1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
113   llvm::FastMathFlags FMF;
114   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
115   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
116   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
117   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
118   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
119   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
120   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
121   Builder.setFastMathFlags(FMF);
122 }
123 
124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
125                                                   const Expr *E)
126     : CGF(CGF) {
127   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
128 }
129 
130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
131                                                   FPOptions FPFeatures)
132     : CGF(CGF) {
133   ConstructorHelper(FPFeatures);
134 }
135 
136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
137   OldFPFeatures = CGF.CurFPFeatures;
138   CGF.CurFPFeatures = FPFeatures;
139 
140   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
141   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
142 
143   if (OldFPFeatures == FPFeatures)
144     return;
145 
146   FMFGuard.emplace(CGF.Builder);
147 
148   llvm::RoundingMode NewRoundingBehavior =
149       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getFPExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   if (ShouldSkipSanitizerInstrumentation())
387     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
388 
389   // Emit debug descriptor for function end.
390   if (CGDebugInfo *DI = getDebugInfo())
391     DI->EmitFunctionEnd(Builder, CurFn);
392 
393   // Reset the debug location to that of the simple 'return' expression, if any
394   // rather than that of the end of the function's scope '}'.
395   ApplyDebugLocation AL(*this, Loc);
396   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
397   EmitEndEHSpec(CurCodeDecl);
398 
399   assert(EHStack.empty() &&
400          "did not remove all scopes from cleanup stack!");
401 
402   // If someone did an indirect goto, emit the indirect goto block at the end of
403   // the function.
404   if (IndirectBranch) {
405     EmitBlock(IndirectBranch->getParent());
406     Builder.ClearInsertionPoint();
407   }
408 
409   // If some of our locals escaped, insert a call to llvm.localescape in the
410   // entry block.
411   if (!EscapedLocals.empty()) {
412     // Invert the map from local to index into a simple vector. There should be
413     // no holes.
414     SmallVector<llvm::Value *, 4> EscapeArgs;
415     EscapeArgs.resize(EscapedLocals.size());
416     for (auto &Pair : EscapedLocals)
417       EscapeArgs[Pair.second] = Pair.first;
418     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
419         &CGM.getModule(), llvm::Intrinsic::localescape);
420     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
421   }
422 
423   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
424   llvm::Instruction *Ptr = AllocaInsertPt;
425   AllocaInsertPt = nullptr;
426   Ptr->eraseFromParent();
427 
428   // PostAllocaInsertPt, if created, was lazily created when it was required,
429   // remove it now since it was just created for our own convenience.
430   if (PostAllocaInsertPt) {
431     llvm::Instruction *PostPtr = PostAllocaInsertPt;
432     PostAllocaInsertPt = nullptr;
433     PostPtr->eraseFromParent();
434   }
435 
436   // If someone took the address of a label but never did an indirect goto, we
437   // made a zero entry PHI node, which is illegal, zap it now.
438   if (IndirectBranch) {
439     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
440     if (PN->getNumIncomingValues() == 0) {
441       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
442       PN->eraseFromParent();
443     }
444   }
445 
446   EmitIfUsed(*this, EHResumeBlock);
447   EmitIfUsed(*this, TerminateLandingPad);
448   EmitIfUsed(*this, TerminateHandler);
449   EmitIfUsed(*this, UnreachableBlock);
450 
451   for (const auto &FuncletAndParent : TerminateFunclets)
452     EmitIfUsed(*this, FuncletAndParent.second);
453 
454   if (CGM.getCodeGenOpts().EmitDeclMetadata)
455     EmitDeclMetadata();
456 
457   for (const auto &R : DeferredReplacements) {
458     if (llvm::Value *Old = R.first) {
459       Old->replaceAllUsesWith(R.second);
460       cast<llvm::Instruction>(Old)->eraseFromParent();
461     }
462   }
463   DeferredReplacements.clear();
464 
465   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
466   // PHIs if the current function is a coroutine. We don't do it for all
467   // functions as it may result in slight increase in numbers of instructions
468   // if compiled with no optimizations. We do it for coroutine as the lifetime
469   // of CleanupDestSlot alloca make correct coroutine frame building very
470   // difficult.
471   if (NormalCleanupDest.isValid() && isCoroutine()) {
472     llvm::DominatorTree DT(*CurFn);
473     llvm::PromoteMemToReg(
474         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
475     NormalCleanupDest = Address::invalid();
476   }
477 
478   // Scan function arguments for vector width.
479   for (llvm::Argument &A : CurFn->args())
480     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
481       LargestVectorWidth =
482           std::max((uint64_t)LargestVectorWidth,
483                    VT->getPrimitiveSizeInBits().getKnownMinSize());
484 
485   // Update vector width based on return type.
486   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
487     LargestVectorWidth =
488         std::max((uint64_t)LargestVectorWidth,
489                  VT->getPrimitiveSizeInBits().getKnownMinSize());
490 
491   // Add the required-vector-width attribute. This contains the max width from:
492   // 1. min-vector-width attribute used in the source program.
493   // 2. Any builtins used that have a vector width specified.
494   // 3. Values passed in and out of inline assembly.
495   // 4. Width of vector arguments and return types for this function.
496   // 5. Width of vector aguments and return types for functions called by this
497   //    function.
498   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499 
500   // Add vscale_range attribute if appropriate.
501   Optional<std::pair<unsigned, unsigned>> VScaleRange =
502       getContext().getTargetInfo().getVScaleRange(getLangOpts());
503   if (VScaleRange) {
504     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505         getLLVMContext(), VScaleRange.getValue().first,
506         VScaleRange.getValue().second));
507   }
508 
509   // If we generated an unreachable return block, delete it now.
510   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
511     Builder.ClearInsertionPoint();
512     ReturnBlock.getBlock()->eraseFromParent();
513   }
514   if (ReturnValue.isValid()) {
515     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
516     if (RetAlloca && RetAlloca->use_empty()) {
517       RetAlloca->eraseFromParent();
518       ReturnValue = Address::invalid();
519     }
520   }
521 }
522 
523 /// ShouldInstrumentFunction - Return true if the current function should be
524 /// instrumented with __cyg_profile_func_* calls
525 bool CodeGenFunction::ShouldInstrumentFunction() {
526   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
527       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
528       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
529     return false;
530   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
531     return false;
532   return true;
533 }
534 
535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
536   if (!CurFuncDecl)
537     return false;
538   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
539 }
540 
541 /// ShouldXRayInstrument - Return true if the current function should be
542 /// instrumented with XRay nop sleds.
543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545 }
546 
547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553               XRayInstrKind::Custom);
554 }
555 
556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560               XRayInstrKind::Typed);
561 }
562 
563 llvm::Constant *
564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
565                                             llvm::Constant *Addr) {
566   // Addresses stored in prologue data can't require run-time fixups and must
567   // be PC-relative. Run-time fixups are undesirable because they necessitate
568   // writable text segments, which are unsafe. And absolute addresses are
569   // undesirable because they break PIE mode.
570 
571   // Add a layer of indirection through a private global. Taking its address
572   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
573   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
574                                       /*isConstant=*/true,
575                                       llvm::GlobalValue::PrivateLinkage, Addr);
576 
577   // Create a PC-relative address.
578   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
579   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
580   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
581   return (IntPtrTy == Int32Ty)
582              ? PCRelAsInt
583              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
584 }
585 
586 llvm::Value *
587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
588                                           llvm::Value *EncodedAddr) {
589   // Reconstruct the address of the global.
590   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
591   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
592   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
593   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
594 
595   // Load the original pointer through the global.
596   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
597                             "decoded_addr");
598 }
599 
600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
601                                                llvm::Function *Fn)
602 {
603   if (!FD->hasAttr<OpenCLKernelAttr>())
604     return;
605 
606   llvm::LLVMContext &Context = getLLVMContext();
607 
608   CGM.GenOpenCLArgMetadata(Fn, FD, this);
609 
610   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
611     QualType HintQTy = A->getTypeHint();
612     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
613     bool IsSignedInteger =
614         HintQTy->isSignedIntegerType() ||
615         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
618             CGM.getTypes().ConvertType(A->getTypeHint()))),
619         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
620             llvm::IntegerType::get(Context, 32),
621             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
622     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
630     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 
633   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
639   }
640 
641   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
642           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
643     llvm::Metadata *AttrMDArgs[] = {
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
645     Fn->setMetadata("intel_reqd_sub_group_size",
646                     llvm::MDNode::get(Context, AttrMDArgs));
647   }
648 }
649 
650 /// Determine whether the function F ends with a return stmt.
651 static bool endsWithReturn(const Decl* F) {
652   const Stmt *Body = nullptr;
653   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
654     Body = FD->getBody();
655   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
656     Body = OMD->getBody();
657 
658   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
659     auto LastStmt = CS->body_rbegin();
660     if (LastStmt != CS->body_rend())
661       return isa<ReturnStmt>(*LastStmt);
662   }
663   return false;
664 }
665 
666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
667   if (SanOpts.has(SanitizerKind::Thread)) {
668     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
669     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
670   }
671 }
672 
673 /// Check if the return value of this function requires sanitization.
674 bool CodeGenFunction::requiresReturnValueCheck() const {
675   return requiresReturnValueNullabilityCheck() ||
676          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
677           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
678 }
679 
680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
681   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
682   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
683       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
684       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
685     return false;
686 
687   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
688     return false;
689 
690   if (MD->getNumParams() == 2) {
691     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
692     if (!PT || !PT->isVoidPointerType() ||
693         !PT->getPointeeType().isConstQualified())
694       return false;
695   }
696 
697   return true;
698 }
699 
700 /// Return the UBSan prologue signature for \p FD if one is available.
701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
702                                             const FunctionDecl *FD) {
703   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
704     if (!MD->isStatic())
705       return nullptr;
706   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
707 }
708 
709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
710                                     llvm::Function *Fn,
711                                     const CGFunctionInfo &FnInfo,
712                                     const FunctionArgList &Args,
713                                     SourceLocation Loc,
714                                     SourceLocation StartLoc) {
715   assert(!CurFn &&
716          "Do not use a CodeGenFunction object for more than one function");
717 
718   const Decl *D = GD.getDecl();
719 
720   DidCallStackSave = false;
721   CurCodeDecl = D;
722   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
723   if (FD && FD->usesSEHTry())
724     CurSEHParent = FD;
725   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
726   FnRetTy = RetTy;
727   CurFn = Fn;
728   CurFnInfo = &FnInfo;
729   assert(CurFn->isDeclaration() && "Function already has body?");
730 
731   // If this function is ignored for any of the enabled sanitizers,
732   // disable the sanitizer for the function.
733   do {
734 #define SANITIZER(NAME, ID)                                                    \
735   if (SanOpts.empty())                                                         \
736     break;                                                                     \
737   if (SanOpts.has(SanitizerKind::ID))                                          \
738     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
739       SanOpts.set(SanitizerKind::ID, false);
740 
741 #include "clang/Basic/Sanitizers.def"
742 #undef SANITIZER
743   } while (false);
744 
745   if (D) {
746     bool NoSanitizeCoverage = false;
747 
748     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
749       // Apply the no_sanitize* attributes to SanOpts.
750       SanitizerMask mask = Attr->getMask();
751       SanOpts.Mask &= ~mask;
752       if (mask & SanitizerKind::Address)
753         SanOpts.set(SanitizerKind::KernelAddress, false);
754       if (mask & SanitizerKind::KernelAddress)
755         SanOpts.set(SanitizerKind::Address, false);
756       if (mask & SanitizerKind::HWAddress)
757         SanOpts.set(SanitizerKind::KernelHWAddress, false);
758       if (mask & SanitizerKind::KernelHWAddress)
759         SanOpts.set(SanitizerKind::HWAddress, false);
760 
761       // SanitizeCoverage is not handled by SanOpts.
762       if (Attr->hasCoverage())
763         NoSanitizeCoverage = true;
764     }
765 
766     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
767       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
768   }
769 
770   // Apply sanitizer attributes to the function.
771   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
772     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
773   if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
774                        SanitizerKind::KernelHWAddress))
775     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
776   if (SanOpts.has(SanitizerKind::MemTag))
777     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
778   if (SanOpts.has(SanitizerKind::Thread))
779     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
780   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
781     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
782   if (SanOpts.has(SanitizerKind::SafeStack))
783     Fn->addFnAttr(llvm::Attribute::SafeStack);
784   if (SanOpts.has(SanitizerKind::ShadowCallStack))
785     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
786 
787   // Apply fuzzing attribute to the function.
788   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
789     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
790 
791   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
792   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
793   if (SanOpts.has(SanitizerKind::Thread)) {
794     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
795       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
796       if (OMD->getMethodFamily() == OMF_dealloc ||
797           OMD->getMethodFamily() == OMF_initialize ||
798           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
799         markAsIgnoreThreadCheckingAtRuntime(Fn);
800       }
801     }
802   }
803 
804   // Ignore unrelated casts in STL allocate() since the allocator must cast
805   // from void* to T* before object initialization completes. Don't match on the
806   // namespace because not all allocators are in std::
807   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
808     if (matchesStlAllocatorFn(D, getContext()))
809       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
810   }
811 
812   // Ignore null checks in coroutine functions since the coroutines passes
813   // are not aware of how to move the extra UBSan instructions across the split
814   // coroutine boundaries.
815   if (D && SanOpts.has(SanitizerKind::Null))
816     if (FD && FD->getBody() &&
817         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
818       SanOpts.Mask &= ~SanitizerKind::Null;
819 
820   // Apply xray attributes to the function (as a string, for now)
821   bool AlwaysXRayAttr = false;
822   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
823     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
824             XRayInstrKind::FunctionEntry) ||
825         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
826             XRayInstrKind::FunctionExit)) {
827       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
828         Fn->addFnAttr("function-instrument", "xray-always");
829         AlwaysXRayAttr = true;
830       }
831       if (XRayAttr->neverXRayInstrument())
832         Fn->addFnAttr("function-instrument", "xray-never");
833       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
834         if (ShouldXRayInstrumentFunction())
835           Fn->addFnAttr("xray-log-args",
836                         llvm::utostr(LogArgs->getArgumentCount()));
837     }
838   } else {
839     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
840       Fn->addFnAttr(
841           "xray-instruction-threshold",
842           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
843   }
844 
845   if (ShouldXRayInstrumentFunction()) {
846     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
847       Fn->addFnAttr("xray-ignore-loops");
848 
849     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
850             XRayInstrKind::FunctionExit))
851       Fn->addFnAttr("xray-skip-exit");
852 
853     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
854             XRayInstrKind::FunctionEntry))
855       Fn->addFnAttr("xray-skip-entry");
856 
857     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
858     if (FuncGroups > 1) {
859       auto FuncName = llvm::makeArrayRef<uint8_t>(
860           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
861       auto Group = crc32(FuncName) % FuncGroups;
862       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
863           !AlwaysXRayAttr)
864         Fn->addFnAttr("function-instrument", "xray-never");
865     }
866   }
867 
868   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
869     if (CGM.isProfileInstrExcluded(Fn, Loc))
870       Fn->addFnAttr(llvm::Attribute::NoProfile);
871 
872   unsigned Count, Offset;
873   if (const auto *Attr =
874           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
875     Count = Attr->getCount();
876     Offset = Attr->getOffset();
877   } else {
878     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
879     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
880   }
881   if (Count && Offset <= Count) {
882     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
883     if (Offset)
884       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
885   }
886   // Instruct that functions for COFF/CodeView targets should start with a
887   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
888   // backends as they don't need it -- instructions on these architectures are
889   // always atomically patchable at runtime.
890   if (CGM.getCodeGenOpts().HotPatch &&
891       getContext().getTargetInfo().getTriple().isX86())
892     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
893 
894   // Add no-jump-tables value.
895   if (CGM.getCodeGenOpts().NoUseJumpTables)
896     Fn->addFnAttr("no-jump-tables", "true");
897 
898   // Add no-inline-line-tables value.
899   if (CGM.getCodeGenOpts().NoInlineLineTables)
900     Fn->addFnAttr("no-inline-line-tables");
901 
902   // Add profile-sample-accurate value.
903   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
904     Fn->addFnAttr("profile-sample-accurate");
905 
906   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
907     Fn->addFnAttr("use-sample-profile");
908 
909   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
910     Fn->addFnAttr("cfi-canonical-jump-table");
911 
912   if (D && D->hasAttr<NoProfileFunctionAttr>())
913     Fn->addFnAttr(llvm::Attribute::NoProfile);
914 
915   if (FD && getLangOpts().OpenCL) {
916     // Add metadata for a kernel function.
917     EmitOpenCLKernelMetadata(FD, Fn);
918   }
919 
920   // If we are checking function types, emit a function type signature as
921   // prologue data.
922   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
923     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
924       // Remove any (C++17) exception specifications, to allow calling e.g. a
925       // noexcept function through a non-noexcept pointer.
926       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
927           FD->getType(), EST_None);
928       llvm::Constant *FTRTTIConst =
929           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
930       llvm::Constant *FTRTTIConstEncoded =
931           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
932       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
933       llvm::Constant *PrologueStructConst =
934           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
935       Fn->setPrologueData(PrologueStructConst);
936     }
937   }
938 
939   // If we're checking nullability, we need to know whether we can check the
940   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
941   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
942     auto Nullability = FnRetTy->getNullability(getContext());
943     if (Nullability && *Nullability == NullabilityKind::NonNull) {
944       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
945             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
946         RetValNullabilityPrecondition =
947             llvm::ConstantInt::getTrue(getLLVMContext());
948     }
949   }
950 
951   // If we're in C++ mode and the function name is "main", it is guaranteed
952   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
953   // used within a program").
954   //
955   // OpenCL C 2.0 v2.2-11 s6.9.i:
956   //     Recursion is not supported.
957   //
958   // SYCL v1.2.1 s3.10:
959   //     kernels cannot include RTTI information, exception classes,
960   //     recursive code, virtual functions or make use of C++ libraries that
961   //     are not compiled for the device.
962   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
963              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
964              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
965     Fn->addFnAttr(llvm::Attribute::NoRecurse);
966 
967   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
968   llvm::fp::ExceptionBehavior FPExceptionBehavior =
969       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
970   Builder.setDefaultConstrainedRounding(RM);
971   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
972   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
973       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
974                RM != llvm::RoundingMode::NearestTiesToEven))) {
975     Builder.setIsFPConstrained(true);
976     Fn->addFnAttr(llvm::Attribute::StrictFP);
977   }
978 
979   // If a custom alignment is used, force realigning to this alignment on
980   // any main function which certainly will need it.
981   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
982              CGM.getCodeGenOpts().StackAlignment))
983     Fn->addFnAttr("stackrealign");
984 
985   // "main" doesn't need to zero out call-used registers.
986   if (FD && FD->isMain())
987     Fn->removeFnAttr("zero-call-used-regs");
988 
989   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
990 
991   // Create a marker to make it easy to insert allocas into the entryblock
992   // later.  Don't create this with the builder, because we don't want it
993   // folded.
994   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
995   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
996 
997   ReturnBlock = getJumpDestInCurrentScope("return");
998 
999   Builder.SetInsertPoint(EntryBB);
1000 
1001   // If we're checking the return value, allocate space for a pointer to a
1002   // precise source location of the checked return statement.
1003   if (requiresReturnValueCheck()) {
1004     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1005     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1006                         ReturnLocation);
1007   }
1008 
1009   // Emit subprogram debug descriptor.
1010   if (CGDebugInfo *DI = getDebugInfo()) {
1011     // Reconstruct the type from the argument list so that implicit parameters,
1012     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1013     // convention.
1014     DI->emitFunctionStart(GD, Loc, StartLoc,
1015                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1016                           CurFuncIsThunk);
1017   }
1018 
1019   if (ShouldInstrumentFunction()) {
1020     if (CGM.getCodeGenOpts().InstrumentFunctions)
1021       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1022     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1023       CurFn->addFnAttr("instrument-function-entry-inlined",
1024                        "__cyg_profile_func_enter");
1025     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1026       CurFn->addFnAttr("instrument-function-entry-inlined",
1027                        "__cyg_profile_func_enter_bare");
1028   }
1029 
1030   // Since emitting the mcount call here impacts optimizations such as function
1031   // inlining, we just add an attribute to insert a mcount call in backend.
1032   // The attribute "counting-function" is set to mcount function name which is
1033   // architecture dependent.
1034   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1035     // Calls to fentry/mcount should not be generated if function has
1036     // the no_instrument_function attribute.
1037     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1038       if (CGM.getCodeGenOpts().CallFEntry)
1039         Fn->addFnAttr("fentry-call", "true");
1040       else {
1041         Fn->addFnAttr("instrument-function-entry-inlined",
1042                       getTarget().getMCountName());
1043       }
1044       if (CGM.getCodeGenOpts().MNopMCount) {
1045         if (!CGM.getCodeGenOpts().CallFEntry)
1046           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1047             << "-mnop-mcount" << "-mfentry";
1048         Fn->addFnAttr("mnop-mcount");
1049       }
1050 
1051       if (CGM.getCodeGenOpts().RecordMCount) {
1052         if (!CGM.getCodeGenOpts().CallFEntry)
1053           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1054             << "-mrecord-mcount" << "-mfentry";
1055         Fn->addFnAttr("mrecord-mcount");
1056       }
1057     }
1058   }
1059 
1060   if (CGM.getCodeGenOpts().PackedStack) {
1061     if (getContext().getTargetInfo().getTriple().getArch() !=
1062         llvm::Triple::systemz)
1063       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1064         << "-mpacked-stack";
1065     Fn->addFnAttr("packed-stack");
1066   }
1067 
1068   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1069       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1070     Fn->addFnAttr("warn-stack-size",
1071                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1072 
1073   if (RetTy->isVoidType()) {
1074     // Void type; nothing to return.
1075     ReturnValue = Address::invalid();
1076 
1077     // Count the implicit return.
1078     if (!endsWithReturn(D))
1079       ++NumReturnExprs;
1080   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1081     // Indirect return; emit returned value directly into sret slot.
1082     // This reduces code size, and affects correctness in C++.
1083     auto AI = CurFn->arg_begin();
1084     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1085       ++AI;
1086     ReturnValue = Address(&*AI, ConvertType(RetTy),
1087                           CurFnInfo->getReturnInfo().getIndirectAlign());
1088     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1089       ReturnValuePointer =
1090           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1091       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1092                               ReturnValue.getPointer(), Int8PtrTy),
1093                           ReturnValuePointer);
1094     }
1095   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1096              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1097     // Load the sret pointer from the argument struct and return into that.
1098     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1099     llvm::Function::arg_iterator EI = CurFn->arg_end();
1100     --EI;
1101     llvm::Value *Addr = Builder.CreateStructGEP(
1102         EI->getType()->getPointerElementType(), &*EI, Idx);
1103     llvm::Type *Ty =
1104         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1105     ReturnValuePointer = Address(Addr, getPointerAlign());
1106     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1107     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1108   } else {
1109     ReturnValue = CreateIRTemp(RetTy, "retval");
1110 
1111     // Tell the epilog emitter to autorelease the result.  We do this
1112     // now so that various specialized functions can suppress it
1113     // during their IR-generation.
1114     if (getLangOpts().ObjCAutoRefCount &&
1115         !CurFnInfo->isReturnsRetained() &&
1116         RetTy->isObjCRetainableType())
1117       AutoreleaseResult = true;
1118   }
1119 
1120   EmitStartEHSpec(CurCodeDecl);
1121 
1122   PrologueCleanupDepth = EHStack.stable_begin();
1123 
1124   // Emit OpenMP specific initialization of the device functions.
1125   if (getLangOpts().OpenMP && CurCodeDecl)
1126     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1127 
1128   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1129 
1130   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1131     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1132     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1133     if (MD->getParent()->isLambda() &&
1134         MD->getOverloadedOperator() == OO_Call) {
1135       // We're in a lambda; figure out the captures.
1136       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1137                                         LambdaThisCaptureField);
1138       if (LambdaThisCaptureField) {
1139         // If the lambda captures the object referred to by '*this' - either by
1140         // value or by reference, make sure CXXThisValue points to the correct
1141         // object.
1142 
1143         // Get the lvalue for the field (which is a copy of the enclosing object
1144         // or contains the address of the enclosing object).
1145         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1146         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1147           // If the enclosing object was captured by value, just use its address.
1148           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1149         } else {
1150           // Load the lvalue pointed to by the field, since '*this' was captured
1151           // by reference.
1152           CXXThisValue =
1153               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1154         }
1155       }
1156       for (auto *FD : MD->getParent()->fields()) {
1157         if (FD->hasCapturedVLAType()) {
1158           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1159                                            SourceLocation()).getScalarVal();
1160           auto VAT = FD->getCapturedVLAType();
1161           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1162         }
1163       }
1164     } else {
1165       // Not in a lambda; just use 'this' from the method.
1166       // FIXME: Should we generate a new load for each use of 'this'?  The
1167       // fast register allocator would be happier...
1168       CXXThisValue = CXXABIThisValue;
1169     }
1170 
1171     // Check the 'this' pointer once per function, if it's available.
1172     if (CXXABIThisValue) {
1173       SanitizerSet SkippedChecks;
1174       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1175       QualType ThisTy = MD->getThisType();
1176 
1177       // If this is the call operator of a lambda with no capture-default, it
1178       // may have a static invoker function, which may call this operator with
1179       // a null 'this' pointer.
1180       if (isLambdaCallOperator(MD) &&
1181           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1182         SkippedChecks.set(SanitizerKind::Null, true);
1183 
1184       EmitTypeCheck(
1185           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1186           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1187     }
1188   }
1189 
1190   // If any of the arguments have a variably modified type, make sure to
1191   // emit the type size.
1192   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1193        i != e; ++i) {
1194     const VarDecl *VD = *i;
1195 
1196     // Dig out the type as written from ParmVarDecls; it's unclear whether
1197     // the standard (C99 6.9.1p10) requires this, but we're following the
1198     // precedent set by gcc.
1199     QualType Ty;
1200     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1201       Ty = PVD->getOriginalType();
1202     else
1203       Ty = VD->getType();
1204 
1205     if (Ty->isVariablyModifiedType())
1206       EmitVariablyModifiedType(Ty);
1207   }
1208   // Emit a location at the end of the prologue.
1209   if (CGDebugInfo *DI = getDebugInfo())
1210     DI->EmitLocation(Builder, StartLoc);
1211 
1212   // TODO: Do we need to handle this in two places like we do with
1213   // target-features/target-cpu?
1214   if (CurFuncDecl)
1215     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1216       LargestVectorWidth = VecWidth->getVectorWidth();
1217 }
1218 
1219 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1220   incrementProfileCounter(Body);
1221   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1222     EmitCompoundStmtWithoutScope(*S);
1223   else
1224     EmitStmt(Body);
1225 
1226   // This is checked after emitting the function body so we know if there
1227   // are any permitted infinite loops.
1228   if (checkIfFunctionMustProgress())
1229     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1230 }
1231 
1232 /// When instrumenting to collect profile data, the counts for some blocks
1233 /// such as switch cases need to not include the fall-through counts, so
1234 /// emit a branch around the instrumentation code. When not instrumenting,
1235 /// this just calls EmitBlock().
1236 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1237                                                const Stmt *S) {
1238   llvm::BasicBlock *SkipCountBB = nullptr;
1239   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1240     // When instrumenting for profiling, the fallthrough to certain
1241     // statements needs to skip over the instrumentation code so that we
1242     // get an accurate count.
1243     SkipCountBB = createBasicBlock("skipcount");
1244     EmitBranch(SkipCountBB);
1245   }
1246   EmitBlock(BB);
1247   uint64_t CurrentCount = getCurrentProfileCount();
1248   incrementProfileCounter(S);
1249   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1250   if (SkipCountBB)
1251     EmitBlock(SkipCountBB);
1252 }
1253 
1254 /// Tries to mark the given function nounwind based on the
1255 /// non-existence of any throwing calls within it.  We believe this is
1256 /// lightweight enough to do at -O0.
1257 static void TryMarkNoThrow(llvm::Function *F) {
1258   // LLVM treats 'nounwind' on a function as part of the type, so we
1259   // can't do this on functions that can be overwritten.
1260   if (F->isInterposable()) return;
1261 
1262   for (llvm::BasicBlock &BB : *F)
1263     for (llvm::Instruction &I : BB)
1264       if (I.mayThrow())
1265         return;
1266 
1267   F->setDoesNotThrow();
1268 }
1269 
1270 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1271                                                FunctionArgList &Args) {
1272   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1273   QualType ResTy = FD->getReturnType();
1274 
1275   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1276   if (MD && MD->isInstance()) {
1277     if (CGM.getCXXABI().HasThisReturn(GD))
1278       ResTy = MD->getThisType();
1279     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1280       ResTy = CGM.getContext().VoidPtrTy;
1281     CGM.getCXXABI().buildThisParam(*this, Args);
1282   }
1283 
1284   // The base version of an inheriting constructor whose constructed base is a
1285   // virtual base is not passed any arguments (because it doesn't actually call
1286   // the inherited constructor).
1287   bool PassedParams = true;
1288   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1289     if (auto Inherited = CD->getInheritedConstructor())
1290       PassedParams =
1291           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1292 
1293   if (PassedParams) {
1294     for (auto *Param : FD->parameters()) {
1295       Args.push_back(Param);
1296       if (!Param->hasAttr<PassObjectSizeAttr>())
1297         continue;
1298 
1299       auto *Implicit = ImplicitParamDecl::Create(
1300           getContext(), Param->getDeclContext(), Param->getLocation(),
1301           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1302       SizeArguments[Param] = Implicit;
1303       Args.push_back(Implicit);
1304     }
1305   }
1306 
1307   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1308     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1309 
1310   return ResTy;
1311 }
1312 
1313 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1314                                    const CGFunctionInfo &FnInfo) {
1315   assert(Fn && "generating code for null Function");
1316   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1317   CurGD = GD;
1318 
1319   FunctionArgList Args;
1320   QualType ResTy = BuildFunctionArgList(GD, Args);
1321 
1322   if (FD->isInlineBuiltinDeclaration()) {
1323     // When generating code for a builtin with an inline declaration, use a
1324     // mangled name to hold the actual body, while keeping an external
1325     // definition in case the function pointer is referenced somewhere.
1326     std::string FDInlineName = (Fn->getName() + ".inline").str();
1327     llvm::Module *M = Fn->getParent();
1328     llvm::Function *Clone = M->getFunction(FDInlineName);
1329     if (!Clone) {
1330       Clone = llvm::Function::Create(Fn->getFunctionType(),
1331                                      llvm::GlobalValue::InternalLinkage,
1332                                      Fn->getAddressSpace(), FDInlineName, M);
1333       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1334     }
1335     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1336     Fn = Clone;
1337   } else {
1338     // Detect the unusual situation where an inline version is shadowed by a
1339     // non-inline version. In that case we should pick the external one
1340     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1341     // to detect that situation before we reach codegen, so do some late
1342     // replacement.
1343     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1344          PD = PD->getPreviousDecl()) {
1345       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1346         std::string FDInlineName = (Fn->getName() + ".inline").str();
1347         llvm::Module *M = Fn->getParent();
1348         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1349           Clone->replaceAllUsesWith(Fn);
1350           Clone->eraseFromParent();
1351         }
1352         break;
1353       }
1354     }
1355   }
1356 
1357   // Check if we should generate debug info for this function.
1358   if (FD->hasAttr<NoDebugAttr>()) {
1359     // Clear non-distinct debug info that was possibly attached to the function
1360     // due to an earlier declaration without the nodebug attribute
1361     Fn->setSubprogram(nullptr);
1362     // Disable debug info indefinitely for this function
1363     DebugInfo = nullptr;
1364   }
1365 
1366   // The function might not have a body if we're generating thunks for a
1367   // function declaration.
1368   SourceRange BodyRange;
1369   if (Stmt *Body = FD->getBody())
1370     BodyRange = Body->getSourceRange();
1371   else
1372     BodyRange = FD->getLocation();
1373   CurEHLocation = BodyRange.getEnd();
1374 
1375   // Use the location of the start of the function to determine where
1376   // the function definition is located. By default use the location
1377   // of the declaration as the location for the subprogram. A function
1378   // may lack a declaration in the source code if it is created by code
1379   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1380   SourceLocation Loc = FD->getLocation();
1381 
1382   // If this is a function specialization then use the pattern body
1383   // as the location for the function.
1384   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1385     if (SpecDecl->hasBody(SpecDecl))
1386       Loc = SpecDecl->getLocation();
1387 
1388   Stmt *Body = FD->getBody();
1389 
1390   if (Body) {
1391     // Coroutines always emit lifetime markers.
1392     if (isa<CoroutineBodyStmt>(Body))
1393       ShouldEmitLifetimeMarkers = true;
1394 
1395     // Initialize helper which will detect jumps which can cause invalid
1396     // lifetime markers.
1397     if (ShouldEmitLifetimeMarkers)
1398       Bypasses.Init(Body);
1399   }
1400 
1401   // Emit the standard function prologue.
1402   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1403 
1404   // Save parameters for coroutine function.
1405   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1406     for (const auto *ParamDecl : FD->parameters())
1407       FnArgs.push_back(ParamDecl);
1408 
1409   // Generate the body of the function.
1410   PGO.assignRegionCounters(GD, CurFn);
1411   if (isa<CXXDestructorDecl>(FD))
1412     EmitDestructorBody(Args);
1413   else if (isa<CXXConstructorDecl>(FD))
1414     EmitConstructorBody(Args);
1415   else if (getLangOpts().CUDA &&
1416            !getLangOpts().CUDAIsDevice &&
1417            FD->hasAttr<CUDAGlobalAttr>())
1418     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1419   else if (isa<CXXMethodDecl>(FD) &&
1420            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1421     // The lambda static invoker function is special, because it forwards or
1422     // clones the body of the function call operator (but is actually static).
1423     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1424   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1425              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1426               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1427     // Implicit copy-assignment gets the same special treatment as implicit
1428     // copy-constructors.
1429     emitImplicitAssignmentOperatorBody(Args);
1430   } else if (Body) {
1431     EmitFunctionBody(Body);
1432   } else
1433     llvm_unreachable("no definition for emitted function");
1434 
1435   // C++11 [stmt.return]p2:
1436   //   Flowing off the end of a function [...] results in undefined behavior in
1437   //   a value-returning function.
1438   // C11 6.9.1p12:
1439   //   If the '}' that terminates a function is reached, and the value of the
1440   //   function call is used by the caller, the behavior is undefined.
1441   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1442       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1443     bool ShouldEmitUnreachable =
1444         CGM.getCodeGenOpts().StrictReturn ||
1445         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1446     if (SanOpts.has(SanitizerKind::Return)) {
1447       SanitizerScope SanScope(this);
1448       llvm::Value *IsFalse = Builder.getFalse();
1449       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1450                 SanitizerHandler::MissingReturn,
1451                 EmitCheckSourceLocation(FD->getLocation()), None);
1452     } else if (ShouldEmitUnreachable) {
1453       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1454         EmitTrapCall(llvm::Intrinsic::trap);
1455     }
1456     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1457       Builder.CreateUnreachable();
1458       Builder.ClearInsertionPoint();
1459     }
1460   }
1461 
1462   // Emit the standard function epilogue.
1463   FinishFunction(BodyRange.getEnd());
1464 
1465   // If we haven't marked the function nothrow through other means, do
1466   // a quick pass now to see if we can.
1467   if (!CurFn->doesNotThrow())
1468     TryMarkNoThrow(CurFn);
1469 }
1470 
1471 /// ContainsLabel - Return true if the statement contains a label in it.  If
1472 /// this statement is not executed normally, it not containing a label means
1473 /// that we can just remove the code.
1474 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1475   // Null statement, not a label!
1476   if (!S) return false;
1477 
1478   // If this is a label, we have to emit the code, consider something like:
1479   // if (0) {  ...  foo:  bar(); }  goto foo;
1480   //
1481   // TODO: If anyone cared, we could track __label__'s, since we know that you
1482   // can't jump to one from outside their declared region.
1483   if (isa<LabelStmt>(S))
1484     return true;
1485 
1486   // If this is a case/default statement, and we haven't seen a switch, we have
1487   // to emit the code.
1488   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1489     return true;
1490 
1491   // If this is a switch statement, we want to ignore cases below it.
1492   if (isa<SwitchStmt>(S))
1493     IgnoreCaseStmts = true;
1494 
1495   // Scan subexpressions for verboten labels.
1496   for (const Stmt *SubStmt : S->children())
1497     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1498       return true;
1499 
1500   return false;
1501 }
1502 
1503 /// containsBreak - Return true if the statement contains a break out of it.
1504 /// If the statement (recursively) contains a switch or loop with a break
1505 /// inside of it, this is fine.
1506 bool CodeGenFunction::containsBreak(const Stmt *S) {
1507   // Null statement, not a label!
1508   if (!S) return false;
1509 
1510   // If this is a switch or loop that defines its own break scope, then we can
1511   // include it and anything inside of it.
1512   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1513       isa<ForStmt>(S))
1514     return false;
1515 
1516   if (isa<BreakStmt>(S))
1517     return true;
1518 
1519   // Scan subexpressions for verboten breaks.
1520   for (const Stmt *SubStmt : S->children())
1521     if (containsBreak(SubStmt))
1522       return true;
1523 
1524   return false;
1525 }
1526 
1527 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1528   if (!S) return false;
1529 
1530   // Some statement kinds add a scope and thus never add a decl to the current
1531   // scope. Note, this list is longer than the list of statements that might
1532   // have an unscoped decl nested within them, but this way is conservatively
1533   // correct even if more statement kinds are added.
1534   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1535       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1536       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1537       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1538     return false;
1539 
1540   if (isa<DeclStmt>(S))
1541     return true;
1542 
1543   for (const Stmt *SubStmt : S->children())
1544     if (mightAddDeclToScope(SubStmt))
1545       return true;
1546 
1547   return false;
1548 }
1549 
1550 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1551 /// to a constant, or if it does but contains a label, return false.  If it
1552 /// constant folds return true and set the boolean result in Result.
1553 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1554                                                    bool &ResultBool,
1555                                                    bool AllowLabels) {
1556   llvm::APSInt ResultInt;
1557   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1558     return false;
1559 
1560   ResultBool = ResultInt.getBoolValue();
1561   return true;
1562 }
1563 
1564 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1565 /// to a constant, or if it does but contains a label, return false.  If it
1566 /// constant folds return true and set the folded value.
1567 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1568                                                    llvm::APSInt &ResultInt,
1569                                                    bool AllowLabels) {
1570   // FIXME: Rename and handle conversion of other evaluatable things
1571   // to bool.
1572   Expr::EvalResult Result;
1573   if (!Cond->EvaluateAsInt(Result, getContext()))
1574     return false;  // Not foldable, not integer or not fully evaluatable.
1575 
1576   llvm::APSInt Int = Result.Val.getInt();
1577   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1578     return false;  // Contains a label.
1579 
1580   ResultInt = Int;
1581   return true;
1582 }
1583 
1584 /// Determine whether the given condition is an instrumentable condition
1585 /// (i.e. no "&&" or "||").
1586 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1587   // Bypass simplistic logical-NOT operator before determining whether the
1588   // condition contains any other logical operator.
1589   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1590     if (UnOp->getOpcode() == UO_LNot)
1591       C = UnOp->getSubExpr();
1592 
1593   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1594   return (!BOp || !BOp->isLogicalOp());
1595 }
1596 
1597 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1598 /// increments a profile counter based on the semantics of the given logical
1599 /// operator opcode.  This is used to instrument branch condition coverage for
1600 /// logical operators.
1601 void CodeGenFunction::EmitBranchToCounterBlock(
1602     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1603     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1604     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1605   // If not instrumenting, just emit a branch.
1606   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1607   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1608     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1609 
1610   llvm::BasicBlock *ThenBlock = nullptr;
1611   llvm::BasicBlock *ElseBlock = nullptr;
1612   llvm::BasicBlock *NextBlock = nullptr;
1613 
1614   // Create the block we'll use to increment the appropriate counter.
1615   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1616 
1617   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1618   // means we need to evaluate the condition and increment the counter on TRUE:
1619   //
1620   // if (Cond)
1621   //   goto CounterIncrBlock;
1622   // else
1623   //   goto FalseBlock;
1624   //
1625   // CounterIncrBlock:
1626   //   Counter++;
1627   //   goto TrueBlock;
1628 
1629   if (LOp == BO_LAnd) {
1630     ThenBlock = CounterIncrBlock;
1631     ElseBlock = FalseBlock;
1632     NextBlock = TrueBlock;
1633   }
1634 
1635   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1636   // we need to evaluate the condition and increment the counter on FALSE:
1637   //
1638   // if (Cond)
1639   //   goto TrueBlock;
1640   // else
1641   //   goto CounterIncrBlock;
1642   //
1643   // CounterIncrBlock:
1644   //   Counter++;
1645   //   goto FalseBlock;
1646 
1647   else if (LOp == BO_LOr) {
1648     ThenBlock = TrueBlock;
1649     ElseBlock = CounterIncrBlock;
1650     NextBlock = FalseBlock;
1651   } else {
1652     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1653   }
1654 
1655   // Emit Branch based on condition.
1656   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1657 
1658   // Emit the block containing the counter increment(s).
1659   EmitBlock(CounterIncrBlock);
1660 
1661   // Increment corresponding counter; if index not provided, use Cond as index.
1662   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1663 
1664   // Go to the next block.
1665   EmitBranch(NextBlock);
1666 }
1667 
1668 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1669 /// statement) to the specified blocks.  Based on the condition, this might try
1670 /// to simplify the codegen of the conditional based on the branch.
1671 /// \param LH The value of the likelihood attribute on the True branch.
1672 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1673                                            llvm::BasicBlock *TrueBlock,
1674                                            llvm::BasicBlock *FalseBlock,
1675                                            uint64_t TrueCount,
1676                                            Stmt::Likelihood LH) {
1677   Cond = Cond->IgnoreParens();
1678 
1679   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1680 
1681     // Handle X && Y in a condition.
1682     if (CondBOp->getOpcode() == BO_LAnd) {
1683       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1684       // folded if the case was simple enough.
1685       bool ConstantBool = false;
1686       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1687           ConstantBool) {
1688         // br(1 && X) -> br(X).
1689         incrementProfileCounter(CondBOp);
1690         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1691                                         FalseBlock, TrueCount, LH);
1692       }
1693 
1694       // If we have "X && 1", simplify the code to use an uncond branch.
1695       // "X && 0" would have been constant folded to 0.
1696       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1697           ConstantBool) {
1698         // br(X && 1) -> br(X).
1699         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1700                                         FalseBlock, TrueCount, LH, CondBOp);
1701       }
1702 
1703       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1704       // want to jump to the FalseBlock.
1705       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1706       // The counter tells us how often we evaluate RHS, and all of TrueCount
1707       // can be propagated to that branch.
1708       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1709 
1710       ConditionalEvaluation eval(*this);
1711       {
1712         ApplyDebugLocation DL(*this, Cond);
1713         // Propagate the likelihood attribute like __builtin_expect
1714         // __builtin_expect(X && Y, 1) -> X and Y are likely
1715         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1716         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1717                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1718         EmitBlock(LHSTrue);
1719       }
1720 
1721       incrementProfileCounter(CondBOp);
1722       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1723 
1724       // Any temporaries created here are conditional.
1725       eval.begin(*this);
1726       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1727                                FalseBlock, TrueCount, LH);
1728       eval.end(*this);
1729 
1730       return;
1731     }
1732 
1733     if (CondBOp->getOpcode() == BO_LOr) {
1734       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1735       // folded if the case was simple enough.
1736       bool ConstantBool = false;
1737       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1738           !ConstantBool) {
1739         // br(0 || X) -> br(X).
1740         incrementProfileCounter(CondBOp);
1741         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1742                                         FalseBlock, TrueCount, LH);
1743       }
1744 
1745       // If we have "X || 0", simplify the code to use an uncond branch.
1746       // "X || 1" would have been constant folded to 1.
1747       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1748           !ConstantBool) {
1749         // br(X || 0) -> br(X).
1750         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1751                                         FalseBlock, TrueCount, LH, CondBOp);
1752       }
1753 
1754       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1755       // want to jump to the TrueBlock.
1756       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1757       // We have the count for entry to the RHS and for the whole expression
1758       // being true, so we can divy up True count between the short circuit and
1759       // the RHS.
1760       uint64_t LHSCount =
1761           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1762       uint64_t RHSCount = TrueCount - LHSCount;
1763 
1764       ConditionalEvaluation eval(*this);
1765       {
1766         // Propagate the likelihood attribute like __builtin_expect
1767         // __builtin_expect(X || Y, 1) -> only Y is likely
1768         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1769         ApplyDebugLocation DL(*this, Cond);
1770         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1771                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1772         EmitBlock(LHSFalse);
1773       }
1774 
1775       incrementProfileCounter(CondBOp);
1776       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1777 
1778       // Any temporaries created here are conditional.
1779       eval.begin(*this);
1780       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1781                                RHSCount, LH);
1782 
1783       eval.end(*this);
1784 
1785       return;
1786     }
1787   }
1788 
1789   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1790     // br(!x, t, f) -> br(x, f, t)
1791     if (CondUOp->getOpcode() == UO_LNot) {
1792       // Negate the count.
1793       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1794       // The values of the enum are chosen to make this negation possible.
1795       LH = static_cast<Stmt::Likelihood>(-LH);
1796       // Negate the condition and swap the destination blocks.
1797       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1798                                   FalseCount, LH);
1799     }
1800   }
1801 
1802   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1803     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1804     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1805     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1806 
1807     // The ConditionalOperator itself has no likelihood information for its
1808     // true and false branches. This matches the behavior of __builtin_expect.
1809     ConditionalEvaluation cond(*this);
1810     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1811                          getProfileCount(CondOp), Stmt::LH_None);
1812 
1813     // When computing PGO branch weights, we only know the overall count for
1814     // the true block. This code is essentially doing tail duplication of the
1815     // naive code-gen, introducing new edges for which counts are not
1816     // available. Divide the counts proportionally between the LHS and RHS of
1817     // the conditional operator.
1818     uint64_t LHSScaledTrueCount = 0;
1819     if (TrueCount) {
1820       double LHSRatio =
1821           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1822       LHSScaledTrueCount = TrueCount * LHSRatio;
1823     }
1824 
1825     cond.begin(*this);
1826     EmitBlock(LHSBlock);
1827     incrementProfileCounter(CondOp);
1828     {
1829       ApplyDebugLocation DL(*this, Cond);
1830       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1831                            LHSScaledTrueCount, LH);
1832     }
1833     cond.end(*this);
1834 
1835     cond.begin(*this);
1836     EmitBlock(RHSBlock);
1837     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1838                          TrueCount - LHSScaledTrueCount, LH);
1839     cond.end(*this);
1840 
1841     return;
1842   }
1843 
1844   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1845     // Conditional operator handling can give us a throw expression as a
1846     // condition for a case like:
1847     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1848     // Fold this to:
1849     //   br(c, throw x, br(y, t, f))
1850     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1851     return;
1852   }
1853 
1854   // Emit the code with the fully general case.
1855   llvm::Value *CondV;
1856   {
1857     ApplyDebugLocation DL(*this, Cond);
1858     CondV = EvaluateExprAsBool(Cond);
1859   }
1860 
1861   llvm::MDNode *Weights = nullptr;
1862   llvm::MDNode *Unpredictable = nullptr;
1863 
1864   // If the branch has a condition wrapped by __builtin_unpredictable,
1865   // create metadata that specifies that the branch is unpredictable.
1866   // Don't bother if not optimizing because that metadata would not be used.
1867   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1868   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1869     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1870     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1871       llvm::MDBuilder MDHelper(getLLVMContext());
1872       Unpredictable = MDHelper.createUnpredictable();
1873     }
1874   }
1875 
1876   // If there is a Likelihood knowledge for the cond, lower it.
1877   // Note that if not optimizing this won't emit anything.
1878   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1879   if (CondV != NewCondV)
1880     CondV = NewCondV;
1881   else {
1882     // Otherwise, lower profile counts. Note that we do this even at -O0.
1883     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1884     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1885   }
1886 
1887   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1888 }
1889 
1890 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1891 /// specified stmt yet.
1892 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1893   CGM.ErrorUnsupported(S, Type);
1894 }
1895 
1896 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1897 /// variable-length array whose elements have a non-zero bit-pattern.
1898 ///
1899 /// \param baseType the inner-most element type of the array
1900 /// \param src - a char* pointing to the bit-pattern for a single
1901 /// base element of the array
1902 /// \param sizeInChars - the total size of the VLA, in chars
1903 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1904                                Address dest, Address src,
1905                                llvm::Value *sizeInChars) {
1906   CGBuilderTy &Builder = CGF.Builder;
1907 
1908   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1909   llvm::Value *baseSizeInChars
1910     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1911 
1912   Address begin =
1913     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1914   llvm::Value *end = Builder.CreateInBoundsGEP(
1915       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1916 
1917   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1918   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1919   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1920 
1921   // Make a loop over the VLA.  C99 guarantees that the VLA element
1922   // count must be nonzero.
1923   CGF.EmitBlock(loopBB);
1924 
1925   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1926   cur->addIncoming(begin.getPointer(), originBB);
1927 
1928   CharUnits curAlign =
1929     dest.getAlignment().alignmentOfArrayElement(baseSize);
1930 
1931   // memcpy the individual element bit-pattern.
1932   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1933                        /*volatile*/ false);
1934 
1935   // Go to the next element.
1936   llvm::Value *next =
1937     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1938 
1939   // Leave if that's the end of the VLA.
1940   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1941   Builder.CreateCondBr(done, contBB, loopBB);
1942   cur->addIncoming(next, loopBB);
1943 
1944   CGF.EmitBlock(contBB);
1945 }
1946 
1947 void
1948 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1949   // Ignore empty classes in C++.
1950   if (getLangOpts().CPlusPlus) {
1951     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1952       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1953         return;
1954     }
1955   }
1956 
1957   // Cast the dest ptr to the appropriate i8 pointer type.
1958   if (DestPtr.getElementType() != Int8Ty)
1959     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1960 
1961   // Get size and alignment info for this aggregate.
1962   CharUnits size = getContext().getTypeSizeInChars(Ty);
1963 
1964   llvm::Value *SizeVal;
1965   const VariableArrayType *vla;
1966 
1967   // Don't bother emitting a zero-byte memset.
1968   if (size.isZero()) {
1969     // But note that getTypeInfo returns 0 for a VLA.
1970     if (const VariableArrayType *vlaType =
1971           dyn_cast_or_null<VariableArrayType>(
1972                                           getContext().getAsArrayType(Ty))) {
1973       auto VlaSize = getVLASize(vlaType);
1974       SizeVal = VlaSize.NumElts;
1975       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1976       if (!eltSize.isOne())
1977         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1978       vla = vlaType;
1979     } else {
1980       return;
1981     }
1982   } else {
1983     SizeVal = CGM.getSize(size);
1984     vla = nullptr;
1985   }
1986 
1987   // If the type contains a pointer to data member we can't memset it to zero.
1988   // Instead, create a null constant and copy it to the destination.
1989   // TODO: there are other patterns besides zero that we can usefully memset,
1990   // like -1, which happens to be the pattern used by member-pointers.
1991   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1992     // For a VLA, emit a single element, then splat that over the VLA.
1993     if (vla) Ty = getContext().getBaseElementType(vla);
1994 
1995     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1996 
1997     llvm::GlobalVariable *NullVariable =
1998       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1999                                /*isConstant=*/true,
2000                                llvm::GlobalVariable::PrivateLinkage,
2001                                NullConstant, Twine());
2002     CharUnits NullAlign = DestPtr.getAlignment();
2003     NullVariable->setAlignment(NullAlign.getAsAlign());
2004     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2005                    NullAlign);
2006 
2007     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2008 
2009     // Get and call the appropriate llvm.memcpy overload.
2010     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2011     return;
2012   }
2013 
2014   // Otherwise, just memset the whole thing to zero.  This is legal
2015   // because in LLVM, all default initializers (other than the ones we just
2016   // handled above) are guaranteed to have a bit pattern of all zeros.
2017   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2018 }
2019 
2020 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2021   // Make sure that there is a block for the indirect goto.
2022   if (!IndirectBranch)
2023     GetIndirectGotoBlock();
2024 
2025   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2026 
2027   // Make sure the indirect branch includes all of the address-taken blocks.
2028   IndirectBranch->addDestination(BB);
2029   return llvm::BlockAddress::get(CurFn, BB);
2030 }
2031 
2032 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2033   // If we already made the indirect branch for indirect goto, return its block.
2034   if (IndirectBranch) return IndirectBranch->getParent();
2035 
2036   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2037 
2038   // Create the PHI node that indirect gotos will add entries to.
2039   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2040                                               "indirect.goto.dest");
2041 
2042   // Create the indirect branch instruction.
2043   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2044   return IndirectBranch->getParent();
2045 }
2046 
2047 /// Computes the length of an array in elements, as well as the base
2048 /// element type and a properly-typed first element pointer.
2049 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2050                                               QualType &baseType,
2051                                               Address &addr) {
2052   const ArrayType *arrayType = origArrayType;
2053 
2054   // If it's a VLA, we have to load the stored size.  Note that
2055   // this is the size of the VLA in bytes, not its size in elements.
2056   llvm::Value *numVLAElements = nullptr;
2057   if (isa<VariableArrayType>(arrayType)) {
2058     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2059 
2060     // Walk into all VLAs.  This doesn't require changes to addr,
2061     // which has type T* where T is the first non-VLA element type.
2062     do {
2063       QualType elementType = arrayType->getElementType();
2064       arrayType = getContext().getAsArrayType(elementType);
2065 
2066       // If we only have VLA components, 'addr' requires no adjustment.
2067       if (!arrayType) {
2068         baseType = elementType;
2069         return numVLAElements;
2070       }
2071     } while (isa<VariableArrayType>(arrayType));
2072 
2073     // We get out here only if we find a constant array type
2074     // inside the VLA.
2075   }
2076 
2077   // We have some number of constant-length arrays, so addr should
2078   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2079   // down to the first element of addr.
2080   SmallVector<llvm::Value*, 8> gepIndices;
2081 
2082   // GEP down to the array type.
2083   llvm::ConstantInt *zero = Builder.getInt32(0);
2084   gepIndices.push_back(zero);
2085 
2086   uint64_t countFromCLAs = 1;
2087   QualType eltType;
2088 
2089   llvm::ArrayType *llvmArrayType =
2090     dyn_cast<llvm::ArrayType>(addr.getElementType());
2091   while (llvmArrayType) {
2092     assert(isa<ConstantArrayType>(arrayType));
2093     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2094              == llvmArrayType->getNumElements());
2095 
2096     gepIndices.push_back(zero);
2097     countFromCLAs *= llvmArrayType->getNumElements();
2098     eltType = arrayType->getElementType();
2099 
2100     llvmArrayType =
2101       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2102     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2103     assert((!llvmArrayType || arrayType) &&
2104            "LLVM and Clang types are out-of-synch");
2105   }
2106 
2107   if (arrayType) {
2108     // From this point onwards, the Clang array type has been emitted
2109     // as some other type (probably a packed struct). Compute the array
2110     // size, and just emit the 'begin' expression as a bitcast.
2111     while (arrayType) {
2112       countFromCLAs *=
2113           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2114       eltType = arrayType->getElementType();
2115       arrayType = getContext().getAsArrayType(eltType);
2116     }
2117 
2118     llvm::Type *baseType = ConvertType(eltType);
2119     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2120   } else {
2121     // Create the actual GEP.
2122     addr = Address(Builder.CreateInBoundsGEP(
2123         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2124         ConvertTypeForMem(eltType),
2125         addr.getAlignment());
2126   }
2127 
2128   baseType = eltType;
2129 
2130   llvm::Value *numElements
2131     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2132 
2133   // If we had any VLA dimensions, factor them in.
2134   if (numVLAElements)
2135     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2136 
2137   return numElements;
2138 }
2139 
2140 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2141   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2142   assert(vla && "type was not a variable array type!");
2143   return getVLASize(vla);
2144 }
2145 
2146 CodeGenFunction::VlaSizePair
2147 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2148   // The number of elements so far; always size_t.
2149   llvm::Value *numElements = nullptr;
2150 
2151   QualType elementType;
2152   do {
2153     elementType = type->getElementType();
2154     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2155     assert(vlaSize && "no size for VLA!");
2156     assert(vlaSize->getType() == SizeTy);
2157 
2158     if (!numElements) {
2159       numElements = vlaSize;
2160     } else {
2161       // It's undefined behavior if this wraps around, so mark it that way.
2162       // FIXME: Teach -fsanitize=undefined to trap this.
2163       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2164     }
2165   } while ((type = getContext().getAsVariableArrayType(elementType)));
2166 
2167   return { numElements, elementType };
2168 }
2169 
2170 CodeGenFunction::VlaSizePair
2171 CodeGenFunction::getVLAElements1D(QualType type) {
2172   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2173   assert(vla && "type was not a variable array type!");
2174   return getVLAElements1D(vla);
2175 }
2176 
2177 CodeGenFunction::VlaSizePair
2178 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2179   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2180   assert(VlaSize && "no size for VLA!");
2181   assert(VlaSize->getType() == SizeTy);
2182   return { VlaSize, Vla->getElementType() };
2183 }
2184 
2185 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2186   assert(type->isVariablyModifiedType() &&
2187          "Must pass variably modified type to EmitVLASizes!");
2188 
2189   EnsureInsertPoint();
2190 
2191   // We're going to walk down into the type and look for VLA
2192   // expressions.
2193   do {
2194     assert(type->isVariablyModifiedType());
2195 
2196     const Type *ty = type.getTypePtr();
2197     switch (ty->getTypeClass()) {
2198 
2199 #define TYPE(Class, Base)
2200 #define ABSTRACT_TYPE(Class, Base)
2201 #define NON_CANONICAL_TYPE(Class, Base)
2202 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2204 #include "clang/AST/TypeNodes.inc"
2205       llvm_unreachable("unexpected dependent type!");
2206 
2207     // These types are never variably-modified.
2208     case Type::Builtin:
2209     case Type::Complex:
2210     case Type::Vector:
2211     case Type::ExtVector:
2212     case Type::ConstantMatrix:
2213     case Type::Record:
2214     case Type::Enum:
2215     case Type::Elaborated:
2216     case Type::Using:
2217     case Type::TemplateSpecialization:
2218     case Type::ObjCTypeParam:
2219     case Type::ObjCObject:
2220     case Type::ObjCInterface:
2221     case Type::ObjCObjectPointer:
2222     case Type::BitInt:
2223       llvm_unreachable("type class is never variably-modified!");
2224 
2225     case Type::Adjusted:
2226       type = cast<AdjustedType>(ty)->getAdjustedType();
2227       break;
2228 
2229     case Type::Decayed:
2230       type = cast<DecayedType>(ty)->getPointeeType();
2231       break;
2232 
2233     case Type::Pointer:
2234       type = cast<PointerType>(ty)->getPointeeType();
2235       break;
2236 
2237     case Type::BlockPointer:
2238       type = cast<BlockPointerType>(ty)->getPointeeType();
2239       break;
2240 
2241     case Type::LValueReference:
2242     case Type::RValueReference:
2243       type = cast<ReferenceType>(ty)->getPointeeType();
2244       break;
2245 
2246     case Type::MemberPointer:
2247       type = cast<MemberPointerType>(ty)->getPointeeType();
2248       break;
2249 
2250     case Type::ConstantArray:
2251     case Type::IncompleteArray:
2252       // Losing element qualification here is fine.
2253       type = cast<ArrayType>(ty)->getElementType();
2254       break;
2255 
2256     case Type::VariableArray: {
2257       // Losing element qualification here is fine.
2258       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2259 
2260       // Unknown size indication requires no size computation.
2261       // Otherwise, evaluate and record it.
2262       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2263         // It's possible that we might have emitted this already,
2264         // e.g. with a typedef and a pointer to it.
2265         llvm::Value *&entry = VLASizeMap[sizeExpr];
2266         if (!entry) {
2267           llvm::Value *size = EmitScalarExpr(sizeExpr);
2268 
2269           // C11 6.7.6.2p5:
2270           //   If the size is an expression that is not an integer constant
2271           //   expression [...] each time it is evaluated it shall have a value
2272           //   greater than zero.
2273           if (SanOpts.has(SanitizerKind::VLABound)) {
2274             SanitizerScope SanScope(this);
2275             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2276             clang::QualType SEType = sizeExpr->getType();
2277             llvm::Value *CheckCondition =
2278                 SEType->isSignedIntegerType()
2279                     ? Builder.CreateICmpSGT(size, Zero)
2280                     : Builder.CreateICmpUGT(size, Zero);
2281             llvm::Constant *StaticArgs[] = {
2282                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2283                 EmitCheckTypeDescriptor(SEType)};
2284             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2285                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2286           }
2287 
2288           // Always zexting here would be wrong if it weren't
2289           // undefined behavior to have a negative bound.
2290           // FIXME: What about when size's type is larger than size_t?
2291           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2292         }
2293       }
2294       type = vat->getElementType();
2295       break;
2296     }
2297 
2298     case Type::FunctionProto:
2299     case Type::FunctionNoProto:
2300       type = cast<FunctionType>(ty)->getReturnType();
2301       break;
2302 
2303     case Type::Paren:
2304     case Type::TypeOf:
2305     case Type::UnaryTransform:
2306     case Type::Attributed:
2307     case Type::SubstTemplateTypeParm:
2308     case Type::MacroQualified:
2309       // Keep walking after single level desugaring.
2310       type = type.getSingleStepDesugaredType(getContext());
2311       break;
2312 
2313     case Type::Typedef:
2314     case Type::Decltype:
2315     case Type::Auto:
2316     case Type::DeducedTemplateSpecialization:
2317       // Stop walking: nothing to do.
2318       return;
2319 
2320     case Type::TypeOfExpr:
2321       // Stop walking: emit typeof expression.
2322       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2323       return;
2324 
2325     case Type::Atomic:
2326       type = cast<AtomicType>(ty)->getValueType();
2327       break;
2328 
2329     case Type::Pipe:
2330       type = cast<PipeType>(ty)->getElementType();
2331       break;
2332     }
2333   } while (type->isVariablyModifiedType());
2334 }
2335 
2336 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2337   if (getContext().getBuiltinVaListType()->isArrayType())
2338     return EmitPointerWithAlignment(E);
2339   return EmitLValue(E).getAddress(*this);
2340 }
2341 
2342 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2343   return EmitLValue(E).getAddress(*this);
2344 }
2345 
2346 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2347                                               const APValue &Init) {
2348   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2349   if (CGDebugInfo *Dbg = getDebugInfo())
2350     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2351       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2352 }
2353 
2354 CodeGenFunction::PeepholeProtection
2355 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2356   // At the moment, the only aggressive peephole we do in IR gen
2357   // is trunc(zext) folding, but if we add more, we can easily
2358   // extend this protection.
2359 
2360   if (!rvalue.isScalar()) return PeepholeProtection();
2361   llvm::Value *value = rvalue.getScalarVal();
2362   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2363 
2364   // Just make an extra bitcast.
2365   assert(HaveInsertPoint());
2366   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2367                                                   Builder.GetInsertBlock());
2368 
2369   PeepholeProtection protection;
2370   protection.Inst = inst;
2371   return protection;
2372 }
2373 
2374 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2375   if (!protection.Inst) return;
2376 
2377   // In theory, we could try to duplicate the peepholes now, but whatever.
2378   protection.Inst->eraseFromParent();
2379 }
2380 
2381 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2382                                               QualType Ty, SourceLocation Loc,
2383                                               SourceLocation AssumptionLoc,
2384                                               llvm::Value *Alignment,
2385                                               llvm::Value *OffsetValue) {
2386   if (Alignment->getType() != IntPtrTy)
2387     Alignment =
2388         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2389   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2390     OffsetValue =
2391         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2392   llvm::Value *TheCheck = nullptr;
2393   if (SanOpts.has(SanitizerKind::Alignment)) {
2394     llvm::Value *PtrIntValue =
2395         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2396 
2397     if (OffsetValue) {
2398       bool IsOffsetZero = false;
2399       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2400         IsOffsetZero = CI->isZero();
2401 
2402       if (!IsOffsetZero)
2403         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2404     }
2405 
2406     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2407     llvm::Value *Mask =
2408         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2409     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2410     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2411   }
2412   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2413       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2414 
2415   if (!SanOpts.has(SanitizerKind::Alignment))
2416     return;
2417   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2418                                OffsetValue, TheCheck, Assumption);
2419 }
2420 
2421 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2422                                               const Expr *E,
2423                                               SourceLocation AssumptionLoc,
2424                                               llvm::Value *Alignment,
2425                                               llvm::Value *OffsetValue) {
2426   if (auto *CE = dyn_cast<CastExpr>(E))
2427     E = CE->getSubExprAsWritten();
2428   QualType Ty = E->getType();
2429   SourceLocation Loc = E->getExprLoc();
2430 
2431   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2432                           OffsetValue);
2433 }
2434 
2435 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2436                                                  llvm::Value *AnnotatedVal,
2437                                                  StringRef AnnotationStr,
2438                                                  SourceLocation Location,
2439                                                  const AnnotateAttr *Attr) {
2440   SmallVector<llvm::Value *, 5> Args = {
2441       AnnotatedVal,
2442       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2443       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2444       CGM.EmitAnnotationLineNo(Location),
2445   };
2446   if (Attr)
2447     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2448   return Builder.CreateCall(AnnotationFn, Args);
2449 }
2450 
2451 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2452   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2453   // FIXME We create a new bitcast for every annotation because that's what
2454   // llvm-gcc was doing.
2455   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2456     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2457                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2458                        I->getAnnotation(), D->getLocation(), I);
2459 }
2460 
2461 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2462                                               Address Addr) {
2463   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2464   llvm::Value *V = Addr.getPointer();
2465   llvm::Type *VTy = V->getType();
2466   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2467   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2468   llvm::PointerType *IntrinTy =
2469       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2470   llvm::Function *F =
2471       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2472 
2473   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2474     // FIXME Always emit the cast inst so we can differentiate between
2475     // annotation on the first field of a struct and annotation on the struct
2476     // itself.
2477     if (VTy != IntrinTy)
2478       V = Builder.CreateBitCast(V, IntrinTy);
2479     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2480     V = Builder.CreateBitCast(V, VTy);
2481   }
2482 
2483   return Address(V, Addr.getAlignment());
2484 }
2485 
2486 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2487 
2488 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2489     : CGF(CGF) {
2490   assert(!CGF->IsSanitizerScope);
2491   CGF->IsSanitizerScope = true;
2492 }
2493 
2494 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2495   CGF->IsSanitizerScope = false;
2496 }
2497 
2498 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2499                                    const llvm::Twine &Name,
2500                                    llvm::BasicBlock *BB,
2501                                    llvm::BasicBlock::iterator InsertPt) const {
2502   LoopStack.InsertHelper(I);
2503   if (IsSanitizerScope)
2504     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2505 }
2506 
2507 void CGBuilderInserter::InsertHelper(
2508     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2509     llvm::BasicBlock::iterator InsertPt) const {
2510   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2511   if (CGF)
2512     CGF->InsertHelper(I, Name, BB, InsertPt);
2513 }
2514 
2515 // Emits an error if we don't have a valid set of target features for the
2516 // called function.
2517 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2518                                           const FunctionDecl *TargetDecl) {
2519   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2520 }
2521 
2522 // Emits an error if we don't have a valid set of target features for the
2523 // called function.
2524 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2525                                           const FunctionDecl *TargetDecl) {
2526   // Early exit if this is an indirect call.
2527   if (!TargetDecl)
2528     return;
2529 
2530   // Get the current enclosing function if it exists. If it doesn't
2531   // we can't check the target features anyhow.
2532   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2533   if (!FD)
2534     return;
2535 
2536   // Grab the required features for the call. For a builtin this is listed in
2537   // the td file with the default cpu, for an always_inline function this is any
2538   // listed cpu and any listed features.
2539   unsigned BuiltinID = TargetDecl->getBuiltinID();
2540   std::string MissingFeature;
2541   llvm::StringMap<bool> CallerFeatureMap;
2542   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2543   if (BuiltinID) {
2544     StringRef FeatureList(
2545         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2546     // Return if the builtin doesn't have any required features.
2547     if (FeatureList.empty())
2548       return;
2549     assert(!FeatureList.contains(' ') && "Space in feature list");
2550     TargetFeatures TF(CallerFeatureMap);
2551     if (!TF.hasRequiredFeatures(FeatureList))
2552       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2553           << TargetDecl->getDeclName() << FeatureList;
2554   } else if (!TargetDecl->isMultiVersion() &&
2555              TargetDecl->hasAttr<TargetAttr>()) {
2556     // Get the required features for the callee.
2557 
2558     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2559     ParsedTargetAttr ParsedAttr =
2560         CGM.getContext().filterFunctionTargetAttrs(TD);
2561 
2562     SmallVector<StringRef, 1> ReqFeatures;
2563     llvm::StringMap<bool> CalleeFeatureMap;
2564     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2565 
2566     for (const auto &F : ParsedAttr.Features) {
2567       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2568         ReqFeatures.push_back(StringRef(F).substr(1));
2569     }
2570 
2571     for (const auto &F : CalleeFeatureMap) {
2572       // Only positive features are "required".
2573       if (F.getValue())
2574         ReqFeatures.push_back(F.getKey());
2575     }
2576     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2577       if (!CallerFeatureMap.lookup(Feature)) {
2578         MissingFeature = Feature.str();
2579         return false;
2580       }
2581       return true;
2582     }))
2583       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2584           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2585   }
2586 }
2587 
2588 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2589   if (!CGM.getCodeGenOpts().SanitizeStats)
2590     return;
2591 
2592   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2593   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2594   CGM.getSanStats().create(IRB, SSK);
2595 }
2596 
2597 llvm::Value *
2598 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2599   llvm::Value *Condition = nullptr;
2600 
2601   if (!RO.Conditions.Architecture.empty())
2602     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2603 
2604   if (!RO.Conditions.Features.empty()) {
2605     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2606     Condition =
2607         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2608   }
2609   return Condition;
2610 }
2611 
2612 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2613                                              llvm::Function *Resolver,
2614                                              CGBuilderTy &Builder,
2615                                              llvm::Function *FuncToReturn,
2616                                              bool SupportsIFunc) {
2617   if (SupportsIFunc) {
2618     Builder.CreateRet(FuncToReturn);
2619     return;
2620   }
2621 
2622   llvm::SmallVector<llvm::Value *, 10> Args;
2623   llvm::for_each(Resolver->args(),
2624                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2625 
2626   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2627   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2628 
2629   if (Resolver->getReturnType()->isVoidTy())
2630     Builder.CreateRetVoid();
2631   else
2632     Builder.CreateRet(Result);
2633 }
2634 
2635 void CodeGenFunction::EmitMultiVersionResolver(
2636     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2637   assert(getContext().getTargetInfo().getTriple().isX86() &&
2638          "Only implemented for x86 targets");
2639 
2640   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2641 
2642   // Main function's basic block.
2643   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2644   Builder.SetInsertPoint(CurBlock);
2645   EmitX86CpuInit();
2646 
2647   for (const MultiVersionResolverOption &RO : Options) {
2648     Builder.SetInsertPoint(CurBlock);
2649     llvm::Value *Condition = FormResolverCondition(RO);
2650 
2651     // The 'default' or 'generic' case.
2652     if (!Condition) {
2653       assert(&RO == Options.end() - 1 &&
2654              "Default or Generic case must be last");
2655       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2656                                        SupportsIFunc);
2657       return;
2658     }
2659 
2660     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2661     CGBuilderTy RetBuilder(*this, RetBlock);
2662     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2663                                      SupportsIFunc);
2664     CurBlock = createBasicBlock("resolver_else", Resolver);
2665     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2666   }
2667 
2668   // If no generic/default, emit an unreachable.
2669   Builder.SetInsertPoint(CurBlock);
2670   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2671   TrapCall->setDoesNotReturn();
2672   TrapCall->setDoesNotThrow();
2673   Builder.CreateUnreachable();
2674   Builder.ClearInsertionPoint();
2675 }
2676 
2677 // Loc - where the diagnostic will point, where in the source code this
2678 //  alignment has failed.
2679 // SecondaryLoc - if present (will be present if sufficiently different from
2680 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2681 //  It should be the location where the __attribute__((assume_aligned))
2682 //  was written e.g.
2683 void CodeGenFunction::emitAlignmentAssumptionCheck(
2684     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2685     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2686     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2687     llvm::Instruction *Assumption) {
2688   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2689          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2690              llvm::Intrinsic::getDeclaration(
2691                  Builder.GetInsertBlock()->getParent()->getParent(),
2692                  llvm::Intrinsic::assume) &&
2693          "Assumption should be a call to llvm.assume().");
2694   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2695          "Assumption should be the last instruction of the basic block, "
2696          "since the basic block is still being generated.");
2697 
2698   if (!SanOpts.has(SanitizerKind::Alignment))
2699     return;
2700 
2701   // Don't check pointers to volatile data. The behavior here is implementation-
2702   // defined.
2703   if (Ty->getPointeeType().isVolatileQualified())
2704     return;
2705 
2706   // We need to temorairly remove the assumption so we can insert the
2707   // sanitizer check before it, else the check will be dropped by optimizations.
2708   Assumption->removeFromParent();
2709 
2710   {
2711     SanitizerScope SanScope(this);
2712 
2713     if (!OffsetValue)
2714       OffsetValue = Builder.getInt1(false); // no offset.
2715 
2716     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2717                                     EmitCheckSourceLocation(SecondaryLoc),
2718                                     EmitCheckTypeDescriptor(Ty)};
2719     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2720                                   EmitCheckValue(Alignment),
2721                                   EmitCheckValue(OffsetValue)};
2722     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2723               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2724   }
2725 
2726   // We are now in the (new, empty) "cont" basic block.
2727   // Reintroduce the assumption.
2728   Builder.Insert(Assumption);
2729   // FIXME: Assumption still has it's original basic block as it's Parent.
2730 }
2731 
2732 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2733   if (CGDebugInfo *DI = getDebugInfo())
2734     return DI->SourceLocToDebugLoc(Location);
2735 
2736   return llvm::DebugLoc();
2737 }
2738 
2739 llvm::Value *
2740 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2741                                                       Stmt::Likelihood LH) {
2742   switch (LH) {
2743   case Stmt::LH_None:
2744     return Cond;
2745   case Stmt::LH_Likely:
2746   case Stmt::LH_Unlikely:
2747     // Don't generate llvm.expect on -O0 as the backend won't use it for
2748     // anything.
2749     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2750       return Cond;
2751     llvm::Type *CondTy = Cond->getType();
2752     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2753     llvm::Function *FnExpect =
2754         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2755     llvm::Value *ExpectedValueOfCond =
2756         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2757     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2758                               Cond->getName() + ".expval");
2759   }
2760   llvm_unreachable("Unknown Likelihood");
2761 }
2762