncDecl) 1215 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1216 LargestVectorWidth = VecWidth->getVectorWidth(); 1217 } 1218 1219 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1220 incrementProfileCounter(Body); 1221 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1222 EmitCompoundStmtWithoutScope(*S); 1223 else 1224 EmitStmt(Body); 1225 1226 // This is checked after emitting the function body so we know if there 1227 // are any permitted infinite loops. 1228 if (checkIfFunctionMustProgress()) 1229 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1230 } 1231 1232 /// When instrumenting to collect profile data, the counts for some blocks 1233 /// such as switch cases need to not include the fall-through counts, so 1234 /// emit a branch around the instrumentation code. When not instrumenting, 1235 /// this just calls EmitBlock(). 1236 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1237 const Stmt *S) { 1238 llvm::BasicBlock *SkipCountBB = nullptr; 1239 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1240 // When instrumenting for profiling, the fallthrough to certain 1241 // statements needs to skip over the instrumentation code so that we 1242 // get an accurate count. 1243 SkipCountBB = createBasicBlock("skipcount"); 1244 EmitBranch(SkipCountBB); 1245 } 1246 EmitBlock(BB); 1247 uint64_t CurrentCount = getCurrentProfileCount(); 1248 incrementProfileCounter(S); 1249 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1250 if (SkipCountBB) 1251 EmitBlock(SkipCountBB); 1252 } 1253 1254 /// Tries to mark the given function nounwind based on the 1255 /// non-existence of any throwing calls within it. We believe this is 1256 /// lightweight enough to do at -O0. 1257 static void TryMarkNoThrow(llvm::Function *F) { 1258 // LLVM treats 'nounwind' on a function as part of the type, so we 1259 // can't do this on functions that can be overwritten. 1260 if (F->isInterposable()) return; 1261 1262 for (llvm::BasicBlock &BB : *F) 1263 for (llvm::Instruction &I : BB) 1264 if (I.mayThrow()) 1265 return; 1266 1267 F->setDoesNotThrow(); 1268 } 1269 1270 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1271 FunctionArgList &Args) { 1272 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1273 QualType ResTy = FD->getReturnType(); 1274 1275 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1276 if (MD && MD->isInstance()) { 1277 if (CGM.getCXXABI().HasThisReturn(GD)) 1278 ResTy = MD->getThisType(); 1279 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1280 ResTy = CGM.getContext().VoidPtrTy; 1281 CGM.getCXXABI().buildThisParam(*this, Args); 1282 } 1283 1284 // The base version of an inheriting constructor whose constructed base is a 1285 // virtual base is not passed any arguments (because it doesn't actually call 1286 // the inherited constructor). 1287 bool PassedParams = true; 1288 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1289 if (auto Inherited = CD->getInheritedConstructor()) 1290 PassedParams = 1291 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1292 1293 if (PassedParams) { 1294 for (auto *Param : FD->parameters()) { 1295 Args.push_back(Param); 1296 if (!Param->hasAttr<PassObjectSizeAttr>()) 1297 continue; 1298 1299 auto *Implicit = ImplicitParamDecl::Create( 1300 getContext(), Param->getDeclContext(), Param->getLocation(), 1301 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1302 SizeArguments[Param] = Implicit; 1303 Args.push_back(Implicit); 1304 } 1305 } 1306 1307 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1308 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1309 1310 return ResTy; 1311 } 1312 1313 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1314 const CGFunctionInfo &FnInfo) { 1315 assert(Fn && "generating code for null Function"); 1316 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1317 CurGD = GD; 1318 1319 FunctionArgList Args; 1320 QualType ResTy = BuildFunctionArgList(GD, Args); 1321 1322 if (FD->isInlineBuiltinDeclaration()) { 1323 // When generating code for a builtin with an inline declaration, use a 1324 // mangled name to hold the actual body, while keeping an external 1325 // definition in case the function pointer is referenced somewhere. 1326 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1327 llvm::Module *M = Fn->getParent(); 1328 llvm::Function *Clone = M->getFunction(FDInlineName); 1329 if (!Clone) { 1330 Clone = llvm::Function::Create(Fn->getFunctionType(), 1331 llvm::GlobalValue::InternalLinkage, 1332 Fn->getAddressSpace(), FDInlineName, M); 1333 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1334 } 1335 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1336 Fn = Clone; 1337 } else { 1338 // Detect the unusual situation where an inline version is shadowed by a 1339 // non-inline version. In that case we should pick the external one 1340 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1341 // to detect that situation before we reach codegen, so do some late 1342 // replacement. 1343 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1344 PD = PD->getPreviousDecl()) { 1345 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1346 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1347 llvm::Module *M = Fn->getParent(); 1348 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1349 Clone->replaceAllUsesWith(Fn); 1350 Clone->eraseFromParent(); 1351 } 1352 break; 1353 } 1354 } 1355 } 1356 1357 // Check if we should generate debug info for this function. 1358 if (FD->hasAttr<NoDebugAttr>()) { 1359 // Clear non-distinct debug info that was possibly attached to the function 1360 // due to an earlier declaration without the nodebug attribute 1361 Fn->setSubprogram(nullptr); 1362 // Disable debug info indefinitely for this function 1363 DebugInfo = nullptr; 1364 } 1365 1366 // The function might not have a body if we're generating thunks for a 1367 // function declaration. 1368 SourceRange BodyRange; 1369 if (Stmt *Body = FD->getBody()) 1370 BodyRange = Body->getSourceRange(); 1371 else 1372 BodyRange = FD->getLocation(); 1373 CurEHLocation = BodyRange.getEnd(); 1374 1375 // Use the location of the start of the function to determine where 1376 // the function definition is located. By default use the location 1377 // of the declaration as the location for the subprogram. A function 1378 // may lack a declaration in the source code if it is created by code 1379 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1380 SourceLocation Loc = FD->getLocation(); 1381 1382 // If this is a function specialization then use the pattern body 1383 // as the location for the function. 1384 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1385 if (SpecDecl->hasBody(SpecDecl)) 1386 Loc = SpecDecl->getLocation(); 1387 1388 Stmt *Body = FD->getBody(); 1389 1390 if (Body) { 1391 // Coroutines always emit lifetime markers. 1392 if (isa<CoroutineBodyStmt>(Body)) 1393 ShouldEmitLifetimeMarkers = true; 1394 1395 // Initialize helper which will detect jumps which can cause invalid 1396 // lifetime markers. 1397 if (ShouldEmitLifetimeMarkers) 1398 Bypasses.Init(Body); 1399 } 1400 1401 // Emit the standard function prologue. 1402 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1403 1404 // Save parameters for coroutine function. 1405 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1406 for (const auto *ParamDecl : FD->parameters()) 1407 FnArgs.push_back(ParamDecl); 1408 1409 // Generate the body of the function. 1410 PGO.assignRegionCounters(GD, CurFn); 1411 if (isa<CXXDestructorDecl>(FD)) 1412 EmitDestructorBody(Args); 1413 else if (isa<CXXConstructorDecl>(FD)) 1414 EmitConstructorBody(Args); 1415 else if (getLangOpts().CUDA && 1416 !getLangOpts().CUDAIsDevice && 1417 FD->hasAttr<CUDAGlobalAttr>()) 1418 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1419 else if (isa<CXXMethodDecl>(FD) && 1420 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1421 // The lambda static invoker function is special, because it forwards or 1422 // clones the body of the function call operator (but is actually static). 1423 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1424 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1425 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1426 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1427 // Implicit copy-assignment gets the same special treatment as implicit 1428 // copy-constructors. 1429 emitImplicitAssignmentOperatorBody(Args); 1430 } else if (Body) { 1431 EmitFunctionBody(Body); 1432 } else 1433 llvm_unreachable("no definition for emitted function"); 1434 1435 // C++11 [stmt.return]p2: 1436 // Flowing off the end of a function [...] results in undefined behavior in 1437 // a value-returning function. 1438 // C11 6.9.1p12: 1439 // If the '}' that terminates a function is reached, and the value of the 1440 // function call is used by the caller, the behavior is undefined. 1441 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1442 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1443 bool ShouldEmitUnreachable = 1444 CGM.getCodeGenOpts().StrictReturn || 1445 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1446 if (SanOpts.has(SanitizerKind::Return)) { 1447 SanitizerScope SanScope(this); 1448 llvm::Value *IsFalse = Builder.getFalse(); 1449 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1450 SanitizerHandler::MissingReturn, 1451 EmitCheckSourceLocation(FD->getLocation()), None); 1452 } else if (ShouldEmitUnreachable) { 1453 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1454 EmitTrapCall(llvm::Intrinsic::trap); 1455 } 1456 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1457 Builder.CreateUnreachable(); 1458 Builder.ClearInsertionPoint(); 1459 } 1460 } 1461 1462 // Emit the standard function epilogue. 1463 FinishFunction(BodyRange.getEnd()); 1464 1465 // If we haven't marked the function nothrow through other means, do 1466 // a quick pass now to see if we can. 1467 if (!CurFn->doesNotThrow()) 1468 TryMarkNoThrow(CurFn); 1469 } 1470 1471 /// ContainsLabel - Return true if the statement contains a label in it. If 1472 /// this statement is not executed normally, it not containing a label means 1473 /// that we can just remove the code. 1474 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1475 // Null statement, not a label! 1476 if (!S) return false; 1477 1478 // If this is a label, we have to emit the code, consider something like: 1479 // if (0) { ... foo: bar(); } goto foo; 1480 // 1481 // TODO: If anyone cared, we could track __label__'s, since we know that you 1482 // can't jump to one from outside their declared region. 1483 if (isa<LabelStmt>(S)) 1484 return true; 1485 1486 // If this is a case/default statement, and we haven't seen a switch, we have 1487 // to emit the code. 1488 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1489 return true; 1490 1491 // If this is a switch statement, we want to ignore cases below it. 1492 if (isa<SwitchStmt>(S)) 1493 IgnoreCaseStmts = true; 1494 1495 // Scan subexpressions for verboten labels. 1496 for (const Stmt *SubStmt : S->children()) 1497 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1498 return true; 1499 1500 return false; 1501 } 1502 1503 /// containsBreak - Return true if the statement contains a break out of it. 1504 /// If the statement (recursively) contains a switch or loop with a break 1505 /// inside of it, this is fine. 1506 bool CodeGenFunction::containsBreak(const Stmt *S) { 1507 // Null statement, not a label! 1508 if (!S) return false; 1509 1510 // If this is a switch or loop that defines its own break scope, then we can 1511 // include it and anything inside of it. 1512 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1513 isa<ForStmt>(S)) 1514 return false; 1515 1516 if (isa<BreakStmt>(S)) 1517 return true; 1518 1519 // Scan subexpressions for verboten breaks. 1520 for (const Stmt *SubStmt : S->children()) 1521 if (containsBreak(SubStmt)) 1522 return true; 1523 1524 return false; 1525 } 1526 1527 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1528 if (!S) return false; 1529 1530 // Some statement kinds add a scope and thus never add a decl to the current 1531 // scope. Note, this list is longer than the list of statements that might 1532 // have an unscoped decl nested within them, but this way is conservatively 1533 // correct even if more statement kinds are added. 1534 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1535 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1536 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1537 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1538 return false; 1539 1540 if (isa<DeclStmt>(S)) 1541 return true; 1542 1543 for (const Stmt *SubStmt : S->children()) 1544 if (mightAddDeclToScope(SubStmt)) 1545 return true; 1546 1547 return false; 1548 } 1549 1550 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1551 /// to a constant, or if it does but contains a label, return false. If it 1552 /// constant folds return true and set the boolean result in Result. 1553 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1554 bool &ResultBool, 1555 bool AllowLabels) { 1556 llvm::APSInt ResultInt; 1557 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1558 return false; 1559 1560 ResultBool = ResultInt.getBoolValue(); 1561 return true; 1562 } 1563 1564 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1565 /// to a constant, or if it does but contains a label, return false. If it 1566 /// constant folds return true and set the folded value. 1567 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1568 llvm::APSInt &ResultInt, 1569 bool AllowLabels) { 1570 // FIXME: Rename and handle conversion of other evaluatable things 1571 // to bool. 1572 Expr::EvalResult Result; 1573 if (!Cond->EvaluateAsInt(Result, getContext())) 1574 return false; // Not foldable, not integer or not fully evaluatable. 1575 1576 llvm::APSInt Int = Result.Val.getInt(); 1577 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1578 return false; // Contains a label. 1579 1580 ResultInt = Int; 1581 return true; 1582 } 1583 1584 /// Determine whether the given condition is an instrumentable condition 1585 /// (i.e. no "&&" or "||"). 1586 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1587 // Bypass simplistic logical-NOT operator before determining whether the 1588 // condition contains any other logical operator. 1589 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1590 if (UnOp->getOpcode() == UO_LNot) 1591 C = UnOp->getSubExpr(); 1592 1593 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1594 return (!BOp || !BOp->isLogicalOp()); 1595 } 1596 1597 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1598 /// increments a profile counter based on the semantics of the given logical 1599 /// operator opcode. This is used to instrument branch condition coverage for 1600 /// logical operators. 1601 void CodeGenFunction::EmitBranchToCounterBlock( 1602 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1603 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1604 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1605 // If not instrumenting, just emit a branch. 1606 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1607 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1608 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1609 1610 llvm::BasicBlock *ThenBlock = nullptr; 1611 llvm::BasicBlock *ElseBlock = nullptr; 1612 llvm::BasicBlock *NextBlock = nullptr; 1613 1614 // Create the block we'll use to increment the appropriate counter. 1615 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1616 1617 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1618 // means we need to evaluate the condition and increment the counter on TRUE: 1619 // 1620 // if (Cond) 1621 // goto CounterIncrBlock; 1622 // else 1623 // goto FalseBlock; 1624 // 1625 // CounterIncrBlock: 1626 // Counter++; 1627 // goto TrueBlock; 1628 1629 if (LOp == BO_LAnd) { 1630 ThenBlock = CounterIncrBlock; 1631 ElseBlock = FalseBlock; 1632 NextBlock = TrueBlock; 1633 } 1634 1635 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1636 // we need to evaluate the condition and increment the counter on FALSE: 1637 // 1638 // if (Cond) 1639 // goto TrueBlock; 1640 // else 1641 // goto CounterIncrBlock; 1642 // 1643 // CounterIncrBlock: 1644 // Counter++; 1645 // goto FalseBlock; 1646 1647 else if (LOp == BO_LOr) { 1648 ThenBlock = TrueBlock; 1649 ElseBlock = CounterIncrBlock; 1650 NextBlock = FalseBlock; 1651 } else { 1652 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1653 } 1654 1655 // Emit Branch based on condition. 1656 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1657 1658 // Emit the block containing the counter increment(s). 1659 EmitBlock(CounterIncrBlock); 1660 1661 // Increment corresponding counter; if index not provided, use Cond as index. 1662 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1663 1664 // Go to the next block. 1665 EmitBranch(NextBlock); 1666 } 1667 1668 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1669 /// statement) to the specified blocks. Based on the condition, this might try 1670 /// to simplify the codegen of the conditional based on the branch. 1671 /// \param LH The value of the likelihood attribute on the True branch. 1672 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1673 llvm::BasicBlock *TrueBlock, 1674 llvm::BasicBlock *FalseBlock, 1675 uint64_t TrueCount, 1676 Stmt::Likelihood LH) { 1677 Cond = Cond->IgnoreParens(); 1678 1679 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1680 1681 // Handle X && Y in a condition. 1682 if (CondBOp->getOpcode() == BO_LAnd) { 1683 // If we have "1 && X", simplify the code. "0 && X" would have constant 1684 // folded if the case was simple enough. 1685 bool ConstantBool = false; 1686 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1687 ConstantBool) { 1688 // br(1 && X) -> br(X). 1689 incrementProfileCounter(CondBOp); 1690 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1691 FalseBlock, TrueCount, LH); 1692 } 1693 1694 // If we have "X && 1", simplify the code to use an uncond branch. 1695 // "X && 0" would have been constant folded to 0. 1696 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1697 ConstantBool) { 1698 // br(X && 1) -> br(X). 1699 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1700 FalseBlock, TrueCount, LH, CondBOp); 1701 } 1702 1703 // Emit the LHS as a conditional. If the LHS conditional is false, we 1704 // want to jump to the FalseBlock. 1705 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1706 // The counter tells us how often we evaluate RHS, and all of TrueCount 1707 // can be propagated to that branch. 1708 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1709 1710 ConditionalEvaluation eval(*this); 1711 { 1712 ApplyDebugLocation DL(*this, Cond); 1713 // Propagate the likelihood attribute like __builtin_expect 1714 // __builtin_expect(X && Y, 1) -> X and Y are likely 1715 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1716 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1717 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1718 EmitBlock(LHSTrue); 1719 } 1720 1721 incrementProfileCounter(CondBOp); 1722 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1723 1724 // Any temporaries created here are conditional. 1725 eval.begin(*this); 1726 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1727 FalseBlock, TrueCount, LH); 1728 eval.end(*this); 1729 1730 return; 1731 } 1732 1733 if (CondBOp->getOpcode() == BO_LOr) { 1734 // If we have "0 || X", simplify the code. "1 || X" would have constant 1735 // folded if the case was simple enough. 1736 bool ConstantBool = false; 1737 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1738 !ConstantBool) { 1739 // br(0 || X) -> br(X). 1740 incrementProfileCounter(CondBOp); 1741 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1742 FalseBlock, TrueCount, LH); 1743 } 1744 1745 // If we have "X || 0", simplify the code to use an uncond branch. 1746 // "X || 1" would have been constant folded to 1. 1747 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1748 !ConstantBool) { 1749 // br(X || 0) -> br(X). 1750 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1751 FalseBlock, TrueCount, LH, CondBOp); 1752 } 1753 1754 // Emit the LHS as a conditional. If the LHS conditional is true, we 1755 // want to jump to the TrueBlock. 1756 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1757 // We have the count for entry to the RHS and for the whole expression 1758 // being true, so we can divy up True count between the short circuit and 1759 // the RHS. 1760 uint64_t LHSCount = 1761 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1762 uint64_t RHSCount = TrueCount - LHSCount; 1763 1764 ConditionalEvaluation eval(*this); 1765 { 1766 // Propagate the likelihood attribute like __builtin_expect 1767 // __builtin_expect(X || Y, 1) -> only Y is likely 1768 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1769 ApplyDebugLocation DL(*this, Cond); 1770 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1771 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1772 EmitBlock(LHSFalse); 1773 } 1774 1775 incrementProfileCounter(CondBOp); 1776 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1777 1778 // Any temporaries created here are conditional. 1779 eval.begin(*this); 1780 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1781 RHSCount, LH); 1782 1783 eval.end(*this); 1784 1785 return; 1786 } 1787 } 1788 1789 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1790 // br(!x, t, f) -> br(x, f, t) 1791 if (CondUOp->getOpcode() == UO_LNot) { 1792 // Negate the count. 1793 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1794 // The values of the enum are chosen to make this negation possible. 1795 LH = static_cast<Stmt::Likelihood>(-LH); 1796 // Negate the condition and swap the destination blocks. 1797 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1798 FalseCount, LH); 1799 } 1800 } 1801 1802 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1803 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1804 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1805 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1806 1807 // The ConditionalOperator itself has no likelihood information for its 1808 // true and false branches. This matches the behavior of __builtin_expect. 1809 ConditionalEvaluation cond(*this); 1810 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1811 getProfileCount(CondOp), Stmt::LH_None); 1812 1813 // When computing PGO branch weights, we only know the overall count for 1814 // the true block. This code is essentially doing tail duplication of the 1815 // naive code-gen, introducing new edges for which counts are not 1816 // available. Divide the counts proportionally between the LHS and RHS of 1817 // the conditional operator. 1818 uint64_t LHSScaledTrueCount = 0; 1819 if (TrueCount) { 1820 double LHSRatio = 1821 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1822 LHSScaledTrueCount = TrueCount * LHSRatio; 1823 } 1824 1825 cond.begin(*this); 1826 EmitBlock(LHSBlock); 1827 incrementProfileCounter(CondOp); 1828 { 1829 ApplyDebugLocation DL(*this, Cond); 1830 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1831 LHSScaledTrueCount, LH); 1832 } 1833 cond.end(*this); 1834 1835 cond.begin(*this); 1836 EmitBlock(RHSBlock); 1837 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1838 TrueCount - LHSScaledTrueCount, LH); 1839 cond.end(*this); 1840 1841 return; 1842 } 1843 1844 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1845 // Conditional operator handling can give us a throw expression as a 1846 // condition for a case like: 1847 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1848 // Fold this to: 1849 // br(c, throw x, br(y, t, f)) 1850 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1851 return; 1852 } 1853 1854 // Emit the code with the fully general case. 1855 llvm::Value *CondV; 1856 { 1857 ApplyDebugLocation DL(*this, Cond); 1858 CondV = EvaluateExprAsBool(Cond); 1859 } 1860 1861 llvm::MDNode *Weights = nullptr; 1862 llvm::MDNode *Unpredictable = nullptr; 1863 1864 // If the branch has a condition wrapped by __builtin_unpredictable, 1865 // create metadata that specifies that the branch is unpredictable. 1866 // Don't bother if not optimizing because that metadata would not be used. 1867 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1868 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1869 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1870 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1871 llvm::MDBuilder MDHelper(getLLVMContext()); 1872 Unpredictable = MDHelper.createUnpredictable(); 1873 } 1874 } 1875 1876 // If there is a Likelihood knowledge for the cond, lower it. 1877 // Note that if not optimizing this won't emit anything. 1878 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1879 if (CondV != NewCondV) 1880 CondV = NewCondV; 1881 else { 1882 // Otherwise, lower profile counts. Note that we do this even at -O0. 1883 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1884 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1885 } 1886 1887 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1888 } 1889 1890 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1891 /// specified stmt yet. 1892 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1893 CGM.ErrorUnsupported(S, Type); 1894 } 1895 1896 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1897 /// variable-length array whose elements have a non-zero bit-pattern. 1898 /// 1899 /// \param baseType the inner-most element type of the array 1900 /// \param src - a char* pointing to the bit-pattern for a single 1901 /// base element of the array 1902 /// \param sizeInChars - the total size of the VLA, in chars 1903 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1904 Address dest, Address src, 1905 llvm::Value *sizeInChars) { 1906 CGBuilderTy &Builder = CGF.Builder; 1907 1908 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1909 llvm::Value *baseSizeInChars 1910 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1911 1912 Address begin = 1913 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1914 llvm::Value *end = Builder.CreateInBoundsGEP( 1915 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1916 1917 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1918 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1919 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1920 1921 // Make a loop over the VLA. C99 guarantees that the VLA element 1922 // count must be nonzero. 1923 CGF.EmitBlock(loopBB); 1924 1925 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1926 cur->addIncoming(begin.getPointer(), originBB); 1927 1928 CharUnits curAlign = 1929 dest.getAlignment().alignmentOfArrayElement(baseSize); 1930 1931 // memcpy the individual element bit-pattern. 1932 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1933 /*volatile*/ false); 1934 1935 // Go to the next element. 1936 llvm::Value *next = 1937 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1938 1939 // Leave if that's the end of the VLA. 1940 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1941 Builder.CreateCondBr(done, contBB, loopBB); 1942 cur->addIncoming(next, loopBB); 1943 1944 CGF.EmitBlock(contBB); 1945 } 1946 1947 void 1948 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1949 // Ignore empty classes in C++. 1950 if (getLangOpts().CPlusPlus) { 1951 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1952 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1953 return; 1954 } 1955 } 1956 1957 // Cast the dest ptr to the appropriate i8 pointer type. 1958 if (DestPtr.getElementType() != Int8Ty) 1959 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1960 1961 // Get size and alignment info for this aggregate. 1962 CharUnits size = getContext().getTypeSizeInChars(Ty); 1963 1964 llvm::Value *SizeVal; 1965 const VariableArrayType *vla; 1966 1967 // Don't bother emitting a zero-byte memset. 1968 if (size.isZero()) { 1969 // But note that getTypeInfo returns 0 for a VLA. 1970 if (const VariableArrayType *vlaType = 1971 dyn_cast_or_null<VariableArrayType>( 1972 getContext().getAsArrayType(Ty))) { 1973 auto VlaSize = getVLASize(vlaType); 1974 SizeVal = VlaSize.NumElts; 1975 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1976 if (!eltSize.isOne()) 1977 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1978 vla = vlaType; 1979 } else { 1980 return; 1981 } 1982 } else { 1983 SizeVal = CGM.getSize(size); 1984 vla = nullptr; 1985 } 1986 1987 // If the type contains a pointer to data member we can't memset it to zero. 1988 // Instead, create a null constant and copy it to the destination. 1989 // TODO: there are other patterns besides zero that we can usefully memset, 1990 // like -1, which happens to be the pattern used by member-pointers. 1991 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1992 // For a VLA, emit a single element, then splat that over the VLA. 1993 if (vla) Ty = getContext().getBaseElementType(vla); 1994 1995 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1996 1997 llvm::GlobalVariable *NullVariable = 1998 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1999 /*isConstant=*/true, 2000 llvm::GlobalVariable::PrivateLinkage, 2001 NullConstant, Twine()); 2002 CharUnits NullAlign = DestPtr.getAlignment(); 2003 NullVariable->setAlignment(NullAlign.getAsAlign()); 2004 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2005 NullAlign); 2006 2007 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2008 2009 // Get and call the appropriate llvm.memcpy overload. 2010 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2011 return; 2012 } 2013 2014 // Otherwise, just memset the whole thing to zero. This is legal 2015 // because in LLVM, all default initializers (other than the ones we just 2016 // handled above) are guaranteed to have a bit pattern of all zeros. 2017 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2018 } 2019 2020 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2021 // Make sure that there is a block for the indirect goto. 2022 if (!IndirectBranch) 2023 GetIndirectGotoBlock(); 2024 2025 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2026 2027 // Make sure the indirect branch includes all of the address-taken blocks. 2028 IndirectBranch->addDestination(BB); 2029 return llvm::BlockAddress::get(CurFn, BB); 2030 } 2031 2032 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2033 // If we already made the indirect branch for indirect goto, return its block. 2034 if (IndirectBranch) return IndirectBranch->getParent(); 2035 2036 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2037 2038 // Create the PHI node that indirect gotos will add entries to. 2039 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2040 "indirect.goto.dest"); 2041 2042 // Create the indirect branch instruction. 2043 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2044 return IndirectBranch->getParent(); 2045 } 2046 2047 /// Computes the length of an array in elements, as well as the base 2048 /// element type and a properly-typed first element pointer. 2049 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2050 QualType &baseType, 2051 Address &addr) { 2052 const ArrayType *arrayType = origArrayType; 2053 2054 // If it's a VLA, we have to load the stored size. Note that 2055 // this is the size of the VLA in bytes, not its size in elements. 2056 llvm::Value *numVLAElements = nullptr; 2057 if (isa<VariableArrayType>(arrayType)) { 2058 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2059 2060 // Walk into all VLAs. This doesn't require changes to addr, 2061 // which has type T* where T is the first non-VLA element type. 2062 do { 2063 QualType elementType = arrayType->getElementType(); 2064 arrayType = getContext().getAsArrayType(elementType); 2065 2066 // If we only have VLA components, 'addr' requires no adjustment. 2067 if (!arrayType) { 2068 baseType = elementType; 2069 return numVLAElements; 2070 } 2071 } while (isa<VariableArrayType>(arrayType)); 2072 2073 // We get out here only if we find a constant array type 2074 // inside the VLA. 2075 } 2076 2077 // We have some number of constant-length arrays, so addr should 2078 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2079 // down to the first element of addr. 2080 SmallVector<llvm::Value*, 8> gepIndices; 2081 2082 // GEP down to the array type. 2083 llvm::ConstantInt *zero = Builder.getInt32(0); 2084 gepIndices.push_back(zero); 2085 2086 uint64_t countFromCLAs = 1; 2087 QualType eltType; 2088 2089 llvm::ArrayType *llvmArrayType = 2090 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2091 while (llvmArrayType) { 2092 assert(isa<ConstantArrayType>(arrayType)); 2093 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2094 == llvmArrayType->getNumElements()); 2095 2096 gepIndices.push_back(zero); 2097 countFromCLAs *= llvmArrayType->getNumElements(); 2098 eltType = arrayType->getElementType(); 2099 2100 llvmArrayType = 2101 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2102 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2103 assert((!llvmArrayType || arrayType) && 2104 "LLVM and Clang types are out-of-synch"); 2105 } 2106 2107 if (arrayType) { 2108 // From this point onwards, the Clang array type has been emitted 2109 // as some other type (probably a packed struct). Compute the array 2110 // size, and just emit the 'begin' expression as a bitcast. 2111 while (arrayType) { 2112 countFromCLAs *= 2113 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2114 eltType = arrayType->getElementType(); 2115 arrayType = getContext().getAsArrayType(eltType); 2116 } 2117 2118 llvm::Type *baseType = ConvertType(eltType); 2119 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2120 } else { 2121 // Create the actual GEP. 2122 addr = Address(Builder.CreateInBoundsGEP( 2123 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2124 ConvertTypeForMem(eltType), 2125 addr.getAlignment()); 2126 } 2127 2128 baseType = eltType; 2129 2130 llvm::Value *numElements 2131 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2132 2133 // If we had any VLA dimensions, factor them in. 2134 if (numVLAElements) 2135 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2136 2137 return numElements; 2138 } 2139 2140 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2141 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2142 assert(vla && "type was not a variable array type!"); 2143 return getVLASize(vla); 2144 } 2145 2146 CodeGenFunction::VlaSizePair 2147 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2148 // The number of elements so far; always size_t. 2149 llvm::Value *numElements = nullptr; 2150 2151 QualType elementType; 2152 do { 2153 elementType = type->getElementType(); 2154 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2155 assert(vlaSize && "no size for VLA!"); 2156 assert(vlaSize->getType() == SizeTy); 2157 2158 if (!numElements) { 2159 numElements = vlaSize; 2160 } else { 2161 // It's undefined behavior if this wraps around, so mark it that way. 2162 // FIXME: Teach -fsanitize=undefined to trap this. 2163 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2164 } 2165 } while ((type = getContext().getAsVariableArrayType(elementType))); 2166 2167 return { numElements, elementType }; 2168 } 2169 2170 CodeGenFunction::VlaSizePair 2171 CodeGenFunction::getVLAElements1D(QualType type) { 2172 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2173 assert(vla && "type was not a variable array type!"); 2174 return getVLAElements1D(vla); 2175 } 2176 2177 CodeGenFunction::VlaSizePair 2178 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2179 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2180 assert(VlaSize && "no size for VLA!"); 2181 assert(VlaSize->getType() == SizeTy); 2182 return { VlaSize, Vla->getElementType() }; 2183 } 2184 2185 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2186 assert(type->isVariablyModifiedType() && 2187 "Must pass variably modified type to EmitVLASizes!"); 2188 2189 EnsureInsertPoint(); 2190 2191 // We're going to walk down into the type and look for VLA 2192 // expressions. 2193 do { 2194 assert(type->isVariablyModifiedType()); 2195 2196 const Type *ty = type.getTypePtr(); 2197 switch (ty->getTypeClass()) { 2198 2199 #define TYPE(Class, Base) 2200 #define ABSTRACT_TYPE(Class, Base) 2201 #define NON_CANONICAL_TYPE(Class, Base) 2202 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2204 #include "clang/AST/TypeNodes.inc" 2205 llvm_unreachable("unexpected dependent type!"); 2206 2207 // These types are never variably-modified. 2208 case Type::Builtin: 2209 case Type::Complex: 2210 case Type::Vector: 2211 case Type::ExtVector: 2212 case Type::ConstantMatrix: 2213 case Type::Record: 2214 case Type::Enum: 2215 case Type::Elaborated: 2216 case Type::Using: 2217 case Type::TemplateSpecialization: 2218 case Type::ObjCTypeParam: 2219 case Type::ObjCObject: 2220 case Type::ObjCInterface: 2221 case Type::ObjCObjectPointer: 2222 case Type::BitInt: 2223 llvm_unreachable("type class is never variably-modified!"); 2224 2225 case Type::Adjusted: 2226 type = cast<AdjustedType>(ty)->getAdjustedType(); 2227 break; 2228 2229 case Type::Decayed: 2230 type = cast<DecayedType>(ty)->getPointeeType(); 2231 break; 2232 2233 case Type::Pointer: 2234 type = cast<PointerType>(ty)->getPointeeType(); 2235 break; 2236 2237 case Type::BlockPointer: 2238 type = cast<BlockPointerType>(ty)->getPointeeType(); 2239 break; 2240 2241 case Type::LValueReference: 2242 case Type::RValueReference: 2243 type = cast<ReferenceType>(ty)->getPointeeType(); 2244 break; 2245 2246 case Type::MemberPointer: 2247 type = cast<MemberPointerType>(ty)->getPointeeType(); 2248 break; 2249 2250 case Type::ConstantArray: 2251 case Type::IncompleteArray: 2252 // Losing element qualification here is fine. 2253 type = cast<ArrayType>(ty)->getElementType(); 2254 break; 2255 2256 case Type::VariableArray: { 2257 // Losing element qualification here is fine. 2258 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2259 2260 // Unknown size indication requires no size computation. 2261 // Otherwise, evaluate and record it. 2262 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2263 // It's possible that we might have emitted this already, 2264 // e.g. with a typedef and a pointer to it. 2265 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2266 if (!entry) { 2267 llvm::Value *size = EmitScalarExpr(sizeExpr); 2268 2269 // C11 6.7.6.2p5: 2270 // If the size is an expression that is not an integer constant 2271 // expression [...] each time it is evaluated it shall have a value 2272 // greater than zero. 2273 if (SanOpts.has(SanitizerKind::VLABound)) { 2274 SanitizerScope SanScope(this); 2275 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2276 clang::QualType SEType = sizeExpr->getType(); 2277 llvm::Value *CheckCondition = 2278 SEType->isSignedIntegerType() 2279 ? Builder.CreateICmpSGT(size, Zero) 2280 : Builder.CreateICmpUGT(size, Zero); 2281 llvm::Constant *StaticArgs[] = { 2282 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2283 EmitCheckTypeDescriptor(SEType)}; 2284 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2285 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2286 } 2287 2288 // Always zexting here would be wrong if it weren't 2289 // undefined behavior to have a negative bound. 2290 // FIXME: What about when size's type is larger than size_t? 2291 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2292 } 2293 } 2294 type = vat->getElementType(); 2295 break; 2296 } 2297 2298 case Type::FunctionProto: 2299 case Type::FunctionNoProto: 2300 type = cast<FunctionType>(ty)->getReturnType(); 2301 break; 2302 2303 case Type::Paren: 2304 case Type::TypeOf: 2305 case Type::UnaryTransform: 2306 case Type::Attributed: 2307 case Type::SubstTemplateTypeParm: 2308 case Type::MacroQualified: 2309 // Keep walking after single level desugaring. 2310 type = type.getSingleStepDesugaredType(getContext()); 2311 break; 2312 2313 case Type::Typedef: 2314 case Type::Decltype: 2315 case Type::Auto: 2316 case Type::DeducedTemplateSpecialization: 2317 // Stop walking: nothing to do. 2318 return; 2319 2320 case Type::TypeOfExpr: 2321 // Stop walking: emit typeof expression. 2322 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2323 return; 2324 2325 case Type::Atomic: 2326 type = cast<AtomicType>(ty)->getValueType(); 2327 break; 2328 2329 case Type::Pipe: 2330 type = cast<PipeType>(ty)->getElementType(); 2331 break; 2332 } 2333 } while (type->isVariablyModifiedType()); 2334 } 2335 2336 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2337 if (getContext().getBuiltinVaListType()->isArrayType()) 2338 return EmitPointerWithAlignment(E); 2339 return EmitLValue(E).getAddress(*this); 2340 } 2341 2342 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2343 return EmitLValue(E).getAddress(*this); 2344 } 2345 2346 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2347 const APValue &Init) { 2348 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2349 if (CGDebugInfo *Dbg = getDebugInfo()) 2350 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2351 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2352 } 2353 2354 CodeGenFunction::PeepholeProtection 2355 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2356 // At the moment, the only aggressive peephole we do in IR gen 2357 // is trunc(zext) folding, but if we add more, we can easily 2358 // extend this protection. 2359 2360 if (!rvalue.isScalar()) return PeepholeProtection(); 2361 llvm::Value *value = rvalue.getScalarVal(); 2362 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2363 2364 // Just make an extra bitcast. 2365 assert(HaveInsertPoint()); 2366 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2367 Builder.GetInsertBlock()); 2368 2369 PeepholeProtection protection; 2370 protection.Inst = inst; 2371 return protection; 2372 } 2373 2374 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2375 if (!protection.Inst) return; 2376 2377 // In theory, we could try to duplicate the peepholes now, but whatever. 2378 protection.Inst->eraseFromParent(); 2379 } 2380 2381 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2382 QualType Ty, SourceLocation Loc, 2383 SourceLocation AssumptionLoc, 2384 llvm::Value *Alignment, 2385 llvm::Value *OffsetValue) { 2386 if (Alignment->getType() != IntPtrTy) 2387 Alignment = 2388 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2389 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2390 OffsetValue = 2391 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2392 llvm::Value *TheCheck = nullptr; 2393 if (SanOpts.has(SanitizerKind::Alignment)) { 2394 llvm::Value *PtrIntValue = 2395 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2396 2397 if (OffsetValue) { 2398 bool IsOffsetZero = false; 2399 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2400 IsOffsetZero = CI->isZero(); 2401 2402 if (!IsOffsetZero) 2403 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2404 } 2405 2406 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2407 llvm::Value *Mask = 2408 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2409 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2410 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2411 } 2412 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2413 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2414 2415 if (!SanOpts.has(SanitizerKind::Alignment)) 2416 return; 2417 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2418 OffsetValue, TheCheck, Assumption); 2419 } 2420 2421 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2422 const Expr *E, 2423 SourceLocation AssumptionLoc, 2424 llvm::Value *Alignment, 2425 llvm::Value *OffsetValue) { 2426 if (auto *CE = dyn_cast<CastExpr>(E)) 2427 E = CE->getSubExprAsWritten(); 2428 QualType Ty = E->getType(); 2429 SourceLocation Loc = E->getExprLoc(); 2430 2431 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2432 OffsetValue); 2433 } 2434 2435 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2436 llvm::Value *AnnotatedVal, 2437 StringRef AnnotationStr, 2438 SourceLocation Location, 2439 const AnnotateAttr *Attr) { 2440 SmallVector<llvm::Value *, 5> Args = { 2441 AnnotatedVal, 2442 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2443 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2444 CGM.EmitAnnotationLineNo(Location), 2445 }; 2446 if (Attr) 2447 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2448 return Builder.CreateCall(AnnotationFn, Args); 2449 } 2450 2451 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2452 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2453 // FIXME We create a new bitcast for every annotation because that's what 2454 // llvm-gcc was doing. 2455 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2456 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2457 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2458 I->getAnnotation(), D->getLocation(), I); 2459 } 2460 2461 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2462 Address Addr) { 2463 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2464 llvm::Value *V = Addr.getPointer(); 2465 llvm::Type *VTy = V->getType(); 2466 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2467 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2468 llvm::PointerType *IntrinTy = 2469 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2470 llvm::Function *F = 2471 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2472 2473 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2474 // FIXME Always emit the cast inst so we can differentiate between 2475 // annotation on the first field of a struct and annotation on the struct 2476 // itself. 2477 if (VTy != IntrinTy) 2478 V = Builder.CreateBitCast(V, IntrinTy); 2479 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2480 V = Builder.CreateBitCast(V, VTy); 2481 } 2482 2483 return Address(V, Addr.getAlignment()); 2484 } 2485 2486 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2487 2488 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2489 : CGF(CGF) { 2490 assert(!CGF->IsSanitizerScope); 2491 CGF->IsSanitizerScope = true; 2492 } 2493 2494 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2495 CGF->IsSanitizerScope = false; 2496 } 2497 2498 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2499 const llvm::Twine &Name, 2500 llvm::BasicBlock *BB, 2501 llvm::BasicBlock::iterator InsertPt) const { 2502 LoopStack.InsertHelper(I); 2503 if (IsSanitizerScope) 2504 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2505 } 2506 2507 void CGBuilderInserter::InsertHelper( 2508 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2509 llvm::BasicBlock::iterator InsertPt) const { 2510 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2511 if (CGF) 2512 CGF->InsertHelper(I, Name, BB, InsertPt); 2513 } 2514 2515 // Emits an error if we don't have a valid set of target features for the 2516 // called function. 2517 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2518 const FunctionDecl *TargetDecl) { 2519 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2520 } 2521 2522 // Emits an error if we don't have a valid set of target features for the 2523 // called function. 2524 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2525 const FunctionDecl *TargetDecl) { 2526 // Early exit if this is an indirect call. 2527 if (!TargetDecl) 2528 return; 2529 2530 // Get the current enclosing function if it exists. If it doesn't 2531 // we can't check the target features anyhow. 2532 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2533 if (!FD) 2534 return; 2535 2536 // Grab the required features for the call. For a builtin this is listed in 2537 // the td file with the default cpu, for an always_inline function this is any 2538 // listed cpu and any listed features. 2539 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2540 std::string MissingFeature; 2541 llvm::StringMap<bool> CallerFeatureMap; 2542 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2543 if (BuiltinID) { 2544 StringRef FeatureList( 2545 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2546 // Return if the builtin doesn't have any required features. 2547 if (FeatureList.empty()) 2548 return; 2549 assert(!FeatureList.contains(' ') && "Space in feature list"); 2550 TargetFeatures TF(CallerFeatureMap); 2551 if (!TF.hasRequiredFeatures(FeatureList)) 2552 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2553 << TargetDecl->getDeclName() << FeatureList; 2554 } else if (!TargetDecl->isMultiVersion() && 2555 TargetDecl->hasAttr<TargetAttr>()) { 2556 // Get the required features for the callee. 2557 2558 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2559 ParsedTargetAttr ParsedAttr = 2560 CGM.getContext().filterFunctionTargetAttrs(TD); 2561 2562 SmallVector<StringRef, 1> ReqFeatures; 2563 llvm::StringMap<bool> CalleeFeatureMap; 2564 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2565 2566 for (const auto &F : ParsedAttr.Features) { 2567 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2568 ReqFeatures.push_back(StringRef(F).substr(1)); 2569 } 2570 2571 for (const auto &F : CalleeFeatureMap) { 2572 // Only positive features are "required". 2573 if (F.getValue()) 2574 ReqFeatures.push_back(F.getKey()); 2575 } 2576 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2577 if (!CallerFeatureMap.lookup(Feature)) { 2578 MissingFeature = Feature.str(); 2579 return false; 2580 } 2581 return true; 2582 })) 2583 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2584 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2585 } 2586 } 2587 2588 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2589 if (!CGM.getCodeGenOpts().SanitizeStats) 2590 return; 2591 2592 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2593 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2594 CGM.getSanStats().create(IRB, SSK); 2595 } 2596 2597 llvm::Value * 2598 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2599 llvm::Value *Condition = nullptr; 2600 2601 if (!RO.Conditions.Architecture.empty()) 2602 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2603 2604 if (!RO.Conditions.Features.empty()) { 2605 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2606 Condition = 2607 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2608 } 2609 return Condition; 2610 } 2611 2612 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2613 llvm::Function *Resolver, 2614 CGBuilderTy &Builder, 2615 llvm::Function *FuncToReturn, 2616 bool SupportsIFunc) { 2617 if (SupportsIFunc) { 2618 Builder.CreateRet(FuncToReturn); 2619 return; 2620 } 2621 2622 llvm::SmallVector<llvm::Value *, 10> Args; 2623 llvm::for_each(Resolver->args(), 2624 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2625 2626 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2627 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2628 2629 if (Resolver->getReturnType()->isVoidTy()) 2630 Builder.CreateRetVoid(); 2631 else 2632 Builder.CreateRet(Result); 2633 } 2634 2635 void CodeGenFunction::EmitMultiVersionResolver( 2636 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2637 assert(getContext().getTargetInfo().getTriple().isX86() && 2638 "Only implemented for x86 targets"); 2639 2640 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2641 2642 // Main function's basic block. 2643 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2644 Builder.SetInsertPoint(CurBlock); 2645 EmitX86CpuInit(); 2646 2647 for (const MultiVersionResolverOption &RO : Options) { 2648 Builder.SetInsertPoint(CurBlock); 2649 llvm::Value *Condition = FormResolverCondition(RO); 2650 2651 // The 'default' or 'generic' case. 2652 if (!Condition) { 2653 assert(&RO == Options.end() - 1 && 2654 "Default or Generic case must be last"); 2655 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2656 SupportsIFunc); 2657 return; 2658 } 2659 2660 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2661 CGBuilderTy RetBuilder(*this, RetBlock); 2662 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2663 SupportsIFunc); 2664 CurBlock = createBasicBlock("resolver_else", Resolver); 2665 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2666 } 2667 2668 // If no generic/default, emit an unreachable. 2669 Builder.SetInsertPoint(CurBlock); 2670 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2671 TrapCall->setDoesNotReturn(); 2672 TrapCall->setDoesNotThrow(); 2673 Builder.CreateUnreachable(); 2674 Builder.ClearInsertionPoint(); 2675 } 2676 2677 // Loc - where the diagnostic will point, where in the source code this 2678 // alignment has failed. 2679 // SecondaryLoc - if present (will be present if sufficiently different from 2680 // Loc), the diagnostic will additionally point a "Note:" to this location. 2681 // It should be the location where the __attribute__((assume_aligned)) 2682 // was written e.g. 2683 void CodeGenFunction::emitAlignmentAssumptionCheck( 2684 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2685 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2686 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2687 llvm::Instruction *Assumption) { 2688 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2689 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2690 llvm::Intrinsic::getDeclaration( 2691 Builder.GetInsertBlock()->getParent()->getParent(), 2692 llvm::Intrinsic::assume) && 2693 "Assumption should be a call to llvm.assume()."); 2694 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2695 "Assumption should be the last instruction of the basic block, " 2696 "since the basic block is still being generated."); 2697 2698 if (!SanOpts.has(SanitizerKind::Alignment)) 2699 return; 2700 2701 // Don't check pointers to volatile data. The behavior here is implementation- 2702 // defined. 2703 if (Ty->getPointeeType().isVolatileQualified()) 2704 return; 2705 2706 // We need to temorairly remove the assumption so we can insert the 2707 // sanitizer check before it, else the check will be dropped by optimizations. 2708 Assumption->removeFromParent(); 2709 2710 { 2711 SanitizerScope SanScope(this); 2712 2713 if (!OffsetValue) 2714 OffsetValue = Builder.getInt1(false); // no offset. 2715 2716 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2717 EmitCheckSourceLocation(SecondaryLoc), 2718 EmitCheckTypeDescriptor(Ty)}; 2719 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2720 EmitCheckValue(Alignment), 2721 EmitCheckValue(OffsetValue)}; 2722 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2723 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2724 } 2725 2726 // We are now in the (new, empty) "cont" basic block. 2727 // Reintroduce the assumption. 2728 Builder.Insert(Assumption); 2729 // FIXME: Assumption still has it's original basic block as it's Parent. 2730 } 2731 2732 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2733 if (CGDebugInfo *DI = getDebugInfo()) 2734 return DI->SourceLocToDebugLoc(Location); 2735 2736 return llvm::DebugLoc(); 2737 } 2738 2739 llvm::Value * 2740 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2741 Stmt::Likelihood LH) { 2742 switch (LH) { 2743 case Stmt::LH_None: 2744 return Cond; 2745 case Stmt::LH_Likely: 2746 case Stmt::LH_Unlikely: 2747 // Don't generate llvm.expect on -O0 as the backend won't use it for 2748 // anything. 2749 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2750 return Cond; 2751 llvm::Type *CondTy = Cond->getType(); 2752 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2753 llvm::Function *FnExpect = 2754 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2755 llvm::Value *ExpectedValueOfCond = 2756 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2757 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2758 Cond->getName() + ".expval"); 2759 } 2760 llvm_unreachable("Unknown Likelihood"); 2761 } 2762