1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "CodeGenPGO.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Operator.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
36     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
37       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
38       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
39                                CGM.getSanOpts().Alignment |
40                                CGM.getSanOpts().ObjectSize |
41                                CGM.getSanOpts().Vptr),
42       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
43       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
44       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
45       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
46       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
47       PGO(cgm), SwitchInsn(0), SwitchWeights(0),
48       CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
49       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
50       CXXThisValue(0), CXXDefaultInitExprThis(0),
51       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
52       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
53       TerminateHandler(0), TrapBB(0) {
54   if (!suppressNewContext)
55     CGM.getCXXABI().getMangleContext().startNewFunction();
56 
57   llvm::FastMathFlags FMF;
58   if (CGM.getLangOpts().FastMath)
59     FMF.setUnsafeAlgebra();
60   if (CGM.getLangOpts().FiniteMathOnly) {
61     FMF.setNoNaNs();
62     FMF.setNoInfs();
63   }
64   Builder.SetFastMathFlags(FMF);
65 }
66 
67 CodeGenFunction::~CodeGenFunction() {
68   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
69 
70   // If there are any unclaimed block infos, go ahead and destroy them
71   // now.  This can happen if IR-gen gets clever and skips evaluating
72   // something.
73   if (FirstBlockInfo)
74     destroyBlockInfos(FirstBlockInfo);
75 }
76 
77 
78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
79   return CGM.getTypes().ConvertTypeForMem(T);
80 }
81 
82 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
83   return CGM.getTypes().ConvertType(T);
84 }
85 
86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
87   type = type.getCanonicalType();
88   while (true) {
89     switch (type->getTypeClass()) {
90 #define TYPE(name, parent)
91 #define ABSTRACT_TYPE(name, parent)
92 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
93 #define DEPENDENT_TYPE(name, parent) case Type::name:
94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
95 #include "clang/AST/TypeNodes.def"
96       llvm_unreachable("non-canonical or dependent type in IR-generation");
97 
98     case Type::Auto:
99       llvm_unreachable("undeduced auto type in IR-generation");
100 
101     // Various scalar types.
102     case Type::Builtin:
103     case Type::Pointer:
104     case Type::BlockPointer:
105     case Type::LValueReference:
106     case Type::RValueReference:
107     case Type::MemberPointer:
108     case Type::Vector:
109     case Type::ExtVector:
110     case Type::FunctionProto:
111     case Type::FunctionNoProto:
112     case Type::Enum:
113     case Type::ObjCObjectPointer:
114       return TEK_Scalar;
115 
116     // Complexes.
117     case Type::Complex:
118       return TEK_Complex;
119 
120     // Arrays, records, and Objective-C objects.
121     case Type::ConstantArray:
122     case Type::IncompleteArray:
123     case Type::VariableArray:
124     case Type::Record:
125     case Type::ObjCObject:
126     case Type::ObjCInterface:
127       return TEK_Aggregate;
128 
129     // We operate on atomic values according to their underlying type.
130     case Type::Atomic:
131       type = cast<AtomicType>(type)->getValueType();
132       continue;
133     }
134     llvm_unreachable("unknown type kind!");
135   }
136 }
137 
138 void CodeGenFunction::EmitReturnBlock() {
139   // For cleanliness, we try to avoid emitting the return block for
140   // simple cases.
141   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
142 
143   if (CurBB) {
144     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
145 
146     // We have a valid insert point, reuse it if it is empty or there are no
147     // explicit jumps to the return block.
148     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
149       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
150       delete ReturnBlock.getBlock();
151     } else
152       EmitBlock(ReturnBlock.getBlock());
153     return;
154   }
155 
156   // Otherwise, if the return block is the target of a single direct
157   // branch then we can just put the code in that block instead. This
158   // cleans up functions which started with a unified return block.
159   if (ReturnBlock.getBlock()->hasOneUse()) {
160     llvm::BranchInst *BI =
161       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
162     if (BI && BI->isUnconditional() &&
163         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
164       // Reset insertion point, including debug location, and delete the
165       // branch.  This is really subtle and only works because the next change
166       // in location will hit the caching in CGDebugInfo::EmitLocation and not
167       // override this.
168       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
169       Builder.SetInsertPoint(BI->getParent());
170       BI->eraseFromParent();
171       delete ReturnBlock.getBlock();
172       return;
173     }
174   }
175 
176   // FIXME: We are at an unreachable point, there is no reason to emit the block
177   // unless it has uses. However, we still need a place to put the debug
178   // region.end for now.
179 
180   EmitBlock(ReturnBlock.getBlock());
181 }
182 
183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
184   if (!BB) return;
185   if (!BB->use_empty())
186     return CGF.CurFn->getBasicBlockList().push_back(BB);
187   delete BB;
188 }
189 
190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
191   assert(BreakContinueStack.empty() &&
192          "mismatched push/pop in break/continue stack!");
193 
194   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
195     && NumSimpleReturnExprs == NumReturnExprs
196     && ReturnBlock.getBlock()->use_empty();
197   // Usually the return expression is evaluated before the cleanup
198   // code.  If the function contains only a simple return statement,
199   // such as a constant, the location before the cleanup code becomes
200   // the last useful breakpoint in the function, because the simple
201   // return expression will be evaluated after the cleanup code. To be
202   // safe, set the debug location for cleanup code to the location of
203   // the return statement.  Otherwise the cleanup code should be at the
204   // end of the function's lexical scope.
205   //
206   // If there are multiple branches to the return block, the branch
207   // instructions will get the location of the return statements and
208   // all will be fine.
209   if (CGDebugInfo *DI = getDebugInfo()) {
210     if (OnlySimpleReturnStmts)
211       DI->EmitLocation(Builder, LastStopPoint);
212     else
213       DI->EmitLocation(Builder, EndLoc);
214   }
215 
216   // Pop any cleanups that might have been associated with the
217   // parameters.  Do this in whatever block we're currently in; it's
218   // important to do this before we enter the return block or return
219   // edges will be *really* confused.
220   bool EmitRetDbgLoc = true;
221   if (EHStack.stable_begin() != PrologueCleanupDepth) {
222     PopCleanupBlocks(PrologueCleanupDepth);
223 
224     // Make sure the line table doesn't jump back into the body for
225     // the ret after it's been at EndLoc.
226     EmitRetDbgLoc = false;
227 
228     if (CGDebugInfo *DI = getDebugInfo())
229       if (OnlySimpleReturnStmts)
230         DI->EmitLocation(Builder, EndLoc);
231   }
232 
233   // Emit function epilog (to return).
234   EmitReturnBlock();
235 
236   if (ShouldInstrumentFunction())
237     EmitFunctionInstrumentation("__cyg_profile_func_exit");
238 
239   // Emit debug descriptor for function end.
240   if (CGDebugInfo *DI = getDebugInfo()) {
241     DI->EmitFunctionEnd(Builder);
242   }
243 
244   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
245   EmitEndEHSpec(CurCodeDecl);
246 
247   assert(EHStack.empty() &&
248          "did not remove all scopes from cleanup stack!");
249 
250   // If someone did an indirect goto, emit the indirect goto block at the end of
251   // the function.
252   if (IndirectBranch) {
253     EmitBlock(IndirectBranch->getParent());
254     Builder.ClearInsertionPoint();
255   }
256 
257   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
258   llvm::Instruction *Ptr = AllocaInsertPt;
259   AllocaInsertPt = 0;
260   Ptr->eraseFromParent();
261 
262   // If someone took the address of a label but never did an indirect goto, we
263   // made a zero entry PHI node, which is illegal, zap it now.
264   if (IndirectBranch) {
265     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
266     if (PN->getNumIncomingValues() == 0) {
267       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
268       PN->eraseFromParent();
269     }
270   }
271 
272   EmitIfUsed(*this, EHResumeBlock);
273   EmitIfUsed(*this, TerminateLandingPad);
274   EmitIfUsed(*this, TerminateHandler);
275   EmitIfUsed(*this, UnreachableBlock);
276 
277   if (CGM.getCodeGenOpts().EmitDeclMetadata)
278     EmitDeclMetadata();
279 }
280 
281 /// ShouldInstrumentFunction - Return true if the current function should be
282 /// instrumented with __cyg_profile_func_* calls
283 bool CodeGenFunction::ShouldInstrumentFunction() {
284   if (!CGM.getCodeGenOpts().InstrumentFunctions)
285     return false;
286   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
287     return false;
288   return true;
289 }
290 
291 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
292 /// instrumentation function with the current function and the call site, if
293 /// function instrumentation is enabled.
294 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
295   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
296   llvm::PointerType *PointerTy = Int8PtrTy;
297   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
298   llvm::FunctionType *FunctionTy =
299     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
300 
301   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
302   llvm::CallInst *CallSite = Builder.CreateCall(
303     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
304     llvm::ConstantInt::get(Int32Ty, 0),
305     "callsite");
306 
307   llvm::Value *args[] = {
308     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
309     CallSite
310   };
311 
312   EmitNounwindRuntimeCall(F, args);
313 }
314 
315 void CodeGenFunction::EmitMCountInstrumentation() {
316   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
317 
318   llvm::Constant *MCountFn =
319     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
320   EmitNounwindRuntimeCall(MCountFn);
321 }
322 
323 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
324 // information in the program executable. The argument information stored
325 // includes the argument name, its type, the address and access qualifiers used.
326 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
327                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
328                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
329                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
330   // Create MDNodes that represent the kernel arg metadata.
331   // Each MDNode is a list in the form of "key", N number of values which is
332   // the same number of values as their are kernel arguments.
333 
334   // MDNode for the kernel argument address space qualifiers.
335   SmallVector<llvm::Value*, 8> addressQuals;
336   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
337 
338   // MDNode for the kernel argument access qualifiers (images only).
339   SmallVector<llvm::Value*, 8> accessQuals;
340   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
341 
342   // MDNode for the kernel argument type names.
343   SmallVector<llvm::Value*, 8> argTypeNames;
344   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
345 
346   // MDNode for the kernel argument type qualifiers.
347   SmallVector<llvm::Value*, 8> argTypeQuals;
348   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
349 
350   // MDNode for the kernel argument names.
351   SmallVector<llvm::Value*, 8> argNames;
352   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
353 
354   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
355     const ParmVarDecl *parm = FD->getParamDecl(i);
356     QualType ty = parm->getType();
357     std::string typeQuals;
358 
359     if (ty->isPointerType()) {
360       QualType pointeeTy = ty->getPointeeType();
361 
362       // Get address qualifier.
363       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
364         pointeeTy.getAddressSpace())));
365 
366       // Get argument type name.
367       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
368 
369       // Turn "unsigned type" to "utype"
370       std::string::size_type pos = typeName.find("unsigned");
371       if (pos != std::string::npos)
372         typeName.erase(pos+1, 8);
373 
374       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
375 
376       // Get argument type qualifiers:
377       if (ty.isRestrictQualified())
378         typeQuals = "restrict";
379       if (pointeeTy.isConstQualified() ||
380           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
381         typeQuals += typeQuals.empty() ? "const" : " const";
382       if (pointeeTy.isVolatileQualified())
383         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
384     } else {
385       uint32_t AddrSpc = 0;
386       if (ty->isImageType())
387         AddrSpc =
388           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
389 
390       addressQuals.push_back(Builder.getInt32(AddrSpc));
391 
392       // Get argument type name.
393       std::string typeName = ty.getUnqualifiedType().getAsString();
394 
395       // Turn "unsigned type" to "utype"
396       std::string::size_type pos = typeName.find("unsigned");
397       if (pos != std::string::npos)
398         typeName.erase(pos+1, 8);
399 
400       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
401 
402       // Get argument type qualifiers:
403       if (ty.isConstQualified())
404         typeQuals = "const";
405       if (ty.isVolatileQualified())
406         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
407     }
408 
409     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
410 
411     // Get image access qualifier:
412     if (ty->isImageType()) {
413       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
414       if (A && A->isWriteOnly())
415         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
416       else
417         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
418       // FIXME: what about read_write?
419     } else
420       accessQuals.push_back(llvm::MDString::get(Context, "none"));
421 
422     // Get argument name.
423     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
424   }
425 
426   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
427   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
428   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
429   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
430   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
431 }
432 
433 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
434                                                llvm::Function *Fn)
435 {
436   if (!FD->hasAttr<OpenCLKernelAttr>())
437     return;
438 
439   llvm::LLVMContext &Context = getLLVMContext();
440 
441   SmallVector <llvm::Value*, 5> kernelMDArgs;
442   kernelMDArgs.push_back(Fn);
443 
444   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
445     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
446                          Builder, getContext());
447 
448   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
449     QualType hintQTy = A->getTypeHint();
450     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
451     bool isSignedInteger =
452         hintQTy->isSignedIntegerType() ||
453         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
454     llvm::Value *attrMDArgs[] = {
455       llvm::MDString::get(Context, "vec_type_hint"),
456       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
457       llvm::ConstantInt::get(
458           llvm::IntegerType::get(Context, 32),
459           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
460     };
461     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
462   }
463 
464   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
465     llvm::Value *attrMDArgs[] = {
466       llvm::MDString::get(Context, "work_group_size_hint"),
467       Builder.getInt32(A->getXDim()),
468       Builder.getInt32(A->getYDim()),
469       Builder.getInt32(A->getZDim())
470     };
471     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
472   }
473 
474   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
475     llvm::Value *attrMDArgs[] = {
476       llvm::MDString::get(Context, "reqd_work_group_size"),
477       Builder.getInt32(A->getXDim()),
478       Builder.getInt32(A->getYDim()),
479       Builder.getInt32(A->getZDim())
480     };
481     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
482   }
483 
484   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
485   llvm::NamedMDNode *OpenCLKernelMetadata =
486     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
487   OpenCLKernelMetadata->addOperand(kernelMDNode);
488 }
489 
490 void CodeGenFunction::StartFunction(GlobalDecl GD,
491                                     QualType RetTy,
492                                     llvm::Function *Fn,
493                                     const CGFunctionInfo &FnInfo,
494                                     const FunctionArgList &Args,
495                                     SourceLocation StartLoc) {
496   const Decl *D = GD.getDecl();
497 
498   DidCallStackSave = false;
499   CurCodeDecl = D;
500   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
501   FnRetTy = RetTy;
502   CurFn = Fn;
503   CurFnInfo = &FnInfo;
504   assert(CurFn->isDeclaration() && "Function already has body?");
505 
506   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
507     SanOpts = &SanitizerOptions::Disabled;
508     SanitizePerformTypeCheck = false;
509   }
510 
511   // Pass inline keyword to optimizer if it appears explicitly on any
512   // declaration. Also, in the case of -fno-inline attach NoInline
513   // attribute to all function that are not marked AlwaysInline or ForceInline.
514   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
515     if (!CGM.getCodeGenOpts().NoInline) {
516       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
517              RE = FD->redecls_end(); RI != RE; ++RI)
518         if (RI->isInlineSpecified()) {
519           Fn->addFnAttr(llvm::Attribute::InlineHint);
520           break;
521         }
522     } else if (!FD->hasAttr<AlwaysInlineAttr>() &&
523                !FD->hasAttr<ForceInlineAttr>())
524       Fn->addFnAttr(llvm::Attribute::NoInline);
525   }
526 
527   if (getLangOpts().OpenCL) {
528     // Add metadata for a kernel function.
529     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
530       EmitOpenCLKernelMetadata(FD, Fn);
531   }
532 
533   // If we are checking function types, emit a function type signature as
534   // prefix data.
535   if (getLangOpts().CPlusPlus && SanOpts->Function) {
536     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
537       if (llvm::Constant *PrefixSig =
538               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
539         llvm::Constant *FTRTTIConst =
540             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
541         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
542         llvm::Constant *PrefixStructConst =
543             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
544         Fn->setPrefixData(PrefixStructConst);
545       }
546     }
547   }
548 
549   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
550 
551   // Create a marker to make it easy to insert allocas into the entryblock
552   // later.  Don't create this with the builder, because we don't want it
553   // folded.
554   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
555   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
556   if (Builder.isNamePreserving())
557     AllocaInsertPt->setName("allocapt");
558 
559   ReturnBlock = getJumpDestInCurrentScope("return");
560 
561   Builder.SetInsertPoint(EntryBB);
562 
563   // Emit subprogram debug descriptor.
564   if (CGDebugInfo *DI = getDebugInfo()) {
565     SmallVector<QualType, 16> ArgTypes;
566     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
567 	 i != e; ++i) {
568       ArgTypes.push_back((*i)->getType());
569     }
570 
571     QualType FnType =
572       getContext().getFunctionType(RetTy, ArgTypes,
573                                    FunctionProtoType::ExtProtoInfo());
574 
575     DI->setLocation(StartLoc);
576     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
577   }
578 
579   if (ShouldInstrumentFunction())
580     EmitFunctionInstrumentation("__cyg_profile_func_enter");
581 
582   if (CGM.getCodeGenOpts().InstrumentForProfiling)
583     EmitMCountInstrumentation();
584 
585   PGO.assignRegionCounters(GD);
586 
587   if (RetTy->isVoidType()) {
588     // Void type; nothing to return.
589     ReturnValue = 0;
590   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
591              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
592     // Indirect aggregate return; emit returned value directly into sret slot.
593     // This reduces code size, and affects correctness in C++.
594     ReturnValue = CurFn->arg_begin();
595   } else {
596     ReturnValue = CreateIRTemp(RetTy, "retval");
597 
598     // Tell the epilog emitter to autorelease the result.  We do this
599     // now so that various specialized functions can suppress it
600     // during their IR-generation.
601     if (getLangOpts().ObjCAutoRefCount &&
602         !CurFnInfo->isReturnsRetained() &&
603         RetTy->isObjCRetainableType())
604       AutoreleaseResult = true;
605   }
606 
607   EmitStartEHSpec(CurCodeDecl);
608 
609   PrologueCleanupDepth = EHStack.stable_begin();
610   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
611 
612   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
613     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
614     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
615     if (MD->getParent()->isLambda() &&
616         MD->getOverloadedOperator() == OO_Call) {
617       // We're in a lambda; figure out the captures.
618       MD->getParent()->getCaptureFields(LambdaCaptureFields,
619                                         LambdaThisCaptureField);
620       if (LambdaThisCaptureField) {
621         // If this lambda captures this, load it.
622         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
623         CXXThisValue = EmitLoadOfLValue(ThisLValue,
624                                         SourceLocation()).getScalarVal();
625       }
626     } else {
627       // Not in a lambda; just use 'this' from the method.
628       // FIXME: Should we generate a new load for each use of 'this'?  The
629       // fast register allocator would be happier...
630       CXXThisValue = CXXABIThisValue;
631     }
632   }
633 
634   // If any of the arguments have a variably modified type, make sure to
635   // emit the type size.
636   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
637        i != e; ++i) {
638     const VarDecl *VD = *i;
639 
640     // Dig out the type as written from ParmVarDecls; it's unclear whether
641     // the standard (C99 6.9.1p10) requires this, but we're following the
642     // precedent set by gcc.
643     QualType Ty;
644     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
645       Ty = PVD->getOriginalType();
646     else
647       Ty = VD->getType();
648 
649     if (Ty->isVariablyModifiedType())
650       EmitVariablyModifiedType(Ty);
651   }
652   // Emit a location at the end of the prologue.
653   if (CGDebugInfo *DI = getDebugInfo())
654     DI->EmitLocation(Builder, StartLoc);
655 }
656 
657 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
658                                        const Stmt *Body) {
659   RegionCounter Cnt = getPGORegionCounter(Body);
660   Cnt.beginRegion(Builder);
661   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
662     EmitCompoundStmtWithoutScope(*S);
663   else
664     EmitStmt(Body);
665 }
666 
667 /// Tries to mark the given function nounwind based on the
668 /// non-existence of any throwing calls within it.  We believe this is
669 /// lightweight enough to do at -O0.
670 static void TryMarkNoThrow(llvm::Function *F) {
671   // LLVM treats 'nounwind' on a function as part of the type, so we
672   // can't do this on functions that can be overwritten.
673   if (F->mayBeOverridden()) return;
674 
675   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
676     for (llvm::BasicBlock::iterator
677            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
678       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
679         if (!Call->doesNotThrow())
680           return;
681       } else if (isa<llvm::ResumeInst>(&*BI)) {
682         return;
683       }
684   F->setDoesNotThrow();
685 }
686 
687 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
688                                           const FunctionDecl *UnsizedDealloc) {
689   // This is a weak discardable definition of the sized deallocation function.
690   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
691 
692   // Call the unsized deallocation function and forward the first argument
693   // unchanged.
694   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
695   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
696 }
697 
698 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
699                                    const CGFunctionInfo &FnInfo) {
700   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
701 
702   // Check if we should generate debug info for this function.
703   if (FD->hasAttr<NoDebugAttr>())
704     DebugInfo = NULL; // disable debug info indefinitely for this function
705 
706   FunctionArgList Args;
707   QualType ResTy = FD->getResultType();
708 
709   CurGD = GD;
710   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
711   if (MD && MD->isInstance()) {
712     if (CGM.getCXXABI().HasThisReturn(GD))
713       ResTy = MD->getThisType(getContext());
714     CGM.getCXXABI().buildThisParam(*this, Args);
715   }
716 
717   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
718     Args.push_back(FD->getParamDecl(i));
719 
720   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
721     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
722 
723   SourceRange BodyRange;
724   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
725   CurEHLocation = BodyRange.getEnd();
726 
727   // Emit the standard function prologue.
728   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
729 
730   // Generate the body of the function.
731   if (isa<CXXDestructorDecl>(FD))
732     EmitDestructorBody(Args);
733   else if (isa<CXXConstructorDecl>(FD))
734     EmitConstructorBody(Args);
735   else if (getLangOpts().CUDA &&
736            !CGM.getCodeGenOpts().CUDAIsDevice &&
737            FD->hasAttr<CUDAGlobalAttr>())
738     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
739   else if (isa<CXXConversionDecl>(FD) &&
740            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
741     // The lambda conversion to block pointer is special; the semantics can't be
742     // expressed in the AST, so IRGen needs to special-case it.
743     EmitLambdaToBlockPointerBody(Args);
744   } else if (isa<CXXMethodDecl>(FD) &&
745              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
746     // The lambda static invoker function is special, because it forwards or
747     // clones the body of the function call operator (but is actually static).
748     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
749   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
750              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
751               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
752     // Implicit copy-assignment gets the same special treatment as implicit
753     // copy-constructors.
754     emitImplicitAssignmentOperatorBody(Args);
755   } else if (Stmt *Body = FD->getBody()) {
756     EmitFunctionBody(Args, Body);
757   } else if (FunctionDecl *UnsizedDealloc =
758                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
759     // Global sized deallocation functions get an implicit weak definition if
760     // they don't have an explicit definition.
761     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
762   } else
763     llvm_unreachable("no definition for emitted function");
764 
765   // C++11 [stmt.return]p2:
766   //   Flowing off the end of a function [...] results in undefined behavior in
767   //   a value-returning function.
768   // C11 6.9.1p12:
769   //   If the '}' that terminates a function is reached, and the value of the
770   //   function call is used by the caller, the behavior is undefined.
771   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
772       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
773     if (SanOpts->Return)
774       EmitCheck(Builder.getFalse(), "missing_return",
775                 EmitCheckSourceLocation(FD->getLocation()),
776                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
777     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
778       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
779     Builder.CreateUnreachable();
780     Builder.ClearInsertionPoint();
781   }
782 
783   // Emit the standard function epilogue.
784   FinishFunction(BodyRange.getEnd());
785 
786   // If we haven't marked the function nothrow through other means, do
787   // a quick pass now to see if we can.
788   if (!CurFn->doesNotThrow())
789     TryMarkNoThrow(CurFn);
790 
791   PGO.emitWriteoutFunction(CurGD);
792   PGO.destroyRegionCounters();
793 }
794 
795 /// ContainsLabel - Return true if the statement contains a label in it.  If
796 /// this statement is not executed normally, it not containing a label means
797 /// that we can just remove the code.
798 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
799   // Null statement, not a label!
800   if (S == 0) return false;
801 
802   // If this is a label, we have to emit the code, consider something like:
803   // if (0) {  ...  foo:  bar(); }  goto foo;
804   //
805   // TODO: If anyone cared, we could track __label__'s, since we know that you
806   // can't jump to one from outside their declared region.
807   if (isa<LabelStmt>(S))
808     return true;
809 
810   // If this is a case/default statement, and we haven't seen a switch, we have
811   // to emit the code.
812   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
813     return true;
814 
815   // If this is a switch statement, we want to ignore cases below it.
816   if (isa<SwitchStmt>(S))
817     IgnoreCaseStmts = true;
818 
819   // Scan subexpressions for verboten labels.
820   for (Stmt::const_child_range I = S->children(); I; ++I)
821     if (ContainsLabel(*I, IgnoreCaseStmts))
822       return true;
823 
824   return false;
825 }
826 
827 /// containsBreak - Return true if the statement contains a break out of it.
828 /// If the statement (recursively) contains a switch or loop with a break
829 /// inside of it, this is fine.
830 bool CodeGenFunction::containsBreak(const Stmt *S) {
831   // Null statement, not a label!
832   if (S == 0) return false;
833 
834   // If this is a switch or loop that defines its own break scope, then we can
835   // include it and anything inside of it.
836   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
837       isa<ForStmt>(S))
838     return false;
839 
840   if (isa<BreakStmt>(S))
841     return true;
842 
843   // Scan subexpressions for verboten breaks.
844   for (Stmt::const_child_range I = S->children(); I; ++I)
845     if (containsBreak(*I))
846       return true;
847 
848   return false;
849 }
850 
851 
852 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
853 /// to a constant, or if it does but contains a label, return false.  If it
854 /// constant folds return true and set the boolean result in Result.
855 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
856                                                    bool &ResultBool) {
857   llvm::APSInt ResultInt;
858   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
859     return false;
860 
861   ResultBool = ResultInt.getBoolValue();
862   return true;
863 }
864 
865 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
866 /// to a constant, or if it does but contains a label, return false.  If it
867 /// constant folds return true and set the folded value.
868 bool CodeGenFunction::
869 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
870   // FIXME: Rename and handle conversion of other evaluatable things
871   // to bool.
872   llvm::APSInt Int;
873   if (!Cond->EvaluateAsInt(Int, getContext()))
874     return false;  // Not foldable, not integer or not fully evaluatable.
875 
876   if (CodeGenFunction::ContainsLabel(Cond))
877     return false;  // Contains a label.
878 
879   ResultInt = Int;
880   return true;
881 }
882 
883 
884 
885 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
886 /// statement) to the specified blocks.  Based on the condition, this might try
887 /// to simplify the codegen of the conditional based on the branch.
888 ///
889 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
890                                            llvm::BasicBlock *TrueBlock,
891                                            llvm::BasicBlock *FalseBlock,
892                                            uint64_t TrueCount) {
893   Cond = Cond->IgnoreParens();
894 
895   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
896     RegionCounter Cnt = getPGORegionCounter(CondBOp);
897 
898     // Handle X && Y in a condition.
899     if (CondBOp->getOpcode() == BO_LAnd) {
900       // If we have "1 && X", simplify the code.  "0 && X" would have constant
901       // folded if the case was simple enough.
902       bool ConstantBool = false;
903       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
904           ConstantBool) {
905         // br(1 && X) -> br(X).
906         Cnt.beginRegion(Builder);
907         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
908                                     TrueCount);
909       }
910 
911       // If we have "X && 1", simplify the code to use an uncond branch.
912       // "X && 0" would have been constant folded to 0.
913       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
914           ConstantBool) {
915         // br(X && 1) -> br(X).
916         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
917                                     TrueCount);
918       }
919 
920       // Emit the LHS as a conditional.  If the LHS conditional is false, we
921       // want to jump to the FalseBlock.
922       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
923       // The counter tells us how often we evaluate RHS, and all of TrueCount
924       // can be propagated to that branch.
925       uint64_t RHSCount = Cnt.getCount();
926 
927       ConditionalEvaluation eval(*this);
928       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
929       EmitBlock(LHSTrue);
930 
931       // Any temporaries created here are conditional.
932       Cnt.beginRegion(Builder);
933       eval.begin(*this);
934       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
935       eval.end(*this);
936       Cnt.adjustForControlFlow();
937       Cnt.applyAdjustmentsToRegion();
938 
939       return;
940     }
941 
942     if (CondBOp->getOpcode() == BO_LOr) {
943       // If we have "0 || X", simplify the code.  "1 || X" would have constant
944       // folded if the case was simple enough.
945       bool ConstantBool = false;
946       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
947           !ConstantBool) {
948         // br(0 || X) -> br(X).
949         Cnt.beginRegion(Builder);
950         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
951                                     TrueCount);
952       }
953 
954       // If we have "X || 0", simplify the code to use an uncond branch.
955       // "X || 1" would have been constant folded to 1.
956       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
957           !ConstantBool) {
958         // br(X || 0) -> br(X).
959         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
960                                     TrueCount);
961       }
962 
963       // Emit the LHS as a conditional.  If the LHS conditional is true, we
964       // want to jump to the TrueBlock.
965       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
966       // We have the count for entry to the RHS and for the whole expression
967       // being true, so we can divy up True count between the short circuit and
968       // the RHS.
969       uint64_t LHSCount = TrueCount - Cnt.getCount();
970       uint64_t RHSCount = TrueCount - LHSCount;
971 
972       ConditionalEvaluation eval(*this);
973       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
974       EmitBlock(LHSFalse);
975 
976       // Any temporaries created here are conditional.
977       Cnt.beginRegion(Builder);
978       eval.begin(*this);
979       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
980 
981       eval.end(*this);
982       Cnt.adjustForControlFlow();
983       Cnt.applyAdjustmentsToRegion();
984 
985       return;
986     }
987   }
988 
989   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
990     // br(!x, t, f) -> br(x, f, t)
991     if (CondUOp->getOpcode() == UO_LNot) {
992       // Negate the count.
993       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
994       // Negate the condition and swap the destination blocks.
995       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
996                                   FalseCount);
997     }
998   }
999 
1000   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1001     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1002     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1003     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1004 
1005     RegionCounter Cnt = getPGORegionCounter(CondOp);
1006     ConditionalEvaluation cond(*this);
1007     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1008 
1009     // When computing PGO branch weights, we only know the overall count for
1010     // the true block. This code is essentially doing tail duplication of the
1011     // naive code-gen, introducing new edges for which counts are not
1012     // available. Divide the counts proportionally between the LHS and RHS of
1013     // the conditional operator.
1014     uint64_t LHSScaledTrueCount = 0;
1015     if (TrueCount) {
1016       double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount();
1017       LHSScaledTrueCount = TrueCount * LHSRatio;
1018     }
1019 
1020     cond.begin(*this);
1021     EmitBlock(LHSBlock);
1022     Cnt.beginRegion(Builder);
1023     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1024                          LHSScaledTrueCount);
1025     cond.end(*this);
1026 
1027     cond.begin(*this);
1028     EmitBlock(RHSBlock);
1029     Cnt.beginElseRegion();
1030     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1031                          TrueCount - LHSScaledTrueCount);
1032     cond.end(*this);
1033 
1034     return;
1035   }
1036 
1037   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1038     // Conditional operator handling can give us a throw expression as a
1039     // condition for a case like:
1040     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1041     // Fold this to:
1042     //   br(c, throw x, br(y, t, f))
1043     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1044     return;
1045   }
1046 
1047   // Create branch weights based on the number of times we get here and the
1048   // number of times the condition should be true.
1049   uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount);
1050   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1051                                                   CurrentCount - TrueCount);
1052 
1053   // Emit the code with the fully general case.
1054   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1055   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1056 }
1057 
1058 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1059 /// specified stmt yet.
1060 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1061   CGM.ErrorUnsupported(S, Type);
1062 }
1063 
1064 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1065 /// variable-length array whose elements have a non-zero bit-pattern.
1066 ///
1067 /// \param baseType the inner-most element type of the array
1068 /// \param src - a char* pointing to the bit-pattern for a single
1069 /// base element of the array
1070 /// \param sizeInChars - the total size of the VLA, in chars
1071 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1072                                llvm::Value *dest, llvm::Value *src,
1073                                llvm::Value *sizeInChars) {
1074   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1075     = CGF.getContext().getTypeInfoInChars(baseType);
1076 
1077   CGBuilderTy &Builder = CGF.Builder;
1078 
1079   llvm::Value *baseSizeInChars
1080     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1081 
1082   llvm::Type *i8p = Builder.getInt8PtrTy();
1083 
1084   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1085   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1086 
1087   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1088   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1089   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1090 
1091   // Make a loop over the VLA.  C99 guarantees that the VLA element
1092   // count must be nonzero.
1093   CGF.EmitBlock(loopBB);
1094 
1095   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1096   cur->addIncoming(begin, originBB);
1097 
1098   // memcpy the individual element bit-pattern.
1099   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1100                        baseSizeAndAlign.second.getQuantity(),
1101                        /*volatile*/ false);
1102 
1103   // Go to the next element.
1104   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1105 
1106   // Leave if that's the end of the VLA.
1107   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1108   Builder.CreateCondBr(done, contBB, loopBB);
1109   cur->addIncoming(next, loopBB);
1110 
1111   CGF.EmitBlock(contBB);
1112 }
1113 
1114 void
1115 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1116   // Ignore empty classes in C++.
1117   if (getLangOpts().CPlusPlus) {
1118     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1119       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1120         return;
1121     }
1122   }
1123 
1124   // Cast the dest ptr to the appropriate i8 pointer type.
1125   unsigned DestAS =
1126     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1127   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1128   if (DestPtr->getType() != BP)
1129     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1130 
1131   // Get size and alignment info for this aggregate.
1132   std::pair<CharUnits, CharUnits> TypeInfo =
1133     getContext().getTypeInfoInChars(Ty);
1134   CharUnits Size = TypeInfo.first;
1135   CharUnits Align = TypeInfo.second;
1136 
1137   llvm::Value *SizeVal;
1138   const VariableArrayType *vla;
1139 
1140   // Don't bother emitting a zero-byte memset.
1141   if (Size.isZero()) {
1142     // But note that getTypeInfo returns 0 for a VLA.
1143     if (const VariableArrayType *vlaType =
1144           dyn_cast_or_null<VariableArrayType>(
1145                                           getContext().getAsArrayType(Ty))) {
1146       QualType eltType;
1147       llvm::Value *numElts;
1148       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1149 
1150       SizeVal = numElts;
1151       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1152       if (!eltSize.isOne())
1153         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1154       vla = vlaType;
1155     } else {
1156       return;
1157     }
1158   } else {
1159     SizeVal = CGM.getSize(Size);
1160     vla = 0;
1161   }
1162 
1163   // If the type contains a pointer to data member we can't memset it to zero.
1164   // Instead, create a null constant and copy it to the destination.
1165   // TODO: there are other patterns besides zero that we can usefully memset,
1166   // like -1, which happens to be the pattern used by member-pointers.
1167   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1168     // For a VLA, emit a single element, then splat that over the VLA.
1169     if (vla) Ty = getContext().getBaseElementType(vla);
1170 
1171     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1172 
1173     llvm::GlobalVariable *NullVariable =
1174       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1175                                /*isConstant=*/true,
1176                                llvm::GlobalVariable::PrivateLinkage,
1177                                NullConstant, Twine());
1178     llvm::Value *SrcPtr =
1179       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1180 
1181     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1182 
1183     // Get and call the appropriate llvm.memcpy overload.
1184     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1185     return;
1186   }
1187 
1188   // Otherwise, just memset the whole thing to zero.  This is legal
1189   // because in LLVM, all default initializers (other than the ones we just
1190   // handled above) are guaranteed to have a bit pattern of all zeros.
1191   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1192                        Align.getQuantity(), false);
1193 }
1194 
1195 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1196   // Make sure that there is a block for the indirect goto.
1197   if (IndirectBranch == 0)
1198     GetIndirectGotoBlock();
1199 
1200   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1201 
1202   // Make sure the indirect branch includes all of the address-taken blocks.
1203   IndirectBranch->addDestination(BB);
1204   return llvm::BlockAddress::get(CurFn, BB);
1205 }
1206 
1207 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1208   // If we already made the indirect branch for indirect goto, return its block.
1209   if (IndirectBranch) return IndirectBranch->getParent();
1210 
1211   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1212 
1213   // Create the PHI node that indirect gotos will add entries to.
1214   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1215                                               "indirect.goto.dest");
1216 
1217   // Create the indirect branch instruction.
1218   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1219   return IndirectBranch->getParent();
1220 }
1221 
1222 /// Computes the length of an array in elements, as well as the base
1223 /// element type and a properly-typed first element pointer.
1224 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1225                                               QualType &baseType,
1226                                               llvm::Value *&addr) {
1227   const ArrayType *arrayType = origArrayType;
1228 
1229   // If it's a VLA, we have to load the stored size.  Note that
1230   // this is the size of the VLA in bytes, not its size in elements.
1231   llvm::Value *numVLAElements = 0;
1232   if (isa<VariableArrayType>(arrayType)) {
1233     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1234 
1235     // Walk into all VLAs.  This doesn't require changes to addr,
1236     // which has type T* where T is the first non-VLA element type.
1237     do {
1238       QualType elementType = arrayType->getElementType();
1239       arrayType = getContext().getAsArrayType(elementType);
1240 
1241       // If we only have VLA components, 'addr' requires no adjustment.
1242       if (!arrayType) {
1243         baseType = elementType;
1244         return numVLAElements;
1245       }
1246     } while (isa<VariableArrayType>(arrayType));
1247 
1248     // We get out here only if we find a constant array type
1249     // inside the VLA.
1250   }
1251 
1252   // We have some number of constant-length arrays, so addr should
1253   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1254   // down to the first element of addr.
1255   SmallVector<llvm::Value*, 8> gepIndices;
1256 
1257   // GEP down to the array type.
1258   llvm::ConstantInt *zero = Builder.getInt32(0);
1259   gepIndices.push_back(zero);
1260 
1261   uint64_t countFromCLAs = 1;
1262   QualType eltType;
1263 
1264   llvm::ArrayType *llvmArrayType =
1265     dyn_cast<llvm::ArrayType>(
1266       cast<llvm::PointerType>(addr->getType())->getElementType());
1267   while (llvmArrayType) {
1268     assert(isa<ConstantArrayType>(arrayType));
1269     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1270              == llvmArrayType->getNumElements());
1271 
1272     gepIndices.push_back(zero);
1273     countFromCLAs *= llvmArrayType->getNumElements();
1274     eltType = arrayType->getElementType();
1275 
1276     llvmArrayType =
1277       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1278     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1279     assert((!llvmArrayType || arrayType) &&
1280            "LLVM and Clang types are out-of-synch");
1281   }
1282 
1283   if (arrayType) {
1284     // From this point onwards, the Clang array type has been emitted
1285     // as some other type (probably a packed struct). Compute the array
1286     // size, and just emit the 'begin' expression as a bitcast.
1287     while (arrayType) {
1288       countFromCLAs *=
1289           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1290       eltType = arrayType->getElementType();
1291       arrayType = getContext().getAsArrayType(eltType);
1292     }
1293 
1294     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1295     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1296     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1297   } else {
1298     // Create the actual GEP.
1299     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1300   }
1301 
1302   baseType = eltType;
1303 
1304   llvm::Value *numElements
1305     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1306 
1307   // If we had any VLA dimensions, factor them in.
1308   if (numVLAElements)
1309     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1310 
1311   return numElements;
1312 }
1313 
1314 std::pair<llvm::Value*, QualType>
1315 CodeGenFunction::getVLASize(QualType type) {
1316   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1317   assert(vla && "type was not a variable array type!");
1318   return getVLASize(vla);
1319 }
1320 
1321 std::pair<llvm::Value*, QualType>
1322 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1323   // The number of elements so far; always size_t.
1324   llvm::Value *numElements = 0;
1325 
1326   QualType elementType;
1327   do {
1328     elementType = type->getElementType();
1329     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1330     assert(vlaSize && "no size for VLA!");
1331     assert(vlaSize->getType() == SizeTy);
1332 
1333     if (!numElements) {
1334       numElements = vlaSize;
1335     } else {
1336       // It's undefined behavior if this wraps around, so mark it that way.
1337       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1338       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1339     }
1340   } while ((type = getContext().getAsVariableArrayType(elementType)));
1341 
1342   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1343 }
1344 
1345 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1346   assert(type->isVariablyModifiedType() &&
1347          "Must pass variably modified type to EmitVLASizes!");
1348 
1349   EnsureInsertPoint();
1350 
1351   // We're going to walk down into the type and look for VLA
1352   // expressions.
1353   do {
1354     assert(type->isVariablyModifiedType());
1355 
1356     const Type *ty = type.getTypePtr();
1357     switch (ty->getTypeClass()) {
1358 
1359 #define TYPE(Class, Base)
1360 #define ABSTRACT_TYPE(Class, Base)
1361 #define NON_CANONICAL_TYPE(Class, Base)
1362 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1363 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1364 #include "clang/AST/TypeNodes.def"
1365       llvm_unreachable("unexpected dependent type!");
1366 
1367     // These types are never variably-modified.
1368     case Type::Builtin:
1369     case Type::Complex:
1370     case Type::Vector:
1371     case Type::ExtVector:
1372     case Type::Record:
1373     case Type::Enum:
1374     case Type::Elaborated:
1375     case Type::TemplateSpecialization:
1376     case Type::ObjCObject:
1377     case Type::ObjCInterface:
1378     case Type::ObjCObjectPointer:
1379       llvm_unreachable("type class is never variably-modified!");
1380 
1381     case Type::Adjusted:
1382       type = cast<AdjustedType>(ty)->getAdjustedType();
1383       break;
1384 
1385     case Type::Decayed:
1386       type = cast<DecayedType>(ty)->getPointeeType();
1387       break;
1388 
1389     case Type::Pointer:
1390       type = cast<PointerType>(ty)->getPointeeType();
1391       break;
1392 
1393     case Type::BlockPointer:
1394       type = cast<BlockPointerType>(ty)->getPointeeType();
1395       break;
1396 
1397     case Type::LValueReference:
1398     case Type::RValueReference:
1399       type = cast<ReferenceType>(ty)->getPointeeType();
1400       break;
1401 
1402     case Type::MemberPointer:
1403       type = cast<MemberPointerType>(ty)->getPointeeType();
1404       break;
1405 
1406     case Type::ConstantArray:
1407     case Type::IncompleteArray:
1408       // Losing element qualification here is fine.
1409       type = cast<ArrayType>(ty)->getElementType();
1410       break;
1411 
1412     case Type::VariableArray: {
1413       // Losing element qualification here is fine.
1414       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1415 
1416       // Unknown size indication requires no size computation.
1417       // Otherwise, evaluate and record it.
1418       if (const Expr *size = vat->getSizeExpr()) {
1419         // It's possible that we might have emitted this already,
1420         // e.g. with a typedef and a pointer to it.
1421         llvm::Value *&entry = VLASizeMap[size];
1422         if (!entry) {
1423           llvm::Value *Size = EmitScalarExpr(size);
1424 
1425           // C11 6.7.6.2p5:
1426           //   If the size is an expression that is not an integer constant
1427           //   expression [...] each time it is evaluated it shall have a value
1428           //   greater than zero.
1429           if (SanOpts->VLABound &&
1430               size->getType()->isSignedIntegerType()) {
1431             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1432             llvm::Constant *StaticArgs[] = {
1433               EmitCheckSourceLocation(size->getLocStart()),
1434               EmitCheckTypeDescriptor(size->getType())
1435             };
1436             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1437                       "vla_bound_not_positive", StaticArgs, Size,
1438                       CRK_Recoverable);
1439           }
1440 
1441           // Always zexting here would be wrong if it weren't
1442           // undefined behavior to have a negative bound.
1443           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1444         }
1445       }
1446       type = vat->getElementType();
1447       break;
1448     }
1449 
1450     case Type::FunctionProto:
1451     case Type::FunctionNoProto:
1452       type = cast<FunctionType>(ty)->getResultType();
1453       break;
1454 
1455     case Type::Paren:
1456     case Type::TypeOf:
1457     case Type::UnaryTransform:
1458     case Type::Attributed:
1459     case Type::SubstTemplateTypeParm:
1460     case Type::PackExpansion:
1461       // Keep walking after single level desugaring.
1462       type = type.getSingleStepDesugaredType(getContext());
1463       break;
1464 
1465     case Type::Typedef:
1466     case Type::Decltype:
1467     case Type::Auto:
1468       // Stop walking: nothing to do.
1469       return;
1470 
1471     case Type::TypeOfExpr:
1472       // Stop walking: emit typeof expression.
1473       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1474       return;
1475 
1476     case Type::Atomic:
1477       type = cast<AtomicType>(ty)->getValueType();
1478       break;
1479     }
1480   } while (type->isVariablyModifiedType());
1481 }
1482 
1483 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1484   if (getContext().getBuiltinVaListType()->isArrayType())
1485     return EmitScalarExpr(E);
1486   return EmitLValue(E).getAddress();
1487 }
1488 
1489 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1490                                               llvm::Constant *Init) {
1491   assert (Init && "Invalid DeclRefExpr initializer!");
1492   if (CGDebugInfo *Dbg = getDebugInfo())
1493     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1494       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1495 }
1496 
1497 CodeGenFunction::PeepholeProtection
1498 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1499   // At the moment, the only aggressive peephole we do in IR gen
1500   // is trunc(zext) folding, but if we add more, we can easily
1501   // extend this protection.
1502 
1503   if (!rvalue.isScalar()) return PeepholeProtection();
1504   llvm::Value *value = rvalue.getScalarVal();
1505   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1506 
1507   // Just make an extra bitcast.
1508   assert(HaveInsertPoint());
1509   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1510                                                   Builder.GetInsertBlock());
1511 
1512   PeepholeProtection protection;
1513   protection.Inst = inst;
1514   return protection;
1515 }
1516 
1517 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1518   if (!protection.Inst) return;
1519 
1520   // In theory, we could try to duplicate the peepholes now, but whatever.
1521   protection.Inst->eraseFromParent();
1522 }
1523 
1524 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1525                                                  llvm::Value *AnnotatedVal,
1526                                                  StringRef AnnotationStr,
1527                                                  SourceLocation Location) {
1528   llvm::Value *Args[4] = {
1529     AnnotatedVal,
1530     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1531     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1532     CGM.EmitAnnotationLineNo(Location)
1533   };
1534   return Builder.CreateCall(AnnotationFn, Args);
1535 }
1536 
1537 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1538   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1539   // FIXME We create a new bitcast for every annotation because that's what
1540   // llvm-gcc was doing.
1541   for (specific_attr_iterator<AnnotateAttr>
1542        ai = D->specific_attr_begin<AnnotateAttr>(),
1543        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1544     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1545                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1546                        (*ai)->getAnnotation(), D->getLocation());
1547 }
1548 
1549 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1550                                                    llvm::Value *V) {
1551   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1552   llvm::Type *VTy = V->getType();
1553   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1554                                     CGM.Int8PtrTy);
1555 
1556   for (specific_attr_iterator<AnnotateAttr>
1557        ai = D->specific_attr_begin<AnnotateAttr>(),
1558        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1559     // FIXME Always emit the cast inst so we can differentiate between
1560     // annotation on the first field of a struct and annotation on the struct
1561     // itself.
1562     if (VTy != CGM.Int8PtrTy)
1563       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1564     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1565     V = Builder.CreateBitCast(V, VTy);
1566   }
1567 
1568   return V;
1569 }
1570 
1571 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1572