1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 48 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 49 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 50 CXXThisValue(0), CXXDefaultInitExprThis(0), 51 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 52 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 53 TerminateHandler(0), TrapBB(0) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 } 76 77 78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 79 return CGM.getTypes().ConvertTypeForMem(T); 80 } 81 82 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 83 return CGM.getTypes().ConvertType(T); 84 } 85 86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 87 type = type.getCanonicalType(); 88 while (true) { 89 switch (type->getTypeClass()) { 90 #define TYPE(name, parent) 91 #define ABSTRACT_TYPE(name, parent) 92 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 93 #define DEPENDENT_TYPE(name, parent) case Type::name: 94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 95 #include "clang/AST/TypeNodes.def" 96 llvm_unreachable("non-canonical or dependent type in IR-generation"); 97 98 case Type::Auto: 99 llvm_unreachable("undeduced auto type in IR-generation"); 100 101 // Various scalar types. 102 case Type::Builtin: 103 case Type::Pointer: 104 case Type::BlockPointer: 105 case Type::LValueReference: 106 case Type::RValueReference: 107 case Type::MemberPointer: 108 case Type::Vector: 109 case Type::ExtVector: 110 case Type::FunctionProto: 111 case Type::FunctionNoProto: 112 case Type::Enum: 113 case Type::ObjCObjectPointer: 114 return TEK_Scalar; 115 116 // Complexes. 117 case Type::Complex: 118 return TEK_Complex; 119 120 // Arrays, records, and Objective-C objects. 121 case Type::ConstantArray: 122 case Type::IncompleteArray: 123 case Type::VariableArray: 124 case Type::Record: 125 case Type::ObjCObject: 126 case Type::ObjCInterface: 127 return TEK_Aggregate; 128 129 // We operate on atomic values according to their underlying type. 130 case Type::Atomic: 131 type = cast<AtomicType>(type)->getValueType(); 132 continue; 133 } 134 llvm_unreachable("unknown type kind!"); 135 } 136 } 137 138 void CodeGenFunction::EmitReturnBlock() { 139 // For cleanliness, we try to avoid emitting the return block for 140 // simple cases. 141 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 142 143 if (CurBB) { 144 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 145 146 // We have a valid insert point, reuse it if it is empty or there are no 147 // explicit jumps to the return block. 148 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 149 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 150 delete ReturnBlock.getBlock(); 151 } else 152 EmitBlock(ReturnBlock.getBlock()); 153 return; 154 } 155 156 // Otherwise, if the return block is the target of a single direct 157 // branch then we can just put the code in that block instead. This 158 // cleans up functions which started with a unified return block. 159 if (ReturnBlock.getBlock()->hasOneUse()) { 160 llvm::BranchInst *BI = 161 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 162 if (BI && BI->isUnconditional() && 163 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 164 // Reset insertion point, including debug location, and delete the 165 // branch. This is really subtle and only works because the next change 166 // in location will hit the caching in CGDebugInfo::EmitLocation and not 167 // override this. 168 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 169 Builder.SetInsertPoint(BI->getParent()); 170 BI->eraseFromParent(); 171 delete ReturnBlock.getBlock(); 172 return; 173 } 174 } 175 176 // FIXME: We are at an unreachable point, there is no reason to emit the block 177 // unless it has uses. However, we still need a place to put the debug 178 // region.end for now. 179 180 EmitBlock(ReturnBlock.getBlock()); 181 } 182 183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 184 if (!BB) return; 185 if (!BB->use_empty()) 186 return CGF.CurFn->getBasicBlockList().push_back(BB); 187 delete BB; 188 } 189 190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 191 assert(BreakContinueStack.empty() && 192 "mismatched push/pop in break/continue stack!"); 193 194 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 195 && NumSimpleReturnExprs == NumReturnExprs 196 && ReturnBlock.getBlock()->use_empty(); 197 // Usually the return expression is evaluated before the cleanup 198 // code. If the function contains only a simple return statement, 199 // such as a constant, the location before the cleanup code becomes 200 // the last useful breakpoint in the function, because the simple 201 // return expression will be evaluated after the cleanup code. To be 202 // safe, set the debug location for cleanup code to the location of 203 // the return statement. Otherwise the cleanup code should be at the 204 // end of the function's lexical scope. 205 // 206 // If there are multiple branches to the return block, the branch 207 // instructions will get the location of the return statements and 208 // all will be fine. 209 if (CGDebugInfo *DI = getDebugInfo()) { 210 if (OnlySimpleReturnStmts) 211 DI->EmitLocation(Builder, LastStopPoint); 212 else 213 DI->EmitLocation(Builder, EndLoc); 214 } 215 216 // Pop any cleanups that might have been associated with the 217 // parameters. Do this in whatever block we're currently in; it's 218 // important to do this before we enter the return block or return 219 // edges will be *really* confused. 220 bool EmitRetDbgLoc = true; 221 if (EHStack.stable_begin() != PrologueCleanupDepth) { 222 PopCleanupBlocks(PrologueCleanupDepth); 223 224 // Make sure the line table doesn't jump back into the body for 225 // the ret after it's been at EndLoc. 226 EmitRetDbgLoc = false; 227 228 if (CGDebugInfo *DI = getDebugInfo()) 229 if (OnlySimpleReturnStmts) 230 DI->EmitLocation(Builder, EndLoc); 231 } 232 233 // Emit function epilog (to return). 234 EmitReturnBlock(); 235 236 if (ShouldInstrumentFunction()) 237 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 238 239 // Emit debug descriptor for function end. 240 if (CGDebugInfo *DI = getDebugInfo()) { 241 DI->EmitFunctionEnd(Builder); 242 } 243 244 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 245 EmitEndEHSpec(CurCodeDecl); 246 247 assert(EHStack.empty() && 248 "did not remove all scopes from cleanup stack!"); 249 250 // If someone did an indirect goto, emit the indirect goto block at the end of 251 // the function. 252 if (IndirectBranch) { 253 EmitBlock(IndirectBranch->getParent()); 254 Builder.ClearInsertionPoint(); 255 } 256 257 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 258 llvm::Instruction *Ptr = AllocaInsertPt; 259 AllocaInsertPt = 0; 260 Ptr->eraseFromParent(); 261 262 // If someone took the address of a label but never did an indirect goto, we 263 // made a zero entry PHI node, which is illegal, zap it now. 264 if (IndirectBranch) { 265 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 266 if (PN->getNumIncomingValues() == 0) { 267 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 268 PN->eraseFromParent(); 269 } 270 } 271 272 EmitIfUsed(*this, EHResumeBlock); 273 EmitIfUsed(*this, TerminateLandingPad); 274 EmitIfUsed(*this, TerminateHandler); 275 EmitIfUsed(*this, UnreachableBlock); 276 277 if (CGM.getCodeGenOpts().EmitDeclMetadata) 278 EmitDeclMetadata(); 279 } 280 281 /// ShouldInstrumentFunction - Return true if the current function should be 282 /// instrumented with __cyg_profile_func_* calls 283 bool CodeGenFunction::ShouldInstrumentFunction() { 284 if (!CGM.getCodeGenOpts().InstrumentFunctions) 285 return false; 286 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 287 return false; 288 return true; 289 } 290 291 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 292 /// instrumentation function with the current function and the call site, if 293 /// function instrumentation is enabled. 294 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 295 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 296 llvm::PointerType *PointerTy = Int8PtrTy; 297 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 298 llvm::FunctionType *FunctionTy = 299 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 300 301 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 302 llvm::CallInst *CallSite = Builder.CreateCall( 303 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 304 llvm::ConstantInt::get(Int32Ty, 0), 305 "callsite"); 306 307 llvm::Value *args[] = { 308 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 309 CallSite 310 }; 311 312 EmitNounwindRuntimeCall(F, args); 313 } 314 315 void CodeGenFunction::EmitMCountInstrumentation() { 316 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 317 318 llvm::Constant *MCountFn = 319 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 320 EmitNounwindRuntimeCall(MCountFn); 321 } 322 323 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 324 // information in the program executable. The argument information stored 325 // includes the argument name, its type, the address and access qualifiers used. 326 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 327 CodeGenModule &CGM,llvm::LLVMContext &Context, 328 SmallVector <llvm::Value*, 5> &kernelMDArgs, 329 CGBuilderTy& Builder, ASTContext &ASTCtx) { 330 // Create MDNodes that represent the kernel arg metadata. 331 // Each MDNode is a list in the form of "key", N number of values which is 332 // the same number of values as their are kernel arguments. 333 334 // MDNode for the kernel argument address space qualifiers. 335 SmallVector<llvm::Value*, 8> addressQuals; 336 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 337 338 // MDNode for the kernel argument access qualifiers (images only). 339 SmallVector<llvm::Value*, 8> accessQuals; 340 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 341 342 // MDNode for the kernel argument type names. 343 SmallVector<llvm::Value*, 8> argTypeNames; 344 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 345 346 // MDNode for the kernel argument type qualifiers. 347 SmallVector<llvm::Value*, 8> argTypeQuals; 348 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 349 350 // MDNode for the kernel argument names. 351 SmallVector<llvm::Value*, 8> argNames; 352 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 353 354 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 355 const ParmVarDecl *parm = FD->getParamDecl(i); 356 QualType ty = parm->getType(); 357 std::string typeQuals; 358 359 if (ty->isPointerType()) { 360 QualType pointeeTy = ty->getPointeeType(); 361 362 // Get address qualifier. 363 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 364 pointeeTy.getAddressSpace()))); 365 366 // Get argument type name. 367 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 368 369 // Turn "unsigned type" to "utype" 370 std::string::size_type pos = typeName.find("unsigned"); 371 if (pos != std::string::npos) 372 typeName.erase(pos+1, 8); 373 374 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 375 376 // Get argument type qualifiers: 377 if (ty.isRestrictQualified()) 378 typeQuals = "restrict"; 379 if (pointeeTy.isConstQualified() || 380 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 381 typeQuals += typeQuals.empty() ? "const" : " const"; 382 if (pointeeTy.isVolatileQualified()) 383 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 384 } else { 385 uint32_t AddrSpc = 0; 386 if (ty->isImageType()) 387 AddrSpc = 388 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 389 390 addressQuals.push_back(Builder.getInt32(AddrSpc)); 391 392 // Get argument type name. 393 std::string typeName = ty.getUnqualifiedType().getAsString(); 394 395 // Turn "unsigned type" to "utype" 396 std::string::size_type pos = typeName.find("unsigned"); 397 if (pos != std::string::npos) 398 typeName.erase(pos+1, 8); 399 400 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 401 402 // Get argument type qualifiers: 403 if (ty.isConstQualified()) 404 typeQuals = "const"; 405 if (ty.isVolatileQualified()) 406 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 407 } 408 409 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 410 411 // Get image access qualifier: 412 if (ty->isImageType()) { 413 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 414 if (A && A->isWriteOnly()) 415 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 416 else 417 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 418 // FIXME: what about read_write? 419 } else 420 accessQuals.push_back(llvm::MDString::get(Context, "none")); 421 422 // Get argument name. 423 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 424 } 425 426 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 427 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 428 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 429 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 430 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 431 } 432 433 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 434 llvm::Function *Fn) 435 { 436 if (!FD->hasAttr<OpenCLKernelAttr>()) 437 return; 438 439 llvm::LLVMContext &Context = getLLVMContext(); 440 441 SmallVector <llvm::Value*, 5> kernelMDArgs; 442 kernelMDArgs.push_back(Fn); 443 444 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 445 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 446 Builder, getContext()); 447 448 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 449 QualType hintQTy = A->getTypeHint(); 450 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 451 bool isSignedInteger = 452 hintQTy->isSignedIntegerType() || 453 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 454 llvm::Value *attrMDArgs[] = { 455 llvm::MDString::get(Context, "vec_type_hint"), 456 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 457 llvm::ConstantInt::get( 458 llvm::IntegerType::get(Context, 32), 459 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 460 }; 461 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 462 } 463 464 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 465 llvm::Value *attrMDArgs[] = { 466 llvm::MDString::get(Context, "work_group_size_hint"), 467 Builder.getInt32(A->getXDim()), 468 Builder.getInt32(A->getYDim()), 469 Builder.getInt32(A->getZDim()) 470 }; 471 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 472 } 473 474 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 475 llvm::Value *attrMDArgs[] = { 476 llvm::MDString::get(Context, "reqd_work_group_size"), 477 Builder.getInt32(A->getXDim()), 478 Builder.getInt32(A->getYDim()), 479 Builder.getInt32(A->getZDim()) 480 }; 481 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 482 } 483 484 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 485 llvm::NamedMDNode *OpenCLKernelMetadata = 486 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 487 OpenCLKernelMetadata->addOperand(kernelMDNode); 488 } 489 490 void CodeGenFunction::StartFunction(GlobalDecl GD, 491 QualType RetTy, 492 llvm::Function *Fn, 493 const CGFunctionInfo &FnInfo, 494 const FunctionArgList &Args, 495 SourceLocation StartLoc) { 496 const Decl *D = GD.getDecl(); 497 498 DidCallStackSave = false; 499 CurCodeDecl = D; 500 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 501 FnRetTy = RetTy; 502 CurFn = Fn; 503 CurFnInfo = &FnInfo; 504 assert(CurFn->isDeclaration() && "Function already has body?"); 505 506 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 507 SanOpts = &SanitizerOptions::Disabled; 508 SanitizePerformTypeCheck = false; 509 } 510 511 // Pass inline keyword to optimizer if it appears explicitly on any 512 // declaration. Also, in the case of -fno-inline attach NoInline 513 // attribute to all function that are not marked AlwaysInline or ForceInline. 514 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 515 if (!CGM.getCodeGenOpts().NoInline) { 516 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 517 RE = FD->redecls_end(); RI != RE; ++RI) 518 if (RI->isInlineSpecified()) { 519 Fn->addFnAttr(llvm::Attribute::InlineHint); 520 break; 521 } 522 } else if (!FD->hasAttr<AlwaysInlineAttr>() && 523 !FD->hasAttr<ForceInlineAttr>()) 524 Fn->addFnAttr(llvm::Attribute::NoInline); 525 } 526 527 if (getLangOpts().OpenCL) { 528 // Add metadata for a kernel function. 529 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 530 EmitOpenCLKernelMetadata(FD, Fn); 531 } 532 533 // If we are checking function types, emit a function type signature as 534 // prefix data. 535 if (getLangOpts().CPlusPlus && SanOpts->Function) { 536 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 537 if (llvm::Constant *PrefixSig = 538 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 539 llvm::Constant *FTRTTIConst = 540 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 541 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 542 llvm::Constant *PrefixStructConst = 543 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 544 Fn->setPrefixData(PrefixStructConst); 545 } 546 } 547 } 548 549 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 550 551 // Create a marker to make it easy to insert allocas into the entryblock 552 // later. Don't create this with the builder, because we don't want it 553 // folded. 554 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 555 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 556 if (Builder.isNamePreserving()) 557 AllocaInsertPt->setName("allocapt"); 558 559 ReturnBlock = getJumpDestInCurrentScope("return"); 560 561 Builder.SetInsertPoint(EntryBB); 562 563 // Emit subprogram debug descriptor. 564 if (CGDebugInfo *DI = getDebugInfo()) { 565 SmallVector<QualType, 16> ArgTypes; 566 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 567 i != e; ++i) { 568 ArgTypes.push_back((*i)->getType()); 569 } 570 571 QualType FnType = 572 getContext().getFunctionType(RetTy, ArgTypes, 573 FunctionProtoType::ExtProtoInfo()); 574 575 DI->setLocation(StartLoc); 576 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 577 } 578 579 if (ShouldInstrumentFunction()) 580 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 581 582 if (CGM.getCodeGenOpts().InstrumentForProfiling) 583 EmitMCountInstrumentation(); 584 585 PGO.assignRegionCounters(GD); 586 587 if (RetTy->isVoidType()) { 588 // Void type; nothing to return. 589 ReturnValue = 0; 590 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 591 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 592 // Indirect aggregate return; emit returned value directly into sret slot. 593 // This reduces code size, and affects correctness in C++. 594 ReturnValue = CurFn->arg_begin(); 595 } else { 596 ReturnValue = CreateIRTemp(RetTy, "retval"); 597 598 // Tell the epilog emitter to autorelease the result. We do this 599 // now so that various specialized functions can suppress it 600 // during their IR-generation. 601 if (getLangOpts().ObjCAutoRefCount && 602 !CurFnInfo->isReturnsRetained() && 603 RetTy->isObjCRetainableType()) 604 AutoreleaseResult = true; 605 } 606 607 EmitStartEHSpec(CurCodeDecl); 608 609 PrologueCleanupDepth = EHStack.stable_begin(); 610 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 611 612 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 613 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 614 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 615 if (MD->getParent()->isLambda() && 616 MD->getOverloadedOperator() == OO_Call) { 617 // We're in a lambda; figure out the captures. 618 MD->getParent()->getCaptureFields(LambdaCaptureFields, 619 LambdaThisCaptureField); 620 if (LambdaThisCaptureField) { 621 // If this lambda captures this, load it. 622 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 623 CXXThisValue = EmitLoadOfLValue(ThisLValue, 624 SourceLocation()).getScalarVal(); 625 } 626 } else { 627 // Not in a lambda; just use 'this' from the method. 628 // FIXME: Should we generate a new load for each use of 'this'? The 629 // fast register allocator would be happier... 630 CXXThisValue = CXXABIThisValue; 631 } 632 } 633 634 // If any of the arguments have a variably modified type, make sure to 635 // emit the type size. 636 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 637 i != e; ++i) { 638 const VarDecl *VD = *i; 639 640 // Dig out the type as written from ParmVarDecls; it's unclear whether 641 // the standard (C99 6.9.1p10) requires this, but we're following the 642 // precedent set by gcc. 643 QualType Ty; 644 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 645 Ty = PVD->getOriginalType(); 646 else 647 Ty = VD->getType(); 648 649 if (Ty->isVariablyModifiedType()) 650 EmitVariablyModifiedType(Ty); 651 } 652 // Emit a location at the end of the prologue. 653 if (CGDebugInfo *DI = getDebugInfo()) 654 DI->EmitLocation(Builder, StartLoc); 655 } 656 657 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 658 const Stmt *Body) { 659 RegionCounter Cnt = getPGORegionCounter(Body); 660 Cnt.beginRegion(Builder); 661 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 662 EmitCompoundStmtWithoutScope(*S); 663 else 664 EmitStmt(Body); 665 } 666 667 /// Tries to mark the given function nounwind based on the 668 /// non-existence of any throwing calls within it. We believe this is 669 /// lightweight enough to do at -O0. 670 static void TryMarkNoThrow(llvm::Function *F) { 671 // LLVM treats 'nounwind' on a function as part of the type, so we 672 // can't do this on functions that can be overwritten. 673 if (F->mayBeOverridden()) return; 674 675 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 676 for (llvm::BasicBlock::iterator 677 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 678 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 679 if (!Call->doesNotThrow()) 680 return; 681 } else if (isa<llvm::ResumeInst>(&*BI)) { 682 return; 683 } 684 F->setDoesNotThrow(); 685 } 686 687 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 688 const FunctionDecl *UnsizedDealloc) { 689 // This is a weak discardable definition of the sized deallocation function. 690 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 691 692 // Call the unsized deallocation function and forward the first argument 693 // unchanged. 694 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 695 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 696 } 697 698 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 699 const CGFunctionInfo &FnInfo) { 700 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 701 702 // Check if we should generate debug info for this function. 703 if (FD->hasAttr<NoDebugAttr>()) 704 DebugInfo = NULL; // disable debug info indefinitely for this function 705 706 FunctionArgList Args; 707 QualType ResTy = FD->getResultType(); 708 709 CurGD = GD; 710 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 711 if (MD && MD->isInstance()) { 712 if (CGM.getCXXABI().HasThisReturn(GD)) 713 ResTy = MD->getThisType(getContext()); 714 CGM.getCXXABI().buildThisParam(*this, Args); 715 } 716 717 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 718 Args.push_back(FD->getParamDecl(i)); 719 720 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 721 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 722 723 SourceRange BodyRange; 724 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 725 CurEHLocation = BodyRange.getEnd(); 726 727 // Emit the standard function prologue. 728 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 729 730 // Generate the body of the function. 731 if (isa<CXXDestructorDecl>(FD)) 732 EmitDestructorBody(Args); 733 else if (isa<CXXConstructorDecl>(FD)) 734 EmitConstructorBody(Args); 735 else if (getLangOpts().CUDA && 736 !CGM.getCodeGenOpts().CUDAIsDevice && 737 FD->hasAttr<CUDAGlobalAttr>()) 738 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 739 else if (isa<CXXConversionDecl>(FD) && 740 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 741 // The lambda conversion to block pointer is special; the semantics can't be 742 // expressed in the AST, so IRGen needs to special-case it. 743 EmitLambdaToBlockPointerBody(Args); 744 } else if (isa<CXXMethodDecl>(FD) && 745 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 746 // The lambda static invoker function is special, because it forwards or 747 // clones the body of the function call operator (but is actually static). 748 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 749 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 750 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 751 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 752 // Implicit copy-assignment gets the same special treatment as implicit 753 // copy-constructors. 754 emitImplicitAssignmentOperatorBody(Args); 755 } else if (Stmt *Body = FD->getBody()) { 756 EmitFunctionBody(Args, Body); 757 } else if (FunctionDecl *UnsizedDealloc = 758 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 759 // Global sized deallocation functions get an implicit weak definition if 760 // they don't have an explicit definition. 761 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 762 } else 763 llvm_unreachable("no definition for emitted function"); 764 765 // C++11 [stmt.return]p2: 766 // Flowing off the end of a function [...] results in undefined behavior in 767 // a value-returning function. 768 // C11 6.9.1p12: 769 // If the '}' that terminates a function is reached, and the value of the 770 // function call is used by the caller, the behavior is undefined. 771 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 772 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 773 if (SanOpts->Return) 774 EmitCheck(Builder.getFalse(), "missing_return", 775 EmitCheckSourceLocation(FD->getLocation()), 776 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 777 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 778 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 779 Builder.CreateUnreachable(); 780 Builder.ClearInsertionPoint(); 781 } 782 783 // Emit the standard function epilogue. 784 FinishFunction(BodyRange.getEnd()); 785 786 // If we haven't marked the function nothrow through other means, do 787 // a quick pass now to see if we can. 788 if (!CurFn->doesNotThrow()) 789 TryMarkNoThrow(CurFn); 790 791 PGO.emitWriteoutFunction(CurGD); 792 PGO.destroyRegionCounters(); 793 } 794 795 /// ContainsLabel - Return true if the statement contains a label in it. If 796 /// this statement is not executed normally, it not containing a label means 797 /// that we can just remove the code. 798 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 799 // Null statement, not a label! 800 if (S == 0) return false; 801 802 // If this is a label, we have to emit the code, consider something like: 803 // if (0) { ... foo: bar(); } goto foo; 804 // 805 // TODO: If anyone cared, we could track __label__'s, since we know that you 806 // can't jump to one from outside their declared region. 807 if (isa<LabelStmt>(S)) 808 return true; 809 810 // If this is a case/default statement, and we haven't seen a switch, we have 811 // to emit the code. 812 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 813 return true; 814 815 // If this is a switch statement, we want to ignore cases below it. 816 if (isa<SwitchStmt>(S)) 817 IgnoreCaseStmts = true; 818 819 // Scan subexpressions for verboten labels. 820 for (Stmt::const_child_range I = S->children(); I; ++I) 821 if (ContainsLabel(*I, IgnoreCaseStmts)) 822 return true; 823 824 return false; 825 } 826 827 /// containsBreak - Return true if the statement contains a break out of it. 828 /// If the statement (recursively) contains a switch or loop with a break 829 /// inside of it, this is fine. 830 bool CodeGenFunction::containsBreak(const Stmt *S) { 831 // Null statement, not a label! 832 if (S == 0) return false; 833 834 // If this is a switch or loop that defines its own break scope, then we can 835 // include it and anything inside of it. 836 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 837 isa<ForStmt>(S)) 838 return false; 839 840 if (isa<BreakStmt>(S)) 841 return true; 842 843 // Scan subexpressions for verboten breaks. 844 for (Stmt::const_child_range I = S->children(); I; ++I) 845 if (containsBreak(*I)) 846 return true; 847 848 return false; 849 } 850 851 852 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 853 /// to a constant, or if it does but contains a label, return false. If it 854 /// constant folds return true and set the boolean result in Result. 855 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 856 bool &ResultBool) { 857 llvm::APSInt ResultInt; 858 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 859 return false; 860 861 ResultBool = ResultInt.getBoolValue(); 862 return true; 863 } 864 865 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 866 /// to a constant, or if it does but contains a label, return false. If it 867 /// constant folds return true and set the folded value. 868 bool CodeGenFunction:: 869 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 870 // FIXME: Rename and handle conversion of other evaluatable things 871 // to bool. 872 llvm::APSInt Int; 873 if (!Cond->EvaluateAsInt(Int, getContext())) 874 return false; // Not foldable, not integer or not fully evaluatable. 875 876 if (CodeGenFunction::ContainsLabel(Cond)) 877 return false; // Contains a label. 878 879 ResultInt = Int; 880 return true; 881 } 882 883 884 885 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 886 /// statement) to the specified blocks. Based on the condition, this might try 887 /// to simplify the codegen of the conditional based on the branch. 888 /// 889 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 890 llvm::BasicBlock *TrueBlock, 891 llvm::BasicBlock *FalseBlock, 892 uint64_t TrueCount) { 893 Cond = Cond->IgnoreParens(); 894 895 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 896 RegionCounter Cnt = getPGORegionCounter(CondBOp); 897 898 // Handle X && Y in a condition. 899 if (CondBOp->getOpcode() == BO_LAnd) { 900 // If we have "1 && X", simplify the code. "0 && X" would have constant 901 // folded if the case was simple enough. 902 bool ConstantBool = false; 903 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 904 ConstantBool) { 905 // br(1 && X) -> br(X). 906 Cnt.beginRegion(Builder); 907 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 908 TrueCount); 909 } 910 911 // If we have "X && 1", simplify the code to use an uncond branch. 912 // "X && 0" would have been constant folded to 0. 913 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 914 ConstantBool) { 915 // br(X && 1) -> br(X). 916 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 917 TrueCount); 918 } 919 920 // Emit the LHS as a conditional. If the LHS conditional is false, we 921 // want to jump to the FalseBlock. 922 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 923 // The counter tells us how often we evaluate RHS, and all of TrueCount 924 // can be propagated to that branch. 925 uint64_t RHSCount = Cnt.getCount(); 926 927 ConditionalEvaluation eval(*this); 928 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 929 EmitBlock(LHSTrue); 930 931 // Any temporaries created here are conditional. 932 Cnt.beginRegion(Builder); 933 eval.begin(*this); 934 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 935 eval.end(*this); 936 Cnt.adjustForControlFlow(); 937 Cnt.applyAdjustmentsToRegion(); 938 939 return; 940 } 941 942 if (CondBOp->getOpcode() == BO_LOr) { 943 // If we have "0 || X", simplify the code. "1 || X" would have constant 944 // folded if the case was simple enough. 945 bool ConstantBool = false; 946 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 947 !ConstantBool) { 948 // br(0 || X) -> br(X). 949 Cnt.beginRegion(Builder); 950 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 951 TrueCount); 952 } 953 954 // If we have "X || 0", simplify the code to use an uncond branch. 955 // "X || 1" would have been constant folded to 1. 956 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 957 !ConstantBool) { 958 // br(X || 0) -> br(X). 959 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 960 TrueCount); 961 } 962 963 // Emit the LHS as a conditional. If the LHS conditional is true, we 964 // want to jump to the TrueBlock. 965 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 966 // We have the count for entry to the RHS and for the whole expression 967 // being true, so we can divy up True count between the short circuit and 968 // the RHS. 969 uint64_t LHSCount = TrueCount - Cnt.getCount(); 970 uint64_t RHSCount = TrueCount - LHSCount; 971 972 ConditionalEvaluation eval(*this); 973 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 974 EmitBlock(LHSFalse); 975 976 // Any temporaries created here are conditional. 977 Cnt.beginRegion(Builder); 978 eval.begin(*this); 979 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 980 981 eval.end(*this); 982 Cnt.adjustForControlFlow(); 983 Cnt.applyAdjustmentsToRegion(); 984 985 return; 986 } 987 } 988 989 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 990 // br(!x, t, f) -> br(x, f, t) 991 if (CondUOp->getOpcode() == UO_LNot) { 992 // Negate the count. 993 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 994 // Negate the condition and swap the destination blocks. 995 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 996 FalseCount); 997 } 998 } 999 1000 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1001 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1002 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1003 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1004 1005 RegionCounter Cnt = getPGORegionCounter(CondOp); 1006 ConditionalEvaluation cond(*this); 1007 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1008 1009 // When computing PGO branch weights, we only know the overall count for 1010 // the true block. This code is essentially doing tail duplication of the 1011 // naive code-gen, introducing new edges for which counts are not 1012 // available. Divide the counts proportionally between the LHS and RHS of 1013 // the conditional operator. 1014 uint64_t LHSScaledTrueCount = 0; 1015 if (TrueCount) { 1016 double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount(); 1017 LHSScaledTrueCount = TrueCount * LHSRatio; 1018 } 1019 1020 cond.begin(*this); 1021 EmitBlock(LHSBlock); 1022 Cnt.beginRegion(Builder); 1023 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1024 LHSScaledTrueCount); 1025 cond.end(*this); 1026 1027 cond.begin(*this); 1028 EmitBlock(RHSBlock); 1029 Cnt.beginElseRegion(); 1030 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1031 TrueCount - LHSScaledTrueCount); 1032 cond.end(*this); 1033 1034 return; 1035 } 1036 1037 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1038 // Conditional operator handling can give us a throw expression as a 1039 // condition for a case like: 1040 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1041 // Fold this to: 1042 // br(c, throw x, br(y, t, f)) 1043 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1044 return; 1045 } 1046 1047 // Create branch weights based on the number of times we get here and the 1048 // number of times the condition should be true. 1049 uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount); 1050 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1051 CurrentCount - TrueCount); 1052 1053 // Emit the code with the fully general case. 1054 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1055 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1056 } 1057 1058 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1059 /// specified stmt yet. 1060 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1061 CGM.ErrorUnsupported(S, Type); 1062 } 1063 1064 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1065 /// variable-length array whose elements have a non-zero bit-pattern. 1066 /// 1067 /// \param baseType the inner-most element type of the array 1068 /// \param src - a char* pointing to the bit-pattern for a single 1069 /// base element of the array 1070 /// \param sizeInChars - the total size of the VLA, in chars 1071 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1072 llvm::Value *dest, llvm::Value *src, 1073 llvm::Value *sizeInChars) { 1074 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1075 = CGF.getContext().getTypeInfoInChars(baseType); 1076 1077 CGBuilderTy &Builder = CGF.Builder; 1078 1079 llvm::Value *baseSizeInChars 1080 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1081 1082 llvm::Type *i8p = Builder.getInt8PtrTy(); 1083 1084 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1085 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1086 1087 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1088 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1089 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1090 1091 // Make a loop over the VLA. C99 guarantees that the VLA element 1092 // count must be nonzero. 1093 CGF.EmitBlock(loopBB); 1094 1095 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1096 cur->addIncoming(begin, originBB); 1097 1098 // memcpy the individual element bit-pattern. 1099 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1100 baseSizeAndAlign.second.getQuantity(), 1101 /*volatile*/ false); 1102 1103 // Go to the next element. 1104 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1105 1106 // Leave if that's the end of the VLA. 1107 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1108 Builder.CreateCondBr(done, contBB, loopBB); 1109 cur->addIncoming(next, loopBB); 1110 1111 CGF.EmitBlock(contBB); 1112 } 1113 1114 void 1115 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1116 // Ignore empty classes in C++. 1117 if (getLangOpts().CPlusPlus) { 1118 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1119 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1120 return; 1121 } 1122 } 1123 1124 // Cast the dest ptr to the appropriate i8 pointer type. 1125 unsigned DestAS = 1126 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1127 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1128 if (DestPtr->getType() != BP) 1129 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1130 1131 // Get size and alignment info for this aggregate. 1132 std::pair<CharUnits, CharUnits> TypeInfo = 1133 getContext().getTypeInfoInChars(Ty); 1134 CharUnits Size = TypeInfo.first; 1135 CharUnits Align = TypeInfo.second; 1136 1137 llvm::Value *SizeVal; 1138 const VariableArrayType *vla; 1139 1140 // Don't bother emitting a zero-byte memset. 1141 if (Size.isZero()) { 1142 // But note that getTypeInfo returns 0 for a VLA. 1143 if (const VariableArrayType *vlaType = 1144 dyn_cast_or_null<VariableArrayType>( 1145 getContext().getAsArrayType(Ty))) { 1146 QualType eltType; 1147 llvm::Value *numElts; 1148 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1149 1150 SizeVal = numElts; 1151 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1152 if (!eltSize.isOne()) 1153 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1154 vla = vlaType; 1155 } else { 1156 return; 1157 } 1158 } else { 1159 SizeVal = CGM.getSize(Size); 1160 vla = 0; 1161 } 1162 1163 // If the type contains a pointer to data member we can't memset it to zero. 1164 // Instead, create a null constant and copy it to the destination. 1165 // TODO: there are other patterns besides zero that we can usefully memset, 1166 // like -1, which happens to be the pattern used by member-pointers. 1167 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1168 // For a VLA, emit a single element, then splat that over the VLA. 1169 if (vla) Ty = getContext().getBaseElementType(vla); 1170 1171 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1172 1173 llvm::GlobalVariable *NullVariable = 1174 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1175 /*isConstant=*/true, 1176 llvm::GlobalVariable::PrivateLinkage, 1177 NullConstant, Twine()); 1178 llvm::Value *SrcPtr = 1179 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1180 1181 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1182 1183 // Get and call the appropriate llvm.memcpy overload. 1184 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1185 return; 1186 } 1187 1188 // Otherwise, just memset the whole thing to zero. This is legal 1189 // because in LLVM, all default initializers (other than the ones we just 1190 // handled above) are guaranteed to have a bit pattern of all zeros. 1191 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1192 Align.getQuantity(), false); 1193 } 1194 1195 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1196 // Make sure that there is a block for the indirect goto. 1197 if (IndirectBranch == 0) 1198 GetIndirectGotoBlock(); 1199 1200 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1201 1202 // Make sure the indirect branch includes all of the address-taken blocks. 1203 IndirectBranch->addDestination(BB); 1204 return llvm::BlockAddress::get(CurFn, BB); 1205 } 1206 1207 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1208 // If we already made the indirect branch for indirect goto, return its block. 1209 if (IndirectBranch) return IndirectBranch->getParent(); 1210 1211 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1212 1213 // Create the PHI node that indirect gotos will add entries to. 1214 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1215 "indirect.goto.dest"); 1216 1217 // Create the indirect branch instruction. 1218 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1219 return IndirectBranch->getParent(); 1220 } 1221 1222 /// Computes the length of an array in elements, as well as the base 1223 /// element type and a properly-typed first element pointer. 1224 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1225 QualType &baseType, 1226 llvm::Value *&addr) { 1227 const ArrayType *arrayType = origArrayType; 1228 1229 // If it's a VLA, we have to load the stored size. Note that 1230 // this is the size of the VLA in bytes, not its size in elements. 1231 llvm::Value *numVLAElements = 0; 1232 if (isa<VariableArrayType>(arrayType)) { 1233 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1234 1235 // Walk into all VLAs. This doesn't require changes to addr, 1236 // which has type T* where T is the first non-VLA element type. 1237 do { 1238 QualType elementType = arrayType->getElementType(); 1239 arrayType = getContext().getAsArrayType(elementType); 1240 1241 // If we only have VLA components, 'addr' requires no adjustment. 1242 if (!arrayType) { 1243 baseType = elementType; 1244 return numVLAElements; 1245 } 1246 } while (isa<VariableArrayType>(arrayType)); 1247 1248 // We get out here only if we find a constant array type 1249 // inside the VLA. 1250 } 1251 1252 // We have some number of constant-length arrays, so addr should 1253 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1254 // down to the first element of addr. 1255 SmallVector<llvm::Value*, 8> gepIndices; 1256 1257 // GEP down to the array type. 1258 llvm::ConstantInt *zero = Builder.getInt32(0); 1259 gepIndices.push_back(zero); 1260 1261 uint64_t countFromCLAs = 1; 1262 QualType eltType; 1263 1264 llvm::ArrayType *llvmArrayType = 1265 dyn_cast<llvm::ArrayType>( 1266 cast<llvm::PointerType>(addr->getType())->getElementType()); 1267 while (llvmArrayType) { 1268 assert(isa<ConstantArrayType>(arrayType)); 1269 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1270 == llvmArrayType->getNumElements()); 1271 1272 gepIndices.push_back(zero); 1273 countFromCLAs *= llvmArrayType->getNumElements(); 1274 eltType = arrayType->getElementType(); 1275 1276 llvmArrayType = 1277 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1278 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1279 assert((!llvmArrayType || arrayType) && 1280 "LLVM and Clang types are out-of-synch"); 1281 } 1282 1283 if (arrayType) { 1284 // From this point onwards, the Clang array type has been emitted 1285 // as some other type (probably a packed struct). Compute the array 1286 // size, and just emit the 'begin' expression as a bitcast. 1287 while (arrayType) { 1288 countFromCLAs *= 1289 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1290 eltType = arrayType->getElementType(); 1291 arrayType = getContext().getAsArrayType(eltType); 1292 } 1293 1294 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1295 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1296 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1297 } else { 1298 // Create the actual GEP. 1299 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1300 } 1301 1302 baseType = eltType; 1303 1304 llvm::Value *numElements 1305 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1306 1307 // If we had any VLA dimensions, factor them in. 1308 if (numVLAElements) 1309 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1310 1311 return numElements; 1312 } 1313 1314 std::pair<llvm::Value*, QualType> 1315 CodeGenFunction::getVLASize(QualType type) { 1316 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1317 assert(vla && "type was not a variable array type!"); 1318 return getVLASize(vla); 1319 } 1320 1321 std::pair<llvm::Value*, QualType> 1322 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1323 // The number of elements so far; always size_t. 1324 llvm::Value *numElements = 0; 1325 1326 QualType elementType; 1327 do { 1328 elementType = type->getElementType(); 1329 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1330 assert(vlaSize && "no size for VLA!"); 1331 assert(vlaSize->getType() == SizeTy); 1332 1333 if (!numElements) { 1334 numElements = vlaSize; 1335 } else { 1336 // It's undefined behavior if this wraps around, so mark it that way. 1337 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1338 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1339 } 1340 } while ((type = getContext().getAsVariableArrayType(elementType))); 1341 1342 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1343 } 1344 1345 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1346 assert(type->isVariablyModifiedType() && 1347 "Must pass variably modified type to EmitVLASizes!"); 1348 1349 EnsureInsertPoint(); 1350 1351 // We're going to walk down into the type and look for VLA 1352 // expressions. 1353 do { 1354 assert(type->isVariablyModifiedType()); 1355 1356 const Type *ty = type.getTypePtr(); 1357 switch (ty->getTypeClass()) { 1358 1359 #define TYPE(Class, Base) 1360 #define ABSTRACT_TYPE(Class, Base) 1361 #define NON_CANONICAL_TYPE(Class, Base) 1362 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1363 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1364 #include "clang/AST/TypeNodes.def" 1365 llvm_unreachable("unexpected dependent type!"); 1366 1367 // These types are never variably-modified. 1368 case Type::Builtin: 1369 case Type::Complex: 1370 case Type::Vector: 1371 case Type::ExtVector: 1372 case Type::Record: 1373 case Type::Enum: 1374 case Type::Elaborated: 1375 case Type::TemplateSpecialization: 1376 case Type::ObjCObject: 1377 case Type::ObjCInterface: 1378 case Type::ObjCObjectPointer: 1379 llvm_unreachable("type class is never variably-modified!"); 1380 1381 case Type::Adjusted: 1382 type = cast<AdjustedType>(ty)->getAdjustedType(); 1383 break; 1384 1385 case Type::Decayed: 1386 type = cast<DecayedType>(ty)->getPointeeType(); 1387 break; 1388 1389 case Type::Pointer: 1390 type = cast<PointerType>(ty)->getPointeeType(); 1391 break; 1392 1393 case Type::BlockPointer: 1394 type = cast<BlockPointerType>(ty)->getPointeeType(); 1395 break; 1396 1397 case Type::LValueReference: 1398 case Type::RValueReference: 1399 type = cast<ReferenceType>(ty)->getPointeeType(); 1400 break; 1401 1402 case Type::MemberPointer: 1403 type = cast<MemberPointerType>(ty)->getPointeeType(); 1404 break; 1405 1406 case Type::ConstantArray: 1407 case Type::IncompleteArray: 1408 // Losing element qualification here is fine. 1409 type = cast<ArrayType>(ty)->getElementType(); 1410 break; 1411 1412 case Type::VariableArray: { 1413 // Losing element qualification here is fine. 1414 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1415 1416 // Unknown size indication requires no size computation. 1417 // Otherwise, evaluate and record it. 1418 if (const Expr *size = vat->getSizeExpr()) { 1419 // It's possible that we might have emitted this already, 1420 // e.g. with a typedef and a pointer to it. 1421 llvm::Value *&entry = VLASizeMap[size]; 1422 if (!entry) { 1423 llvm::Value *Size = EmitScalarExpr(size); 1424 1425 // C11 6.7.6.2p5: 1426 // If the size is an expression that is not an integer constant 1427 // expression [...] each time it is evaluated it shall have a value 1428 // greater than zero. 1429 if (SanOpts->VLABound && 1430 size->getType()->isSignedIntegerType()) { 1431 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1432 llvm::Constant *StaticArgs[] = { 1433 EmitCheckSourceLocation(size->getLocStart()), 1434 EmitCheckTypeDescriptor(size->getType()) 1435 }; 1436 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1437 "vla_bound_not_positive", StaticArgs, Size, 1438 CRK_Recoverable); 1439 } 1440 1441 // Always zexting here would be wrong if it weren't 1442 // undefined behavior to have a negative bound. 1443 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1444 } 1445 } 1446 type = vat->getElementType(); 1447 break; 1448 } 1449 1450 case Type::FunctionProto: 1451 case Type::FunctionNoProto: 1452 type = cast<FunctionType>(ty)->getResultType(); 1453 break; 1454 1455 case Type::Paren: 1456 case Type::TypeOf: 1457 case Type::UnaryTransform: 1458 case Type::Attributed: 1459 case Type::SubstTemplateTypeParm: 1460 case Type::PackExpansion: 1461 // Keep walking after single level desugaring. 1462 type = type.getSingleStepDesugaredType(getContext()); 1463 break; 1464 1465 case Type::Typedef: 1466 case Type::Decltype: 1467 case Type::Auto: 1468 // Stop walking: nothing to do. 1469 return; 1470 1471 case Type::TypeOfExpr: 1472 // Stop walking: emit typeof expression. 1473 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1474 return; 1475 1476 case Type::Atomic: 1477 type = cast<AtomicType>(ty)->getValueType(); 1478 break; 1479 } 1480 } while (type->isVariablyModifiedType()); 1481 } 1482 1483 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1484 if (getContext().getBuiltinVaListType()->isArrayType()) 1485 return EmitScalarExpr(E); 1486 return EmitLValue(E).getAddress(); 1487 } 1488 1489 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1490 llvm::Constant *Init) { 1491 assert (Init && "Invalid DeclRefExpr initializer!"); 1492 if (CGDebugInfo *Dbg = getDebugInfo()) 1493 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1494 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1495 } 1496 1497 CodeGenFunction::PeepholeProtection 1498 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1499 // At the moment, the only aggressive peephole we do in IR gen 1500 // is trunc(zext) folding, but if we add more, we can easily 1501 // extend this protection. 1502 1503 if (!rvalue.isScalar()) return PeepholeProtection(); 1504 llvm::Value *value = rvalue.getScalarVal(); 1505 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1506 1507 // Just make an extra bitcast. 1508 assert(HaveInsertPoint()); 1509 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1510 Builder.GetInsertBlock()); 1511 1512 PeepholeProtection protection; 1513 protection.Inst = inst; 1514 return protection; 1515 } 1516 1517 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1518 if (!protection.Inst) return; 1519 1520 // In theory, we could try to duplicate the peepholes now, but whatever. 1521 protection.Inst->eraseFromParent(); 1522 } 1523 1524 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1525 llvm::Value *AnnotatedVal, 1526 StringRef AnnotationStr, 1527 SourceLocation Location) { 1528 llvm::Value *Args[4] = { 1529 AnnotatedVal, 1530 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1531 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1532 CGM.EmitAnnotationLineNo(Location) 1533 }; 1534 return Builder.CreateCall(AnnotationFn, Args); 1535 } 1536 1537 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1538 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1539 // FIXME We create a new bitcast for every annotation because that's what 1540 // llvm-gcc was doing. 1541 for (specific_attr_iterator<AnnotateAttr> 1542 ai = D->specific_attr_begin<AnnotateAttr>(), 1543 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1544 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1545 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1546 (*ai)->getAnnotation(), D->getLocation()); 1547 } 1548 1549 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1550 llvm::Value *V) { 1551 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1552 llvm::Type *VTy = V->getType(); 1553 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1554 CGM.Int8PtrTy); 1555 1556 for (specific_attr_iterator<AnnotateAttr> 1557 ai = D->specific_attr_begin<AnnotateAttr>(), 1558 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1559 // FIXME Always emit the cast inst so we can differentiate between 1560 // annotation on the first field of a struct and annotation on the struct 1561 // itself. 1562 if (VTy != CGM.Int8PtrTy) 1563 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1564 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1565 V = Builder.CreateBitCast(V, VTy); 1566 } 1567 1568 return V; 1569 } 1570 1571 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1572