1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/FPEnv.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 48 /// markers. 49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 50 const LangOptions &LangOpts) { 51 if (CGOpts.DisableLifetimeMarkers) 52 return false; 53 54 // Sanitizers may use markers. 55 if (CGOpts.SanitizeAddressUseAfterScope || 56 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 57 LangOpts.Sanitize.has(SanitizerKind::Memory)) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 69 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 70 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 71 if (!suppressNewContext) 72 CGM.getCXXABI().getMangleContext().startNewFunction(); 73 74 llvm::FastMathFlags FMF; 75 if (CGM.getLangOpts().FastMath) 76 FMF.setFast(); 77 if (CGM.getLangOpts().FiniteMathOnly) { 78 FMF.setNoNaNs(); 79 FMF.setNoInfs(); 80 } 81 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 82 FMF.setNoNaNs(); 83 } 84 if (CGM.getCodeGenOpts().NoSignedZeros) { 85 FMF.setNoSignedZeros(); 86 } 87 if (CGM.getCodeGenOpts().ReciprocalMath) { 88 FMF.setAllowReciprocal(); 89 } 90 if (CGM.getCodeGenOpts().Reassociate) { 91 FMF.setAllowReassoc(); 92 } 93 Builder.setFastMathFlags(FMF); 94 SetFPModel(); 95 } 96 97 CodeGenFunction::~CodeGenFunction() { 98 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 99 100 // If there are any unclaimed block infos, go ahead and destroy them 101 // now. This can happen if IR-gen gets clever and skips evaluating 102 // something. 103 if (FirstBlockInfo) 104 destroyBlockInfos(FirstBlockInfo); 105 106 if (getLangOpts().OpenMP && CurFn) 107 CGM.getOpenMPRuntime().functionFinished(*this); 108 109 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 110 // outlining etc) at some point. Doing it once the function codegen is done 111 // seems to be a reasonable spot. We do it here, as opposed to the deletion 112 // time of the CodeGenModule, because we have to ensure the IR has not yet 113 // been "emitted" to the outside, thus, modifications are still sensible. 114 if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder()) 115 OMPBuilder->finalize(); 116 } 117 118 // Map the LangOption for exception behavior into 119 // the corresponding enum in the IR. 120 llvm::fp::ExceptionBehavior 121 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 122 123 switch (Kind) { 124 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 125 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 126 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 127 } 128 llvm_unreachable("Unsupported FP Exception Behavior"); 129 } 130 131 void CodeGenFunction::SetFPModel() { 132 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 133 auto fpExceptionBehavior = ToConstrainedExceptMD( 134 getLangOpts().getFPExceptionMode()); 135 136 Builder.setDefaultConstrainedRounding(RM); 137 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 138 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 139 RM != llvm::RoundingMode::NearestTiesToEven); 140 } 141 142 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 143 LValueBaseInfo BaseInfo; 144 TBAAAccessInfo TBAAInfo; 145 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 146 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 147 TBAAInfo); 148 } 149 150 /// Given a value of type T* that may not be to a complete object, 151 /// construct an l-value with the natural pointee alignment of T. 152 LValue 153 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 154 LValueBaseInfo BaseInfo; 155 TBAAAccessInfo TBAAInfo; 156 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 157 /* forPointeeType= */ true); 158 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.inc" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 case Type::DeducedTemplateSpecialization: 184 llvm_unreachable("undeduced type in IR-generation"); 185 186 // Various scalar types. 187 case Type::Builtin: 188 case Type::Pointer: 189 case Type::BlockPointer: 190 case Type::LValueReference: 191 case Type::RValueReference: 192 case Type::MemberPointer: 193 case Type::Vector: 194 case Type::ExtVector: 195 case Type::ConstantMatrix: 196 case Type::FunctionProto: 197 case Type::FunctionNoProto: 198 case Type::Enum: 199 case Type::ObjCObjectPointer: 200 case Type::Pipe: 201 case Type::ExtInt: 202 return TEK_Scalar; 203 204 // Complexes. 205 case Type::Complex: 206 return TEK_Complex; 207 208 // Arrays, records, and Objective-C objects. 209 case Type::ConstantArray: 210 case Type::IncompleteArray: 211 case Type::VariableArray: 212 case Type::Record: 213 case Type::ObjCObject: 214 case Type::ObjCInterface: 215 return TEK_Aggregate; 216 217 // We operate on atomic values according to their underlying type. 218 case Type::Atomic: 219 type = cast<AtomicType>(type)->getValueType(); 220 continue; 221 } 222 llvm_unreachable("unknown type kind!"); 223 } 224 } 225 226 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 227 // For cleanliness, we try to avoid emitting the return block for 228 // simple cases. 229 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 230 231 if (CurBB) { 232 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 233 234 // We have a valid insert point, reuse it if it is empty or there are no 235 // explicit jumps to the return block. 236 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 237 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 238 delete ReturnBlock.getBlock(); 239 ReturnBlock = JumpDest(); 240 } else 241 EmitBlock(ReturnBlock.getBlock()); 242 return llvm::DebugLoc(); 243 } 244 245 // Otherwise, if the return block is the target of a single direct 246 // branch then we can just put the code in that block instead. This 247 // cleans up functions which started with a unified return block. 248 if (ReturnBlock.getBlock()->hasOneUse()) { 249 llvm::BranchInst *BI = 250 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 251 if (BI && BI->isUnconditional() && 252 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 253 // Record/return the DebugLoc of the simple 'return' expression to be used 254 // later by the actual 'ret' instruction. 255 llvm::DebugLoc Loc = BI->getDebugLoc(); 256 Builder.SetInsertPoint(BI->getParent()); 257 BI->eraseFromParent(); 258 delete ReturnBlock.getBlock(); 259 ReturnBlock = JumpDest(); 260 return Loc; 261 } 262 } 263 264 // FIXME: We are at an unreachable point, there is no reason to emit the block 265 // unless it has uses. However, we still need a place to put the debug 266 // region.end for now. 267 268 EmitBlock(ReturnBlock.getBlock()); 269 return llvm::DebugLoc(); 270 } 271 272 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 273 if (!BB) return; 274 if (!BB->use_empty()) 275 return CGF.CurFn->getBasicBlockList().push_back(BB); 276 delete BB; 277 } 278 279 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 280 assert(BreakContinueStack.empty() && 281 "mismatched push/pop in break/continue stack!"); 282 283 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 284 && NumSimpleReturnExprs == NumReturnExprs 285 && ReturnBlock.getBlock()->use_empty(); 286 // Usually the return expression is evaluated before the cleanup 287 // code. If the function contains only a simple return statement, 288 // such as a constant, the location before the cleanup code becomes 289 // the last useful breakpoint in the function, because the simple 290 // return expression will be evaluated after the cleanup code. To be 291 // safe, set the debug location for cleanup code to the location of 292 // the return statement. Otherwise the cleanup code should be at the 293 // end of the function's lexical scope. 294 // 295 // If there are multiple branches to the return block, the branch 296 // instructions will get the location of the return statements and 297 // all will be fine. 298 if (CGDebugInfo *DI = getDebugInfo()) { 299 if (OnlySimpleReturnStmts) 300 DI->EmitLocation(Builder, LastStopPoint); 301 else 302 DI->EmitLocation(Builder, EndLoc); 303 } 304 305 // Pop any cleanups that might have been associated with the 306 // parameters. Do this in whatever block we're currently in; it's 307 // important to do this before we enter the return block or return 308 // edges will be *really* confused. 309 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 310 bool HasOnlyLifetimeMarkers = 311 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 312 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 313 if (HasCleanups) { 314 // Make sure the line table doesn't jump back into the body for 315 // the ret after it's been at EndLoc. 316 Optional<ApplyDebugLocation> AL; 317 if (CGDebugInfo *DI = getDebugInfo()) { 318 if (OnlySimpleReturnStmts) 319 DI->EmitLocation(Builder, EndLoc); 320 else 321 // We may not have a valid end location. Try to apply it anyway, and 322 // fall back to an artificial location if needed. 323 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 324 } 325 326 PopCleanupBlocks(PrologueCleanupDepth); 327 } 328 329 // Emit function epilog (to return). 330 llvm::DebugLoc Loc = EmitReturnBlock(); 331 332 if (ShouldInstrumentFunction()) { 333 if (CGM.getCodeGenOpts().InstrumentFunctions) 334 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 335 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 336 CurFn->addFnAttr("instrument-function-exit-inlined", 337 "__cyg_profile_func_exit"); 338 } 339 340 // Emit debug descriptor for function end. 341 if (CGDebugInfo *DI = getDebugInfo()) 342 DI->EmitFunctionEnd(Builder, CurFn); 343 344 // Reset the debug location to that of the simple 'return' expression, if any 345 // rather than that of the end of the function's scope '}'. 346 ApplyDebugLocation AL(*this, Loc); 347 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 348 EmitEndEHSpec(CurCodeDecl); 349 350 assert(EHStack.empty() && 351 "did not remove all scopes from cleanup stack!"); 352 353 // If someone did an indirect goto, emit the indirect goto block at the end of 354 // the function. 355 if (IndirectBranch) { 356 EmitBlock(IndirectBranch->getParent()); 357 Builder.ClearInsertionPoint(); 358 } 359 360 // If some of our locals escaped, insert a call to llvm.localescape in the 361 // entry block. 362 if (!EscapedLocals.empty()) { 363 // Invert the map from local to index into a simple vector. There should be 364 // no holes. 365 SmallVector<llvm::Value *, 4> EscapeArgs; 366 EscapeArgs.resize(EscapedLocals.size()); 367 for (auto &Pair : EscapedLocals) 368 EscapeArgs[Pair.second] = Pair.first; 369 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 370 &CGM.getModule(), llvm::Intrinsic::localescape); 371 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 372 } 373 374 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 375 llvm::Instruction *Ptr = AllocaInsertPt; 376 AllocaInsertPt = nullptr; 377 Ptr->eraseFromParent(); 378 379 // If someone took the address of a label but never did an indirect goto, we 380 // made a zero entry PHI node, which is illegal, zap it now. 381 if (IndirectBranch) { 382 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 383 if (PN->getNumIncomingValues() == 0) { 384 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 385 PN->eraseFromParent(); 386 } 387 } 388 389 EmitIfUsed(*this, EHResumeBlock); 390 EmitIfUsed(*this, TerminateLandingPad); 391 EmitIfUsed(*this, TerminateHandler); 392 EmitIfUsed(*this, UnreachableBlock); 393 394 for (const auto &FuncletAndParent : TerminateFunclets) 395 EmitIfUsed(*this, FuncletAndParent.second); 396 397 if (CGM.getCodeGenOpts().EmitDeclMetadata) 398 EmitDeclMetadata(); 399 400 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 401 I = DeferredReplacements.begin(), 402 E = DeferredReplacements.end(); 403 I != E; ++I) { 404 I->first->replaceAllUsesWith(I->second); 405 I->first->eraseFromParent(); 406 } 407 408 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 409 // PHIs if the current function is a coroutine. We don't do it for all 410 // functions as it may result in slight increase in numbers of instructions 411 // if compiled with no optimizations. We do it for coroutine as the lifetime 412 // of CleanupDestSlot alloca make correct coroutine frame building very 413 // difficult. 414 if (NormalCleanupDest.isValid() && isCoroutine()) { 415 llvm::DominatorTree DT(*CurFn); 416 llvm::PromoteMemToReg( 417 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 418 NormalCleanupDest = Address::invalid(); 419 } 420 421 // Scan function arguments for vector width. 422 for (llvm::Argument &A : CurFn->args()) 423 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 424 LargestVectorWidth = 425 std::max((uint64_t)LargestVectorWidth, 426 VT->getPrimitiveSizeInBits().getKnownMinSize()); 427 428 // Update vector width based on return type. 429 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 430 LargestVectorWidth = 431 std::max((uint64_t)LargestVectorWidth, 432 VT->getPrimitiveSizeInBits().getKnownMinSize()); 433 434 // Add the required-vector-width attribute. This contains the max width from: 435 // 1. min-vector-width attribute used in the source program. 436 // 2. Any builtins used that have a vector width specified. 437 // 3. Values passed in and out of inline assembly. 438 // 4. Width of vector arguments and return types for this function. 439 // 5. Width of vector aguments and return types for functions called by this 440 // function. 441 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 442 443 // If we generated an unreachable return block, delete it now. 444 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 445 Builder.ClearInsertionPoint(); 446 ReturnBlock.getBlock()->eraseFromParent(); 447 } 448 if (ReturnValue.isValid()) { 449 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 450 if (RetAlloca && RetAlloca->use_empty()) { 451 RetAlloca->eraseFromParent(); 452 ReturnValue = Address::invalid(); 453 } 454 } 455 } 456 457 /// ShouldInstrumentFunction - Return true if the current function should be 458 /// instrumented with __cyg_profile_func_* calls 459 bool CodeGenFunction::ShouldInstrumentFunction() { 460 if (!CGM.getCodeGenOpts().InstrumentFunctions && 461 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 462 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 463 return false; 464 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 465 return false; 466 return true; 467 } 468 469 /// ShouldXRayInstrument - Return true if the current function should be 470 /// instrumented with XRay nop sleds. 471 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 472 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 473 } 474 475 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 476 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 477 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 478 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 479 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 480 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 481 XRayInstrKind::Custom); 482 } 483 484 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 485 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 486 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 487 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 488 XRayInstrKind::Typed); 489 } 490 491 llvm::Constant * 492 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 493 llvm::Constant *Addr) { 494 // Addresses stored in prologue data can't require run-time fixups and must 495 // be PC-relative. Run-time fixups are undesirable because they necessitate 496 // writable text segments, which are unsafe. And absolute addresses are 497 // undesirable because they break PIE mode. 498 499 // Add a layer of indirection through a private global. Taking its address 500 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 501 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 502 /*isConstant=*/true, 503 llvm::GlobalValue::PrivateLinkage, Addr); 504 505 // Create a PC-relative address. 506 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 507 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 508 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 509 return (IntPtrTy == Int32Ty) 510 ? PCRelAsInt 511 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 512 } 513 514 llvm::Value * 515 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 516 llvm::Value *EncodedAddr) { 517 // Reconstruct the address of the global. 518 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 519 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 520 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 521 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 522 523 // Load the original pointer through the global. 524 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 525 "decoded_addr"); 526 } 527 528 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 529 llvm::Function *Fn) 530 { 531 if (!FD->hasAttr<OpenCLKernelAttr>()) 532 return; 533 534 llvm::LLVMContext &Context = getLLVMContext(); 535 536 CGM.GenOpenCLArgMetadata(Fn, FD, this); 537 538 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 539 QualType HintQTy = A->getTypeHint(); 540 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 541 bool IsSignedInteger = 542 HintQTy->isSignedIntegerType() || 543 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 544 llvm::Metadata *AttrMDArgs[] = { 545 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 546 CGM.getTypes().ConvertType(A->getTypeHint()))), 547 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 548 llvm::IntegerType::get(Context, 32), 549 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 550 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 551 } 552 553 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 554 llvm::Metadata *AttrMDArgs[] = { 555 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 556 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 557 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 558 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 559 } 560 561 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 562 llvm::Metadata *AttrMDArgs[] = { 563 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 564 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 565 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 566 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 567 } 568 569 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 570 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 571 llvm::Metadata *AttrMDArgs[] = { 572 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 573 Fn->setMetadata("intel_reqd_sub_group_size", 574 llvm::MDNode::get(Context, AttrMDArgs)); 575 } 576 } 577 578 /// Determine whether the function F ends with a return stmt. 579 static bool endsWithReturn(const Decl* F) { 580 const Stmt *Body = nullptr; 581 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 582 Body = FD->getBody(); 583 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 584 Body = OMD->getBody(); 585 586 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 587 auto LastStmt = CS->body_rbegin(); 588 if (LastStmt != CS->body_rend()) 589 return isa<ReturnStmt>(*LastStmt); 590 } 591 return false; 592 } 593 594 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 595 if (SanOpts.has(SanitizerKind::Thread)) { 596 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 597 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 598 } 599 } 600 601 /// Check if the return value of this function requires sanitization. 602 bool CodeGenFunction::requiresReturnValueCheck() const { 603 return requiresReturnValueNullabilityCheck() || 604 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 605 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 606 } 607 608 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 609 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 610 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 611 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 612 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 613 return false; 614 615 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 616 return false; 617 618 if (MD->getNumParams() == 2) { 619 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 620 if (!PT || !PT->isVoidPointerType() || 621 !PT->getPointeeType().isConstQualified()) 622 return false; 623 } 624 625 return true; 626 } 627 628 /// Return the UBSan prologue signature for \p FD if one is available. 629 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 630 const FunctionDecl *FD) { 631 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 632 if (!MD->isStatic()) 633 return nullptr; 634 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 635 } 636 637 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 638 llvm::Function *Fn, 639 const CGFunctionInfo &FnInfo, 640 const FunctionArgList &Args, 641 SourceLocation Loc, 642 SourceLocation StartLoc) { 643 assert(!CurFn && 644 "Do not use a CodeGenFunction object for more than one function"); 645 646 const Decl *D = GD.getDecl(); 647 648 DidCallStackSave = false; 649 CurCodeDecl = D; 650 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 651 if (FD->usesSEHTry()) 652 CurSEHParent = FD; 653 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 654 FnRetTy = RetTy; 655 CurFn = Fn; 656 CurFnInfo = &FnInfo; 657 assert(CurFn->isDeclaration() && "Function already has body?"); 658 659 // If this function has been blacklisted for any of the enabled sanitizers, 660 // disable the sanitizer for the function. 661 do { 662 #define SANITIZER(NAME, ID) \ 663 if (SanOpts.empty()) \ 664 break; \ 665 if (SanOpts.has(SanitizerKind::ID)) \ 666 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 667 SanOpts.set(SanitizerKind::ID, false); 668 669 #include "clang/Basic/Sanitizers.def" 670 #undef SANITIZER 671 } while (0); 672 673 if (D) { 674 // Apply the no_sanitize* attributes to SanOpts. 675 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 676 SanitizerMask mask = Attr->getMask(); 677 SanOpts.Mask &= ~mask; 678 if (mask & SanitizerKind::Address) 679 SanOpts.set(SanitizerKind::KernelAddress, false); 680 if (mask & SanitizerKind::KernelAddress) 681 SanOpts.set(SanitizerKind::Address, false); 682 if (mask & SanitizerKind::HWAddress) 683 SanOpts.set(SanitizerKind::KernelHWAddress, false); 684 if (mask & SanitizerKind::KernelHWAddress) 685 SanOpts.set(SanitizerKind::HWAddress, false); 686 } 687 } 688 689 // Apply sanitizer attributes to the function. 690 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 691 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 692 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 693 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 694 if (SanOpts.has(SanitizerKind::MemTag)) 695 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 696 if (SanOpts.has(SanitizerKind::Thread)) 697 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 698 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 699 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 700 if (SanOpts.has(SanitizerKind::SafeStack)) 701 Fn->addFnAttr(llvm::Attribute::SafeStack); 702 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 703 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 704 705 // Apply fuzzing attribute to the function. 706 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 707 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 708 709 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 710 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 711 if (SanOpts.has(SanitizerKind::Thread)) { 712 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 713 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 714 if (OMD->getMethodFamily() == OMF_dealloc || 715 OMD->getMethodFamily() == OMF_initialize || 716 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 717 markAsIgnoreThreadCheckingAtRuntime(Fn); 718 } 719 } 720 } 721 722 // Ignore unrelated casts in STL allocate() since the allocator must cast 723 // from void* to T* before object initialization completes. Don't match on the 724 // namespace because not all allocators are in std:: 725 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 726 if (matchesStlAllocatorFn(D, getContext())) 727 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 728 } 729 730 // Ignore null checks in coroutine functions since the coroutines passes 731 // are not aware of how to move the extra UBSan instructions across the split 732 // coroutine boundaries. 733 if (D && SanOpts.has(SanitizerKind::Null)) 734 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 735 if (FD->getBody() && 736 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 737 SanOpts.Mask &= ~SanitizerKind::Null; 738 739 // Apply xray attributes to the function (as a string, for now) 740 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 741 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 742 XRayInstrKind::FunctionEntry) || 743 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 744 XRayInstrKind::FunctionExit)) { 745 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 746 Fn->addFnAttr("function-instrument", "xray-always"); 747 if (XRayAttr->neverXRayInstrument()) 748 Fn->addFnAttr("function-instrument", "xray-never"); 749 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 750 if (ShouldXRayInstrumentFunction()) 751 Fn->addFnAttr("xray-log-args", 752 llvm::utostr(LogArgs->getArgumentCount())); 753 } 754 } else { 755 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 756 Fn->addFnAttr( 757 "xray-instruction-threshold", 758 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 759 } 760 761 if (ShouldXRayInstrumentFunction()) { 762 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 763 Fn->addFnAttr("xray-ignore-loops"); 764 765 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 766 XRayInstrKind::FunctionExit)) 767 Fn->addFnAttr("xray-skip-exit"); 768 769 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 770 XRayInstrKind::FunctionEntry)) 771 Fn->addFnAttr("xray-skip-entry"); 772 } 773 774 unsigned Count, Offset; 775 if (const auto *Attr = 776 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 777 Count = Attr->getCount(); 778 Offset = Attr->getOffset(); 779 } else { 780 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 781 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 782 } 783 if (Count && Offset <= Count) { 784 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 785 if (Offset) 786 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 787 } 788 789 // Add no-jump-tables value. 790 Fn->addFnAttr("no-jump-tables", 791 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 792 793 // Add no-inline-line-tables value. 794 if (CGM.getCodeGenOpts().NoInlineLineTables) 795 Fn->addFnAttr("no-inline-line-tables"); 796 797 // Add profile-sample-accurate value. 798 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 799 Fn->addFnAttr("profile-sample-accurate"); 800 801 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 802 Fn->addFnAttr("cfi-canonical-jump-table"); 803 804 if (getLangOpts().OpenCL) { 805 // Add metadata for a kernel function. 806 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 807 EmitOpenCLKernelMetadata(FD, Fn); 808 } 809 810 // If we are checking function types, emit a function type signature as 811 // prologue data. 812 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 813 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 814 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 815 // Remove any (C++17) exception specifications, to allow calling e.g. a 816 // noexcept function through a non-noexcept pointer. 817 auto ProtoTy = 818 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 819 EST_None); 820 llvm::Constant *FTRTTIConst = 821 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 822 llvm::Constant *FTRTTIConstEncoded = 823 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 824 llvm::Constant *PrologueStructElems[] = {PrologueSig, 825 FTRTTIConstEncoded}; 826 llvm::Constant *PrologueStructConst = 827 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 828 Fn->setPrologueData(PrologueStructConst); 829 } 830 } 831 } 832 833 // If we're checking nullability, we need to know whether we can check the 834 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 835 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 836 auto Nullability = FnRetTy->getNullability(getContext()); 837 if (Nullability && *Nullability == NullabilityKind::NonNull) { 838 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 839 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 840 RetValNullabilityPrecondition = 841 llvm::ConstantInt::getTrue(getLLVMContext()); 842 } 843 } 844 845 // If we're in C++ mode and the function name is "main", it is guaranteed 846 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 847 // used within a program"). 848 // 849 // OpenCL C 2.0 v2.2-11 s6.9.i: 850 // Recursion is not supported. 851 // 852 // SYCL v1.2.1 s3.10: 853 // kernels cannot include RTTI information, exception classes, 854 // recursive code, virtual functions or make use of C++ libraries that 855 // are not compiled for the device. 856 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 857 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 858 getLangOpts().SYCLIsDevice || 859 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 860 Fn->addFnAttr(llvm::Attribute::NoRecurse); 861 } 862 863 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 864 Builder.setIsFPConstrained(FD->usesFPIntrin()); 865 if (FD->usesFPIntrin()) 866 Fn->addFnAttr(llvm::Attribute::StrictFP); 867 } 868 869 // If a custom alignment is used, force realigning to this alignment on 870 // any main function which certainly will need it. 871 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 872 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 873 CGM.getCodeGenOpts().StackAlignment) 874 Fn->addFnAttr("stackrealign"); 875 876 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 877 878 // Create a marker to make it easy to insert allocas into the entryblock 879 // later. Don't create this with the builder, because we don't want it 880 // folded. 881 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 882 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 883 884 ReturnBlock = getJumpDestInCurrentScope("return"); 885 886 Builder.SetInsertPoint(EntryBB); 887 888 // If we're checking the return value, allocate space for a pointer to a 889 // precise source location of the checked return statement. 890 if (requiresReturnValueCheck()) { 891 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 892 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 893 } 894 895 // Emit subprogram debug descriptor. 896 if (CGDebugInfo *DI = getDebugInfo()) { 897 // Reconstruct the type from the argument list so that implicit parameters, 898 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 899 // convention. 900 CallingConv CC = CallingConv::CC_C; 901 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 902 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 903 CC = SrcFnTy->getCallConv(); 904 SmallVector<QualType, 16> ArgTypes; 905 for (const VarDecl *VD : Args) 906 ArgTypes.push_back(VD->getType()); 907 QualType FnType = getContext().getFunctionType( 908 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 909 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 910 Builder); 911 } 912 913 if (ShouldInstrumentFunction()) { 914 if (CGM.getCodeGenOpts().InstrumentFunctions) 915 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 916 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 917 CurFn->addFnAttr("instrument-function-entry-inlined", 918 "__cyg_profile_func_enter"); 919 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 920 CurFn->addFnAttr("instrument-function-entry-inlined", 921 "__cyg_profile_func_enter_bare"); 922 } 923 924 // Since emitting the mcount call here impacts optimizations such as function 925 // inlining, we just add an attribute to insert a mcount call in backend. 926 // The attribute "counting-function" is set to mcount function name which is 927 // architecture dependent. 928 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 929 // Calls to fentry/mcount should not be generated if function has 930 // the no_instrument_function attribute. 931 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 932 if (CGM.getCodeGenOpts().CallFEntry) 933 Fn->addFnAttr("fentry-call", "true"); 934 else { 935 Fn->addFnAttr("instrument-function-entry-inlined", 936 getTarget().getMCountName()); 937 } 938 if (CGM.getCodeGenOpts().MNopMCount) { 939 if (!CGM.getCodeGenOpts().CallFEntry) 940 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 941 << "-mnop-mcount" << "-mfentry"; 942 Fn->addFnAttr("mnop-mcount"); 943 } 944 945 if (CGM.getCodeGenOpts().RecordMCount) { 946 if (!CGM.getCodeGenOpts().CallFEntry) 947 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 948 << "-mrecord-mcount" << "-mfentry"; 949 Fn->addFnAttr("mrecord-mcount"); 950 } 951 } 952 } 953 954 if (CGM.getCodeGenOpts().PackedStack) { 955 if (getContext().getTargetInfo().getTriple().getArch() != 956 llvm::Triple::systemz) 957 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 958 << "-mpacked-stack"; 959 Fn->addFnAttr("packed-stack"); 960 } 961 962 if (RetTy->isVoidType()) { 963 // Void type; nothing to return. 964 ReturnValue = Address::invalid(); 965 966 // Count the implicit return. 967 if (!endsWithReturn(D)) 968 ++NumReturnExprs; 969 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 970 // Indirect return; emit returned value directly into sret slot. 971 // This reduces code size, and affects correctness in C++. 972 auto AI = CurFn->arg_begin(); 973 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 974 ++AI; 975 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 976 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 977 ReturnValuePointer = 978 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 979 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 980 ReturnValue.getPointer(), Int8PtrTy), 981 ReturnValuePointer); 982 } 983 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 984 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 985 // Load the sret pointer from the argument struct and return into that. 986 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 987 llvm::Function::arg_iterator EI = CurFn->arg_end(); 988 --EI; 989 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 990 ReturnValuePointer = Address(Addr, getPointerAlign()); 991 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 992 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 993 } else { 994 ReturnValue = CreateIRTemp(RetTy, "retval"); 995 996 // Tell the epilog emitter to autorelease the result. We do this 997 // now so that various specialized functions can suppress it 998 // during their IR-generation. 999 if (getLangOpts().ObjCAutoRefCount && 1000 !CurFnInfo->isReturnsRetained() && 1001 RetTy->isObjCRetainableType()) 1002 AutoreleaseResult = true; 1003 } 1004 1005 EmitStartEHSpec(CurCodeDecl); 1006 1007 PrologueCleanupDepth = EHStack.stable_begin(); 1008 1009 // Emit OpenMP specific initialization of the device functions. 1010 if (getLangOpts().OpenMP && CurCodeDecl) 1011 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1012 1013 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1014 1015 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1016 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1017 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1018 if (MD->getParent()->isLambda() && 1019 MD->getOverloadedOperator() == OO_Call) { 1020 // We're in a lambda; figure out the captures. 1021 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1022 LambdaThisCaptureField); 1023 if (LambdaThisCaptureField) { 1024 // If the lambda captures the object referred to by '*this' - either by 1025 // value or by reference, make sure CXXThisValue points to the correct 1026 // object. 1027 1028 // Get the lvalue for the field (which is a copy of the enclosing object 1029 // or contains the address of the enclosing object). 1030 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1031 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1032 // If the enclosing object was captured by value, just use its address. 1033 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1034 } else { 1035 // Load the lvalue pointed to by the field, since '*this' was captured 1036 // by reference. 1037 CXXThisValue = 1038 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1039 } 1040 } 1041 for (auto *FD : MD->getParent()->fields()) { 1042 if (FD->hasCapturedVLAType()) { 1043 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1044 SourceLocation()).getScalarVal(); 1045 auto VAT = FD->getCapturedVLAType(); 1046 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1047 } 1048 } 1049 } else { 1050 // Not in a lambda; just use 'this' from the method. 1051 // FIXME: Should we generate a new load for each use of 'this'? The 1052 // fast register allocator would be happier... 1053 CXXThisValue = CXXABIThisValue; 1054 } 1055 1056 // Check the 'this' pointer once per function, if it's available. 1057 if (CXXABIThisValue) { 1058 SanitizerSet SkippedChecks; 1059 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1060 QualType ThisTy = MD->getThisType(); 1061 1062 // If this is the call operator of a lambda with no capture-default, it 1063 // may have a static invoker function, which may call this operator with 1064 // a null 'this' pointer. 1065 if (isLambdaCallOperator(MD) && 1066 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1067 SkippedChecks.set(SanitizerKind::Null, true); 1068 1069 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1070 : TCK_MemberCall, 1071 Loc, CXXABIThisValue, ThisTy, 1072 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1073 SkippedChecks); 1074 } 1075 } 1076 1077 // If any of the arguments have a variably modified type, make sure to 1078 // emit the type size. 1079 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1080 i != e; ++i) { 1081 const VarDecl *VD = *i; 1082 1083 // Dig out the type as written from ParmVarDecls; it's unclear whether 1084 // the standard (C99 6.9.1p10) requires this, but we're following the 1085 // precedent set by gcc. 1086 QualType Ty; 1087 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1088 Ty = PVD->getOriginalType(); 1089 else 1090 Ty = VD->getType(); 1091 1092 if (Ty->isVariablyModifiedType()) 1093 EmitVariablyModifiedType(Ty); 1094 } 1095 // Emit a location at the end of the prologue. 1096 if (CGDebugInfo *DI = getDebugInfo()) 1097 DI->EmitLocation(Builder, StartLoc); 1098 1099 // TODO: Do we need to handle this in two places like we do with 1100 // target-features/target-cpu? 1101 if (CurFuncDecl) 1102 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1103 LargestVectorWidth = VecWidth->getVectorWidth(); 1104 } 1105 1106 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1107 incrementProfileCounter(Body); 1108 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1109 EmitCompoundStmtWithoutScope(*S); 1110 else 1111 EmitStmt(Body); 1112 } 1113 1114 /// When instrumenting to collect profile data, the counts for some blocks 1115 /// such as switch cases need to not include the fall-through counts, so 1116 /// emit a branch around the instrumentation code. When not instrumenting, 1117 /// this just calls EmitBlock(). 1118 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1119 const Stmt *S) { 1120 llvm::BasicBlock *SkipCountBB = nullptr; 1121 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1122 // When instrumenting for profiling, the fallthrough to certain 1123 // statements needs to skip over the instrumentation code so that we 1124 // get an accurate count. 1125 SkipCountBB = createBasicBlock("skipcount"); 1126 EmitBranch(SkipCountBB); 1127 } 1128 EmitBlock(BB); 1129 uint64_t CurrentCount = getCurrentProfileCount(); 1130 incrementProfileCounter(S); 1131 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1132 if (SkipCountBB) 1133 EmitBlock(SkipCountBB); 1134 } 1135 1136 /// Tries to mark the given function nounwind based on the 1137 /// non-existence of any throwing calls within it. We believe this is 1138 /// lightweight enough to do at -O0. 1139 static void TryMarkNoThrow(llvm::Function *F) { 1140 // LLVM treats 'nounwind' on a function as part of the type, so we 1141 // can't do this on functions that can be overwritten. 1142 if (F->isInterposable()) return; 1143 1144 for (llvm::BasicBlock &BB : *F) 1145 for (llvm::Instruction &I : BB) 1146 if (I.mayThrow()) 1147 return; 1148 1149 F->setDoesNotThrow(); 1150 } 1151 1152 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1153 FunctionArgList &Args) { 1154 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1155 QualType ResTy = FD->getReturnType(); 1156 1157 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1158 if (MD && MD->isInstance()) { 1159 if (CGM.getCXXABI().HasThisReturn(GD)) 1160 ResTy = MD->getThisType(); 1161 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1162 ResTy = CGM.getContext().VoidPtrTy; 1163 CGM.getCXXABI().buildThisParam(*this, Args); 1164 } 1165 1166 // The base version of an inheriting constructor whose constructed base is a 1167 // virtual base is not passed any arguments (because it doesn't actually call 1168 // the inherited constructor). 1169 bool PassedParams = true; 1170 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1171 if (auto Inherited = CD->getInheritedConstructor()) 1172 PassedParams = 1173 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1174 1175 if (PassedParams) { 1176 for (auto *Param : FD->parameters()) { 1177 Args.push_back(Param); 1178 if (!Param->hasAttr<PassObjectSizeAttr>()) 1179 continue; 1180 1181 auto *Implicit = ImplicitParamDecl::Create( 1182 getContext(), Param->getDeclContext(), Param->getLocation(), 1183 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1184 SizeArguments[Param] = Implicit; 1185 Args.push_back(Implicit); 1186 } 1187 } 1188 1189 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1190 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1191 1192 return ResTy; 1193 } 1194 1195 static bool 1196 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1197 const ASTContext &Context) { 1198 QualType T = FD->getReturnType(); 1199 // Avoid the optimization for functions that return a record type with a 1200 // trivial destructor or another trivially copyable type. 1201 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1202 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1203 return !ClassDecl->hasTrivialDestructor(); 1204 } 1205 return !T.isTriviallyCopyableType(Context); 1206 } 1207 1208 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1209 const CGFunctionInfo &FnInfo) { 1210 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1211 CurGD = GD; 1212 1213 FunctionArgList Args; 1214 QualType ResTy = BuildFunctionArgList(GD, Args); 1215 1216 // Check if we should generate debug info for this function. 1217 if (FD->hasAttr<NoDebugAttr>()) 1218 DebugInfo = nullptr; // disable debug info indefinitely for this function 1219 1220 // The function might not have a body if we're generating thunks for a 1221 // function declaration. 1222 SourceRange BodyRange; 1223 if (Stmt *Body = FD->getBody()) 1224 BodyRange = Body->getSourceRange(); 1225 else 1226 BodyRange = FD->getLocation(); 1227 CurEHLocation = BodyRange.getEnd(); 1228 1229 // Use the location of the start of the function to determine where 1230 // the function definition is located. By default use the location 1231 // of the declaration as the location for the subprogram. A function 1232 // may lack a declaration in the source code if it is created by code 1233 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1234 SourceLocation Loc = FD->getLocation(); 1235 1236 // If this is a function specialization then use the pattern body 1237 // as the location for the function. 1238 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1239 if (SpecDecl->hasBody(SpecDecl)) 1240 Loc = SpecDecl->getLocation(); 1241 1242 Stmt *Body = FD->getBody(); 1243 1244 // Initialize helper which will detect jumps which can cause invalid lifetime 1245 // markers. 1246 if (Body && ShouldEmitLifetimeMarkers) 1247 Bypasses.Init(Body); 1248 1249 // Emit the standard function prologue. 1250 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1251 1252 // Generate the body of the function. 1253 PGO.assignRegionCounters(GD, CurFn); 1254 if (isa<CXXDestructorDecl>(FD)) 1255 EmitDestructorBody(Args); 1256 else if (isa<CXXConstructorDecl>(FD)) 1257 EmitConstructorBody(Args); 1258 else if (getLangOpts().CUDA && 1259 !getLangOpts().CUDAIsDevice && 1260 FD->hasAttr<CUDAGlobalAttr>()) 1261 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1262 else if (isa<CXXMethodDecl>(FD) && 1263 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1264 // The lambda static invoker function is special, because it forwards or 1265 // clones the body of the function call operator (but is actually static). 1266 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1267 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1268 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1269 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1270 // Implicit copy-assignment gets the same special treatment as implicit 1271 // copy-constructors. 1272 emitImplicitAssignmentOperatorBody(Args); 1273 } else if (Body) { 1274 EmitFunctionBody(Body); 1275 } else 1276 llvm_unreachable("no definition for emitted function"); 1277 1278 // C++11 [stmt.return]p2: 1279 // Flowing off the end of a function [...] results in undefined behavior in 1280 // a value-returning function. 1281 // C11 6.9.1p12: 1282 // If the '}' that terminates a function is reached, and the value of the 1283 // function call is used by the caller, the behavior is undefined. 1284 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1285 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1286 bool ShouldEmitUnreachable = 1287 CGM.getCodeGenOpts().StrictReturn || 1288 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1289 if (SanOpts.has(SanitizerKind::Return)) { 1290 SanitizerScope SanScope(this); 1291 llvm::Value *IsFalse = Builder.getFalse(); 1292 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1293 SanitizerHandler::MissingReturn, 1294 EmitCheckSourceLocation(FD->getLocation()), None); 1295 } else if (ShouldEmitUnreachable) { 1296 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1297 EmitTrapCall(llvm::Intrinsic::trap); 1298 } 1299 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1300 Builder.CreateUnreachable(); 1301 Builder.ClearInsertionPoint(); 1302 } 1303 } 1304 1305 // Emit the standard function epilogue. 1306 FinishFunction(BodyRange.getEnd()); 1307 1308 // If we haven't marked the function nothrow through other means, do 1309 // a quick pass now to see if we can. 1310 if (!CurFn->doesNotThrow()) 1311 TryMarkNoThrow(CurFn); 1312 } 1313 1314 /// ContainsLabel - Return true if the statement contains a label in it. If 1315 /// this statement is not executed normally, it not containing a label means 1316 /// that we can just remove the code. 1317 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1318 // Null statement, not a label! 1319 if (!S) return false; 1320 1321 // If this is a label, we have to emit the code, consider something like: 1322 // if (0) { ... foo: bar(); } goto foo; 1323 // 1324 // TODO: If anyone cared, we could track __label__'s, since we know that you 1325 // can't jump to one from outside their declared region. 1326 if (isa<LabelStmt>(S)) 1327 return true; 1328 1329 // If this is a case/default statement, and we haven't seen a switch, we have 1330 // to emit the code. 1331 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1332 return true; 1333 1334 // If this is a switch statement, we want to ignore cases below it. 1335 if (isa<SwitchStmt>(S)) 1336 IgnoreCaseStmts = true; 1337 1338 // Scan subexpressions for verboten labels. 1339 for (const Stmt *SubStmt : S->children()) 1340 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1341 return true; 1342 1343 return false; 1344 } 1345 1346 /// containsBreak - Return true if the statement contains a break out of it. 1347 /// If the statement (recursively) contains a switch or loop with a break 1348 /// inside of it, this is fine. 1349 bool CodeGenFunction::containsBreak(const Stmt *S) { 1350 // Null statement, not a label! 1351 if (!S) return false; 1352 1353 // If this is a switch or loop that defines its own break scope, then we can 1354 // include it and anything inside of it. 1355 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1356 isa<ForStmt>(S)) 1357 return false; 1358 1359 if (isa<BreakStmt>(S)) 1360 return true; 1361 1362 // Scan subexpressions for verboten breaks. 1363 for (const Stmt *SubStmt : S->children()) 1364 if (containsBreak(SubStmt)) 1365 return true; 1366 1367 return false; 1368 } 1369 1370 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1371 if (!S) return false; 1372 1373 // Some statement kinds add a scope and thus never add a decl to the current 1374 // scope. Note, this list is longer than the list of statements that might 1375 // have an unscoped decl nested within them, but this way is conservatively 1376 // correct even if more statement kinds are added. 1377 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1378 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1379 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1380 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1381 return false; 1382 1383 if (isa<DeclStmt>(S)) 1384 return true; 1385 1386 for (const Stmt *SubStmt : S->children()) 1387 if (mightAddDeclToScope(SubStmt)) 1388 return true; 1389 1390 return false; 1391 } 1392 1393 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1394 /// to a constant, or if it does but contains a label, return false. If it 1395 /// constant folds return true and set the boolean result in Result. 1396 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1397 bool &ResultBool, 1398 bool AllowLabels) { 1399 llvm::APSInt ResultInt; 1400 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1401 return false; 1402 1403 ResultBool = ResultInt.getBoolValue(); 1404 return true; 1405 } 1406 1407 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1408 /// to a constant, or if it does but contains a label, return false. If it 1409 /// constant folds return true and set the folded value. 1410 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1411 llvm::APSInt &ResultInt, 1412 bool AllowLabels) { 1413 // FIXME: Rename and handle conversion of other evaluatable things 1414 // to bool. 1415 Expr::EvalResult Result; 1416 if (!Cond->EvaluateAsInt(Result, getContext())) 1417 return false; // Not foldable, not integer or not fully evaluatable. 1418 1419 llvm::APSInt Int = Result.Val.getInt(); 1420 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1421 return false; // Contains a label. 1422 1423 ResultInt = Int; 1424 return true; 1425 } 1426 1427 1428 1429 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1430 /// statement) to the specified blocks. Based on the condition, this might try 1431 /// to simplify the codegen of the conditional based on the branch. 1432 /// 1433 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1434 llvm::BasicBlock *TrueBlock, 1435 llvm::BasicBlock *FalseBlock, 1436 uint64_t TrueCount) { 1437 Cond = Cond->IgnoreParens(); 1438 1439 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1440 1441 // Handle X && Y in a condition. 1442 if (CondBOp->getOpcode() == BO_LAnd) { 1443 // If we have "1 && X", simplify the code. "0 && X" would have constant 1444 // folded if the case was simple enough. 1445 bool ConstantBool = false; 1446 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1447 ConstantBool) { 1448 // br(1 && X) -> br(X). 1449 incrementProfileCounter(CondBOp); 1450 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1451 TrueCount); 1452 } 1453 1454 // If we have "X && 1", simplify the code to use an uncond branch. 1455 // "X && 0" would have been constant folded to 0. 1456 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1457 ConstantBool) { 1458 // br(X && 1) -> br(X). 1459 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1460 TrueCount); 1461 } 1462 1463 // Emit the LHS as a conditional. If the LHS conditional is false, we 1464 // want to jump to the FalseBlock. 1465 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1466 // The counter tells us how often we evaluate RHS, and all of TrueCount 1467 // can be propagated to that branch. 1468 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1469 1470 ConditionalEvaluation eval(*this); 1471 { 1472 ApplyDebugLocation DL(*this, Cond); 1473 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1474 EmitBlock(LHSTrue); 1475 } 1476 1477 incrementProfileCounter(CondBOp); 1478 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1479 1480 // Any temporaries created here are conditional. 1481 eval.begin(*this); 1482 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1483 eval.end(*this); 1484 1485 return; 1486 } 1487 1488 if (CondBOp->getOpcode() == BO_LOr) { 1489 // If we have "0 || X", simplify the code. "1 || X" would have constant 1490 // folded if the case was simple enough. 1491 bool ConstantBool = false; 1492 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1493 !ConstantBool) { 1494 // br(0 || X) -> br(X). 1495 incrementProfileCounter(CondBOp); 1496 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1497 TrueCount); 1498 } 1499 1500 // If we have "X || 0", simplify the code to use an uncond branch. 1501 // "X || 1" would have been constant folded to 1. 1502 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1503 !ConstantBool) { 1504 // br(X || 0) -> br(X). 1505 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1506 TrueCount); 1507 } 1508 1509 // Emit the LHS as a conditional. If the LHS conditional is true, we 1510 // want to jump to the TrueBlock. 1511 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1512 // We have the count for entry to the RHS and for the whole expression 1513 // being true, so we can divy up True count between the short circuit and 1514 // the RHS. 1515 uint64_t LHSCount = 1516 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1517 uint64_t RHSCount = TrueCount - LHSCount; 1518 1519 ConditionalEvaluation eval(*this); 1520 { 1521 ApplyDebugLocation DL(*this, Cond); 1522 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1523 EmitBlock(LHSFalse); 1524 } 1525 1526 incrementProfileCounter(CondBOp); 1527 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1528 1529 // Any temporaries created here are conditional. 1530 eval.begin(*this); 1531 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1532 1533 eval.end(*this); 1534 1535 return; 1536 } 1537 } 1538 1539 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1540 // br(!x, t, f) -> br(x, f, t) 1541 if (CondUOp->getOpcode() == UO_LNot) { 1542 // Negate the count. 1543 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1544 // Negate the condition and swap the destination blocks. 1545 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1546 FalseCount); 1547 } 1548 } 1549 1550 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1551 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1552 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1553 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1554 1555 ConditionalEvaluation cond(*this); 1556 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1557 getProfileCount(CondOp)); 1558 1559 // When computing PGO branch weights, we only know the overall count for 1560 // the true block. This code is essentially doing tail duplication of the 1561 // naive code-gen, introducing new edges for which counts are not 1562 // available. Divide the counts proportionally between the LHS and RHS of 1563 // the conditional operator. 1564 uint64_t LHSScaledTrueCount = 0; 1565 if (TrueCount) { 1566 double LHSRatio = 1567 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1568 LHSScaledTrueCount = TrueCount * LHSRatio; 1569 } 1570 1571 cond.begin(*this); 1572 EmitBlock(LHSBlock); 1573 incrementProfileCounter(CondOp); 1574 { 1575 ApplyDebugLocation DL(*this, Cond); 1576 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1577 LHSScaledTrueCount); 1578 } 1579 cond.end(*this); 1580 1581 cond.begin(*this); 1582 EmitBlock(RHSBlock); 1583 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1584 TrueCount - LHSScaledTrueCount); 1585 cond.end(*this); 1586 1587 return; 1588 } 1589 1590 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1591 // Conditional operator handling can give us a throw expression as a 1592 // condition for a case like: 1593 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1594 // Fold this to: 1595 // br(c, throw x, br(y, t, f)) 1596 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1597 return; 1598 } 1599 1600 // If the branch has a condition wrapped by __builtin_unpredictable, 1601 // create metadata that specifies that the branch is unpredictable. 1602 // Don't bother if not optimizing because that metadata would not be used. 1603 llvm::MDNode *Unpredictable = nullptr; 1604 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1605 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1606 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1607 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1608 llvm::MDBuilder MDHelper(getLLVMContext()); 1609 Unpredictable = MDHelper.createUnpredictable(); 1610 } 1611 } 1612 1613 // Create branch weights based on the number of times we get here and the 1614 // number of times the condition should be true. 1615 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1616 llvm::MDNode *Weights = 1617 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1618 1619 // Emit the code with the fully general case. 1620 llvm::Value *CondV; 1621 { 1622 ApplyDebugLocation DL(*this, Cond); 1623 CondV = EvaluateExprAsBool(Cond); 1624 } 1625 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1626 } 1627 1628 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1629 /// specified stmt yet. 1630 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1631 CGM.ErrorUnsupported(S, Type); 1632 } 1633 1634 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1635 /// variable-length array whose elements have a non-zero bit-pattern. 1636 /// 1637 /// \param baseType the inner-most element type of the array 1638 /// \param src - a char* pointing to the bit-pattern for a single 1639 /// base element of the array 1640 /// \param sizeInChars - the total size of the VLA, in chars 1641 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1642 Address dest, Address src, 1643 llvm::Value *sizeInChars) { 1644 CGBuilderTy &Builder = CGF.Builder; 1645 1646 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1647 llvm::Value *baseSizeInChars 1648 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1649 1650 Address begin = 1651 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1652 llvm::Value *end = 1653 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1654 1655 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1656 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1657 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1658 1659 // Make a loop over the VLA. C99 guarantees that the VLA element 1660 // count must be nonzero. 1661 CGF.EmitBlock(loopBB); 1662 1663 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1664 cur->addIncoming(begin.getPointer(), originBB); 1665 1666 CharUnits curAlign = 1667 dest.getAlignment().alignmentOfArrayElement(baseSize); 1668 1669 // memcpy the individual element bit-pattern. 1670 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1671 /*volatile*/ false); 1672 1673 // Go to the next element. 1674 llvm::Value *next = 1675 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1676 1677 // Leave if that's the end of the VLA. 1678 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1679 Builder.CreateCondBr(done, contBB, loopBB); 1680 cur->addIncoming(next, loopBB); 1681 1682 CGF.EmitBlock(contBB); 1683 } 1684 1685 void 1686 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1687 // Ignore empty classes in C++. 1688 if (getLangOpts().CPlusPlus) { 1689 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1690 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1691 return; 1692 } 1693 } 1694 1695 // Cast the dest ptr to the appropriate i8 pointer type. 1696 if (DestPtr.getElementType() != Int8Ty) 1697 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1698 1699 // Get size and alignment info for this aggregate. 1700 CharUnits size = getContext().getTypeSizeInChars(Ty); 1701 1702 llvm::Value *SizeVal; 1703 const VariableArrayType *vla; 1704 1705 // Don't bother emitting a zero-byte memset. 1706 if (size.isZero()) { 1707 // But note that getTypeInfo returns 0 for a VLA. 1708 if (const VariableArrayType *vlaType = 1709 dyn_cast_or_null<VariableArrayType>( 1710 getContext().getAsArrayType(Ty))) { 1711 auto VlaSize = getVLASize(vlaType); 1712 SizeVal = VlaSize.NumElts; 1713 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1714 if (!eltSize.isOne()) 1715 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1716 vla = vlaType; 1717 } else { 1718 return; 1719 } 1720 } else { 1721 SizeVal = CGM.getSize(size); 1722 vla = nullptr; 1723 } 1724 1725 // If the type contains a pointer to data member we can't memset it to zero. 1726 // Instead, create a null constant and copy it to the destination. 1727 // TODO: there are other patterns besides zero that we can usefully memset, 1728 // like -1, which happens to be the pattern used by member-pointers. 1729 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1730 // For a VLA, emit a single element, then splat that over the VLA. 1731 if (vla) Ty = getContext().getBaseElementType(vla); 1732 1733 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1734 1735 llvm::GlobalVariable *NullVariable = 1736 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1737 /*isConstant=*/true, 1738 llvm::GlobalVariable::PrivateLinkage, 1739 NullConstant, Twine()); 1740 CharUnits NullAlign = DestPtr.getAlignment(); 1741 NullVariable->setAlignment(NullAlign.getAsAlign()); 1742 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1743 NullAlign); 1744 1745 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1746 1747 // Get and call the appropriate llvm.memcpy overload. 1748 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1749 return; 1750 } 1751 1752 // Otherwise, just memset the whole thing to zero. This is legal 1753 // because in LLVM, all default initializers (other than the ones we just 1754 // handled above) are guaranteed to have a bit pattern of all zeros. 1755 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1756 } 1757 1758 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1759 // Make sure that there is a block for the indirect goto. 1760 if (!IndirectBranch) 1761 GetIndirectGotoBlock(); 1762 1763 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1764 1765 // Make sure the indirect branch includes all of the address-taken blocks. 1766 IndirectBranch->addDestination(BB); 1767 return llvm::BlockAddress::get(CurFn, BB); 1768 } 1769 1770 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1771 // If we already made the indirect branch for indirect goto, return its block. 1772 if (IndirectBranch) return IndirectBranch->getParent(); 1773 1774 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1775 1776 // Create the PHI node that indirect gotos will add entries to. 1777 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1778 "indirect.goto.dest"); 1779 1780 // Create the indirect branch instruction. 1781 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1782 return IndirectBranch->getParent(); 1783 } 1784 1785 /// Computes the length of an array in elements, as well as the base 1786 /// element type and a properly-typed first element pointer. 1787 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1788 QualType &baseType, 1789 Address &addr) { 1790 const ArrayType *arrayType = origArrayType; 1791 1792 // If it's a VLA, we have to load the stored size. Note that 1793 // this is the size of the VLA in bytes, not its size in elements. 1794 llvm::Value *numVLAElements = nullptr; 1795 if (isa<VariableArrayType>(arrayType)) { 1796 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1797 1798 // Walk into all VLAs. This doesn't require changes to addr, 1799 // which has type T* where T is the first non-VLA element type. 1800 do { 1801 QualType elementType = arrayType->getElementType(); 1802 arrayType = getContext().getAsArrayType(elementType); 1803 1804 // If we only have VLA components, 'addr' requires no adjustment. 1805 if (!arrayType) { 1806 baseType = elementType; 1807 return numVLAElements; 1808 } 1809 } while (isa<VariableArrayType>(arrayType)); 1810 1811 // We get out here only if we find a constant array type 1812 // inside the VLA. 1813 } 1814 1815 // We have some number of constant-length arrays, so addr should 1816 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1817 // down to the first element of addr. 1818 SmallVector<llvm::Value*, 8> gepIndices; 1819 1820 // GEP down to the array type. 1821 llvm::ConstantInt *zero = Builder.getInt32(0); 1822 gepIndices.push_back(zero); 1823 1824 uint64_t countFromCLAs = 1; 1825 QualType eltType; 1826 1827 llvm::ArrayType *llvmArrayType = 1828 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1829 while (llvmArrayType) { 1830 assert(isa<ConstantArrayType>(arrayType)); 1831 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1832 == llvmArrayType->getNumElements()); 1833 1834 gepIndices.push_back(zero); 1835 countFromCLAs *= llvmArrayType->getNumElements(); 1836 eltType = arrayType->getElementType(); 1837 1838 llvmArrayType = 1839 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1840 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1841 assert((!llvmArrayType || arrayType) && 1842 "LLVM and Clang types are out-of-synch"); 1843 } 1844 1845 if (arrayType) { 1846 // From this point onwards, the Clang array type has been emitted 1847 // as some other type (probably a packed struct). Compute the array 1848 // size, and just emit the 'begin' expression as a bitcast. 1849 while (arrayType) { 1850 countFromCLAs *= 1851 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1852 eltType = arrayType->getElementType(); 1853 arrayType = getContext().getAsArrayType(eltType); 1854 } 1855 1856 llvm::Type *baseType = ConvertType(eltType); 1857 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1858 } else { 1859 // Create the actual GEP. 1860 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1861 gepIndices, "array.begin"), 1862 addr.getAlignment()); 1863 } 1864 1865 baseType = eltType; 1866 1867 llvm::Value *numElements 1868 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1869 1870 // If we had any VLA dimensions, factor them in. 1871 if (numVLAElements) 1872 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1873 1874 return numElements; 1875 } 1876 1877 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1878 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1879 assert(vla && "type was not a variable array type!"); 1880 return getVLASize(vla); 1881 } 1882 1883 CodeGenFunction::VlaSizePair 1884 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1885 // The number of elements so far; always size_t. 1886 llvm::Value *numElements = nullptr; 1887 1888 QualType elementType; 1889 do { 1890 elementType = type->getElementType(); 1891 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1892 assert(vlaSize && "no size for VLA!"); 1893 assert(vlaSize->getType() == SizeTy); 1894 1895 if (!numElements) { 1896 numElements = vlaSize; 1897 } else { 1898 // It's undefined behavior if this wraps around, so mark it that way. 1899 // FIXME: Teach -fsanitize=undefined to trap this. 1900 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1901 } 1902 } while ((type = getContext().getAsVariableArrayType(elementType))); 1903 1904 return { numElements, elementType }; 1905 } 1906 1907 CodeGenFunction::VlaSizePair 1908 CodeGenFunction::getVLAElements1D(QualType type) { 1909 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1910 assert(vla && "type was not a variable array type!"); 1911 return getVLAElements1D(vla); 1912 } 1913 1914 CodeGenFunction::VlaSizePair 1915 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1916 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1917 assert(VlaSize && "no size for VLA!"); 1918 assert(VlaSize->getType() == SizeTy); 1919 return { VlaSize, Vla->getElementType() }; 1920 } 1921 1922 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1923 assert(type->isVariablyModifiedType() && 1924 "Must pass variably modified type to EmitVLASizes!"); 1925 1926 EnsureInsertPoint(); 1927 1928 // We're going to walk down into the type and look for VLA 1929 // expressions. 1930 do { 1931 assert(type->isVariablyModifiedType()); 1932 1933 const Type *ty = type.getTypePtr(); 1934 switch (ty->getTypeClass()) { 1935 1936 #define TYPE(Class, Base) 1937 #define ABSTRACT_TYPE(Class, Base) 1938 #define NON_CANONICAL_TYPE(Class, Base) 1939 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1940 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1941 #include "clang/AST/TypeNodes.inc" 1942 llvm_unreachable("unexpected dependent type!"); 1943 1944 // These types are never variably-modified. 1945 case Type::Builtin: 1946 case Type::Complex: 1947 case Type::Vector: 1948 case Type::ExtVector: 1949 case Type::ConstantMatrix: 1950 case Type::Record: 1951 case Type::Enum: 1952 case Type::Elaborated: 1953 case Type::TemplateSpecialization: 1954 case Type::ObjCTypeParam: 1955 case Type::ObjCObject: 1956 case Type::ObjCInterface: 1957 case Type::ObjCObjectPointer: 1958 case Type::ExtInt: 1959 llvm_unreachable("type class is never variably-modified!"); 1960 1961 case Type::Adjusted: 1962 type = cast<AdjustedType>(ty)->getAdjustedType(); 1963 break; 1964 1965 case Type::Decayed: 1966 type = cast<DecayedType>(ty)->getPointeeType(); 1967 break; 1968 1969 case Type::Pointer: 1970 type = cast<PointerType>(ty)->getPointeeType(); 1971 break; 1972 1973 case Type::BlockPointer: 1974 type = cast<BlockPointerType>(ty)->getPointeeType(); 1975 break; 1976 1977 case Type::LValueReference: 1978 case Type::RValueReference: 1979 type = cast<ReferenceType>(ty)->getPointeeType(); 1980 break; 1981 1982 case Type::MemberPointer: 1983 type = cast<MemberPointerType>(ty)->getPointeeType(); 1984 break; 1985 1986 case Type::ConstantArray: 1987 case Type::IncompleteArray: 1988 // Losing element qualification here is fine. 1989 type = cast<ArrayType>(ty)->getElementType(); 1990 break; 1991 1992 case Type::VariableArray: { 1993 // Losing element qualification here is fine. 1994 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1995 1996 // Unknown size indication requires no size computation. 1997 // Otherwise, evaluate and record it. 1998 if (const Expr *size = vat->getSizeExpr()) { 1999 // It's possible that we might have emitted this already, 2000 // e.g. with a typedef and a pointer to it. 2001 llvm::Value *&entry = VLASizeMap[size]; 2002 if (!entry) { 2003 llvm::Value *Size = EmitScalarExpr(size); 2004 2005 // C11 6.7.6.2p5: 2006 // If the size is an expression that is not an integer constant 2007 // expression [...] each time it is evaluated it shall have a value 2008 // greater than zero. 2009 if (SanOpts.has(SanitizerKind::VLABound) && 2010 size->getType()->isSignedIntegerType()) { 2011 SanitizerScope SanScope(this); 2012 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2013 llvm::Constant *StaticArgs[] = { 2014 EmitCheckSourceLocation(size->getBeginLoc()), 2015 EmitCheckTypeDescriptor(size->getType())}; 2016 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2017 SanitizerKind::VLABound), 2018 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2019 } 2020 2021 // Always zexting here would be wrong if it weren't 2022 // undefined behavior to have a negative bound. 2023 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2024 } 2025 } 2026 type = vat->getElementType(); 2027 break; 2028 } 2029 2030 case Type::FunctionProto: 2031 case Type::FunctionNoProto: 2032 type = cast<FunctionType>(ty)->getReturnType(); 2033 break; 2034 2035 case Type::Paren: 2036 case Type::TypeOf: 2037 case Type::UnaryTransform: 2038 case Type::Attributed: 2039 case Type::SubstTemplateTypeParm: 2040 case Type::PackExpansion: 2041 case Type::MacroQualified: 2042 // Keep walking after single level desugaring. 2043 type = type.getSingleStepDesugaredType(getContext()); 2044 break; 2045 2046 case Type::Typedef: 2047 case Type::Decltype: 2048 case Type::Auto: 2049 case Type::DeducedTemplateSpecialization: 2050 // Stop walking: nothing to do. 2051 return; 2052 2053 case Type::TypeOfExpr: 2054 // Stop walking: emit typeof expression. 2055 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2056 return; 2057 2058 case Type::Atomic: 2059 type = cast<AtomicType>(ty)->getValueType(); 2060 break; 2061 2062 case Type::Pipe: 2063 type = cast<PipeType>(ty)->getElementType(); 2064 break; 2065 } 2066 } while (type->isVariablyModifiedType()); 2067 } 2068 2069 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2070 if (getContext().getBuiltinVaListType()->isArrayType()) 2071 return EmitPointerWithAlignment(E); 2072 return EmitLValue(E).getAddress(*this); 2073 } 2074 2075 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2076 return EmitLValue(E).getAddress(*this); 2077 } 2078 2079 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2080 const APValue &Init) { 2081 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2082 if (CGDebugInfo *Dbg = getDebugInfo()) 2083 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2084 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2085 } 2086 2087 CodeGenFunction::PeepholeProtection 2088 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2089 // At the moment, the only aggressive peephole we do in IR gen 2090 // is trunc(zext) folding, but if we add more, we can easily 2091 // extend this protection. 2092 2093 if (!rvalue.isScalar()) return PeepholeProtection(); 2094 llvm::Value *value = rvalue.getScalarVal(); 2095 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2096 2097 // Just make an extra bitcast. 2098 assert(HaveInsertPoint()); 2099 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2100 Builder.GetInsertBlock()); 2101 2102 PeepholeProtection protection; 2103 protection.Inst = inst; 2104 return protection; 2105 } 2106 2107 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2108 if (!protection.Inst) return; 2109 2110 // In theory, we could try to duplicate the peepholes now, but whatever. 2111 protection.Inst->eraseFromParent(); 2112 } 2113 2114 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2115 QualType Ty, SourceLocation Loc, 2116 SourceLocation AssumptionLoc, 2117 llvm::Value *Alignment, 2118 llvm::Value *OffsetValue) { 2119 llvm::Value *TheCheck; 2120 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2121 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2122 if (SanOpts.has(SanitizerKind::Alignment)) { 2123 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2124 OffsetValue, TheCheck, Assumption); 2125 } 2126 } 2127 2128 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2129 const Expr *E, 2130 SourceLocation AssumptionLoc, 2131 llvm::Value *Alignment, 2132 llvm::Value *OffsetValue) { 2133 if (auto *CE = dyn_cast<CastExpr>(E)) 2134 E = CE->getSubExprAsWritten(); 2135 QualType Ty = E->getType(); 2136 SourceLocation Loc = E->getExprLoc(); 2137 2138 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2139 OffsetValue); 2140 } 2141 2142 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2143 llvm::Value *AnnotatedVal, 2144 StringRef AnnotationStr, 2145 SourceLocation Location) { 2146 llvm::Value *Args[4] = { 2147 AnnotatedVal, 2148 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2149 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2150 CGM.EmitAnnotationLineNo(Location) 2151 }; 2152 return Builder.CreateCall(AnnotationFn, Args); 2153 } 2154 2155 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2156 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2157 // FIXME We create a new bitcast for every annotation because that's what 2158 // llvm-gcc was doing. 2159 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2160 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2161 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2162 I->getAnnotation(), D->getLocation()); 2163 } 2164 2165 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2166 Address Addr) { 2167 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2168 llvm::Value *V = Addr.getPointer(); 2169 llvm::Type *VTy = V->getType(); 2170 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2171 CGM.Int8PtrTy); 2172 2173 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2174 // FIXME Always emit the cast inst so we can differentiate between 2175 // annotation on the first field of a struct and annotation on the struct 2176 // itself. 2177 if (VTy != CGM.Int8PtrTy) 2178 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2179 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2180 V = Builder.CreateBitCast(V, VTy); 2181 } 2182 2183 return Address(V, Addr.getAlignment()); 2184 } 2185 2186 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2187 2188 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2189 : CGF(CGF) { 2190 assert(!CGF->IsSanitizerScope); 2191 CGF->IsSanitizerScope = true; 2192 } 2193 2194 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2195 CGF->IsSanitizerScope = false; 2196 } 2197 2198 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2199 const llvm::Twine &Name, 2200 llvm::BasicBlock *BB, 2201 llvm::BasicBlock::iterator InsertPt) const { 2202 LoopStack.InsertHelper(I); 2203 if (IsSanitizerScope) 2204 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2205 } 2206 2207 void CGBuilderInserter::InsertHelper( 2208 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2209 llvm::BasicBlock::iterator InsertPt) const { 2210 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2211 if (CGF) 2212 CGF->InsertHelper(I, Name, BB, InsertPt); 2213 } 2214 2215 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2216 CodeGenModule &CGM, const FunctionDecl *FD, 2217 std::string &FirstMissing) { 2218 // If there aren't any required features listed then go ahead and return. 2219 if (ReqFeatures.empty()) 2220 return false; 2221 2222 // Now build up the set of caller features and verify that all the required 2223 // features are there. 2224 llvm::StringMap<bool> CallerFeatureMap; 2225 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2226 2227 // If we have at least one of the features in the feature list return 2228 // true, otherwise return false. 2229 return std::all_of( 2230 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2231 SmallVector<StringRef, 1> OrFeatures; 2232 Feature.split(OrFeatures, '|'); 2233 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2234 if (!CallerFeatureMap.lookup(Feature)) { 2235 FirstMissing = Feature.str(); 2236 return false; 2237 } 2238 return true; 2239 }); 2240 }); 2241 } 2242 2243 // Emits an error if we don't have a valid set of target features for the 2244 // called function. 2245 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2246 const FunctionDecl *TargetDecl) { 2247 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2248 } 2249 2250 // Emits an error if we don't have a valid set of target features for the 2251 // called function. 2252 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2253 const FunctionDecl *TargetDecl) { 2254 // Early exit if this is an indirect call. 2255 if (!TargetDecl) 2256 return; 2257 2258 // Get the current enclosing function if it exists. If it doesn't 2259 // we can't check the target features anyhow. 2260 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2261 if (!FD) 2262 return; 2263 2264 // Grab the required features for the call. For a builtin this is listed in 2265 // the td file with the default cpu, for an always_inline function this is any 2266 // listed cpu and any listed features. 2267 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2268 std::string MissingFeature; 2269 if (BuiltinID) { 2270 SmallVector<StringRef, 1> ReqFeatures; 2271 const char *FeatureList = 2272 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2273 // Return if the builtin doesn't have any required features. 2274 if (!FeatureList || StringRef(FeatureList) == "") 2275 return; 2276 StringRef(FeatureList).split(ReqFeatures, ','); 2277 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2278 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2279 << TargetDecl->getDeclName() 2280 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2281 2282 } else if (!TargetDecl->isMultiVersion() && 2283 TargetDecl->hasAttr<TargetAttr>()) { 2284 // Get the required features for the callee. 2285 2286 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2287 ParsedTargetAttr ParsedAttr = 2288 CGM.getContext().filterFunctionTargetAttrs(TD); 2289 2290 SmallVector<StringRef, 1> ReqFeatures; 2291 llvm::StringMap<bool> CalleeFeatureMap; 2292 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2293 2294 for (const auto &F : ParsedAttr.Features) { 2295 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2296 ReqFeatures.push_back(StringRef(F).substr(1)); 2297 } 2298 2299 for (const auto &F : CalleeFeatureMap) { 2300 // Only positive features are "required". 2301 if (F.getValue()) 2302 ReqFeatures.push_back(F.getKey()); 2303 } 2304 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2305 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2306 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2307 } 2308 } 2309 2310 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2311 if (!CGM.getCodeGenOpts().SanitizeStats) 2312 return; 2313 2314 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2315 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2316 CGM.getSanStats().create(IRB, SSK); 2317 } 2318 2319 llvm::Value * 2320 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2321 llvm::Value *Condition = nullptr; 2322 2323 if (!RO.Conditions.Architecture.empty()) 2324 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2325 2326 if (!RO.Conditions.Features.empty()) { 2327 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2328 Condition = 2329 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2330 } 2331 return Condition; 2332 } 2333 2334 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2335 llvm::Function *Resolver, 2336 CGBuilderTy &Builder, 2337 llvm::Function *FuncToReturn, 2338 bool SupportsIFunc) { 2339 if (SupportsIFunc) { 2340 Builder.CreateRet(FuncToReturn); 2341 return; 2342 } 2343 2344 llvm::SmallVector<llvm::Value *, 10> Args; 2345 llvm::for_each(Resolver->args(), 2346 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2347 2348 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2349 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2350 2351 if (Resolver->getReturnType()->isVoidTy()) 2352 Builder.CreateRetVoid(); 2353 else 2354 Builder.CreateRet(Result); 2355 } 2356 2357 void CodeGenFunction::EmitMultiVersionResolver( 2358 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2359 assert(getContext().getTargetInfo().getTriple().isX86() && 2360 "Only implemented for x86 targets"); 2361 2362 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2363 2364 // Main function's basic block. 2365 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2366 Builder.SetInsertPoint(CurBlock); 2367 EmitX86CpuInit(); 2368 2369 for (const MultiVersionResolverOption &RO : Options) { 2370 Builder.SetInsertPoint(CurBlock); 2371 llvm::Value *Condition = FormResolverCondition(RO); 2372 2373 // The 'default' or 'generic' case. 2374 if (!Condition) { 2375 assert(&RO == Options.end() - 1 && 2376 "Default or Generic case must be last"); 2377 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2378 SupportsIFunc); 2379 return; 2380 } 2381 2382 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2383 CGBuilderTy RetBuilder(*this, RetBlock); 2384 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2385 SupportsIFunc); 2386 CurBlock = createBasicBlock("resolver_else", Resolver); 2387 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2388 } 2389 2390 // If no generic/default, emit an unreachable. 2391 Builder.SetInsertPoint(CurBlock); 2392 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2393 TrapCall->setDoesNotReturn(); 2394 TrapCall->setDoesNotThrow(); 2395 Builder.CreateUnreachable(); 2396 Builder.ClearInsertionPoint(); 2397 } 2398 2399 // Loc - where the diagnostic will point, where in the source code this 2400 // alignment has failed. 2401 // SecondaryLoc - if present (will be present if sufficiently different from 2402 // Loc), the diagnostic will additionally point a "Note:" to this location. 2403 // It should be the location where the __attribute__((assume_aligned)) 2404 // was written e.g. 2405 void CodeGenFunction::emitAlignmentAssumptionCheck( 2406 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2407 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2408 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2409 llvm::Instruction *Assumption) { 2410 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2411 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2412 llvm::Intrinsic::getDeclaration( 2413 Builder.GetInsertBlock()->getParent()->getParent(), 2414 llvm::Intrinsic::assume) && 2415 "Assumption should be a call to llvm.assume()."); 2416 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2417 "Assumption should be the last instruction of the basic block, " 2418 "since the basic block is still being generated."); 2419 2420 if (!SanOpts.has(SanitizerKind::Alignment)) 2421 return; 2422 2423 // Don't check pointers to volatile data. The behavior here is implementation- 2424 // defined. 2425 if (Ty->getPointeeType().isVolatileQualified()) 2426 return; 2427 2428 // We need to temorairly remove the assumption so we can insert the 2429 // sanitizer check before it, else the check will be dropped by optimizations. 2430 Assumption->removeFromParent(); 2431 2432 { 2433 SanitizerScope SanScope(this); 2434 2435 if (!OffsetValue) 2436 OffsetValue = Builder.getInt1(0); // no offset. 2437 2438 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2439 EmitCheckSourceLocation(SecondaryLoc), 2440 EmitCheckTypeDescriptor(Ty)}; 2441 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2442 EmitCheckValue(Alignment), 2443 EmitCheckValue(OffsetValue)}; 2444 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2445 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2446 } 2447 2448 // We are now in the (new, empty) "cont" basic block. 2449 // Reintroduce the assumption. 2450 Builder.Insert(Assumption); 2451 // FIXME: Assumption still has it's original basic block as it's Parent. 2452 } 2453 2454 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2455 if (CGDebugInfo *DI = getDebugInfo()) 2456 return DI->SourceLocToDebugLoc(Location); 2457 2458 return llvm::DebugLoc(); 2459 } 2460