1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65 
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.setFastMathFlags(FMF);
83 }
84 
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93 
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98 
99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104 
105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117 
118   if (Source) *Source = AlignmentSource::Type;
119 
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133 
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144 
145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151 
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160 
161 
162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165 
166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169 
170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181 
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184 
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198     case Type::Pipe:
199       return TEK_Scalar;
200 
201     // Complexes.
202     case Type::Complex:
203       return TEK_Complex;
204 
205     // Arrays, records, and Objective-C objects.
206     case Type::ConstantArray:
207     case Type::IncompleteArray:
208     case Type::VariableArray:
209     case Type::Record:
210     case Type::ObjCObject:
211     case Type::ObjCInterface:
212       return TEK_Aggregate;
213 
214     // We operate on atomic values according to their underlying type.
215     case Type::Atomic:
216       type = cast<AtomicType>(type)->getValueType();
217       continue;
218     }
219     llvm_unreachable("unknown type kind!");
220   }
221 }
222 
223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
224   // For cleanliness, we try to avoid emitting the return block for
225   // simple cases.
226   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
227 
228   if (CurBB) {
229     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
230 
231     // We have a valid insert point, reuse it if it is empty or there are no
232     // explicit jumps to the return block.
233     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
234       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
235       delete ReturnBlock.getBlock();
236     } else
237       EmitBlock(ReturnBlock.getBlock());
238     return llvm::DebugLoc();
239   }
240 
241   // Otherwise, if the return block is the target of a single direct
242   // branch then we can just put the code in that block instead. This
243   // cleans up functions which started with a unified return block.
244   if (ReturnBlock.getBlock()->hasOneUse()) {
245     llvm::BranchInst *BI =
246       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
247     if (BI && BI->isUnconditional() &&
248         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
249       // Record/return the DebugLoc of the simple 'return' expression to be used
250       // later by the actual 'ret' instruction.
251       llvm::DebugLoc Loc = BI->getDebugLoc();
252       Builder.SetInsertPoint(BI->getParent());
253       BI->eraseFromParent();
254       delete ReturnBlock.getBlock();
255       return Loc;
256     }
257   }
258 
259   // FIXME: We are at an unreachable point, there is no reason to emit the block
260   // unless it has uses. However, we still need a place to put the debug
261   // region.end for now.
262 
263   EmitBlock(ReturnBlock.getBlock());
264   return llvm::DebugLoc();
265 }
266 
267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
268   if (!BB) return;
269   if (!BB->use_empty())
270     return CGF.CurFn->getBasicBlockList().push_back(BB);
271   delete BB;
272 }
273 
274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
275   assert(BreakContinueStack.empty() &&
276          "mismatched push/pop in break/continue stack!");
277 
278   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
279     && NumSimpleReturnExprs == NumReturnExprs
280     && ReturnBlock.getBlock()->use_empty();
281   // Usually the return expression is evaluated before the cleanup
282   // code.  If the function contains only a simple return statement,
283   // such as a constant, the location before the cleanup code becomes
284   // the last useful breakpoint in the function, because the simple
285   // return expression will be evaluated after the cleanup code. To be
286   // safe, set the debug location for cleanup code to the location of
287   // the return statement.  Otherwise the cleanup code should be at the
288   // end of the function's lexical scope.
289   //
290   // If there are multiple branches to the return block, the branch
291   // instructions will get the location of the return statements and
292   // all will be fine.
293   if (CGDebugInfo *DI = getDebugInfo()) {
294     if (OnlySimpleReturnStmts)
295       DI->EmitLocation(Builder, LastStopPoint);
296     else
297       DI->EmitLocation(Builder, EndLoc);
298   }
299 
300   // Pop any cleanups that might have been associated with the
301   // parameters.  Do this in whatever block we're currently in; it's
302   // important to do this before we enter the return block or return
303   // edges will be *really* confused.
304   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
305   bool HasOnlyLifetimeMarkers =
306       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
307   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
308   if (HasCleanups) {
309     // Make sure the line table doesn't jump back into the body for
310     // the ret after it's been at EndLoc.
311     if (CGDebugInfo *DI = getDebugInfo())
312       if (OnlySimpleReturnStmts)
313         DI->EmitLocation(Builder, EndLoc);
314 
315     PopCleanupBlocks(PrologueCleanupDepth);
316   }
317 
318   // Emit function epilog (to return).
319   llvm::DebugLoc Loc = EmitReturnBlock();
320 
321   if (ShouldInstrumentFunction())
322     EmitFunctionInstrumentation("__cyg_profile_func_exit");
323 
324   // Emit debug descriptor for function end.
325   if (CGDebugInfo *DI = getDebugInfo())
326     DI->EmitFunctionEnd(Builder);
327 
328   // Reset the debug location to that of the simple 'return' expression, if any
329   // rather than that of the end of the function's scope '}'.
330   ApplyDebugLocation AL(*this, Loc);
331   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
332   EmitEndEHSpec(CurCodeDecl);
333 
334   assert(EHStack.empty() &&
335          "did not remove all scopes from cleanup stack!");
336 
337   // If someone did an indirect goto, emit the indirect goto block at the end of
338   // the function.
339   if (IndirectBranch) {
340     EmitBlock(IndirectBranch->getParent());
341     Builder.ClearInsertionPoint();
342   }
343 
344   // If some of our locals escaped, insert a call to llvm.localescape in the
345   // entry block.
346   if (!EscapedLocals.empty()) {
347     // Invert the map from local to index into a simple vector. There should be
348     // no holes.
349     SmallVector<llvm::Value *, 4> EscapeArgs;
350     EscapeArgs.resize(EscapedLocals.size());
351     for (auto &Pair : EscapedLocals)
352       EscapeArgs[Pair.second] = Pair.first;
353     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
354         &CGM.getModule(), llvm::Intrinsic::localescape);
355     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
356   }
357 
358   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
359   llvm::Instruction *Ptr = AllocaInsertPt;
360   AllocaInsertPt = nullptr;
361   Ptr->eraseFromParent();
362 
363   // If someone took the address of a label but never did an indirect goto, we
364   // made a zero entry PHI node, which is illegal, zap it now.
365   if (IndirectBranch) {
366     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
367     if (PN->getNumIncomingValues() == 0) {
368       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
369       PN->eraseFromParent();
370     }
371   }
372 
373   EmitIfUsed(*this, EHResumeBlock);
374   EmitIfUsed(*this, TerminateLandingPad);
375   EmitIfUsed(*this, TerminateHandler);
376   EmitIfUsed(*this, UnreachableBlock);
377 
378   if (CGM.getCodeGenOpts().EmitDeclMetadata)
379     EmitDeclMetadata();
380 
381   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
382            I = DeferredReplacements.begin(),
383            E = DeferredReplacements.end();
384        I != E; ++I) {
385     I->first->replaceAllUsesWith(I->second);
386     I->first->eraseFromParent();
387   }
388 }
389 
390 /// ShouldInstrumentFunction - Return true if the current function should be
391 /// instrumented with __cyg_profile_func_* calls
392 bool CodeGenFunction::ShouldInstrumentFunction() {
393   if (!CGM.getCodeGenOpts().InstrumentFunctions)
394     return false;
395   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
396     return false;
397   return true;
398 }
399 
400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
401 /// instrumentation function with the current function and the call site, if
402 /// function instrumentation is enabled.
403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
404   auto NL = ApplyDebugLocation::CreateArtificial(*this);
405   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
406   llvm::PointerType *PointerTy = Int8PtrTy;
407   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
408   llvm::FunctionType *FunctionTy =
409     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
410 
411   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
412   llvm::CallInst *CallSite = Builder.CreateCall(
413     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
414     llvm::ConstantInt::get(Int32Ty, 0),
415     "callsite");
416 
417   llvm::Value *args[] = {
418     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
419     CallSite
420   };
421 
422   EmitNounwindRuntimeCall(F, args);
423 }
424 
425 void CodeGenFunction::EmitMCountInstrumentation() {
426   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
427 
428   llvm::Constant *MCountFn =
429     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
430   EmitNounwindRuntimeCall(MCountFn);
431 }
432 
433 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
434 // information in the program executable. The argument information stored
435 // includes the argument name, its type, the address and access qualifiers used.
436 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
437                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
438                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
439   // Create MDNodes that represent the kernel arg metadata.
440   // Each MDNode is a list in the form of "key", N number of values which is
441   // the same number of values as their are kernel arguments.
442 
443   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
444 
445   // MDNode for the kernel argument address space qualifiers.
446   SmallVector<llvm::Metadata *, 8> addressQuals;
447 
448   // MDNode for the kernel argument access qualifiers (images only).
449   SmallVector<llvm::Metadata *, 8> accessQuals;
450 
451   // MDNode for the kernel argument type names.
452   SmallVector<llvm::Metadata *, 8> argTypeNames;
453 
454   // MDNode for the kernel argument base type names.
455   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
456 
457   // MDNode for the kernel argument type qualifiers.
458   SmallVector<llvm::Metadata *, 8> argTypeQuals;
459 
460   // MDNode for the kernel argument names.
461   SmallVector<llvm::Metadata *, 8> argNames;
462 
463   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
464     const ParmVarDecl *parm = FD->getParamDecl(i);
465     QualType ty = parm->getType();
466     std::string typeQuals;
467 
468     if (ty->isPointerType()) {
469       QualType pointeeTy = ty->getPointeeType();
470 
471       // Get address qualifier.
472       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
473           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
474 
475       // Get argument type name.
476       std::string typeName =
477           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
478 
479       // Turn "unsigned type" to "utype"
480       std::string::size_type pos = typeName.find("unsigned");
481       if (pointeeTy.isCanonical() && pos != std::string::npos)
482         typeName.erase(pos+1, 8);
483 
484       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
485 
486       std::string baseTypeName =
487           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
488               Policy) +
489           "*";
490 
491       // Turn "unsigned type" to "utype"
492       pos = baseTypeName.find("unsigned");
493       if (pos != std::string::npos)
494         baseTypeName.erase(pos+1, 8);
495 
496       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
497 
498       // Get argument type qualifiers:
499       if (ty.isRestrictQualified())
500         typeQuals = "restrict";
501       if (pointeeTy.isConstQualified() ||
502           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
503         typeQuals += typeQuals.empty() ? "const" : " const";
504       if (pointeeTy.isVolatileQualified())
505         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
506     } else {
507       uint32_t AddrSpc = 0;
508       bool isPipe = ty->isPipeType();
509       if (ty->isImageType() || isPipe)
510         AddrSpc =
511           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
512 
513       addressQuals.push_back(
514           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
515 
516       // Get argument type name.
517       std::string typeName;
518       if (isPipe)
519         typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy);
520       else
521         typeName = ty.getUnqualifiedType().getAsString(Policy);
522 
523       // Turn "unsigned type" to "utype"
524       std::string::size_type pos = typeName.find("unsigned");
525       if (ty.isCanonical() && pos != std::string::npos)
526         typeName.erase(pos+1, 8);
527 
528       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
529 
530       std::string baseTypeName;
531       if (isPipe)
532         baseTypeName =
533           cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy);
534       else
535         baseTypeName =
536           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
537 
538       // Turn "unsigned type" to "utype"
539       pos = baseTypeName.find("unsigned");
540       if (pos != std::string::npos)
541         baseTypeName.erase(pos+1, 8);
542 
543       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
544 
545       // Get argument type qualifiers:
546       if (ty.isConstQualified())
547         typeQuals = "const";
548       if (ty.isVolatileQualified())
549         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
550       if (isPipe)
551         typeQuals = "pipe";
552     }
553 
554     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
555 
556     // Get image and pipe access qualifier:
557     if (ty->isImageType()|| ty->isPipeType()) {
558       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
559       if (A && A->isWriteOnly())
560         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
561       else if (A && A->isReadWrite())
562         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
563       else
564         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
565     } else
566       accessQuals.push_back(llvm::MDString::get(Context, "none"));
567 
568     // Get argument name.
569     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
570   }
571 
572   Fn->setMetadata("kernel_arg_addr_space",
573                   llvm::MDNode::get(Context, addressQuals));
574   Fn->setMetadata("kernel_arg_access_qual",
575                   llvm::MDNode::get(Context, accessQuals));
576   Fn->setMetadata("kernel_arg_type",
577                   llvm::MDNode::get(Context, argTypeNames));
578   Fn->setMetadata("kernel_arg_base_type",
579                   llvm::MDNode::get(Context, argBaseTypeNames));
580   Fn->setMetadata("kernel_arg_type_qual",
581                   llvm::MDNode::get(Context, argTypeQuals));
582   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
583     Fn->setMetadata("kernel_arg_name",
584                     llvm::MDNode::get(Context, argNames));
585 }
586 
587 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
588                                                llvm::Function *Fn)
589 {
590   if (!FD->hasAttr<OpenCLKernelAttr>())
591     return;
592 
593   llvm::LLVMContext &Context = getLLVMContext();
594 
595   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
596 
597   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
598     QualType hintQTy = A->getTypeHint();
599     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
600     bool isSignedInteger =
601         hintQTy->isSignedIntegerType() ||
602         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
603     llvm::Metadata *attrMDArgs[] = {
604         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
605             CGM.getTypes().ConvertType(A->getTypeHint()))),
606         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
607             llvm::IntegerType::get(Context, 32),
608             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
609     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
610   }
611 
612   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
613     llvm::Metadata *attrMDArgs[] = {
614         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
617     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
618   }
619 
620   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
621     llvm::Metadata *attrMDArgs[] = {
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
624         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
625     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
626   }
627 }
628 
629 /// Determine whether the function F ends with a return stmt.
630 static bool endsWithReturn(const Decl* F) {
631   const Stmt *Body = nullptr;
632   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
633     Body = FD->getBody();
634   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
635     Body = OMD->getBody();
636 
637   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
638     auto LastStmt = CS->body_rbegin();
639     if (LastStmt != CS->body_rend())
640       return isa<ReturnStmt>(*LastStmt);
641   }
642   return false;
643 }
644 
645 void CodeGenFunction::StartFunction(GlobalDecl GD,
646                                     QualType RetTy,
647                                     llvm::Function *Fn,
648                                     const CGFunctionInfo &FnInfo,
649                                     const FunctionArgList &Args,
650                                     SourceLocation Loc,
651                                     SourceLocation StartLoc) {
652   assert(!CurFn &&
653          "Do not use a CodeGenFunction object for more than one function");
654 
655   const Decl *D = GD.getDecl();
656 
657   DidCallStackSave = false;
658   CurCodeDecl = D;
659   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
660     if (FD->usesSEHTry())
661       CurSEHParent = FD;
662   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
663   FnRetTy = RetTy;
664   CurFn = Fn;
665   CurFnInfo = &FnInfo;
666   assert(CurFn->isDeclaration() && "Function already has body?");
667 
668   if (CGM.isInSanitizerBlacklist(Fn, Loc))
669     SanOpts.clear();
670 
671   if (D) {
672     // Apply the no_sanitize* attributes to SanOpts.
673     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
674       SanOpts.Mask &= ~Attr->getMask();
675   }
676 
677   // Apply sanitizer attributes to the function.
678   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
679     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
680   if (SanOpts.has(SanitizerKind::Thread))
681     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
682   if (SanOpts.has(SanitizerKind::Memory))
683     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
684   if (SanOpts.has(SanitizerKind::SafeStack))
685     Fn->addFnAttr(llvm::Attribute::SafeStack);
686 
687   // Pass inline keyword to optimizer if it appears explicitly on any
688   // declaration. Also, in the case of -fno-inline attach NoInline
689   // attribute to all functions that are not marked AlwaysInline, or
690   // to all functions that are not marked inline or implicitly inline
691   // in the case of -finline-hint-functions.
692   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
693     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
694     if (!CodeGenOpts.NoInline) {
695       for (auto RI : FD->redecls())
696         if (RI->isInlineSpecified()) {
697           Fn->addFnAttr(llvm::Attribute::InlineHint);
698           break;
699         }
700       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
701           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
702         Fn->addFnAttr(llvm::Attribute::NoInline);
703     } else if (!FD->hasAttr<AlwaysInlineAttr>())
704       Fn->addFnAttr(llvm::Attribute::NoInline);
705     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
706       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
707   }
708 
709   // Add no-jump-tables value.
710   Fn->addFnAttr("no-jump-tables",
711                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
712 
713   if (getLangOpts().OpenCL) {
714     // Add metadata for a kernel function.
715     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
716       EmitOpenCLKernelMetadata(FD, Fn);
717   }
718 
719   // If we are checking function types, emit a function type signature as
720   // prologue data.
721   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
722     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
723       if (llvm::Constant *PrologueSig =
724               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
725         llvm::Constant *FTRTTIConst =
726             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
727         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
728         llvm::Constant *PrologueStructConst =
729             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
730         Fn->setPrologueData(PrologueStructConst);
731       }
732     }
733   }
734 
735   // If we're in C++ mode and the function name is "main", it is guaranteed
736   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
737   // used within a program").
738   if (getLangOpts().CPlusPlus)
739     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
740       if (FD->isMain())
741         Fn->addFnAttr(llvm::Attribute::NoRecurse);
742 
743   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
744 
745   // Create a marker to make it easy to insert allocas into the entryblock
746   // later.  Don't create this with the builder, because we don't want it
747   // folded.
748   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
749   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
750 
751   ReturnBlock = getJumpDestInCurrentScope("return");
752 
753   Builder.SetInsertPoint(EntryBB);
754 
755   // Emit subprogram debug descriptor.
756   if (CGDebugInfo *DI = getDebugInfo()) {
757     // Reconstruct the type from the argument list so that implicit parameters,
758     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
759     // convention.
760     CallingConv CC = CallingConv::CC_C;
761     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
762       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
763         CC = SrcFnTy->getCallConv();
764     SmallVector<QualType, 16> ArgTypes;
765     for (const VarDecl *VD : Args)
766       ArgTypes.push_back(VD->getType());
767     QualType FnType = getContext().getFunctionType(
768         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
769     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
770   }
771 
772   if (ShouldInstrumentFunction())
773     EmitFunctionInstrumentation("__cyg_profile_func_enter");
774 
775   if (CGM.getCodeGenOpts().InstrumentForProfiling)
776     EmitMCountInstrumentation();
777 
778   if (RetTy->isVoidType()) {
779     // Void type; nothing to return.
780     ReturnValue = Address::invalid();
781 
782     // Count the implicit return.
783     if (!endsWithReturn(D))
784       ++NumReturnExprs;
785   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
786              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
787     // Indirect aggregate return; emit returned value directly into sret slot.
788     // This reduces code size, and affects correctness in C++.
789     auto AI = CurFn->arg_begin();
790     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
791       ++AI;
792     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
793   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
794              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
795     // Load the sret pointer from the argument struct and return into that.
796     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
797     llvm::Function::arg_iterator EI = CurFn->arg_end();
798     --EI;
799     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
800     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
801     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
802   } else {
803     ReturnValue = CreateIRTemp(RetTy, "retval");
804 
805     // Tell the epilog emitter to autorelease the result.  We do this
806     // now so that various specialized functions can suppress it
807     // during their IR-generation.
808     if (getLangOpts().ObjCAutoRefCount &&
809         !CurFnInfo->isReturnsRetained() &&
810         RetTy->isObjCRetainableType())
811       AutoreleaseResult = true;
812   }
813 
814   EmitStartEHSpec(CurCodeDecl);
815 
816   PrologueCleanupDepth = EHStack.stable_begin();
817   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
818 
819   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
820     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
821     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
822     if (MD->getParent()->isLambda() &&
823         MD->getOverloadedOperator() == OO_Call) {
824       // We're in a lambda; figure out the captures.
825       MD->getParent()->getCaptureFields(LambdaCaptureFields,
826                                         LambdaThisCaptureField);
827       if (LambdaThisCaptureField) {
828         // If the lambda captures the object referred to by '*this' - either by
829         // value or by reference, make sure CXXThisValue points to the correct
830         // object.
831 
832         // Get the lvalue for the field (which is a copy of the enclosing object
833         // or contains the address of the enclosing object).
834         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
835         if (!LambdaThisCaptureField->getType()->isPointerType()) {
836           // If the enclosing object was captured by value, just use its address.
837           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
838         } else {
839           // Load the lvalue pointed to by the field, since '*this' was captured
840           // by reference.
841           CXXThisValue =
842               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
843         }
844       }
845       for (auto *FD : MD->getParent()->fields()) {
846         if (FD->hasCapturedVLAType()) {
847           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
848                                            SourceLocation()).getScalarVal();
849           auto VAT = FD->getCapturedVLAType();
850           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
851         }
852       }
853     } else {
854       // Not in a lambda; just use 'this' from the method.
855       // FIXME: Should we generate a new load for each use of 'this'?  The
856       // fast register allocator would be happier...
857       CXXThisValue = CXXABIThisValue;
858     }
859   }
860 
861   // If any of the arguments have a variably modified type, make sure to
862   // emit the type size.
863   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
864        i != e; ++i) {
865     const VarDecl *VD = *i;
866 
867     // Dig out the type as written from ParmVarDecls; it's unclear whether
868     // the standard (C99 6.9.1p10) requires this, but we're following the
869     // precedent set by gcc.
870     QualType Ty;
871     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
872       Ty = PVD->getOriginalType();
873     else
874       Ty = VD->getType();
875 
876     if (Ty->isVariablyModifiedType())
877       EmitVariablyModifiedType(Ty);
878   }
879   // Emit a location at the end of the prologue.
880   if (CGDebugInfo *DI = getDebugInfo())
881     DI->EmitLocation(Builder, StartLoc);
882 }
883 
884 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
885                                        const Stmt *Body) {
886   incrementProfileCounter(Body);
887   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
888     EmitCompoundStmtWithoutScope(*S);
889   else
890     EmitStmt(Body);
891 }
892 
893 /// When instrumenting to collect profile data, the counts for some blocks
894 /// such as switch cases need to not include the fall-through counts, so
895 /// emit a branch around the instrumentation code. When not instrumenting,
896 /// this just calls EmitBlock().
897 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
898                                                const Stmt *S) {
899   llvm::BasicBlock *SkipCountBB = nullptr;
900   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
901     // When instrumenting for profiling, the fallthrough to certain
902     // statements needs to skip over the instrumentation code so that we
903     // get an accurate count.
904     SkipCountBB = createBasicBlock("skipcount");
905     EmitBranch(SkipCountBB);
906   }
907   EmitBlock(BB);
908   uint64_t CurrentCount = getCurrentProfileCount();
909   incrementProfileCounter(S);
910   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
911   if (SkipCountBB)
912     EmitBlock(SkipCountBB);
913 }
914 
915 /// Tries to mark the given function nounwind based on the
916 /// non-existence of any throwing calls within it.  We believe this is
917 /// lightweight enough to do at -O0.
918 static void TryMarkNoThrow(llvm::Function *F) {
919   // LLVM treats 'nounwind' on a function as part of the type, so we
920   // can't do this on functions that can be overwritten.
921   if (F->isInterposable()) return;
922 
923   for (llvm::BasicBlock &BB : *F)
924     for (llvm::Instruction &I : BB)
925       if (I.mayThrow())
926         return;
927 
928   F->setDoesNotThrow();
929 }
930 
931 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
932                                                FunctionArgList &Args) {
933   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
934   QualType ResTy = FD->getReturnType();
935 
936   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
937   if (MD && MD->isInstance()) {
938     if (CGM.getCXXABI().HasThisReturn(GD))
939       ResTy = MD->getThisType(getContext());
940     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
941       ResTy = CGM.getContext().VoidPtrTy;
942     CGM.getCXXABI().buildThisParam(*this, Args);
943   }
944 
945   // The base version of an inheriting constructor whose constructed base is a
946   // virtual base is not passed any arguments (because it doesn't actually call
947   // the inherited constructor).
948   bool PassedParams = true;
949   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
950     if (auto Inherited = CD->getInheritedConstructor())
951       PassedParams =
952           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
953 
954   if (PassedParams) {
955     for (auto *Param : FD->parameters()) {
956       Args.push_back(Param);
957       if (!Param->hasAttr<PassObjectSizeAttr>())
958         continue;
959 
960       IdentifierInfo *NoID = nullptr;
961       auto *Implicit = ImplicitParamDecl::Create(
962           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
963           getContext().getSizeType());
964       SizeArguments[Param] = Implicit;
965       Args.push_back(Implicit);
966     }
967   }
968 
969   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
970     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
971 
972   return ResTy;
973 }
974 
975 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
976                                    const CGFunctionInfo &FnInfo) {
977   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
978   CurGD = GD;
979 
980   FunctionArgList Args;
981   QualType ResTy = BuildFunctionArgList(GD, Args);
982 
983   // Check if we should generate debug info for this function.
984   if (FD->hasAttr<NoDebugAttr>())
985     DebugInfo = nullptr; // disable debug info indefinitely for this function
986 
987   SourceRange BodyRange;
988   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
989   CurEHLocation = BodyRange.getEnd();
990 
991   // Use the location of the start of the function to determine where
992   // the function definition is located. By default use the location
993   // of the declaration as the location for the subprogram. A function
994   // may lack a declaration in the source code if it is created by code
995   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
996   SourceLocation Loc = FD->getLocation();
997 
998   // If this is a function specialization then use the pattern body
999   // as the location for the function.
1000   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1001     if (SpecDecl->hasBody(SpecDecl))
1002       Loc = SpecDecl->getLocation();
1003 
1004   // Emit the standard function prologue.
1005   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1006 
1007   // Generate the body of the function.
1008   PGO.assignRegionCounters(GD, CurFn);
1009   if (isa<CXXDestructorDecl>(FD))
1010     EmitDestructorBody(Args);
1011   else if (isa<CXXConstructorDecl>(FD))
1012     EmitConstructorBody(Args);
1013   else if (getLangOpts().CUDA &&
1014            !getLangOpts().CUDAIsDevice &&
1015            FD->hasAttr<CUDAGlobalAttr>())
1016     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1017   else if (isa<CXXConversionDecl>(FD) &&
1018            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1019     // The lambda conversion to block pointer is special; the semantics can't be
1020     // expressed in the AST, so IRGen needs to special-case it.
1021     EmitLambdaToBlockPointerBody(Args);
1022   } else if (isa<CXXMethodDecl>(FD) &&
1023              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1024     // The lambda static invoker function is special, because it forwards or
1025     // clones the body of the function call operator (but is actually static).
1026     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1027   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1028              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1029               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1030     // Implicit copy-assignment gets the same special treatment as implicit
1031     // copy-constructors.
1032     emitImplicitAssignmentOperatorBody(Args);
1033   } else if (Stmt *Body = FD->getBody()) {
1034     EmitFunctionBody(Args, Body);
1035   } else
1036     llvm_unreachable("no definition for emitted function");
1037 
1038   // C++11 [stmt.return]p2:
1039   //   Flowing off the end of a function [...] results in undefined behavior in
1040   //   a value-returning function.
1041   // C11 6.9.1p12:
1042   //   If the '}' that terminates a function is reached, and the value of the
1043   //   function call is used by the caller, the behavior is undefined.
1044   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1045       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1046     if (SanOpts.has(SanitizerKind::Return)) {
1047       SanitizerScope SanScope(this);
1048       llvm::Value *IsFalse = Builder.getFalse();
1049       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1050                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1051                 None);
1052     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1053       EmitTrapCall(llvm::Intrinsic::trap);
1054     }
1055     Builder.CreateUnreachable();
1056     Builder.ClearInsertionPoint();
1057   }
1058 
1059   // Emit the standard function epilogue.
1060   FinishFunction(BodyRange.getEnd());
1061 
1062   // If we haven't marked the function nothrow through other means, do
1063   // a quick pass now to see if we can.
1064   if (!CurFn->doesNotThrow())
1065     TryMarkNoThrow(CurFn);
1066 }
1067 
1068 /// ContainsLabel - Return true if the statement contains a label in it.  If
1069 /// this statement is not executed normally, it not containing a label means
1070 /// that we can just remove the code.
1071 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1072   // Null statement, not a label!
1073   if (!S) return false;
1074 
1075   // If this is a label, we have to emit the code, consider something like:
1076   // if (0) {  ...  foo:  bar(); }  goto foo;
1077   //
1078   // TODO: If anyone cared, we could track __label__'s, since we know that you
1079   // can't jump to one from outside their declared region.
1080   if (isa<LabelStmt>(S))
1081     return true;
1082 
1083   // If this is a case/default statement, and we haven't seen a switch, we have
1084   // to emit the code.
1085   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1086     return true;
1087 
1088   // If this is a switch statement, we want to ignore cases below it.
1089   if (isa<SwitchStmt>(S))
1090     IgnoreCaseStmts = true;
1091 
1092   // Scan subexpressions for verboten labels.
1093   for (const Stmt *SubStmt : S->children())
1094     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1095       return true;
1096 
1097   return false;
1098 }
1099 
1100 /// containsBreak - Return true if the statement contains a break out of it.
1101 /// If the statement (recursively) contains a switch or loop with a break
1102 /// inside of it, this is fine.
1103 bool CodeGenFunction::containsBreak(const Stmt *S) {
1104   // Null statement, not a label!
1105   if (!S) return false;
1106 
1107   // If this is a switch or loop that defines its own break scope, then we can
1108   // include it and anything inside of it.
1109   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1110       isa<ForStmt>(S))
1111     return false;
1112 
1113   if (isa<BreakStmt>(S))
1114     return true;
1115 
1116   // Scan subexpressions for verboten breaks.
1117   for (const Stmt *SubStmt : S->children())
1118     if (containsBreak(SubStmt))
1119       return true;
1120 
1121   return false;
1122 }
1123 
1124 
1125 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1126 /// to a constant, or if it does but contains a label, return false.  If it
1127 /// constant folds return true and set the boolean result in Result.
1128 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1129                                                    bool &ResultBool,
1130                                                    bool AllowLabels) {
1131   llvm::APSInt ResultInt;
1132   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1133     return false;
1134 
1135   ResultBool = ResultInt.getBoolValue();
1136   return true;
1137 }
1138 
1139 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1140 /// to a constant, or if it does but contains a label, return false.  If it
1141 /// constant folds return true and set the folded value.
1142 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1143                                                    llvm::APSInt &ResultInt,
1144                                                    bool AllowLabels) {
1145   // FIXME: Rename and handle conversion of other evaluatable things
1146   // to bool.
1147   llvm::APSInt Int;
1148   if (!Cond->EvaluateAsInt(Int, getContext()))
1149     return false;  // Not foldable, not integer or not fully evaluatable.
1150 
1151   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1152     return false;  // Contains a label.
1153 
1154   ResultInt = Int;
1155   return true;
1156 }
1157 
1158 
1159 
1160 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1161 /// statement) to the specified blocks.  Based on the condition, this might try
1162 /// to simplify the codegen of the conditional based on the branch.
1163 ///
1164 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1165                                            llvm::BasicBlock *TrueBlock,
1166                                            llvm::BasicBlock *FalseBlock,
1167                                            uint64_t TrueCount) {
1168   Cond = Cond->IgnoreParens();
1169 
1170   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1171 
1172     // Handle X && Y in a condition.
1173     if (CondBOp->getOpcode() == BO_LAnd) {
1174       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1175       // folded if the case was simple enough.
1176       bool ConstantBool = false;
1177       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1178           ConstantBool) {
1179         // br(1 && X) -> br(X).
1180         incrementProfileCounter(CondBOp);
1181         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1182                                     TrueCount);
1183       }
1184 
1185       // If we have "X && 1", simplify the code to use an uncond branch.
1186       // "X && 0" would have been constant folded to 0.
1187       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1188           ConstantBool) {
1189         // br(X && 1) -> br(X).
1190         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1191                                     TrueCount);
1192       }
1193 
1194       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1195       // want to jump to the FalseBlock.
1196       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1197       // The counter tells us how often we evaluate RHS, and all of TrueCount
1198       // can be propagated to that branch.
1199       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1200 
1201       ConditionalEvaluation eval(*this);
1202       {
1203         ApplyDebugLocation DL(*this, Cond);
1204         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1205         EmitBlock(LHSTrue);
1206       }
1207 
1208       incrementProfileCounter(CondBOp);
1209       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1210 
1211       // Any temporaries created here are conditional.
1212       eval.begin(*this);
1213       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1214       eval.end(*this);
1215 
1216       return;
1217     }
1218 
1219     if (CondBOp->getOpcode() == BO_LOr) {
1220       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1221       // folded if the case was simple enough.
1222       bool ConstantBool = false;
1223       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1224           !ConstantBool) {
1225         // br(0 || X) -> br(X).
1226         incrementProfileCounter(CondBOp);
1227         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1228                                     TrueCount);
1229       }
1230 
1231       // If we have "X || 0", simplify the code to use an uncond branch.
1232       // "X || 1" would have been constant folded to 1.
1233       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1234           !ConstantBool) {
1235         // br(X || 0) -> br(X).
1236         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1237                                     TrueCount);
1238       }
1239 
1240       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1241       // want to jump to the TrueBlock.
1242       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1243       // We have the count for entry to the RHS and for the whole expression
1244       // being true, so we can divy up True count between the short circuit and
1245       // the RHS.
1246       uint64_t LHSCount =
1247           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1248       uint64_t RHSCount = TrueCount - LHSCount;
1249 
1250       ConditionalEvaluation eval(*this);
1251       {
1252         ApplyDebugLocation DL(*this, Cond);
1253         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1254         EmitBlock(LHSFalse);
1255       }
1256 
1257       incrementProfileCounter(CondBOp);
1258       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1259 
1260       // Any temporaries created here are conditional.
1261       eval.begin(*this);
1262       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1263 
1264       eval.end(*this);
1265 
1266       return;
1267     }
1268   }
1269 
1270   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1271     // br(!x, t, f) -> br(x, f, t)
1272     if (CondUOp->getOpcode() == UO_LNot) {
1273       // Negate the count.
1274       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1275       // Negate the condition and swap the destination blocks.
1276       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1277                                   FalseCount);
1278     }
1279   }
1280 
1281   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1282     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1283     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1284     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1285 
1286     ConditionalEvaluation cond(*this);
1287     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1288                          getProfileCount(CondOp));
1289 
1290     // When computing PGO branch weights, we only know the overall count for
1291     // the true block. This code is essentially doing tail duplication of the
1292     // naive code-gen, introducing new edges for which counts are not
1293     // available. Divide the counts proportionally between the LHS and RHS of
1294     // the conditional operator.
1295     uint64_t LHSScaledTrueCount = 0;
1296     if (TrueCount) {
1297       double LHSRatio =
1298           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1299       LHSScaledTrueCount = TrueCount * LHSRatio;
1300     }
1301 
1302     cond.begin(*this);
1303     EmitBlock(LHSBlock);
1304     incrementProfileCounter(CondOp);
1305     {
1306       ApplyDebugLocation DL(*this, Cond);
1307       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1308                            LHSScaledTrueCount);
1309     }
1310     cond.end(*this);
1311 
1312     cond.begin(*this);
1313     EmitBlock(RHSBlock);
1314     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1315                          TrueCount - LHSScaledTrueCount);
1316     cond.end(*this);
1317 
1318     return;
1319   }
1320 
1321   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1322     // Conditional operator handling can give us a throw expression as a
1323     // condition for a case like:
1324     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1325     // Fold this to:
1326     //   br(c, throw x, br(y, t, f))
1327     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1328     return;
1329   }
1330 
1331   // If the branch has a condition wrapped by __builtin_unpredictable,
1332   // create metadata that specifies that the branch is unpredictable.
1333   // Don't bother if not optimizing because that metadata would not be used.
1334   llvm::MDNode *Unpredictable = nullptr;
1335   auto *Call = dyn_cast<CallExpr>(Cond);
1336   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1337     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1338     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1339       llvm::MDBuilder MDHelper(getLLVMContext());
1340       Unpredictable = MDHelper.createUnpredictable();
1341     }
1342   }
1343 
1344   // Create branch weights based on the number of times we get here and the
1345   // number of times the condition should be true.
1346   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1347   llvm::MDNode *Weights =
1348       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1349 
1350   // Emit the code with the fully general case.
1351   llvm::Value *CondV;
1352   {
1353     ApplyDebugLocation DL(*this, Cond);
1354     CondV = EvaluateExprAsBool(Cond);
1355   }
1356   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1357 }
1358 
1359 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1360 /// specified stmt yet.
1361 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1362   CGM.ErrorUnsupported(S, Type);
1363 }
1364 
1365 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1366 /// variable-length array whose elements have a non-zero bit-pattern.
1367 ///
1368 /// \param baseType the inner-most element type of the array
1369 /// \param src - a char* pointing to the bit-pattern for a single
1370 /// base element of the array
1371 /// \param sizeInChars - the total size of the VLA, in chars
1372 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1373                                Address dest, Address src,
1374                                llvm::Value *sizeInChars) {
1375   CGBuilderTy &Builder = CGF.Builder;
1376 
1377   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1378   llvm::Value *baseSizeInChars
1379     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1380 
1381   Address begin =
1382     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1383   llvm::Value *end =
1384     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1385 
1386   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1387   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1388   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1389 
1390   // Make a loop over the VLA.  C99 guarantees that the VLA element
1391   // count must be nonzero.
1392   CGF.EmitBlock(loopBB);
1393 
1394   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1395   cur->addIncoming(begin.getPointer(), originBB);
1396 
1397   CharUnits curAlign =
1398     dest.getAlignment().alignmentOfArrayElement(baseSize);
1399 
1400   // memcpy the individual element bit-pattern.
1401   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1402                        /*volatile*/ false);
1403 
1404   // Go to the next element.
1405   llvm::Value *next =
1406     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1407 
1408   // Leave if that's the end of the VLA.
1409   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1410   Builder.CreateCondBr(done, contBB, loopBB);
1411   cur->addIncoming(next, loopBB);
1412 
1413   CGF.EmitBlock(contBB);
1414 }
1415 
1416 void
1417 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1418   // Ignore empty classes in C++.
1419   if (getLangOpts().CPlusPlus) {
1420     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1421       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1422         return;
1423     }
1424   }
1425 
1426   // Cast the dest ptr to the appropriate i8 pointer type.
1427   if (DestPtr.getElementType() != Int8Ty)
1428     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1429 
1430   // Get size and alignment info for this aggregate.
1431   CharUnits size = getContext().getTypeSizeInChars(Ty);
1432 
1433   llvm::Value *SizeVal;
1434   const VariableArrayType *vla;
1435 
1436   // Don't bother emitting a zero-byte memset.
1437   if (size.isZero()) {
1438     // But note that getTypeInfo returns 0 for a VLA.
1439     if (const VariableArrayType *vlaType =
1440           dyn_cast_or_null<VariableArrayType>(
1441                                           getContext().getAsArrayType(Ty))) {
1442       QualType eltType;
1443       llvm::Value *numElts;
1444       std::tie(numElts, eltType) = getVLASize(vlaType);
1445 
1446       SizeVal = numElts;
1447       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1448       if (!eltSize.isOne())
1449         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1450       vla = vlaType;
1451     } else {
1452       return;
1453     }
1454   } else {
1455     SizeVal = CGM.getSize(size);
1456     vla = nullptr;
1457   }
1458 
1459   // If the type contains a pointer to data member we can't memset it to zero.
1460   // Instead, create a null constant and copy it to the destination.
1461   // TODO: there are other patterns besides zero that we can usefully memset,
1462   // like -1, which happens to be the pattern used by member-pointers.
1463   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1464     // For a VLA, emit a single element, then splat that over the VLA.
1465     if (vla) Ty = getContext().getBaseElementType(vla);
1466 
1467     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1468 
1469     llvm::GlobalVariable *NullVariable =
1470       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1471                                /*isConstant=*/true,
1472                                llvm::GlobalVariable::PrivateLinkage,
1473                                NullConstant, Twine());
1474     CharUnits NullAlign = DestPtr.getAlignment();
1475     NullVariable->setAlignment(NullAlign.getQuantity());
1476     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1477                    NullAlign);
1478 
1479     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1480 
1481     // Get and call the appropriate llvm.memcpy overload.
1482     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1483     return;
1484   }
1485 
1486   // Otherwise, just memset the whole thing to zero.  This is legal
1487   // because in LLVM, all default initializers (other than the ones we just
1488   // handled above) are guaranteed to have a bit pattern of all zeros.
1489   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1490 }
1491 
1492 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1493   // Make sure that there is a block for the indirect goto.
1494   if (!IndirectBranch)
1495     GetIndirectGotoBlock();
1496 
1497   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1498 
1499   // Make sure the indirect branch includes all of the address-taken blocks.
1500   IndirectBranch->addDestination(BB);
1501   return llvm::BlockAddress::get(CurFn, BB);
1502 }
1503 
1504 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1505   // If we already made the indirect branch for indirect goto, return its block.
1506   if (IndirectBranch) return IndirectBranch->getParent();
1507 
1508   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1509 
1510   // Create the PHI node that indirect gotos will add entries to.
1511   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1512                                               "indirect.goto.dest");
1513 
1514   // Create the indirect branch instruction.
1515   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1516   return IndirectBranch->getParent();
1517 }
1518 
1519 /// Computes the length of an array in elements, as well as the base
1520 /// element type and a properly-typed first element pointer.
1521 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1522                                               QualType &baseType,
1523                                               Address &addr) {
1524   const ArrayType *arrayType = origArrayType;
1525 
1526   // If it's a VLA, we have to load the stored size.  Note that
1527   // this is the size of the VLA in bytes, not its size in elements.
1528   llvm::Value *numVLAElements = nullptr;
1529   if (isa<VariableArrayType>(arrayType)) {
1530     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1531 
1532     // Walk into all VLAs.  This doesn't require changes to addr,
1533     // which has type T* where T is the first non-VLA element type.
1534     do {
1535       QualType elementType = arrayType->getElementType();
1536       arrayType = getContext().getAsArrayType(elementType);
1537 
1538       // If we only have VLA components, 'addr' requires no adjustment.
1539       if (!arrayType) {
1540         baseType = elementType;
1541         return numVLAElements;
1542       }
1543     } while (isa<VariableArrayType>(arrayType));
1544 
1545     // We get out here only if we find a constant array type
1546     // inside the VLA.
1547   }
1548 
1549   // We have some number of constant-length arrays, so addr should
1550   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1551   // down to the first element of addr.
1552   SmallVector<llvm::Value*, 8> gepIndices;
1553 
1554   // GEP down to the array type.
1555   llvm::ConstantInt *zero = Builder.getInt32(0);
1556   gepIndices.push_back(zero);
1557 
1558   uint64_t countFromCLAs = 1;
1559   QualType eltType;
1560 
1561   llvm::ArrayType *llvmArrayType =
1562     dyn_cast<llvm::ArrayType>(addr.getElementType());
1563   while (llvmArrayType) {
1564     assert(isa<ConstantArrayType>(arrayType));
1565     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1566              == llvmArrayType->getNumElements());
1567 
1568     gepIndices.push_back(zero);
1569     countFromCLAs *= llvmArrayType->getNumElements();
1570     eltType = arrayType->getElementType();
1571 
1572     llvmArrayType =
1573       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1574     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1575     assert((!llvmArrayType || arrayType) &&
1576            "LLVM and Clang types are out-of-synch");
1577   }
1578 
1579   if (arrayType) {
1580     // From this point onwards, the Clang array type has been emitted
1581     // as some other type (probably a packed struct). Compute the array
1582     // size, and just emit the 'begin' expression as a bitcast.
1583     while (arrayType) {
1584       countFromCLAs *=
1585           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1586       eltType = arrayType->getElementType();
1587       arrayType = getContext().getAsArrayType(eltType);
1588     }
1589 
1590     llvm::Type *baseType = ConvertType(eltType);
1591     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1592   } else {
1593     // Create the actual GEP.
1594     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1595                                              gepIndices, "array.begin"),
1596                    addr.getAlignment());
1597   }
1598 
1599   baseType = eltType;
1600 
1601   llvm::Value *numElements
1602     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1603 
1604   // If we had any VLA dimensions, factor them in.
1605   if (numVLAElements)
1606     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1607 
1608   return numElements;
1609 }
1610 
1611 std::pair<llvm::Value*, QualType>
1612 CodeGenFunction::getVLASize(QualType type) {
1613   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1614   assert(vla && "type was not a variable array type!");
1615   return getVLASize(vla);
1616 }
1617 
1618 std::pair<llvm::Value*, QualType>
1619 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1620   // The number of elements so far; always size_t.
1621   llvm::Value *numElements = nullptr;
1622 
1623   QualType elementType;
1624   do {
1625     elementType = type->getElementType();
1626     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1627     assert(vlaSize && "no size for VLA!");
1628     assert(vlaSize->getType() == SizeTy);
1629 
1630     if (!numElements) {
1631       numElements = vlaSize;
1632     } else {
1633       // It's undefined behavior if this wraps around, so mark it that way.
1634       // FIXME: Teach -fsanitize=undefined to trap this.
1635       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1636     }
1637   } while ((type = getContext().getAsVariableArrayType(elementType)));
1638 
1639   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1640 }
1641 
1642 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1643   assert(type->isVariablyModifiedType() &&
1644          "Must pass variably modified type to EmitVLASizes!");
1645 
1646   EnsureInsertPoint();
1647 
1648   // We're going to walk down into the type and look for VLA
1649   // expressions.
1650   do {
1651     assert(type->isVariablyModifiedType());
1652 
1653     const Type *ty = type.getTypePtr();
1654     switch (ty->getTypeClass()) {
1655 
1656 #define TYPE(Class, Base)
1657 #define ABSTRACT_TYPE(Class, Base)
1658 #define NON_CANONICAL_TYPE(Class, Base)
1659 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1660 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1661 #include "clang/AST/TypeNodes.def"
1662       llvm_unreachable("unexpected dependent type!");
1663 
1664     // These types are never variably-modified.
1665     case Type::Builtin:
1666     case Type::Complex:
1667     case Type::Vector:
1668     case Type::ExtVector:
1669     case Type::Record:
1670     case Type::Enum:
1671     case Type::Elaborated:
1672     case Type::TemplateSpecialization:
1673     case Type::ObjCObject:
1674     case Type::ObjCInterface:
1675     case Type::ObjCObjectPointer:
1676       llvm_unreachable("type class is never variably-modified!");
1677 
1678     case Type::Adjusted:
1679       type = cast<AdjustedType>(ty)->getAdjustedType();
1680       break;
1681 
1682     case Type::Decayed:
1683       type = cast<DecayedType>(ty)->getPointeeType();
1684       break;
1685 
1686     case Type::Pointer:
1687       type = cast<PointerType>(ty)->getPointeeType();
1688       break;
1689 
1690     case Type::BlockPointer:
1691       type = cast<BlockPointerType>(ty)->getPointeeType();
1692       break;
1693 
1694     case Type::LValueReference:
1695     case Type::RValueReference:
1696       type = cast<ReferenceType>(ty)->getPointeeType();
1697       break;
1698 
1699     case Type::MemberPointer:
1700       type = cast<MemberPointerType>(ty)->getPointeeType();
1701       break;
1702 
1703     case Type::ConstantArray:
1704     case Type::IncompleteArray:
1705       // Losing element qualification here is fine.
1706       type = cast<ArrayType>(ty)->getElementType();
1707       break;
1708 
1709     case Type::VariableArray: {
1710       // Losing element qualification here is fine.
1711       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1712 
1713       // Unknown size indication requires no size computation.
1714       // Otherwise, evaluate and record it.
1715       if (const Expr *size = vat->getSizeExpr()) {
1716         // It's possible that we might have emitted this already,
1717         // e.g. with a typedef and a pointer to it.
1718         llvm::Value *&entry = VLASizeMap[size];
1719         if (!entry) {
1720           llvm::Value *Size = EmitScalarExpr(size);
1721 
1722           // C11 6.7.6.2p5:
1723           //   If the size is an expression that is not an integer constant
1724           //   expression [...] each time it is evaluated it shall have a value
1725           //   greater than zero.
1726           if (SanOpts.has(SanitizerKind::VLABound) &&
1727               size->getType()->isSignedIntegerType()) {
1728             SanitizerScope SanScope(this);
1729             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1730             llvm::Constant *StaticArgs[] = {
1731               EmitCheckSourceLocation(size->getLocStart()),
1732               EmitCheckTypeDescriptor(size->getType())
1733             };
1734             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1735                                      SanitizerKind::VLABound),
1736                       "vla_bound_not_positive", StaticArgs, Size);
1737           }
1738 
1739           // Always zexting here would be wrong if it weren't
1740           // undefined behavior to have a negative bound.
1741           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1742         }
1743       }
1744       type = vat->getElementType();
1745       break;
1746     }
1747 
1748     case Type::FunctionProto:
1749     case Type::FunctionNoProto:
1750       type = cast<FunctionType>(ty)->getReturnType();
1751       break;
1752 
1753     case Type::Paren:
1754     case Type::TypeOf:
1755     case Type::UnaryTransform:
1756     case Type::Attributed:
1757     case Type::SubstTemplateTypeParm:
1758     case Type::PackExpansion:
1759       // Keep walking after single level desugaring.
1760       type = type.getSingleStepDesugaredType(getContext());
1761       break;
1762 
1763     case Type::Typedef:
1764     case Type::Decltype:
1765     case Type::Auto:
1766       // Stop walking: nothing to do.
1767       return;
1768 
1769     case Type::TypeOfExpr:
1770       // Stop walking: emit typeof expression.
1771       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1772       return;
1773 
1774     case Type::Atomic:
1775       type = cast<AtomicType>(ty)->getValueType();
1776       break;
1777 
1778     case Type::Pipe:
1779       type = cast<PipeType>(ty)->getElementType();
1780       break;
1781     }
1782   } while (type->isVariablyModifiedType());
1783 }
1784 
1785 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1786   if (getContext().getBuiltinVaListType()->isArrayType())
1787     return EmitPointerWithAlignment(E);
1788   return EmitLValue(E).getAddress();
1789 }
1790 
1791 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1792   return EmitLValue(E).getAddress();
1793 }
1794 
1795 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1796                                               llvm::Constant *Init) {
1797   assert (Init && "Invalid DeclRefExpr initializer!");
1798   if (CGDebugInfo *Dbg = getDebugInfo())
1799     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1800       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1801 }
1802 
1803 CodeGenFunction::PeepholeProtection
1804 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1805   // At the moment, the only aggressive peephole we do in IR gen
1806   // is trunc(zext) folding, but if we add more, we can easily
1807   // extend this protection.
1808 
1809   if (!rvalue.isScalar()) return PeepholeProtection();
1810   llvm::Value *value = rvalue.getScalarVal();
1811   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1812 
1813   // Just make an extra bitcast.
1814   assert(HaveInsertPoint());
1815   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1816                                                   Builder.GetInsertBlock());
1817 
1818   PeepholeProtection protection;
1819   protection.Inst = inst;
1820   return protection;
1821 }
1822 
1823 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1824   if (!protection.Inst) return;
1825 
1826   // In theory, we could try to duplicate the peepholes now, but whatever.
1827   protection.Inst->eraseFromParent();
1828 }
1829 
1830 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1831                                                  llvm::Value *AnnotatedVal,
1832                                                  StringRef AnnotationStr,
1833                                                  SourceLocation Location) {
1834   llvm::Value *Args[4] = {
1835     AnnotatedVal,
1836     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1837     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1838     CGM.EmitAnnotationLineNo(Location)
1839   };
1840   return Builder.CreateCall(AnnotationFn, Args);
1841 }
1842 
1843 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1844   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1845   // FIXME We create a new bitcast for every annotation because that's what
1846   // llvm-gcc was doing.
1847   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1848     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1849                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1850                        I->getAnnotation(), D->getLocation());
1851 }
1852 
1853 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1854                                               Address Addr) {
1855   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1856   llvm::Value *V = Addr.getPointer();
1857   llvm::Type *VTy = V->getType();
1858   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1859                                     CGM.Int8PtrTy);
1860 
1861   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1862     // FIXME Always emit the cast inst so we can differentiate between
1863     // annotation on the first field of a struct and annotation on the struct
1864     // itself.
1865     if (VTy != CGM.Int8PtrTy)
1866       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1867     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1868     V = Builder.CreateBitCast(V, VTy);
1869   }
1870 
1871   return Address(V, Addr.getAlignment());
1872 }
1873 
1874 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1875 
1876 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1877     : CGF(CGF) {
1878   assert(!CGF->IsSanitizerScope);
1879   CGF->IsSanitizerScope = true;
1880 }
1881 
1882 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1883   CGF->IsSanitizerScope = false;
1884 }
1885 
1886 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1887                                    const llvm::Twine &Name,
1888                                    llvm::BasicBlock *BB,
1889                                    llvm::BasicBlock::iterator InsertPt) const {
1890   LoopStack.InsertHelper(I);
1891   if (IsSanitizerScope)
1892     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1893 }
1894 
1895 void CGBuilderInserter::InsertHelper(
1896     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1897     llvm::BasicBlock::iterator InsertPt) const {
1898   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1899   if (CGF)
1900     CGF->InsertHelper(I, Name, BB, InsertPt);
1901 }
1902 
1903 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1904                                 CodeGenModule &CGM, const FunctionDecl *FD,
1905                                 std::string &FirstMissing) {
1906   // If there aren't any required features listed then go ahead and return.
1907   if (ReqFeatures.empty())
1908     return false;
1909 
1910   // Now build up the set of caller features and verify that all the required
1911   // features are there.
1912   llvm::StringMap<bool> CallerFeatureMap;
1913   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1914 
1915   // If we have at least one of the features in the feature list return
1916   // true, otherwise return false.
1917   return std::all_of(
1918       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1919         SmallVector<StringRef, 1> OrFeatures;
1920         Feature.split(OrFeatures, "|");
1921         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1922                            [&](StringRef Feature) {
1923                              if (!CallerFeatureMap.lookup(Feature)) {
1924                                FirstMissing = Feature.str();
1925                                return false;
1926                              }
1927                              return true;
1928                            });
1929       });
1930 }
1931 
1932 // Emits an error if we don't have a valid set of target features for the
1933 // called function.
1934 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1935                                           const FunctionDecl *TargetDecl) {
1936   // Early exit if this is an indirect call.
1937   if (!TargetDecl)
1938     return;
1939 
1940   // Get the current enclosing function if it exists. If it doesn't
1941   // we can't check the target features anyhow.
1942   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1943   if (!FD)
1944     return;
1945 
1946   // Grab the required features for the call. For a builtin this is listed in
1947   // the td file with the default cpu, for an always_inline function this is any
1948   // listed cpu and any listed features.
1949   unsigned BuiltinID = TargetDecl->getBuiltinID();
1950   std::string MissingFeature;
1951   if (BuiltinID) {
1952     SmallVector<StringRef, 1> ReqFeatures;
1953     const char *FeatureList =
1954         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1955     // Return if the builtin doesn't have any required features.
1956     if (!FeatureList || StringRef(FeatureList) == "")
1957       return;
1958     StringRef(FeatureList).split(ReqFeatures, ",");
1959     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1960       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1961           << TargetDecl->getDeclName()
1962           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1963 
1964   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1965     // Get the required features for the callee.
1966     SmallVector<StringRef, 1> ReqFeatures;
1967     llvm::StringMap<bool> CalleeFeatureMap;
1968     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1969     for (const auto &F : CalleeFeatureMap) {
1970       // Only positive features are "required".
1971       if (F.getValue())
1972         ReqFeatures.push_back(F.getKey());
1973     }
1974     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1975       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1976           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1977   }
1978 }
1979 
1980 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
1981   if (!CGM.getCodeGenOpts().SanitizeStats)
1982     return;
1983 
1984   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
1985   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
1986   CGM.getSanStats().create(IRB, SSK);
1987 }
1988