1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(Address::invalid()), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 for (const auto &FuncletAndParent : TerminateFunclets) 423 EmitIfUsed(*this, FuncletAndParent.second); 424 425 if (CGM.getCodeGenOpts().EmitDeclMetadata) 426 EmitDeclMetadata(); 427 428 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 429 I = DeferredReplacements.begin(), 430 E = DeferredReplacements.end(); 431 I != E; ++I) { 432 I->first->replaceAllUsesWith(I->second); 433 I->first->eraseFromParent(); 434 } 435 436 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 437 // PHIs if the current function is a coroutine. We don't do it for all 438 // functions as it may result in slight increase in numbers of instructions 439 // if compiled with no optimizations. We do it for coroutine as the lifetime 440 // of CleanupDestSlot alloca make correct coroutine frame building very 441 // difficult. 442 if (NormalCleanupDest.isValid() && isCoroutine()) { 443 llvm::DominatorTree DT(*CurFn); 444 llvm::PromoteMemToReg( 445 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 446 NormalCleanupDest = Address::invalid(); 447 } 448 } 449 450 /// ShouldInstrumentFunction - Return true if the current function should be 451 /// instrumented with __cyg_profile_func_* calls 452 bool CodeGenFunction::ShouldInstrumentFunction() { 453 if (!CGM.getCodeGenOpts().InstrumentFunctions && 454 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 455 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 456 return false; 457 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 458 return false; 459 return true; 460 } 461 462 /// ShouldXRayInstrument - Return true if the current function should be 463 /// instrumented with XRay nop sleds. 464 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 465 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 466 } 467 468 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 469 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation. 470 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 471 return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents; 472 } 473 474 llvm::Constant * 475 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 476 llvm::Constant *Addr) { 477 // Addresses stored in prologue data can't require run-time fixups and must 478 // be PC-relative. Run-time fixups are undesirable because they necessitate 479 // writable text segments, which are unsafe. And absolute addresses are 480 // undesirable because they break PIE mode. 481 482 // Add a layer of indirection through a private global. Taking its address 483 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 484 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 485 /*isConstant=*/true, 486 llvm::GlobalValue::PrivateLinkage, Addr); 487 488 // Create a PC-relative address. 489 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 490 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 491 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 492 return (IntPtrTy == Int32Ty) 493 ? PCRelAsInt 494 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 495 } 496 497 llvm::Value * 498 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 499 llvm::Value *EncodedAddr) { 500 // Reconstruct the address of the global. 501 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 502 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 503 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 504 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 505 506 // Load the original pointer through the global. 507 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 508 "decoded_addr"); 509 } 510 511 static void removeImageAccessQualifier(std::string& TyName) { 512 std::string ReadOnlyQual("__read_only"); 513 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 514 if (ReadOnlyPos != std::string::npos) 515 // "+ 1" for the space after access qualifier. 516 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 517 else { 518 std::string WriteOnlyQual("__write_only"); 519 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 520 if (WriteOnlyPos != std::string::npos) 521 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 522 else { 523 std::string ReadWriteQual("__read_write"); 524 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 525 if (ReadWritePos != std::string::npos) 526 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 527 } 528 } 529 } 530 531 // Returns the address space id that should be produced to the 532 // kernel_arg_addr_space metadata. This is always fixed to the ids 533 // as specified in the SPIR 2.0 specification in order to differentiate 534 // for example in clGetKernelArgInfo() implementation between the address 535 // spaces with targets without unique mapping to the OpenCL address spaces 536 // (basically all single AS CPUs). 537 static unsigned ArgInfoAddressSpace(LangAS AS) { 538 switch (AS) { 539 case LangAS::opencl_global: return 1; 540 case LangAS::opencl_constant: return 2; 541 case LangAS::opencl_local: return 3; 542 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 543 default: 544 return 0; // Assume private. 545 } 546 } 547 548 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 549 // information in the program executable. The argument information stored 550 // includes the argument name, its type, the address and access qualifiers used. 551 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 552 CodeGenModule &CGM, llvm::LLVMContext &Context, 553 CGBuilderTy &Builder, ASTContext &ASTCtx) { 554 // Create MDNodes that represent the kernel arg metadata. 555 // Each MDNode is a list in the form of "key", N number of values which is 556 // the same number of values as their are kernel arguments. 557 558 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 559 560 // MDNode for the kernel argument address space qualifiers. 561 SmallVector<llvm::Metadata *, 8> addressQuals; 562 563 // MDNode for the kernel argument access qualifiers (images only). 564 SmallVector<llvm::Metadata *, 8> accessQuals; 565 566 // MDNode for the kernel argument type names. 567 SmallVector<llvm::Metadata *, 8> argTypeNames; 568 569 // MDNode for the kernel argument base type names. 570 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 571 572 // MDNode for the kernel argument type qualifiers. 573 SmallVector<llvm::Metadata *, 8> argTypeQuals; 574 575 // MDNode for the kernel argument names. 576 SmallVector<llvm::Metadata *, 8> argNames; 577 578 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 579 const ParmVarDecl *parm = FD->getParamDecl(i); 580 QualType ty = parm->getType(); 581 std::string typeQuals; 582 583 if (ty->isPointerType()) { 584 QualType pointeeTy = ty->getPointeeType(); 585 586 // Get address qualifier. 587 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 588 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 589 590 // Get argument type name. 591 std::string typeName = 592 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 593 594 // Turn "unsigned type" to "utype" 595 std::string::size_type pos = typeName.find("unsigned"); 596 if (pointeeTy.isCanonical() && pos != std::string::npos) 597 typeName.erase(pos+1, 8); 598 599 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 600 601 std::string baseTypeName = 602 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 603 Policy) + 604 "*"; 605 606 // Turn "unsigned type" to "utype" 607 pos = baseTypeName.find("unsigned"); 608 if (pos != std::string::npos) 609 baseTypeName.erase(pos+1, 8); 610 611 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 612 613 // Get argument type qualifiers: 614 if (ty.isRestrictQualified()) 615 typeQuals = "restrict"; 616 if (pointeeTy.isConstQualified() || 617 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 618 typeQuals += typeQuals.empty() ? "const" : " const"; 619 if (pointeeTy.isVolatileQualified()) 620 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 621 } else { 622 uint32_t AddrSpc = 0; 623 bool isPipe = ty->isPipeType(); 624 if (ty->isImageType() || isPipe) 625 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 626 627 addressQuals.push_back( 628 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 629 630 // Get argument type name. 631 std::string typeName; 632 if (isPipe) 633 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 634 .getAsString(Policy); 635 else 636 typeName = ty.getUnqualifiedType().getAsString(Policy); 637 638 // Turn "unsigned type" to "utype" 639 std::string::size_type pos = typeName.find("unsigned"); 640 if (ty.isCanonical() && pos != std::string::npos) 641 typeName.erase(pos+1, 8); 642 643 std::string baseTypeName; 644 if (isPipe) 645 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 646 ->getElementType().getCanonicalType() 647 .getAsString(Policy); 648 else 649 baseTypeName = 650 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 651 652 // Remove access qualifiers on images 653 // (as they are inseparable from type in clang implementation, 654 // but OpenCL spec provides a special query to get access qualifier 655 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 656 if (ty->isImageType()) { 657 removeImageAccessQualifier(typeName); 658 removeImageAccessQualifier(baseTypeName); 659 } 660 661 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 662 663 // Turn "unsigned type" to "utype" 664 pos = baseTypeName.find("unsigned"); 665 if (pos != std::string::npos) 666 baseTypeName.erase(pos+1, 8); 667 668 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 669 670 if (isPipe) 671 typeQuals = "pipe"; 672 } 673 674 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 675 676 // Get image and pipe access qualifier: 677 if (ty->isImageType()|| ty->isPipeType()) { 678 const Decl *PDecl = parm; 679 if (auto *TD = dyn_cast<TypedefType>(ty)) 680 PDecl = TD->getDecl(); 681 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 682 if (A && A->isWriteOnly()) 683 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 684 else if (A && A->isReadWrite()) 685 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 686 else 687 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 688 } else 689 accessQuals.push_back(llvm::MDString::get(Context, "none")); 690 691 // Get argument name. 692 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 693 } 694 695 Fn->setMetadata("kernel_arg_addr_space", 696 llvm::MDNode::get(Context, addressQuals)); 697 Fn->setMetadata("kernel_arg_access_qual", 698 llvm::MDNode::get(Context, accessQuals)); 699 Fn->setMetadata("kernel_arg_type", 700 llvm::MDNode::get(Context, argTypeNames)); 701 Fn->setMetadata("kernel_arg_base_type", 702 llvm::MDNode::get(Context, argBaseTypeNames)); 703 Fn->setMetadata("kernel_arg_type_qual", 704 llvm::MDNode::get(Context, argTypeQuals)); 705 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 706 Fn->setMetadata("kernel_arg_name", 707 llvm::MDNode::get(Context, argNames)); 708 } 709 710 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 711 llvm::Function *Fn) 712 { 713 if (!FD->hasAttr<OpenCLKernelAttr>()) 714 return; 715 716 llvm::LLVMContext &Context = getLLVMContext(); 717 718 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 719 720 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 721 QualType HintQTy = A->getTypeHint(); 722 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 723 bool IsSignedInteger = 724 HintQTy->isSignedIntegerType() || 725 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 726 llvm::Metadata *AttrMDArgs[] = { 727 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 728 CGM.getTypes().ConvertType(A->getTypeHint()))), 729 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 730 llvm::IntegerType::get(Context, 32), 731 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 732 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 733 } 734 735 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 736 llvm::Metadata *AttrMDArgs[] = { 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 738 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 739 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 740 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 741 } 742 743 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 744 llvm::Metadata *AttrMDArgs[] = { 745 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 746 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 747 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 748 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 749 } 750 751 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 752 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 753 llvm::Metadata *AttrMDArgs[] = { 754 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 755 Fn->setMetadata("intel_reqd_sub_group_size", 756 llvm::MDNode::get(Context, AttrMDArgs)); 757 } 758 } 759 760 /// Determine whether the function F ends with a return stmt. 761 static bool endsWithReturn(const Decl* F) { 762 const Stmt *Body = nullptr; 763 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 764 Body = FD->getBody(); 765 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 766 Body = OMD->getBody(); 767 768 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 769 auto LastStmt = CS->body_rbegin(); 770 if (LastStmt != CS->body_rend()) 771 return isa<ReturnStmt>(*LastStmt); 772 } 773 return false; 774 } 775 776 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 777 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 778 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 779 } 780 781 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 782 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 783 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 784 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 785 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 786 return false; 787 788 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 789 return false; 790 791 if (MD->getNumParams() == 2) { 792 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 793 if (!PT || !PT->isVoidPointerType() || 794 !PT->getPointeeType().isConstQualified()) 795 return false; 796 } 797 798 return true; 799 } 800 801 /// Return the UBSan prologue signature for \p FD if one is available. 802 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 803 const FunctionDecl *FD) { 804 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 805 if (!MD->isStatic()) 806 return nullptr; 807 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 808 } 809 810 void CodeGenFunction::StartFunction(GlobalDecl GD, 811 QualType RetTy, 812 llvm::Function *Fn, 813 const CGFunctionInfo &FnInfo, 814 const FunctionArgList &Args, 815 SourceLocation Loc, 816 SourceLocation StartLoc) { 817 assert(!CurFn && 818 "Do not use a CodeGenFunction object for more than one function"); 819 820 const Decl *D = GD.getDecl(); 821 822 DidCallStackSave = false; 823 CurCodeDecl = D; 824 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 825 if (FD->usesSEHTry()) 826 CurSEHParent = FD; 827 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 828 FnRetTy = RetTy; 829 CurFn = Fn; 830 CurFnInfo = &FnInfo; 831 assert(CurFn->isDeclaration() && "Function already has body?"); 832 833 // If this function has been blacklisted for any of the enabled sanitizers, 834 // disable the sanitizer for the function. 835 do { 836 #define SANITIZER(NAME, ID) \ 837 if (SanOpts.empty()) \ 838 break; \ 839 if (SanOpts.has(SanitizerKind::ID)) \ 840 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 841 SanOpts.set(SanitizerKind::ID, false); 842 843 #include "clang/Basic/Sanitizers.def" 844 #undef SANITIZER 845 } while (0); 846 847 if (D) { 848 // Apply the no_sanitize* attributes to SanOpts. 849 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 850 SanOpts.Mask &= ~Attr->getMask(); 851 } 852 853 // Apply sanitizer attributes to the function. 854 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 855 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 856 if (SanOpts.hasOneOf(SanitizerKind::HWAddress)) 857 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 858 if (SanOpts.has(SanitizerKind::Thread)) 859 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 860 if (SanOpts.has(SanitizerKind::Memory)) 861 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 862 if (SanOpts.has(SanitizerKind::SafeStack)) 863 Fn->addFnAttr(llvm::Attribute::SafeStack); 864 865 // Apply fuzzing attribute to the function. 866 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 867 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 868 869 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 870 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 871 if (SanOpts.has(SanitizerKind::Thread)) { 872 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 873 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 874 if (OMD->getMethodFamily() == OMF_dealloc || 875 OMD->getMethodFamily() == OMF_initialize || 876 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 877 markAsIgnoreThreadCheckingAtRuntime(Fn); 878 } 879 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 880 IdentifierInfo *II = FD->getIdentifier(); 881 if (II && II->isStr("__destroy_helper_block_")) 882 markAsIgnoreThreadCheckingAtRuntime(Fn); 883 } 884 } 885 886 // Ignore unrelated casts in STL allocate() since the allocator must cast 887 // from void* to T* before object initialization completes. Don't match on the 888 // namespace because not all allocators are in std:: 889 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 890 if (matchesStlAllocatorFn(D, getContext())) 891 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 892 } 893 894 // Apply xray attributes to the function (as a string, for now) 895 bool InstrumentXray = ShouldXRayInstrumentFunction(); 896 if (D && InstrumentXray) { 897 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 898 if (XRayAttr->alwaysXRayInstrument()) 899 Fn->addFnAttr("function-instrument", "xray-always"); 900 if (XRayAttr->neverXRayInstrument()) 901 Fn->addFnAttr("function-instrument", "xray-never"); 902 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 903 Fn->addFnAttr("xray-log-args", 904 llvm::utostr(LogArgs->getArgumentCount())); 905 } 906 } else { 907 if (!CGM.imbueXRayAttrs(Fn, Loc)) 908 Fn->addFnAttr( 909 "xray-instruction-threshold", 910 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 911 } 912 } 913 914 // Add no-jump-tables value. 915 Fn->addFnAttr("no-jump-tables", 916 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 917 918 // Add profile-sample-accurate value. 919 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 920 Fn->addFnAttr("profile-sample-accurate"); 921 922 if (getLangOpts().OpenCL) { 923 // Add metadata for a kernel function. 924 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 925 EmitOpenCLKernelMetadata(FD, Fn); 926 } 927 928 // If we are checking function types, emit a function type signature as 929 // prologue data. 930 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 931 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 932 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 933 // Remove any (C++17) exception specifications, to allow calling e.g. a 934 // noexcept function through a non-noexcept pointer. 935 auto ProtoTy = 936 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 937 EST_None); 938 llvm::Constant *FTRTTIConst = 939 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 940 llvm::Constant *FTRTTIConstEncoded = 941 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 942 llvm::Constant *PrologueStructElems[] = {PrologueSig, 943 FTRTTIConstEncoded}; 944 llvm::Constant *PrologueStructConst = 945 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 946 Fn->setPrologueData(PrologueStructConst); 947 } 948 } 949 } 950 951 // If we're checking nullability, we need to know whether we can check the 952 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 953 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 954 auto Nullability = FnRetTy->getNullability(getContext()); 955 if (Nullability && *Nullability == NullabilityKind::NonNull) { 956 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 957 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 958 RetValNullabilityPrecondition = 959 llvm::ConstantInt::getTrue(getLLVMContext()); 960 } 961 } 962 963 // If we're in C++ mode and the function name is "main", it is guaranteed 964 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 965 // used within a program"). 966 if (getLangOpts().CPlusPlus) 967 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 968 if (FD->isMain()) 969 Fn->addFnAttr(llvm::Attribute::NoRecurse); 970 971 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 972 973 // Create a marker to make it easy to insert allocas into the entryblock 974 // later. Don't create this with the builder, because we don't want it 975 // folded. 976 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 977 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 978 979 ReturnBlock = getJumpDestInCurrentScope("return"); 980 981 Builder.SetInsertPoint(EntryBB); 982 983 // If we're checking the return value, allocate space for a pointer to a 984 // precise source location of the checked return statement. 985 if (requiresReturnValueCheck()) { 986 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 987 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 988 } 989 990 // Emit subprogram debug descriptor. 991 if (CGDebugInfo *DI = getDebugInfo()) { 992 // Reconstruct the type from the argument list so that implicit parameters, 993 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 994 // convention. 995 CallingConv CC = CallingConv::CC_C; 996 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 997 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 998 CC = SrcFnTy->getCallConv(); 999 SmallVector<QualType, 16> ArgTypes; 1000 for (const VarDecl *VD : Args) 1001 ArgTypes.push_back(VD->getType()); 1002 QualType FnType = getContext().getFunctionType( 1003 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1004 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 1005 } 1006 1007 if (ShouldInstrumentFunction()) { 1008 if (CGM.getCodeGenOpts().InstrumentFunctions) 1009 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1010 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1011 CurFn->addFnAttr("instrument-function-entry-inlined", 1012 "__cyg_profile_func_enter"); 1013 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1014 CurFn->addFnAttr("instrument-function-entry-inlined", 1015 "__cyg_profile_func_enter_bare"); 1016 } 1017 1018 // Since emitting the mcount call here impacts optimizations such as function 1019 // inlining, we just add an attribute to insert a mcount call in backend. 1020 // The attribute "counting-function" is set to mcount function name which is 1021 // architecture dependent. 1022 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1023 // Calls to fentry/mcount should not be generated if function has 1024 // the no_instrument_function attribute. 1025 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1026 if (CGM.getCodeGenOpts().CallFEntry) 1027 Fn->addFnAttr("fentry-call", "true"); 1028 else { 1029 Fn->addFnAttr("instrument-function-entry-inlined", 1030 getTarget().getMCountName()); 1031 } 1032 } 1033 } 1034 1035 if (RetTy->isVoidType()) { 1036 // Void type; nothing to return. 1037 ReturnValue = Address::invalid(); 1038 1039 // Count the implicit return. 1040 if (!endsWithReturn(D)) 1041 ++NumReturnExprs; 1042 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1043 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1044 // Indirect aggregate return; emit returned value directly into sret slot. 1045 // This reduces code size, and affects correctness in C++. 1046 auto AI = CurFn->arg_begin(); 1047 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1048 ++AI; 1049 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1050 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1051 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1052 // Load the sret pointer from the argument struct and return into that. 1053 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1054 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1055 --EI; 1056 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1057 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1058 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1059 } else { 1060 ReturnValue = CreateIRTemp(RetTy, "retval"); 1061 1062 // Tell the epilog emitter to autorelease the result. We do this 1063 // now so that various specialized functions can suppress it 1064 // during their IR-generation. 1065 if (getLangOpts().ObjCAutoRefCount && 1066 !CurFnInfo->isReturnsRetained() && 1067 RetTy->isObjCRetainableType()) 1068 AutoreleaseResult = true; 1069 } 1070 1071 EmitStartEHSpec(CurCodeDecl); 1072 1073 PrologueCleanupDepth = EHStack.stable_begin(); 1074 1075 // Emit OpenMP specific initialization of the device functions. 1076 if (getLangOpts().OpenMP && CurCodeDecl) 1077 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1078 1079 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1080 1081 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1082 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1083 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1084 if (MD->getParent()->isLambda() && 1085 MD->getOverloadedOperator() == OO_Call) { 1086 // We're in a lambda; figure out the captures. 1087 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1088 LambdaThisCaptureField); 1089 if (LambdaThisCaptureField) { 1090 // If the lambda captures the object referred to by '*this' - either by 1091 // value or by reference, make sure CXXThisValue points to the correct 1092 // object. 1093 1094 // Get the lvalue for the field (which is a copy of the enclosing object 1095 // or contains the address of the enclosing object). 1096 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1097 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1098 // If the enclosing object was captured by value, just use its address. 1099 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1100 } else { 1101 // Load the lvalue pointed to by the field, since '*this' was captured 1102 // by reference. 1103 CXXThisValue = 1104 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1105 } 1106 } 1107 for (auto *FD : MD->getParent()->fields()) { 1108 if (FD->hasCapturedVLAType()) { 1109 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1110 SourceLocation()).getScalarVal(); 1111 auto VAT = FD->getCapturedVLAType(); 1112 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1113 } 1114 } 1115 } else { 1116 // Not in a lambda; just use 'this' from the method. 1117 // FIXME: Should we generate a new load for each use of 'this'? The 1118 // fast register allocator would be happier... 1119 CXXThisValue = CXXABIThisValue; 1120 } 1121 1122 // Check the 'this' pointer once per function, if it's available. 1123 if (CXXABIThisValue) { 1124 SanitizerSet SkippedChecks; 1125 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1126 QualType ThisTy = MD->getThisType(getContext()); 1127 1128 // If this is the call operator of a lambda with no capture-default, it 1129 // may have a static invoker function, which may call this operator with 1130 // a null 'this' pointer. 1131 if (isLambdaCallOperator(MD) && 1132 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1133 SkippedChecks.set(SanitizerKind::Null, true); 1134 1135 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1136 : TCK_MemberCall, 1137 Loc, CXXABIThisValue, ThisTy, 1138 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1139 SkippedChecks); 1140 } 1141 } 1142 1143 // If any of the arguments have a variably modified type, make sure to 1144 // emit the type size. 1145 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1146 i != e; ++i) { 1147 const VarDecl *VD = *i; 1148 1149 // Dig out the type as written from ParmVarDecls; it's unclear whether 1150 // the standard (C99 6.9.1p10) requires this, but we're following the 1151 // precedent set by gcc. 1152 QualType Ty; 1153 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1154 Ty = PVD->getOriginalType(); 1155 else 1156 Ty = VD->getType(); 1157 1158 if (Ty->isVariablyModifiedType()) 1159 EmitVariablyModifiedType(Ty); 1160 } 1161 // Emit a location at the end of the prologue. 1162 if (CGDebugInfo *DI = getDebugInfo()) 1163 DI->EmitLocation(Builder, StartLoc); 1164 } 1165 1166 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1167 const Stmt *Body) { 1168 incrementProfileCounter(Body); 1169 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1170 EmitCompoundStmtWithoutScope(*S); 1171 else 1172 EmitStmt(Body); 1173 } 1174 1175 /// When instrumenting to collect profile data, the counts for some blocks 1176 /// such as switch cases need to not include the fall-through counts, so 1177 /// emit a branch around the instrumentation code. When not instrumenting, 1178 /// this just calls EmitBlock(). 1179 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1180 const Stmt *S) { 1181 llvm::BasicBlock *SkipCountBB = nullptr; 1182 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1183 // When instrumenting for profiling, the fallthrough to certain 1184 // statements needs to skip over the instrumentation code so that we 1185 // get an accurate count. 1186 SkipCountBB = createBasicBlock("skipcount"); 1187 EmitBranch(SkipCountBB); 1188 } 1189 EmitBlock(BB); 1190 uint64_t CurrentCount = getCurrentProfileCount(); 1191 incrementProfileCounter(S); 1192 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1193 if (SkipCountBB) 1194 EmitBlock(SkipCountBB); 1195 } 1196 1197 /// Tries to mark the given function nounwind based on the 1198 /// non-existence of any throwing calls within it. We believe this is 1199 /// lightweight enough to do at -O0. 1200 static void TryMarkNoThrow(llvm::Function *F) { 1201 // LLVM treats 'nounwind' on a function as part of the type, so we 1202 // can't do this on functions that can be overwritten. 1203 if (F->isInterposable()) return; 1204 1205 for (llvm::BasicBlock &BB : *F) 1206 for (llvm::Instruction &I : BB) 1207 if (I.mayThrow()) 1208 return; 1209 1210 F->setDoesNotThrow(); 1211 } 1212 1213 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1214 FunctionArgList &Args) { 1215 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1216 QualType ResTy = FD->getReturnType(); 1217 1218 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1219 if (MD && MD->isInstance()) { 1220 if (CGM.getCXXABI().HasThisReturn(GD)) 1221 ResTy = MD->getThisType(getContext()); 1222 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1223 ResTy = CGM.getContext().VoidPtrTy; 1224 CGM.getCXXABI().buildThisParam(*this, Args); 1225 } 1226 1227 // The base version of an inheriting constructor whose constructed base is a 1228 // virtual base is not passed any arguments (because it doesn't actually call 1229 // the inherited constructor). 1230 bool PassedParams = true; 1231 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1232 if (auto Inherited = CD->getInheritedConstructor()) 1233 PassedParams = 1234 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1235 1236 if (PassedParams) { 1237 for (auto *Param : FD->parameters()) { 1238 Args.push_back(Param); 1239 if (!Param->hasAttr<PassObjectSizeAttr>()) 1240 continue; 1241 1242 auto *Implicit = ImplicitParamDecl::Create( 1243 getContext(), Param->getDeclContext(), Param->getLocation(), 1244 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1245 SizeArguments[Param] = Implicit; 1246 Args.push_back(Implicit); 1247 } 1248 } 1249 1250 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1251 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1252 1253 return ResTy; 1254 } 1255 1256 static bool 1257 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1258 const ASTContext &Context) { 1259 QualType T = FD->getReturnType(); 1260 // Avoid the optimization for functions that return a record type with a 1261 // trivial destructor or another trivially copyable type. 1262 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1263 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1264 return !ClassDecl->hasTrivialDestructor(); 1265 } 1266 return !T.isTriviallyCopyableType(Context); 1267 } 1268 1269 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1270 const CGFunctionInfo &FnInfo) { 1271 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1272 CurGD = GD; 1273 1274 FunctionArgList Args; 1275 QualType ResTy = BuildFunctionArgList(GD, Args); 1276 1277 // Check if we should generate debug info for this function. 1278 if (FD->hasAttr<NoDebugAttr>()) 1279 DebugInfo = nullptr; // disable debug info indefinitely for this function 1280 1281 // The function might not have a body if we're generating thunks for a 1282 // function declaration. 1283 SourceRange BodyRange; 1284 if (Stmt *Body = FD->getBody()) 1285 BodyRange = Body->getSourceRange(); 1286 else 1287 BodyRange = FD->getLocation(); 1288 CurEHLocation = BodyRange.getEnd(); 1289 1290 // Use the location of the start of the function to determine where 1291 // the function definition is located. By default use the location 1292 // of the declaration as the location for the subprogram. A function 1293 // may lack a declaration in the source code if it is created by code 1294 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1295 SourceLocation Loc = FD->getLocation(); 1296 1297 // If this is a function specialization then use the pattern body 1298 // as the location for the function. 1299 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1300 if (SpecDecl->hasBody(SpecDecl)) 1301 Loc = SpecDecl->getLocation(); 1302 1303 Stmt *Body = FD->getBody(); 1304 1305 // Initialize helper which will detect jumps which can cause invalid lifetime 1306 // markers. 1307 if (Body && ShouldEmitLifetimeMarkers) 1308 Bypasses.Init(Body); 1309 1310 // Emit the standard function prologue. 1311 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1312 1313 // Generate the body of the function. 1314 PGO.assignRegionCounters(GD, CurFn); 1315 if (isa<CXXDestructorDecl>(FD)) 1316 EmitDestructorBody(Args); 1317 else if (isa<CXXConstructorDecl>(FD)) 1318 EmitConstructorBody(Args); 1319 else if (getLangOpts().CUDA && 1320 !getLangOpts().CUDAIsDevice && 1321 FD->hasAttr<CUDAGlobalAttr>()) 1322 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1323 else if (isa<CXXMethodDecl>(FD) && 1324 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1325 // The lambda static invoker function is special, because it forwards or 1326 // clones the body of the function call operator (but is actually static). 1327 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1328 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1329 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1330 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1331 // Implicit copy-assignment gets the same special treatment as implicit 1332 // copy-constructors. 1333 emitImplicitAssignmentOperatorBody(Args); 1334 } else if (Body) { 1335 EmitFunctionBody(Args, Body); 1336 } else 1337 llvm_unreachable("no definition for emitted function"); 1338 1339 // C++11 [stmt.return]p2: 1340 // Flowing off the end of a function [...] results in undefined behavior in 1341 // a value-returning function. 1342 // C11 6.9.1p12: 1343 // If the '}' that terminates a function is reached, and the value of the 1344 // function call is used by the caller, the behavior is undefined. 1345 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1346 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1347 bool ShouldEmitUnreachable = 1348 CGM.getCodeGenOpts().StrictReturn || 1349 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1350 if (SanOpts.has(SanitizerKind::Return)) { 1351 SanitizerScope SanScope(this); 1352 llvm::Value *IsFalse = Builder.getFalse(); 1353 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1354 SanitizerHandler::MissingReturn, 1355 EmitCheckSourceLocation(FD->getLocation()), None); 1356 } else if (ShouldEmitUnreachable) { 1357 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1358 EmitTrapCall(llvm::Intrinsic::trap); 1359 } 1360 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1361 Builder.CreateUnreachable(); 1362 Builder.ClearInsertionPoint(); 1363 } 1364 } 1365 1366 // Emit the standard function epilogue. 1367 FinishFunction(BodyRange.getEnd()); 1368 1369 // If we haven't marked the function nothrow through other means, do 1370 // a quick pass now to see if we can. 1371 if (!CurFn->doesNotThrow()) 1372 TryMarkNoThrow(CurFn); 1373 } 1374 1375 /// ContainsLabel - Return true if the statement contains a label in it. If 1376 /// this statement is not executed normally, it not containing a label means 1377 /// that we can just remove the code. 1378 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1379 // Null statement, not a label! 1380 if (!S) return false; 1381 1382 // If this is a label, we have to emit the code, consider something like: 1383 // if (0) { ... foo: bar(); } goto foo; 1384 // 1385 // TODO: If anyone cared, we could track __label__'s, since we know that you 1386 // can't jump to one from outside their declared region. 1387 if (isa<LabelStmt>(S)) 1388 return true; 1389 1390 // If this is a case/default statement, and we haven't seen a switch, we have 1391 // to emit the code. 1392 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1393 return true; 1394 1395 // If this is a switch statement, we want to ignore cases below it. 1396 if (isa<SwitchStmt>(S)) 1397 IgnoreCaseStmts = true; 1398 1399 // Scan subexpressions for verboten labels. 1400 for (const Stmt *SubStmt : S->children()) 1401 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1402 return true; 1403 1404 return false; 1405 } 1406 1407 /// containsBreak - Return true if the statement contains a break out of it. 1408 /// If the statement (recursively) contains a switch or loop with a break 1409 /// inside of it, this is fine. 1410 bool CodeGenFunction::containsBreak(const Stmt *S) { 1411 // Null statement, not a label! 1412 if (!S) return false; 1413 1414 // If this is a switch or loop that defines its own break scope, then we can 1415 // include it and anything inside of it. 1416 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1417 isa<ForStmt>(S)) 1418 return false; 1419 1420 if (isa<BreakStmt>(S)) 1421 return true; 1422 1423 // Scan subexpressions for verboten breaks. 1424 for (const Stmt *SubStmt : S->children()) 1425 if (containsBreak(SubStmt)) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1432 if (!S) return false; 1433 1434 // Some statement kinds add a scope and thus never add a decl to the current 1435 // scope. Note, this list is longer than the list of statements that might 1436 // have an unscoped decl nested within them, but this way is conservatively 1437 // correct even if more statement kinds are added. 1438 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1439 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1440 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1441 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1442 return false; 1443 1444 if (isa<DeclStmt>(S)) 1445 return true; 1446 1447 for (const Stmt *SubStmt : S->children()) 1448 if (mightAddDeclToScope(SubStmt)) 1449 return true; 1450 1451 return false; 1452 } 1453 1454 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1455 /// to a constant, or if it does but contains a label, return false. If it 1456 /// constant folds return true and set the boolean result in Result. 1457 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1458 bool &ResultBool, 1459 bool AllowLabels) { 1460 llvm::APSInt ResultInt; 1461 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1462 return false; 1463 1464 ResultBool = ResultInt.getBoolValue(); 1465 return true; 1466 } 1467 1468 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1469 /// to a constant, or if it does but contains a label, return false. If it 1470 /// constant folds return true and set the folded value. 1471 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1472 llvm::APSInt &ResultInt, 1473 bool AllowLabels) { 1474 // FIXME: Rename and handle conversion of other evaluatable things 1475 // to bool. 1476 llvm::APSInt Int; 1477 if (!Cond->EvaluateAsInt(Int, getContext())) 1478 return false; // Not foldable, not integer or not fully evaluatable. 1479 1480 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1481 return false; // Contains a label. 1482 1483 ResultInt = Int; 1484 return true; 1485 } 1486 1487 1488 1489 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1490 /// statement) to the specified blocks. Based on the condition, this might try 1491 /// to simplify the codegen of the conditional based on the branch. 1492 /// 1493 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1494 llvm::BasicBlock *TrueBlock, 1495 llvm::BasicBlock *FalseBlock, 1496 uint64_t TrueCount) { 1497 Cond = Cond->IgnoreParens(); 1498 1499 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1500 1501 // Handle X && Y in a condition. 1502 if (CondBOp->getOpcode() == BO_LAnd) { 1503 // If we have "1 && X", simplify the code. "0 && X" would have constant 1504 // folded if the case was simple enough. 1505 bool ConstantBool = false; 1506 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1507 ConstantBool) { 1508 // br(1 && X) -> br(X). 1509 incrementProfileCounter(CondBOp); 1510 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1511 TrueCount); 1512 } 1513 1514 // If we have "X && 1", simplify the code to use an uncond branch. 1515 // "X && 0" would have been constant folded to 0. 1516 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1517 ConstantBool) { 1518 // br(X && 1) -> br(X). 1519 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1520 TrueCount); 1521 } 1522 1523 // Emit the LHS as a conditional. If the LHS conditional is false, we 1524 // want to jump to the FalseBlock. 1525 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1526 // The counter tells us how often we evaluate RHS, and all of TrueCount 1527 // can be propagated to that branch. 1528 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1529 1530 ConditionalEvaluation eval(*this); 1531 { 1532 ApplyDebugLocation DL(*this, Cond); 1533 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1534 EmitBlock(LHSTrue); 1535 } 1536 1537 incrementProfileCounter(CondBOp); 1538 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1539 1540 // Any temporaries created here are conditional. 1541 eval.begin(*this); 1542 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1543 eval.end(*this); 1544 1545 return; 1546 } 1547 1548 if (CondBOp->getOpcode() == BO_LOr) { 1549 // If we have "0 || X", simplify the code. "1 || X" would have constant 1550 // folded if the case was simple enough. 1551 bool ConstantBool = false; 1552 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1553 !ConstantBool) { 1554 // br(0 || X) -> br(X). 1555 incrementProfileCounter(CondBOp); 1556 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1557 TrueCount); 1558 } 1559 1560 // If we have "X || 0", simplify the code to use an uncond branch. 1561 // "X || 1" would have been constant folded to 1. 1562 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1563 !ConstantBool) { 1564 // br(X || 0) -> br(X). 1565 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1566 TrueCount); 1567 } 1568 1569 // Emit the LHS as a conditional. If the LHS conditional is true, we 1570 // want to jump to the TrueBlock. 1571 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1572 // We have the count for entry to the RHS and for the whole expression 1573 // being true, so we can divy up True count between the short circuit and 1574 // the RHS. 1575 uint64_t LHSCount = 1576 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1577 uint64_t RHSCount = TrueCount - LHSCount; 1578 1579 ConditionalEvaluation eval(*this); 1580 { 1581 ApplyDebugLocation DL(*this, Cond); 1582 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1583 EmitBlock(LHSFalse); 1584 } 1585 1586 incrementProfileCounter(CondBOp); 1587 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1588 1589 // Any temporaries created here are conditional. 1590 eval.begin(*this); 1591 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1592 1593 eval.end(*this); 1594 1595 return; 1596 } 1597 } 1598 1599 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1600 // br(!x, t, f) -> br(x, f, t) 1601 if (CondUOp->getOpcode() == UO_LNot) { 1602 // Negate the count. 1603 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1604 // Negate the condition and swap the destination blocks. 1605 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1606 FalseCount); 1607 } 1608 } 1609 1610 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1611 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1612 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1613 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1614 1615 ConditionalEvaluation cond(*this); 1616 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1617 getProfileCount(CondOp)); 1618 1619 // When computing PGO branch weights, we only know the overall count for 1620 // the true block. This code is essentially doing tail duplication of the 1621 // naive code-gen, introducing new edges for which counts are not 1622 // available. Divide the counts proportionally between the LHS and RHS of 1623 // the conditional operator. 1624 uint64_t LHSScaledTrueCount = 0; 1625 if (TrueCount) { 1626 double LHSRatio = 1627 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1628 LHSScaledTrueCount = TrueCount * LHSRatio; 1629 } 1630 1631 cond.begin(*this); 1632 EmitBlock(LHSBlock); 1633 incrementProfileCounter(CondOp); 1634 { 1635 ApplyDebugLocation DL(*this, Cond); 1636 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1637 LHSScaledTrueCount); 1638 } 1639 cond.end(*this); 1640 1641 cond.begin(*this); 1642 EmitBlock(RHSBlock); 1643 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1644 TrueCount - LHSScaledTrueCount); 1645 cond.end(*this); 1646 1647 return; 1648 } 1649 1650 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1651 // Conditional operator handling can give us a throw expression as a 1652 // condition for a case like: 1653 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1654 // Fold this to: 1655 // br(c, throw x, br(y, t, f)) 1656 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1657 return; 1658 } 1659 1660 // If the branch has a condition wrapped by __builtin_unpredictable, 1661 // create metadata that specifies that the branch is unpredictable. 1662 // Don't bother if not optimizing because that metadata would not be used. 1663 llvm::MDNode *Unpredictable = nullptr; 1664 auto *Call = dyn_cast<CallExpr>(Cond); 1665 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1666 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1667 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1668 llvm::MDBuilder MDHelper(getLLVMContext()); 1669 Unpredictable = MDHelper.createUnpredictable(); 1670 } 1671 } 1672 1673 // Create branch weights based on the number of times we get here and the 1674 // number of times the condition should be true. 1675 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1676 llvm::MDNode *Weights = 1677 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1678 1679 // Emit the code with the fully general case. 1680 llvm::Value *CondV; 1681 { 1682 ApplyDebugLocation DL(*this, Cond); 1683 CondV = EvaluateExprAsBool(Cond); 1684 } 1685 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1686 } 1687 1688 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1689 /// specified stmt yet. 1690 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1691 CGM.ErrorUnsupported(S, Type); 1692 } 1693 1694 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1695 /// variable-length array whose elements have a non-zero bit-pattern. 1696 /// 1697 /// \param baseType the inner-most element type of the array 1698 /// \param src - a char* pointing to the bit-pattern for a single 1699 /// base element of the array 1700 /// \param sizeInChars - the total size of the VLA, in chars 1701 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1702 Address dest, Address src, 1703 llvm::Value *sizeInChars) { 1704 CGBuilderTy &Builder = CGF.Builder; 1705 1706 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1707 llvm::Value *baseSizeInChars 1708 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1709 1710 Address begin = 1711 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1712 llvm::Value *end = 1713 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1714 1715 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1716 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1717 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1718 1719 // Make a loop over the VLA. C99 guarantees that the VLA element 1720 // count must be nonzero. 1721 CGF.EmitBlock(loopBB); 1722 1723 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1724 cur->addIncoming(begin.getPointer(), originBB); 1725 1726 CharUnits curAlign = 1727 dest.getAlignment().alignmentOfArrayElement(baseSize); 1728 1729 // memcpy the individual element bit-pattern. 1730 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1731 /*volatile*/ false); 1732 1733 // Go to the next element. 1734 llvm::Value *next = 1735 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1736 1737 // Leave if that's the end of the VLA. 1738 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1739 Builder.CreateCondBr(done, contBB, loopBB); 1740 cur->addIncoming(next, loopBB); 1741 1742 CGF.EmitBlock(contBB); 1743 } 1744 1745 void 1746 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1747 // Ignore empty classes in C++. 1748 if (getLangOpts().CPlusPlus) { 1749 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1750 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1751 return; 1752 } 1753 } 1754 1755 // Cast the dest ptr to the appropriate i8 pointer type. 1756 if (DestPtr.getElementType() != Int8Ty) 1757 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1758 1759 // Get size and alignment info for this aggregate. 1760 CharUnits size = getContext().getTypeSizeInChars(Ty); 1761 1762 llvm::Value *SizeVal; 1763 const VariableArrayType *vla; 1764 1765 // Don't bother emitting a zero-byte memset. 1766 if (size.isZero()) { 1767 // But note that getTypeInfo returns 0 for a VLA. 1768 if (const VariableArrayType *vlaType = 1769 dyn_cast_or_null<VariableArrayType>( 1770 getContext().getAsArrayType(Ty))) { 1771 auto VlaSize = getVLASize(vlaType); 1772 SizeVal = VlaSize.NumElts; 1773 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1774 if (!eltSize.isOne()) 1775 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1776 vla = vlaType; 1777 } else { 1778 return; 1779 } 1780 } else { 1781 SizeVal = CGM.getSize(size); 1782 vla = nullptr; 1783 } 1784 1785 // If the type contains a pointer to data member we can't memset it to zero. 1786 // Instead, create a null constant and copy it to the destination. 1787 // TODO: there are other patterns besides zero that we can usefully memset, 1788 // like -1, which happens to be the pattern used by member-pointers. 1789 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1790 // For a VLA, emit a single element, then splat that over the VLA. 1791 if (vla) Ty = getContext().getBaseElementType(vla); 1792 1793 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1794 1795 llvm::GlobalVariable *NullVariable = 1796 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1797 /*isConstant=*/true, 1798 llvm::GlobalVariable::PrivateLinkage, 1799 NullConstant, Twine()); 1800 CharUnits NullAlign = DestPtr.getAlignment(); 1801 NullVariable->setAlignment(NullAlign.getQuantity()); 1802 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1803 NullAlign); 1804 1805 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1806 1807 // Get and call the appropriate llvm.memcpy overload. 1808 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1809 return; 1810 } 1811 1812 // Otherwise, just memset the whole thing to zero. This is legal 1813 // because in LLVM, all default initializers (other than the ones we just 1814 // handled above) are guaranteed to have a bit pattern of all zeros. 1815 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1816 } 1817 1818 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1819 // Make sure that there is a block for the indirect goto. 1820 if (!IndirectBranch) 1821 GetIndirectGotoBlock(); 1822 1823 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1824 1825 // Make sure the indirect branch includes all of the address-taken blocks. 1826 IndirectBranch->addDestination(BB); 1827 return llvm::BlockAddress::get(CurFn, BB); 1828 } 1829 1830 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1831 // If we already made the indirect branch for indirect goto, return its block. 1832 if (IndirectBranch) return IndirectBranch->getParent(); 1833 1834 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1835 1836 // Create the PHI node that indirect gotos will add entries to. 1837 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1838 "indirect.goto.dest"); 1839 1840 // Create the indirect branch instruction. 1841 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1842 return IndirectBranch->getParent(); 1843 } 1844 1845 /// Computes the length of an array in elements, as well as the base 1846 /// element type and a properly-typed first element pointer. 1847 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1848 QualType &baseType, 1849 Address &addr) { 1850 const ArrayType *arrayType = origArrayType; 1851 1852 // If it's a VLA, we have to load the stored size. Note that 1853 // this is the size of the VLA in bytes, not its size in elements. 1854 llvm::Value *numVLAElements = nullptr; 1855 if (isa<VariableArrayType>(arrayType)) { 1856 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1857 1858 // Walk into all VLAs. This doesn't require changes to addr, 1859 // which has type T* where T is the first non-VLA element type. 1860 do { 1861 QualType elementType = arrayType->getElementType(); 1862 arrayType = getContext().getAsArrayType(elementType); 1863 1864 // If we only have VLA components, 'addr' requires no adjustment. 1865 if (!arrayType) { 1866 baseType = elementType; 1867 return numVLAElements; 1868 } 1869 } while (isa<VariableArrayType>(arrayType)); 1870 1871 // We get out here only if we find a constant array type 1872 // inside the VLA. 1873 } 1874 1875 // We have some number of constant-length arrays, so addr should 1876 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1877 // down to the first element of addr. 1878 SmallVector<llvm::Value*, 8> gepIndices; 1879 1880 // GEP down to the array type. 1881 llvm::ConstantInt *zero = Builder.getInt32(0); 1882 gepIndices.push_back(zero); 1883 1884 uint64_t countFromCLAs = 1; 1885 QualType eltType; 1886 1887 llvm::ArrayType *llvmArrayType = 1888 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1889 while (llvmArrayType) { 1890 assert(isa<ConstantArrayType>(arrayType)); 1891 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1892 == llvmArrayType->getNumElements()); 1893 1894 gepIndices.push_back(zero); 1895 countFromCLAs *= llvmArrayType->getNumElements(); 1896 eltType = arrayType->getElementType(); 1897 1898 llvmArrayType = 1899 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1900 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1901 assert((!llvmArrayType || arrayType) && 1902 "LLVM and Clang types are out-of-synch"); 1903 } 1904 1905 if (arrayType) { 1906 // From this point onwards, the Clang array type has been emitted 1907 // as some other type (probably a packed struct). Compute the array 1908 // size, and just emit the 'begin' expression as a bitcast. 1909 while (arrayType) { 1910 countFromCLAs *= 1911 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1912 eltType = arrayType->getElementType(); 1913 arrayType = getContext().getAsArrayType(eltType); 1914 } 1915 1916 llvm::Type *baseType = ConvertType(eltType); 1917 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1918 } else { 1919 // Create the actual GEP. 1920 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1921 gepIndices, "array.begin"), 1922 addr.getAlignment()); 1923 } 1924 1925 baseType = eltType; 1926 1927 llvm::Value *numElements 1928 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1929 1930 // If we had any VLA dimensions, factor them in. 1931 if (numVLAElements) 1932 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1933 1934 return numElements; 1935 } 1936 1937 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1938 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1939 assert(vla && "type was not a variable array type!"); 1940 return getVLASize(vla); 1941 } 1942 1943 CodeGenFunction::VlaSizePair 1944 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1945 // The number of elements so far; always size_t. 1946 llvm::Value *numElements = nullptr; 1947 1948 QualType elementType; 1949 do { 1950 elementType = type->getElementType(); 1951 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1952 assert(vlaSize && "no size for VLA!"); 1953 assert(vlaSize->getType() == SizeTy); 1954 1955 if (!numElements) { 1956 numElements = vlaSize; 1957 } else { 1958 // It's undefined behavior if this wraps around, so mark it that way. 1959 // FIXME: Teach -fsanitize=undefined to trap this. 1960 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1961 } 1962 } while ((type = getContext().getAsVariableArrayType(elementType))); 1963 1964 return { numElements, elementType }; 1965 } 1966 1967 CodeGenFunction::VlaSizePair 1968 CodeGenFunction::getVLAElements1D(QualType type) { 1969 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1970 assert(vla && "type was not a variable array type!"); 1971 return getVLAElements1D(vla); 1972 } 1973 1974 CodeGenFunction::VlaSizePair 1975 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1976 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1977 assert(VlaSize && "no size for VLA!"); 1978 assert(VlaSize->getType() == SizeTy); 1979 return { VlaSize, Vla->getElementType() }; 1980 } 1981 1982 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1983 assert(type->isVariablyModifiedType() && 1984 "Must pass variably modified type to EmitVLASizes!"); 1985 1986 EnsureInsertPoint(); 1987 1988 // We're going to walk down into the type and look for VLA 1989 // expressions. 1990 do { 1991 assert(type->isVariablyModifiedType()); 1992 1993 const Type *ty = type.getTypePtr(); 1994 switch (ty->getTypeClass()) { 1995 1996 #define TYPE(Class, Base) 1997 #define ABSTRACT_TYPE(Class, Base) 1998 #define NON_CANONICAL_TYPE(Class, Base) 1999 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2000 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2001 #include "clang/AST/TypeNodes.def" 2002 llvm_unreachable("unexpected dependent type!"); 2003 2004 // These types are never variably-modified. 2005 case Type::Builtin: 2006 case Type::Complex: 2007 case Type::Vector: 2008 case Type::ExtVector: 2009 case Type::Record: 2010 case Type::Enum: 2011 case Type::Elaborated: 2012 case Type::TemplateSpecialization: 2013 case Type::ObjCTypeParam: 2014 case Type::ObjCObject: 2015 case Type::ObjCInterface: 2016 case Type::ObjCObjectPointer: 2017 llvm_unreachable("type class is never variably-modified!"); 2018 2019 case Type::Adjusted: 2020 type = cast<AdjustedType>(ty)->getAdjustedType(); 2021 break; 2022 2023 case Type::Decayed: 2024 type = cast<DecayedType>(ty)->getPointeeType(); 2025 break; 2026 2027 case Type::Pointer: 2028 type = cast<PointerType>(ty)->getPointeeType(); 2029 break; 2030 2031 case Type::BlockPointer: 2032 type = cast<BlockPointerType>(ty)->getPointeeType(); 2033 break; 2034 2035 case Type::LValueReference: 2036 case Type::RValueReference: 2037 type = cast<ReferenceType>(ty)->getPointeeType(); 2038 break; 2039 2040 case Type::MemberPointer: 2041 type = cast<MemberPointerType>(ty)->getPointeeType(); 2042 break; 2043 2044 case Type::ConstantArray: 2045 case Type::IncompleteArray: 2046 // Losing element qualification here is fine. 2047 type = cast<ArrayType>(ty)->getElementType(); 2048 break; 2049 2050 case Type::VariableArray: { 2051 // Losing element qualification here is fine. 2052 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2053 2054 // Unknown size indication requires no size computation. 2055 // Otherwise, evaluate and record it. 2056 if (const Expr *size = vat->getSizeExpr()) { 2057 // It's possible that we might have emitted this already, 2058 // e.g. with a typedef and a pointer to it. 2059 llvm::Value *&entry = VLASizeMap[size]; 2060 if (!entry) { 2061 llvm::Value *Size = EmitScalarExpr(size); 2062 2063 // C11 6.7.6.2p5: 2064 // If the size is an expression that is not an integer constant 2065 // expression [...] each time it is evaluated it shall have a value 2066 // greater than zero. 2067 if (SanOpts.has(SanitizerKind::VLABound) && 2068 size->getType()->isSignedIntegerType()) { 2069 SanitizerScope SanScope(this); 2070 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2071 llvm::Constant *StaticArgs[] = { 2072 EmitCheckSourceLocation(size->getLocStart()), 2073 EmitCheckTypeDescriptor(size->getType()) 2074 }; 2075 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2076 SanitizerKind::VLABound), 2077 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2078 } 2079 2080 // Always zexting here would be wrong if it weren't 2081 // undefined behavior to have a negative bound. 2082 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2083 } 2084 } 2085 type = vat->getElementType(); 2086 break; 2087 } 2088 2089 case Type::FunctionProto: 2090 case Type::FunctionNoProto: 2091 type = cast<FunctionType>(ty)->getReturnType(); 2092 break; 2093 2094 case Type::Paren: 2095 case Type::TypeOf: 2096 case Type::UnaryTransform: 2097 case Type::Attributed: 2098 case Type::SubstTemplateTypeParm: 2099 case Type::PackExpansion: 2100 // Keep walking after single level desugaring. 2101 type = type.getSingleStepDesugaredType(getContext()); 2102 break; 2103 2104 case Type::Typedef: 2105 case Type::Decltype: 2106 case Type::Auto: 2107 case Type::DeducedTemplateSpecialization: 2108 // Stop walking: nothing to do. 2109 return; 2110 2111 case Type::TypeOfExpr: 2112 // Stop walking: emit typeof expression. 2113 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2114 return; 2115 2116 case Type::Atomic: 2117 type = cast<AtomicType>(ty)->getValueType(); 2118 break; 2119 2120 case Type::Pipe: 2121 type = cast<PipeType>(ty)->getElementType(); 2122 break; 2123 } 2124 } while (type->isVariablyModifiedType()); 2125 } 2126 2127 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2128 if (getContext().getBuiltinVaListType()->isArrayType()) 2129 return EmitPointerWithAlignment(E); 2130 return EmitLValue(E).getAddress(); 2131 } 2132 2133 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2134 return EmitLValue(E).getAddress(); 2135 } 2136 2137 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2138 const APValue &Init) { 2139 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2140 if (CGDebugInfo *Dbg = getDebugInfo()) 2141 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2142 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2143 } 2144 2145 CodeGenFunction::PeepholeProtection 2146 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2147 // At the moment, the only aggressive peephole we do in IR gen 2148 // is trunc(zext) folding, but if we add more, we can easily 2149 // extend this protection. 2150 2151 if (!rvalue.isScalar()) return PeepholeProtection(); 2152 llvm::Value *value = rvalue.getScalarVal(); 2153 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2154 2155 // Just make an extra bitcast. 2156 assert(HaveInsertPoint()); 2157 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2158 Builder.GetInsertBlock()); 2159 2160 PeepholeProtection protection; 2161 protection.Inst = inst; 2162 return protection; 2163 } 2164 2165 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2166 if (!protection.Inst) return; 2167 2168 // In theory, we could try to duplicate the peepholes now, but whatever. 2169 protection.Inst->eraseFromParent(); 2170 } 2171 2172 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2173 llvm::Value *AnnotatedVal, 2174 StringRef AnnotationStr, 2175 SourceLocation Location) { 2176 llvm::Value *Args[4] = { 2177 AnnotatedVal, 2178 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2179 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2180 CGM.EmitAnnotationLineNo(Location) 2181 }; 2182 return Builder.CreateCall(AnnotationFn, Args); 2183 } 2184 2185 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2186 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2187 // FIXME We create a new bitcast for every annotation because that's what 2188 // llvm-gcc was doing. 2189 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2190 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2191 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2192 I->getAnnotation(), D->getLocation()); 2193 } 2194 2195 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2196 Address Addr) { 2197 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2198 llvm::Value *V = Addr.getPointer(); 2199 llvm::Type *VTy = V->getType(); 2200 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2201 CGM.Int8PtrTy); 2202 2203 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2204 // FIXME Always emit the cast inst so we can differentiate between 2205 // annotation on the first field of a struct and annotation on the struct 2206 // itself. 2207 if (VTy != CGM.Int8PtrTy) 2208 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2209 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2210 V = Builder.CreateBitCast(V, VTy); 2211 } 2212 2213 return Address(V, Addr.getAlignment()); 2214 } 2215 2216 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2217 2218 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2219 : CGF(CGF) { 2220 assert(!CGF->IsSanitizerScope); 2221 CGF->IsSanitizerScope = true; 2222 } 2223 2224 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2225 CGF->IsSanitizerScope = false; 2226 } 2227 2228 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2229 const llvm::Twine &Name, 2230 llvm::BasicBlock *BB, 2231 llvm::BasicBlock::iterator InsertPt) const { 2232 LoopStack.InsertHelper(I); 2233 if (IsSanitizerScope) 2234 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2235 } 2236 2237 void CGBuilderInserter::InsertHelper( 2238 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2239 llvm::BasicBlock::iterator InsertPt) const { 2240 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2241 if (CGF) 2242 CGF->InsertHelper(I, Name, BB, InsertPt); 2243 } 2244 2245 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2246 CodeGenModule &CGM, const FunctionDecl *FD, 2247 std::string &FirstMissing) { 2248 // If there aren't any required features listed then go ahead and return. 2249 if (ReqFeatures.empty()) 2250 return false; 2251 2252 // Now build up the set of caller features and verify that all the required 2253 // features are there. 2254 llvm::StringMap<bool> CallerFeatureMap; 2255 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2256 2257 // If we have at least one of the features in the feature list return 2258 // true, otherwise return false. 2259 return std::all_of( 2260 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2261 SmallVector<StringRef, 1> OrFeatures; 2262 Feature.split(OrFeatures, "|"); 2263 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2264 [&](StringRef Feature) { 2265 if (!CallerFeatureMap.lookup(Feature)) { 2266 FirstMissing = Feature.str(); 2267 return false; 2268 } 2269 return true; 2270 }); 2271 }); 2272 } 2273 2274 // Emits an error if we don't have a valid set of target features for the 2275 // called function. 2276 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2277 const FunctionDecl *TargetDecl) { 2278 // Early exit if this is an indirect call. 2279 if (!TargetDecl) 2280 return; 2281 2282 // Get the current enclosing function if it exists. If it doesn't 2283 // we can't check the target features anyhow. 2284 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2285 if (!FD) 2286 return; 2287 2288 // Grab the required features for the call. For a builtin this is listed in 2289 // the td file with the default cpu, for an always_inline function this is any 2290 // listed cpu and any listed features. 2291 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2292 std::string MissingFeature; 2293 if (BuiltinID) { 2294 SmallVector<StringRef, 1> ReqFeatures; 2295 const char *FeatureList = 2296 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2297 // Return if the builtin doesn't have any required features. 2298 if (!FeatureList || StringRef(FeatureList) == "") 2299 return; 2300 StringRef(FeatureList).split(ReqFeatures, ","); 2301 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2302 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2303 << TargetDecl->getDeclName() 2304 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2305 2306 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2307 // Get the required features for the callee. 2308 SmallVector<StringRef, 1> ReqFeatures; 2309 llvm::StringMap<bool> CalleeFeatureMap; 2310 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2311 for (const auto &F : CalleeFeatureMap) { 2312 // Only positive features are "required". 2313 if (F.getValue()) 2314 ReqFeatures.push_back(F.getKey()); 2315 } 2316 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2317 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2318 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2319 } 2320 } 2321 2322 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2323 if (!CGM.getCodeGenOpts().SanitizeStats) 2324 return; 2325 2326 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2327 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2328 CGM.getSanStats().create(IRB, SSK); 2329 } 2330 2331 llvm::Value * 2332 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2333 llvm::Value *TrueCondition = nullptr; 2334 if (!RO.ParsedAttribute.Architecture.empty()) 2335 TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture); 2336 2337 if (!RO.ParsedAttribute.Features.empty()) { 2338 SmallVector<StringRef, 8> FeatureList; 2339 llvm::for_each(RO.ParsedAttribute.Features, 2340 [&FeatureList](const std::string &Feature) { 2341 FeatureList.push_back(StringRef{Feature}.substr(1)); 2342 }); 2343 llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList); 2344 TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp) 2345 : FeatureCmp; 2346 } 2347 return TrueCondition; 2348 } 2349 2350 void CodeGenFunction::EmitMultiVersionResolver( 2351 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2352 assert((getContext().getTargetInfo().getTriple().getArch() == 2353 llvm::Triple::x86 || 2354 getContext().getTargetInfo().getTriple().getArch() == 2355 llvm::Triple::x86_64) && 2356 "Only implemented for x86 targets"); 2357 2358 // Main function's basic block. 2359 llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver); 2360 Builder.SetInsertPoint(CurBlock); 2361 EmitX86CpuInit(); 2362 2363 llvm::Function *DefaultFunc = nullptr; 2364 for (const MultiVersionResolverOption &RO : Options) { 2365 Builder.SetInsertPoint(CurBlock); 2366 llvm::Value *TrueCondition = FormResolverCondition(RO); 2367 2368 if (!TrueCondition) { 2369 DefaultFunc = RO.Function; 2370 } else { 2371 llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver); 2372 llvm::IRBuilder<> RetBuilder(RetBlock); 2373 RetBuilder.CreateRet(RO.Function); 2374 CurBlock = createBasicBlock("ro_else", Resolver); 2375 Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock); 2376 } 2377 } 2378 2379 assert(DefaultFunc && "No default version?"); 2380 // Emit return from the 'else-ist' block. 2381 Builder.SetInsertPoint(CurBlock); 2382 Builder.CreateRet(DefaultFunc); 2383 } 2384 2385 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2386 if (CGDebugInfo *DI = getDebugInfo()) 2387 return DI->SourceLocToDebugLoc(Location); 2388 2389 return llvm::DebugLoc(); 2390 } 2391